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A BOUNDARY REGULARITY THEOREM FOR MEAN
CURVATURE FLOW

ANDREW STONE

Abstract
We study singularity formation in the mean curvature flow of smooth, com-
pact, embedded hypersurfaces of non-negative mean curvature in R n + 1 ,
with fixed smooth boundary, Γ. Then, subject to a so-called "Type I"
hypothesis, and a certain geometrical constraint on Γ, we establish the fol-
lowing boundary regularity result:

Main Theorem (Boundary Regularity). Suppose hypotheses A
and B of Section 1 hold, and suppose that the hypersurfaces {Mt}t rQT)

are flowing by mean curvature as in (1.1). Then there is a fixed neigh-
bourhood (in R n + 1 ) of the boundary, Γ, in which all the surfaces Mt

remain smooth, with uniform bounds on \A\2 and all its derivatives,
even ast/^T.

Note for instance that this result covers (modulo the Type I hy-
pothesis) the model situation where Γ is some smooth (but possibly
highly complicated) embedded submanifold of Sn which splits Sn into
two "caps", and where M o is taken to be one of these caps (cf. Ap-
pendix C).

In the process of proving this theorem we also extend Huisken's classi-
fication of singularities (see [5]) to our setting with boundary, and refine
his analysis along the lines of [10].

The principal ingredients used, to address these issues, are Allard's
boundary regularity theory for varifolds, and also a certain "density
function", whose definition is based on the analogue, for surfaces with
boundary, of Huisken's important monotonicity formula for mean cur-
vature flow.
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372 ANDREW STONE

1. Introduction

Let Mo be a smooth, compact, embedded hypersurface in R n + 1 with
smooth embedded boundary Γ71"1, and suppose {Ft : Mo -» Rn+1} ί6[0,τ)
is a family of embeddings which move Mo by its mean curvature, holding
the boundary fixed. That is, Ft = F( ,ί) is a one-parameter family of
embeddings satisfying F e C°°(M0 x (0,Γ)) Π ChQ(M0 x [0,T)), and

) on Mox[O,Γ)

=p on Γx[0,T)
F(p,0) = F 0 ( p ) = p on Mo.

Here H(p,t) = —H(p,t)v(p,t) denotes the mean curvature vector of
Mt = Ft(M0) at F(p, t), and 1/ denotes a choice of unit normal for Mt.

Note that the Dirichlet boundary condition in (1.1) means, of course,
that H must then satisfy, for all t G (0,Γ),

(1.2) H(Ίt)=0 on Γ.

Our main purpose in this paper is to study the formation of sin-
gularities in such a flow, as t —> T. To do so, however, we need to
make three further assumptions. The latter two, stated in hypothesis
B below, are geometric conditions, one about the boundary, Γ, and one
about the mean curvature of the initial surface Mo. The first is a so-
called "Type I hypothesis", about the rate of blow-up of the function
U(t) = maxMt \A\2 as t approaches T, where A is the second fundamen-
tal form of Mt = Ft(M0).

The first and third of these assumptions mirror those needed by
Huisken in his analysis of singularity formation for surfaces without
boundary, [5], which was in any case the inspiration for much of this
work. Specifically, our hypotheses are;

Hypothesis A: (Type I hypothesis) There is a fixed constant Co such
that the function U(t) = maxM t |A|2(p,£) satisfies

(1.3) ^

Hypothesis B: (Convexity hypotheses) The boundary, Γ11"1 C R n + 1 ,
lies on the boundary of some uniformly convex body M, and more-
over Mo C Λ/". (Actually this hypothesis may be weakened; see Re-
mark 12.2(ii)).

Also the surface Mo satisfies H > 0 everywhere.
1.1 Remarks and Notation. (i) Note that without loss of

generality we may as well then assume, as we do henceforth, that Mo
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in fact satisfies

(1.4) H = 0 on Γ, i / > 0 on int(M0) .

This is permissible because any smooth Mo satisfying H > 0 and
dM0 C dλί may be approximated in a suitable C1'"-sense (made pre-
cise in Appendix C) by a sequence of smooth surfaces {ΣJ, of uni-
formly bounded non-negative mean curvature, which satisfy 9Σ* = Γ
and iϊ |d Σ t. EE 0.

Then by use of appropriate (^'"-estimates it may be shown that the
flow (1.1) with initial surface Mo has a solution for at least a short time,
which instantaneously becomes smooth and also satisfies £Γ( ,ί) > 0,
ίf( , t ) | Γ = 0 for all t > 0 (see Appendix C). We may then simply
replace Mo in the discussion by one of the surfaces Mt, t > 0 small, and
this "new Mo" will satisfy (1.4).

(ii) Recall that the first part of Hypothesis B means that we can
find a uniform radius R such that, for any x E dλf, Λί may be enclosed
in a sphere of radius R that touches dλί precisely at x and nowhere
else. Using that Γ is of class C2 it thence follows that, at any point
x0 G Γ, we can find two distinct barrier hyperplanes, intersecting along
TXoΓ, that will then (by the maximum principle) enclose all the evolving
hypersurfaces, Mu in the wedge that they form. For each such x0 we
henceforth let this wedge be denoted Vχ0. Then we let V*o denote the
wedge in R n + 1 obtained by rotating and translating FXo into "standard
position", so that TX0Γ goes into R/1"1 x {0}, the plane R n x {0} bisects
VXo, and the surfaces Mt all lie in the xn > 0 halfspace. Also we let ?tXo

denote the (unique) rotation in R n + 1 sending V^Q (after translation) to

Finally, observe furthermore that, by the uniformity of the convexity
of jV, all of the wedges {V*Q : x0 G Γ} may be taken to have "wedge
angles", < X̂o, satisfying ψ^Q < π — δQ for some fixed δ0 > 0. We let
γ(δ°ϊ denote the wedge in "standard position" in R n + 1 with exactly
this wedge angle, π — δQ (so that each wedge Vχ0 then lies symmetrically
inside V^).

1.2 Further Remarks, (i) It is well-known that, in the bound-
aryless case, if the surfaces Mt are developing a singularity at time T,
in the sense that liminf^x U(t) = +oo, then the function U(t) must in
fact satisfy (see, for instance, [5, Lemma 1.2]),

This was the motivation, in [5], for distinguishing the notions of
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Type I and Type II singularities, the Type I assumption being "just
right" to permit rescaling arguments based on the monotonicity identity
discovered in that paper ([5, Theorem 3.1]). Such a rescaling procedure,
based on an analogue of Huisken's monotonicity result, is also the key
tool in our subsequent analysis.

(ii) The proof of the estimate (1.5) does not carry over directly
to the case of surfaces with boundary, unfortunately. However, after
additional work, an analogous "minimum blow-up rate" estimate can
still be established in this setting (see [11]).

(iii) Hypothesis B (more precisely (1.4)), together with the maxi-
mum principle, yields:

1.3 Lemma. For all t G [0,T) the surfaces Mt must satisfy either
H = 0, or H = 0 on Γ, H > 0 on int(Mt).

Of course the first option here is the trivial case, for if this situation
ever arises then the flow has successfully reached a minimal surface and
stopped (with certainly no singularity formation at the later time T).
Thus we always tacitly assume, henceforth, that this has not happened.

Now that we have set up the situation under consideration, and spec-
ified the three additional assumptions we need about the behaviour of
the flow, we are in a position to outline the chief aims of this paper.
They are essentially two-fold.

The principal one is to prove a boundary regularity theorem, that
there is some neighbourhood of Γ in which the surfaces Mt remain reg-
ular as t —>• T, regardless of whether or not \A\2 may be blowing up
elsewhere in the interior. This is established in two main stages.

The first is to show that, in a boundary strip, the Type I estimate
for the maximum rate of blow-up of \A\2, (1.3), may be improved to
an estimate of the form |A|2(p,t) < e(t)/(T — t), where e(t) -> 0 as
t —> T. This is the content of part (b) of Theorem 6.1, which is proven in
Sections 7 and 8 (after the necessary preliminaries have been developed
in Sections 2 to 5).

The second stage, carried out in Sections 9 to 12, is then to bootstrap
up this improved estimate to a full boundedness result for \A\2, in some
boundary strip, as t —> T. To obtain this we employ the boundary
regularity theory for varifolds of Allard, [1], as well as the techniques of
[10, Section 4].

The second main aim of this paper is to extend Huisken's analysis
of singularity formation (see [5]), for surfaces without boundary, to the
present setting; and also to sharpen it along the lines of [10]. More
precisely, recall the notions of "special" (those studied by Huisken) and
"general" singular points, introduced in [10];



A BOUNDARY REGULARITY THEOREM 375

1.4 Definition. We say that p G Mo is a special singular point of
the flow ("singular point in the sense of Huisken"), as t —> T, if there
exists a fixed δ > 0 such that, for some sequence of times tk /* T,

(1.6) \A\2(p,tk)>
- tk) •

1.5 Definition. We say p G Mo is a general singular point of the
flow, as t -> T, if there exists a fixed δ > 0 such that, for some sequence
of times tk /* T, and some sequence of points pk E Mo with p* -» p,

(1-7) μ|2(p*,ί*)>^-^y

Also, we call such a sequence {(p*,^)} a δ-essential blow-up sequence,
following the terminology of Altschuler ([2]).

Then our main result in this regard is that, in the above setting, just
as in the boundaryless case (see [10, Theorem 3.1]), any "general" Type
I singular point of the flow must actually be a "special" Type I singular
point also. See Theorem 6.1 (a).

The results described in this paper formed part of the author's doc-
toral dissertation at Stanford University.

2. The monotonicity identities

The essential tool in our analysis of singularity formation in the above
setting will be the following analogue, for surfaces with boundary, of
Huisken's important monotonicity formula for mean curvature flow ([5]).
As there, we consider an "n-dimensional" backwards heat kernel centred
at an arbitrary point (x0, T) in spacetime R n + 1 x (0, oo), and then study
how the "amount of heat on our evolving manifold" changes a s ί / Γ .
(We will be interested in the case where T is the time of first singularity
formation).

2.1 Lemma. Take any (xo,T") G R n + 1 x (0, oo). Suppose the surfaces
Mt, all with fixed boundary V, are evolving by mean curvature as in (1.1),
and set

e x p

-|x-xo|2

™ - (4τrτ)"/2 "~*Λ 4r

where here, and henceforth, r = (T — t). Then

(2.1)

)

Mt Mt
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where η denotes the inward unit conormal to Γ with respect to Mt.
Note that (2.1) may be written in integrated form as

(2.2)

(x-xo)x

/ / H + PxodHndt = I J PxodHn - f PxodHn

2 r Kti Mt

'x-Xo

2τ '
t\ Γ

for any 0 < £χ < t2 < T. In the event that t2 = T, of course, we replace
J ρyiodHn in (2.2) by lim f pXodHn (see also Section 5).

2.2 Remark. The presence of the boundary term in (2.1) means that
actually the quantity JMt pXodHn no longer need necessarily be (indeed
won't be, as we shall see) monotone decreasing. However we shall still
refer to (2.1) and (2.2) as the (unsealed) "Monotonicity Identities" be-
cause of their analogy with Huisken's monotonicity identities for the
boundaryless case.

Proof This proceeds almost exactly as in the boundaryless case - see
[5, Theorem 3.1] for the details. The only difference is that, when the
First Variation Formula is applied, we now get a boundary contribution
(see [9, p. 46]), which gives the boundary integral in (2.1). Q.E.D.

The importance of this lemma is that it will allow us to carry out a
rescaling analysis, just as in [5]. We now describe this rescaling proce-
dure.

For any fixed point x0 G R n + 1 (and fixed Γ G (0,oo)) define the
rescaled immersions F X o : Mo x [-\ ln(Γ), oo) -> R n + 1 by

(2.3) FX 0(p, 5) ^ = ( F ( p , ί ) x 0 ) , s{t)

Then, under this scaling, the surfaces Mt = Ft(M0) go to

(2-4) MX o,, L

and it is readily checked that, just as in the boundaryless case, these
new surfaces are evolving according to the equation

(2.5) — F x o (p, s) = H(p, s) + F x o (p, s)
as

where H denotes the mean curvature vector of MXo,s.
We can now state a rescaled version of Lemma 2.1.
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2.3 Lemma. Take any (xo,Γ) 6 R n + 1 x (0,oo), and set

(2.6) p(x) =

Then, for the MX 0 i 8 as above, we have (writing just H for H now)

(2.7) j ί pdHn = - j |H + x x | 2 p d # n - I (x,

or equivalently, in integrated form,

ί
I I \H + x±\2pdHnds = < ί pdHn- ί pdH"

(2.8) - J J (^η)pdHn-ιds.

Here ΓX 0 ) S denotes the rescaled boundary, namely ΓX 0 ) S = τ ^ ( Γ —
Proof. We use 'tildes' to distinguish rescaled quantities. Then since,

under the rescaling, we have the correspondence x = ~^(x — Xo)> so

we see that the measures, dμ8^t) and dμ*, induced on Mo by FXo>β(t) =

FX o( ,5(t)) and Ft respectively, are related by dμs = (y/2τ) ndμt. Sim-
ilarly the induced boundary measures, dσs(t) and dσt) on Γ, are related

by do's = (γ2τ) do^.
But also, by direct computation, we have that

(2.9) 1 ra(4πτ)"/2 exp H +
2r 2r

and (since η does not change under scaling)

(2.10)
(x-xo) \ _ 1

x,η

Putting all this in (2.1) then immediately yields, on multiplying by
(2π)n / 2 (and writing now just x for x, etc.), that
(2.11)

dt
M x
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and then the proof is completed by noting that ~ = l/2τ, by (2.3).
Q.E.D.

2.4 Remark. It turns out that in the subsequent analysis we
need to keep careful track of the explicit numerical factor, (2π)n/2, that
arose in the above rescaling analysis. Therefore we note now, for future
reference, that we just showed that

(2.12)

and also that
(2.13)

We would like now to use Lemma 2.3 to discuss the behaviour of
sequences of rescalings {MXθjSfc}, just as in the boundaryless case. How-
ever, before we can do this, we first need to prove two further results.

(i) We need to establish uniform control of all derivatives of | A\2 for
the rescaled flow (cf. [5, Proposition 2.3]), so as to allow us to extract
limit surfaces; and

(ii) We need to obtain sufficiently good control over the boundary
integral contribution to the right hand side of (2.2) (or equivalently
(2.8)).

As regards the first of these, we have:
2.5 Lemma. Suppose the Type I hypothesis holds. Then for each

m > 0 there is a constant Cm — Cm(n,m, C0,δ0) such that the second
fundamental form, Ά, of the rescaled surfaces satisfies

(2.14) m a x | V m i | 2 < C m

uniformly in s. Of course these estimates are independent of the point,
x0, chosen to rescale about.

Proof. Precisely such estimates were proven in [5, Proposition 2.3],
in the boundaryless setting, using the maximum principle. The same
argument then also works here, provided we can first establish estimates
of the form of (2.14) on the boundary, Γ.

To obtain such boundary estimates, consider any point x0 G Γ. Then,
recalling the notation of 1.1, we have that all the surfaces {7tXo (Mt—Xo)}
lie in the wedge V^δ°\ which has wedge angle π — δ0 (δ0 independent
of x0). But then, by the Type I hypothesis, (1.3), we can find uniform
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constants rx == r ^ o , Co) and Kx = Kι(δ0, Co) such that, for each t < T,
the hypersurface 7£Xo (Mt - x0) Π {B^τ_ty/2 (0) x R) is a graph over (its
projection into) the fixed hyperplane R n x {0}, with gradient uniformly
bounded above by Kx. (Here i?£n)(0) denotes the p-ball about the origin
in R n x {0}).

Now, however, the desired boundary estimates at x0 follow, with
constants independent of the choice of x0 G Γ, by the parabolic theory
of [8]. Since an analogous argument is given later in proving Lemma 10.8
we omit the details here. Q.E.D.

Turning now to the second of the main issues noted earlier, namely
control of the boundary integral contribution in (2.2), it is convenient
to distinguish two cases, x0 G Γ and x0 ^ Γ. In each instance we take
this opportunity to prove results (see Lemmas 2.6(b) and 2.7(b) below)
which are somewhat stronger than are required simply for the business
of extracting limit surfaces from sequences of rescalings about a fixed
point x0. For that, Lemmas 2.6(a) and 2.7(a) would suffice. However
we shall need the stronger claims later, in Section 8, where we'll want
to carry out a more involved rescaling analysis in which the centre, x0,
of the rescalings, is also allowed to vary.

Taking now the first of our two cases, we have:

2.6 Lemma. (a) Suppose x0 ^ Γ. Then there is a constant
C\ = CΊ(n,Γ,x0) such that

r-λdt <
I \ 2τ ' 7 ' ~υ

0 Γ

(b). In fact, for x0 ^ Γ again, we can say more precisely that there
is a function ζ : (0,oo) x [0,T) -» R+, with ζ(d,t) -* 0 as t -* T, for
each d, such that, ΐ/dist(xo,Γ) > d0, then, for all tλ G [0,T),

(2.16)
ίi Γ

(One can even explicitly take ζ{d,t) = ^ f wn~ιe w2/2dw for
d/y/2(T-t)

a suitable constant C = C(n, Γ), if desired).
Proof. Clearly (a) follows from (b) by taking tx = 0, d0 = dist(x0, Γ).

Thus we need only prove (b). For this, note that, by hypothesis, for all
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J (4πτW» e x p ( AT 2τ '
dH n - l

where C2 = max{|y - xo | : y G Γ}. But then, using the substitution
w(t) = do/y/2r, we may estimate that

X-Xp

(2.17)
(2π)-"/2C2 |Γ|

do/J2{T-tι)

and so we are done. Q.E.D.
A similar result holds in the case x0 G Γ.
2.7 Lemma, (a) Take any x0 G Γ. Then there is a constant

C3 = C3(n,Γ) such that

( 2 i 8 )

0 Γ

(b) In fact, we have the following uniformity in x0, that, for any
e > 0, there is a time te = te(n, Γ) < T such that, for any x0 G Γ,

( 2 1 9 )

u r

Proof. Clearly (a) follows from (b), so we need only prove the latter

claim. As regards this, define

l^tj = 1 1 1 jDr(^)^Xoj, 1 2\Jf) = *- \* 1

where r(ί), with r(t) \ 0 as t —> T, is to be chosen explicitly later.
Then set

(2.20) h(t) = J -
t r,

|(x - *«,η)\dHn-'dt,
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T

(2.21) J2(ί) = j 2τ

t r2

Clearly we then have, for any t* < T,

T

u r
We now want to estimate /i(ί*) and hit*). The latter of these is the

easier to handle, so we treat it first. Writing r for r(t), observe that, on
Γ2, | x - x o | > r, so

Thus, since |(x — xo,r/)| < |x — xo | < diam(Γ), we may estimate that

T

(2.23) I2(U) <C4ί τ~n^-ιe-r2/Aτdt,

u

where C4 = |(4π)" n / 2 |Γ | diam(Γ) = C4(n,Γ).
To handle ^(t*), first note that, since Γ is of class C0 0, there is a

uniform constant C2(Γ), and radius ro(Γ), each determined only by the
sup norm of the second fundamental form of Γn~1 C R n + 1 , such that

(2.24) | ( x - x o ) ± | < C 5 | x - X o | 2 for all x G Γ Π β r o ( x o ) ,

and such that also, for all r* < r0,

(2.25) Hn~ι (Γ Π Brm (xo)) < 2 r r W i

Here ωn_ι is the volume of the (n — l)-dimensional unit ball. So then,
set

(2.26) t0 = min{ί : r{t) < ro(Γ) for all t E [to,T)} .

Then once we've chosen r(t) explicitly, as we'll do shortly, we'll have ί0 =
to(Γ); and moreover we'll have, from (2.24), (2.25) and the definition of
Γi(t), that for all U € [to,T),

(2.27) | ( x - X o ^ ) | < C 5 r ( ^ ) 2 for all x e Γ ^ t , )

and

(2.28) Hn-1{T1(U))<2r(U)n-1ωn-1.

In (2.27) we have used that |(x - xo,r/)| < |(x -



382 ANDREW STONE

But then it follows immediately that, for all t* G [to,T),

(2 29) ^ β

Therefore, from (2.23) and (2.29) we obtain that, for all U G [to,T),

(2.30) ' τ

t.

where C4, C6 are constants determined only by n and Γ.
So now, finally, choose

r(t) = y/-2(n + 2)τ\n(τ) ,

which is well-defined for r < 1 at least. Then (increasing to(Γ) if neces-
sary to ensure T —10 < 1), we get that, for all ί* G [ίo(Γ),T),
(2.31)

T T

Ii(U) + h(U) <C4ίdt

u

But thence, on setting

C7(n, Γ) = C6(

where we have fixed δ G (0, ^ j ) arbitrarily, we get, for all ί* G [ίo(Γ), T),
that

(2.32) hiQ + I2(U) < C4(T - u) + C7(T - Q 1 ^ ^ 1 ,

and this, in view of (2.22), immediately yields (b). Q.E.D.

3. Rescaling the flow

We are now in a position to mirror the rescaling analysis of Huisken
in [5]. First, though, to simplify the later discussion, we introduce the
important "limit-point" function, Λ : Mo -> R n + 1 , given by

(3.1) pp
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That this limit exists follows easily from (1.3), which implies, for all
U G [0,T), that

(3.2) I ~^dt < ί\Ά\dt < ί y]nCol2(T - t)dt <

u u

3.1 Remark. Clearly, p would be well-defined even if the Type I
hypothesis were weakened merely to require that, for some fixed δ E

(0,1),

max I A|2 < —— j—-r .

Some useful facts about the function p —> p are given in the following
lemma.

3.2 Lemma, (a) The function Λ : M o -> R n + 1 given by (3.1) is
continuous.

(b) For any p G M o the surfaces MpyS all intersect B^/^c^iO).

Indeed Fp(p, s) is always in this ball (c/. [5, Lemma 3.3]).

Proof. Of (a) . This is left to the reader (use (3.2)). Alternatively,
see [11].

Proof. Of (b) . This follows from (3.2) and the definition of the
rescalings Fp( ,5). Q.E.D.

3.3 Remark. Typically if we rescale about an arbitrary point x G
R n + 1 then the rescaled surfaces will drift off to infinity as s -» oo, but
Lemma 3.2(b) says that this does not happen if we rescale about a
limit-point, for time T, of the surface.

We are now in a position to state the main rescaling result we'll
need, which is directly analogous to Theorems 3.4 and 3.5 of [5] for the
boundaryless case.

3.4 Theorem. Suppose (as always) that the Type I hypothesis holds.
Take any p G M o . Then for every sequence of rescaled times Sj /* oo,
corresponding to times tj /* T, there is a subsequence {sjk} such that
the surfaces Mp,Sj.fc converge smoothly on compact subsets of R n + 1 to a
non-empty, embedded limit-surface, MpjOO.

If p ^ Γ then Mp)OO has no boundary; while if p G Γ then M^)OO has

boundary, YpiOO, an [p> — l)-plane through the origin in R n + 1 .

Finally, any such limit hypersurface MpiOO must satisfy the equation

(3.3) H = (x,u)

where x is the position vector, H is the mean curvature, and v is the unit
normal such that the mean curvature vector, H, is given byΆ = —Hv.
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Proof. In view of Lemmas 2.3 and 2.6(a) (or 2.7(a) if p E Γ) we have

/ e-\χ)?'2dHn < C for all s G [~ ln(T), oo)

where C = C(n,p, M0,Γ) is some constant.
Therefore for each R > 0 there is a uniform bound on Hn(Mp}8 Π

5Λ(0)), and then the proof of the convergence claim goes through ex-
actly as in [5, Proposition 3.4] (which was itself based on a method of
[7]), noting Lemma 2.5. The non-emptiness of the limit follows from
Lemma 3.2(b), just as in the boundaryless case.

As for the claims regarding boundaries, these are clear, since the
rescaling procedure will either send the boundary, Γ, to infinity (if p £
Γ), or will "straighten it out" to an (n — l)-plane, while holding it
anchored through the origin (if p G Γ).

Finally, (3.3) also follows directly from Lemmas 2.3 (equation (2.8)),
2.5 and 2.6(a) (or 2.7(a) if p G Γ), exactly as in [5, Theorem 3.5]. Q.E.D.

3.5 Remarks, (i) As noted in [5, Proposition 3.4], a subsequence
of the embeddings, F^( , Sj), need not necessarily converge to a limiting
embedding; it may be necessary to "reparametrise" them first (see [7]
for the details).

(ii) Although uniqueness of the limit Mp^ remains open, it is
shown in [11] that we have at least a "degree of uniqueness", namely
uniqueness of the shape of any such blow-up (cf. [10, Theorem 3.11]).
For instance, it is demonstrated in [11] that if one such blow-up (cor-
responding to one subsequence of times) looks like, say, a cylinder,
Sι(ΐ) x R n - 1 , then so does any other such limit, though we cannot
yet show that they need be the same cylinder.

4. Classification of the possible limit surfaces

The next important step is to classify all the possible "limit surfaces",
satisfying (3.3), which could arise in Theorem 3.4 from rescaling. Recall
here that we are restricting our attention to the case when any limit
rescaling will also satisfy, at all points, H > 0.

Fortunately, for the case p £ Γ, so that any limit MpjOO has no bound-
ary, this was already done by Huisken (see [5] for the compact setting,
and [6] for the general case). His result yields;

4.1 Theorem (Huisken). Up to rotation in R n + 1 there are precisely
(n + 1) smooth, embedded surfaces, M^, that satisfy dMoo = Φ, H > 0,
and H = (x, v). They are the surfaces M^ — R n x {0}, or M^ =
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Sm(y/m) x Rn"m for m € { l , . . . , n } , where Sm(y/m) denotes the m-
sphere in Rm + 1 of radius y/m.

It remains then only to handle the case where the limit surface, M^,
has boundary H/1"1 x {(0,0)} C Rn+1 . For this case we have;

4.2 Theorem. Suppose M^ is a smooth, embedded hypersurface in
Rn + 1 satisfying dM^ = R n l x {(0,0)} C Rn + 1 , H > 0, and H =
(x, v). Then M^ is a half n-plane.

For the proof we will use a First Variation Formula argument, with
a choice of variation vector field suggested by (though somewhat dif-
ferent from) that used by Allard in [1, Lemma 5.1]. First, though, we
need a preliminary result regarding ZΛapproximation of characteristic
functions of intervals on the real line.

4.3 L e m m a . Put £ = { 7 € C ^ o o ) ) : -y(r) = O ( e " r 2 / 2 ) a s r 4
00}; and then define a class of functions by

( Vίr) Ί
T = <φ : [0,00) -> R such that φ(r) = -L1-L + -y{r) for some 7 € 8 \ .

Then for any RQ > 0 the characteristic function χ[0,R0] is in the L2-
closure of T.

Proof of Lemma 4-3. Take any α 0 G (0,1) and then set

(4-1) 7(r) =

where the constants βx to /34 satisfy

(4.2) /34e-fl»/2 = 2j93

(4.3) &e- f i» / 2 = β

(4.4) /32 - β3a
2

0Rl = 1

and

(4.5) 2/33 = fte-

(It may be readily seen that these simultaneous equations do have a
(unique) solution).

Then 7 eS, and the function ψ(r) = r - 1 7 ' ( r ) + 7(7-) satisfies

i l , 0 < r < a0Ro

-β3r
2 + (β2 - 2β3) , aoRo < r < R*

0 ,r>Ro



386 ANDREW STONE

Yet clearly this ψ(r) G T may be made as close as we please to χ[0,R0],
in the L2 sense, just by taking α0 close enough to 1. Q.E.D.

Proof of Theorem 1^.2. We may as well assume, by rotating Moo
if necessary, that TQM^ = R71"1 x R+ x {0}. Then, letting βi, . . . ,
en+i be the standard basis for R n + 1 , take v to denote the upward unit
normal to M^ locally about 0, so v(0) = en+i.

Now let K denote the set of all radii, R, such that

(4.7) υ is well-defined on all of M^ Π BR{0),

(4.8) (z/(x), en + 1) > 7/8 for all x G Moo Π BΛ(0),

(4.9) k n + i | < M for all xEMooΠB^O),

and

(4.10) xn > 0 for all x G (M^ Π BΛ(0))\aMoo .

Note that Έ, then contains at least some interval [0, Ro], in view of
the assumption that TQM^ = R71"1 x R + x {0}, and the fact that
xn = x n + 1 Ξ 0 on dMoo.

Next, observe that, to prove the theorem, it will suffice to show that,
for any i?* G H, we must have
(4.11)

Moo Π BRm(0) = the half n-disc {(y,0) : y G R n ,y n > 0, |y| < R*} .

This is because we would clearly then have to have sup(T^) = oo, and
then we'd be done, in view of (4.11).

It remains, then, to establish (4.11).
So suppose R* G 7£, and introduce a vector-field, Z(x), on Moo?

defined by

(4.12) Z(x) = (0 , . . . ,0 ,-z n + 1 , z n ) .

Geometrically Z(x) represents the projection of x onto the 2-plane
Π = {0} x R2 C R n + 1 , followed by anticlockwise rotation by 90° in Π.
Alternatively it may be written as Z(x) = *(ex Λ Λ en_i Λ x) where
* denotes the Hodge-star operator.

The three key facts about this vector-field that we need are then that

(4.13) (x,Z(x)) = 0 for all x G Moo ,

(4.14) Z(x)=0 for all x G dM^ = Rn"x x {(0,0)} ,

and finally that

(4.15) divtfZfx) s 0 .
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Now, for convenience, set r = |x|, and let η denote the inward unit
conormal to M^ along dM^. Then define the variation vector field,
X(x), on Moo, by

(4.16) X ( x ) = 7 ( r ) Z ( x )

where 7 G C1([0, oo);R) is, for the present, arbitrary.
Then, by (4.13) and (4.15), X(x) satisfies

divAββ X(x) = ^ < x τ , Z(x)> = - ^ < x \ Z(x)>,

whence, since M^ satisfies H = — x x , we have

(4.17) divAββ X(x) + <X(x),H) = -

Also, by (4.14), we have (X(x),7?) = 0 for all x G
But then, by the First Variation Formula (see [9, p 46]), we obtain

the identity that

(4.18) - f {^ψ- + 7(r)) <x\ Z(x)>dίΓ = 0
Mo

for all 7 G C1 ([0, oo); R) (of rapid decay, at least).
Thence in particular, in view of Lemma 4.3, we must clearly have

that

or equivalently, since —Hv = H = —xx on

(4.19) / H(v,Z{

But then, by (4.12) and the definition of 11,
3

<!/, Z(X)> = XnVn+1 ~ Xn+l^n > ^ n K + 1 " Wn\) > g^n

whence, on (Moo n5Λ φ(0))\dMoo, we have (i/,Z(x)) > 0.

Therefore, since also H > 0 on M^o, we see from (4.19) that we must
actually have

(4.20) Jff(x)=0 for all x G M^ Π J3Λ(0) .

Yet # = (x,i/), so this implies Ix^l = 0 on M^ΠBR^O) (i.e. M^
must be a minimal cone, when restricted to BR^(0)); and then this
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immediately yields the desired result, (4.11), on noting that M^ is
smooth at 0. Q.E.D.

5. The limiting heat density function

We are now almost ready to state our first main result, relating to
"partial boundary regularity" for the flow in (1.1), subject to Hypothe-
ses A and B of Section 1. First, though, we need to introduce a function,
Θ, which we have termed the "limiting heat density", which will play a
crucial role in the subsequent analysis. This function was also used in
[10] to study singularity formation in the boundaryless case.

5.1 Definition. For each p G Mo, and t G [0,T), we set

(5.1) Θ(p,t) = IPβ(x,t)dHn .
Mt

Then we set

(5.2) Θ(p) = limθ(p,ί).

5.2 Remark. It is not a priori clear that the limit in (5.2) need
even exist, for a given p G Mo, since, unlike in the boundaryless case
(where we have genuine monotonicity), we do not here have that θ(p, ί)
is monotonically decreasing in t for each p. Moreover we can no longer
expect that Θ will necessarily be upper semicontinuous, as it always is in
the boundaryless case (again by monotonicity). In Lemma 5.7, however,
we will see that in fact Θ(p) is well-defined (i.e. the limit exists) for
every p G Mo, and furthermore that a certain semicontinuity property
for Θ can still be deduced.

First, though, it is convenient to give a lemma which makes specific
a further reason, besides the above mentioned "partial semicontinuity",
for the usefulness of the function, Θ, in what follows. This is that, in
view of the results of §4, it can only take on a finite, discrete set of
values.

5.3 Lemma. At each point p G Mo the function θ must have one
of only n + 2 possible values. Moreover these values are explicitly com-
putable. They are 1/2, 1, or one of the numbers @^m\ m G {1,... ,n},
given in Appendix A (all of which are distinct and strictly greater than
ϊ). Furthermore, we have that

(5.3) θ(p) =

Proof. In view of the computations of Appendix A, all the claims
of the lemma follow provided we can establish that, if {tj /* T} is any
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sequence of times, with {SJ /* 00} the corresponding rescaled times, and
if M ôo is a limit surface obtained from a subsequence of the surfaces
Mp,8j > as in Theorem 3.4, then

(5 4)

This, however, is precisely the analogue of Lemma 3.10(b) of [10], and
the proof here goes through just as there. In particular Lemma 2.9 of
[10], which was the key element of the proof of Lemma 3.10(b), carries
over to the present setting (with boundary), after replacing part (a) of
it by the (much stronger) area growth bound of Lemma 10.1(b), proven
later. (Note also that the reason we must have θ(p) = 1/2 for the case
p G Γ , rather than possibly some multiple of 1/2, is that for p E Γ
then Mp,oo can only ever be a multiplicity one half-plane. The proof
that you cannot get higher multiplicity half-planes, or unions of half-
planes, mimics the reasoning used later in Sections 10 and 12 to obtain
improved boundary strip estimates, so we omit further discussion of this
point here). Q.E.D.

5.4 Remark. The last part of Lemma 5.3 gives us a characterisation
of those points, p E Mo, which "end up on the boundary" (that is, have
p E Γ). Geometrically it seems likely that the only such points will be
the actual boundary points, p E Γ. However we have not yet managed
to rule out the possibility that there might be some points, p E int(M0),
which satisfy p E Γ, and thus really "behave like part of the boundary".

Prom the point of view of the analysis that follows, we need to treat
any such points differently from the rest of the interior of Mo. This
leads us to introduce the set

Γ+ = {p E Mo : p E Γ} = {p E Mo : Θ(p) = 1/2} .

5.5 Definition. We call Γ+ the extended boundary of Mo (w.r.t.
the time T).

Prom Lemma 5.3, and the definition of Γ+, we then have immediately;
5.6 Corollary. The limiting heat density function, Θ, satisfies

, 5 5 x ί θ ( p ) > l ,PEM O \Γ+

" ' l θ ( p ) Ξ l / 2 , p E Γ +

Also, we can now state the lemma, mentioned earlier, relating to
existence, and "partial semicontinuity", for the function Θ. These two
issues are addressed in parts (a) and (b) of the lemma, while parts (c)
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and (d) give some useful "uniformity" results, for the convergence of the

functions Θ(p,t) to θ(p), which we shall need in the sequel.

5.7 Lemma, (a) The limit in the definition of Θ (see (5.2)) does
exist everywhere on Mo.

(b) On any compact subset K C (M0\Γ+) the limiting heat den-

sity function θ will be upper semicontinuous (so essentially Θ can only

"jump down" at the boundary).

(c) If Θ = 1 on some compact set K C (M 0\Γ+), then, for any
e > 0, there is a ttyK < T such that, for any t G [t€,κ,T),

In other words, on any compact subset of M 0\Γ+ on which Θ = I,

then Θ(p, t) -> Θ(p) uniformly, as t —• T.

(d) On the extended boundary, Γ+, Q(p,t) -> Θ(p) uniformly, as
t->T.

Proof. Of (a). For ease set b : Mo x [0,T) -> R ("6" for "boundary
term") by

(5.6) b(p,t) =

t r

Then (2.1) says precisely that, for any p 6 Mo,

(5.7) -£ (θ(p, t) - WP, t))=- ί | H + ^ 7 ^ AsdίP < 0 .

Hence (θ — 6)( ,ί) has a pointwise limit everywhere on Mo.
It remains then only to show that the same is true of &(-,£) alone.

But this is clear from Lemmas 2.6(b) (for p £ Γ) and 2.7(b) (for p G Γ),
which in fact show that

(5.8) lim 6(p, ί) = 0 for all p e Mo .

Of (b). Fix K any compact set in M 0\Γ+, and put K = {p : p G K}.

Then, by Lemma 3.2(a), K is also compact (in R n + 1 ) , and does not meet

Γ. Hence d0 = dist(X,Γ) > 0.
Next observe that, restricted to If, the functions (Θ — b)(p,t) are all

continuous in p, for each fixed t < T, since this is clearly true for each
of Θ and b separately. (Note that, while this continuity is actually true
for Θ(p, t) on the whole of Mo, this is not true for 6(p, ί), which, it turns



A BOUNDARY REGULARITY THEOREM 391

out, is discontinuous onto the extended boundary, for all t near to T.
This is why we have to restrict to compact subsets K C M 0 \ Γ + ) .

Therefore, by (5.7), the function lim(Θ —6)( ,ί) must be upper semi-

continuous, when restricted to K. But now, by (5.8), this function is

just the same as Θ( ) | κ , so we are done.

Of (c). Again fix K as in part (b) above, and let K, d0 be as there.
Then, by Lemma 2.6(b), the functions b(-,t)\κ are in fact converging
uniformly to 0, as t —> T.

Thus, to prove the claim, it will suffice to show uniform convergence
of the functions (Θ — b)(-,t)\κ to the constant function " 1 " . Yet this is
clear. For we certainly have such convergence pointwise, and therefore
the functions (θ—6)( , t)\κ form, by (5.7), a monotone decreasing family
of functions converging to a continuous (indeed constant) limit, whence
the convergence must be uniform, as desired.

Of (d) . By part (a) above, along with Corollary 5.6 and Equa-
tion (5.8), the functions θ ( , ί) |p+ and 6( , ί) |p+ each separately have
constant pointwise limits (namely "1/2" and "0" respectively), as t -» T.
Thus also (Θ — 6)( , i) |p+ has a constant pointwise limit (viz. "1/2"),
and therefore, in view of the monotonicity from (5.7), the functions
(Θ — 6)( ,f)|p+ must actually converge uniformly, as t -> T, to the
function "1/2".

However we also know, by Lemma 2.7(b), that, in fact,

ll&M)IU~(r+)->0 as t->T.

Hence, actually, we must have that ||Θ( ,£) — l/2||Loo(Γ+) -» 0 as t —>• T.
Q.E.D.

6. Statement of partial boundary regularity result

We can now state the main result we've been building up to, the first
part of which is exactly analogous to Theorem 3.1 of [10]. The proof is
given in Sections 7 and 8.

6.1 Theorem. Suppose, as always, that Hypotheses A and B of
Section 1 hold.

(a) Then if p G Mo is a general Type I singular point of the flow,
as t —>• T, then it is actually a special Type I singular point. {Recall
that the notions of special and general singular points were defined in
Section ί).

(b) Moreover, any such general Type I singular point must occur
well in the interior o/M 0 \Γ + , in that there is a fixed neighbourhood, U,
of the extended boundary, Γ + , such that, for any δ > 0, there is a time
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is < T with the property that any δ-essential blow-up sequence must
leave the closure ofU for good by time ίj.

6.2 Remarks, (i) An equivalent formulation of part (b) here is
that there is a fixed neighbourhood, ZY, of Γ+, and a function e(t) sat-
isfying e(t) \ 0 as t /* T, such that, for all t e [0,T), max^ |A|2( ,£) <
e(t)/(T-t).

(ii) The key ingredient in the proof will be the monotonicity identi-
ties for surfaces with boundary, viz. (2.1) and (2.2), and their rescaled
versions, (2.7) and (2.8).

Also, as in the boundaryless case, the proof will centre around study
of the limit heat density function, Θ, on Mo. However the analysis is
more complicated here because, as noted earlier, the functions θ(p, ί) no
longer go monotonically down to θ as t -> T, for each p, nor is θ then
globally upper semicontinuous. (Indeed we saw already, in Corollary
5.6, that θ satisfies θ(p) > 1 on M0\Γ+, but θ(p) = 1/2 on Γ+).

This non-semicontinuity of θ means, of course, that the functions
θ(p, t) cannot here be assumed to converge uniformly to θ , as t —>
T, locally about non blow-up points, which was the key fact in the
contradiction argument in the boundaryless case. However we shall see
that it is enough to establish a form of "one-sided uniformity" result
("uniformity from above"), namely to show that:

6.3 Lemma. (a) For any e > 0 there will be a time t€ <T and
an open neighbourhood Ue C Mo o/Γ"1" such that, for all t E [f£,T) and
allpeΰe,

(6.1) θ ( p , t ) < l + e.

(b) Also, z/θ = 1 on any given compact K C M0\Γ+, then the same
sort of uuniform bound from above" is true on K, namely that, for any
e > 0, there will be a time teyK < T (just taken to be as in Lemma 5.7(c))
such that, for all t G [t€tK,T) and allp E K,

(6.2) θ ( p , ί ) < l + β.

Moreover, if θ = 1 on all of M0\Γ+, then the same is true on the
whole of MQ (in this case we denote the relevant time by t€iM0)-

7. Outline of proofs of Lemma 6.3 and Theorem 6.1

Before giving the proofs of Lemma 6.3 and Theorem 6.1 we first give
a brief description of the method we will use to attack these results.
The 10-step procedure set out is then carried out in Section 8.
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A. Preliminary results and outline of proof of Lemma 6.3

Step 1 : Show that for any e > 0 there exists a ta(n, Γ, e) < T such
that, for any point p G M0\Γ+,

*α(e)

More generally show that, for any e G (0,1/2), there exists a
tβ(n,Γ,e) < T such that, for all tx G [tβ(e),T),

(7.2) + e

Note that (7.1) is saying that, after a certain time tα(e) < T, the
"boundary contribution" in (2.2) (with "centre" p) can give a "kick
up" of at most (1/2 + e) to Θ(p,ί), as time progresses towards T, for
any p G M0\Γ+. Estimate (7.2) should be viewed as a (considerable)
strengthening of Lemma 2.6(b).

Note also that these two estimates turn out to be solely properties of
the boundary Γ (in particular the norm of its second fundamental form
as a subset of R n + 1 ) , and could be discussed entirely in the absence
of any associated flow of surfaces Mt (since the only property of the
conormal η that we use is that it is perpendicular to Γ at each point).

Step 2 : Using Step 1 and the uniform convergence result on Γ+
of Lemma 5.7(d), prove part (a) of the "one-sided uniformity" result,
Lemma 6.3.

Step 3 : Using the uniform convergence result on compact subsets
of int(M0) of Lemma 5.7(c), together with the result of Lemma 6.3(a)
just proven, establish part (b) of Lemma 6.3.

B. Outline of proof of Theorem 6.1

Now suppose {pk^tk} is a "5-essential blow-up sequence", for some
fixed δ > 0, with pk -> p as k -> oo; so p is a general Type I singular
point of the flow. Note that, by Lemma 3.2(a), we have then also that

(7.3) Pk-*P as k -+ oo.
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We now want to prove, first of all, that p must also be a special Type I
singular point.

To this end, for each dimension n, let en be the difference between 1
and the next largest possible value that Θ can take. (Such a gap exists,
and indeed is explicitly computable, by Lemma 5.3).

Step 4 •' Establish, using Lemma 6.3(a) (and with the notation as
there), that we must have

(7.4) €>(<?) = 1 , qeU(n/2\Γ+.

Step 5 : Using Lemma 5.7(d), prove that no subsequence of the
points pk can lie in Γ+; so also without loss of generality we may assume,
as we do henceforth, that

(7.5) ftGM0\Γ+ for all k.

Now let W denote any open set in M 0\Γ+ containing the closed (pos-
sibly empty) set B = {q : Θ(q) > 1} = {q : Θ(q) > 1 + en}. By Step 4
this latter set stays well away from Γ+, so such sets W exist. Then we
want to establish;

7.1 Lemma. The pk must eventually lie in W, for large enough k
(depending of course on W).

To do this we argue by contradiction. Suppose instead that a subse-
quence (still denoted pk) remained in the closed set M0\W. Then we
have to consider three cases.

Case (a) : ( "The pk stay away from Γ") i.e. p $. Γ.
Case (b) : ( uThe pk go to Γ very fast") i.e. for some subsequence

(still denoted pk) we have

(7.6)

for some constant, C*, independent of k.
Case (c) : ( uThe pk go to Γ only slowly") i.e. we have p G Γ, but

(7.7)

Step 6 : Rule out Case (a), using Lemma 6.3(b) with K = M0\W,
along with a rescaling argument based on the "Monotonicity Identities".

Step 7 : Rule out Case (b), as follows. For each k let pk be a point
on Γ that achieves dist(pΛ,Γ). Then note that, on a suitable sequence
of rescalings about the points pk, we would detect points, within a fixed
radius ball (determined by C* and the "Type I constant", Co) about the
origin, with second fundamental form at these points satisfying \A\2 > δ.
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Now obtain a contradiction, however, by showing, via a rescaling argu-
ment based on the "Monotonicity Identities", that some subsequence of
these rescalings must be converging to a half-plane.

Step 8 : Rule out Case (c), by combining estimate (7.2) and the
"uniform convergence from above in a boundary neighbourhood" result
of Lemma 6.3(a), again along with a rescaling argument.

This then finishes the proof of Lemma 7.1. Finally we then have;
Step 9 : Establish part (b) of Theorem 6.1, using Lemma 7.1 and

Step 4.
Step 10 : Establish part (a) of Theorem 6.1 via a contradiction argu-

ment, using Lemmas 6.3(b) and 7.1, together with the upper semicon-
tinuity result of Lemma 5.7(b).

8. Proofs of Lemma 6.3 and Theorem 6.1

We now carry out in detail the 10-step procedure described in Sec-
tion 7, so proving Theorem 6.1.

Step 1 : To establish the claims in (7.1) and (7.2) we first need some
notation. For all x0 G Γ let TZXo denote a rotation in R n + 1 that sends
ΓX0Γ to R n l x {(0,0)}. Then, for all x G R n + 1 , set

(8.1) x^o

and also put

(8.2) Γ^o

For later reference, note that then, for any x G R n + 1 , if Xo is a "closest
point of Γ" to x (that is, satisfies |x - xo | = dist(x,Γ)), then

(8.3) x ^ G the 2-plane {0} x R 2 C R n + 1 .

Next observe that, for any e > 0, we can find a uniform radius r 0 =
ro(e,Γ), and constants C9(Γ) and CΊ0(Γ), all determined only by e and
the sup norm of the second fundamental form of Γ n " 1 C R n + 1 , such
that, for any x0 G Γ, the following are true.

First, the set Γ^o Π (B^-χ)(0) x [-ro,ro] x [-ro,ro]) may be written
as the graph of a function 7 = 7Xo, where

(8.4) 7 = ( 7 n , 7 n + 1 ) : 5 (

is smooth; also this function 7 satisfies, for all y €

(8.5) |7n(y)|,l7n+i(v)l<lvl,

(8-6) | 7 n (y) | , |7n+ 1 (y) |<C 9 |y | 2 ,
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(8-7)

and

In (8.8) we have used Pv to denote orthogonal projection onto a
subspace, V, of R n + 1 , and then || || is just the usual operator norm on
(n + 1) x (n + 1) matrices.

So now fix e G (0,1) arbitrarily, and also, for each p G M0\Γ+, let p*
denote a point of Γ which achieves dist(p, Γ); so that then, by (8.3), p'Pm

satisfies, for each such p,

(8.9) # . € {0} x R2 C Rn+1

Then, first of all, we claim that there will be some uniform time
(n, Γ, e) < T such that, for any fixed p G M0\Γ+,

(8.10)

2r ,1 dH^dt < e +

I (4πr)n/2

Here we have written p for j3^. Henceforth, also, we will write x' for
Xpφ, and will use the shorthand R n " ! for R"" 1 x {(0,0)} in integrals.

To see (8.10) (which is actually the crux of the proofs of both (7.1)
and (7.2)), observe that, for any p G M0\Γ+, the left hand side of this
inequality is clearly equivalent to the quantity J(p, ίe), where, for ί* < Γ,
J(p, t*) is defined by

dHn-ιdt

Here η' denotes Kp. (η). Thus, to establish (8.10), we need to show that
we can find a uniform time te <T such that, for any p G M0\Γ+,
(8.12)

T
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For this we proceed in similar fashion to the proof of Lemma 2.7.
First fix p e M0\Γ+ arbitrarily. Then set

(8.13) r(t) = J-2{n + 2)τln(τ) .

Now, a la Lemma 2.7, split Γ^ into pieces, this time as

(8.14) IΊ(t) = Γ;. Π (Bl^iO) x [-r(t),r(t)r)πBr(t){p'),

(8.15) Γ2(ί) = (r;. Π « t7
1 }(0) x {-r(t),r(t)]2))\Bm(p'),

(8.16) Γ3(ί) = Γ;.\(Γi(ί)UΓ 2(ί)).

Note that, for each p G M0\Γ+, Γχ(t) will become empty at some
time prior to T. However this time will, of course, depend on p. As we
want an estimate that is uniform in p we therefore do not use this in
the sequel.

Next, for i = 1,2,3, set

2τ
t. r,(t)

so that then, writing /(ί,) for 7(p,ί»), we have, for all ί« G [0, T),

Now to handle /2(ί*) and 73(ί») (the easy two of the three), observe
that, since p* was a "closest point of Γ" to p, so 0 is a "closest point of
Γ; " to p. Hence, for all x' G Γ3(ί), we have that, for all t G [0,T),
(8.19)

Ix'-p'l > max{|p'|, (|x'| - |p'|)} > max{|p'|, (r(t) - |p'|)} > \r(t) .

Likewise, just from the definition of Γ2(ί), we have that also, for all

x' GΓ2(ί) andί G [0,T),

(8.20) | x ' - p ' | > r ( ί ) .

Therefore, exactly as in Lemma 2.7 (cf. in particular (2.23) and
(2.31)), we obtain that, for all ί» G [0,T), I2(U) + I3(Q < Cn(n,T)(T-
£„); and hence, provided now that ί, is always assumed to be greater
than some ία(n,Γ,e) < Γ, we have that

(8.21) h{U) + I3{U) < e/2 .
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It remains to handle Ji(t*). For this, first let us restrict our attention
only to those ί* such that

(8.22) r(t) < max{e,ro(e,Γ)} for all t G [U,T).

Clearly, from the definition of r(ί), this will hold for all t* G [ίδ,T),
where tb < T is some constant depending only on n, Γ and e.

Then note that, for all t G [**,T), we have, by (8.4), that Γi(t) =
graph(j), where 7 = (7n,7n+i) : ^ί(T,r)(°) —> R 2 i s smooth, and
satisfies (8.5) to (8.8) above.

In particular, then, on Γχ(ί) we have, for any x' = (y,7(y)), that

(8.23) (x' -p') = -P') = (y-P) + (O,7(V)) -

where here, and henceforth, y G R n + 1 denotes the vector (y, 0,0). Using
this, together with (8.3), (8.6), (8.8) and the definition of Γi(t), we may
estimate that, for all x' = (y,j(y)) G Γχ(t), t G [t>,T),

(8.24) < C1 0 |y| |x' -p'\

< C10\y\r(t) + \p'\ + 2C9\y\2 < C1 2(Γ)r(ί)2 + \p\
{0}xR

*' -P)\

(y -p')\

-P)\

Similarly, from (8.22) and (8.23), we may estimate that, for all x' =
Γ1(ί), te[u,τ),

|x' -p'Γ > (1 - e)|y -p'Γ - (e-1 - l) |7(y)|2

> (1 - e)|y - p'\2 - 2(e"1 -

> ( l - e ) | y - p ' | 2 - C 1 3 r ( i ) 3

(8.25)

where again CΊ3 = CΊ3(Γ). Therefore, provided that <» is, in addition,
now always bigger than tc < T, where ίc(n,Γ) is such that

exp ( i (2(n + 2)) 3 / 2 C 1 3 τ 1 / 2 (- ln(τ)) 3 / 2) <(8.26)

for all t € [tc,T), we obtain that also, for all x' = (y,7(j/)) G Γj(ί),
te[t.,τ),

(8.27)
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But then, bringing together (8.24) and (8.27), we may deduce that,
forallt€[ί.,T),

Γi(t)

(8.28)

J (4πτW2 2τ '
dH n - 1

f (C»r
/ (2τ) dy

where, to estimate the measure, we have also used (8.7). Therefore, for
all times t* sufficiently large (determined by n, Γ and e, but not by p),
we have (noting (8.13)) that

U R*-1
j ΰά ]^dυdt

+ (l + e)2C14(n,Γ) T ^ I - M T ) )
 2 dt

J
t.

(8.29)

Finally then, (8.29) and (8.21) in (8.18) immediately yield (8.12), and
so (8.10) is proven.

But now, it turns out, we are nearly done! For, taking the integral
on the right hand side of (8.10), we have, by (8.3), that

^n-dy]dt

(8.30)

R
d t
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Hence, by the substitution w = y/1 — e \p\/y/2τ, we obtain that

ί \
J (4πτ)n/

(8.31)

But then, in particular, we have that

/

T r 1 /„ /,2\ /l

r l -(i-c)pfr-° °>,-" aul
y (4πτ)"/2

if it11

(8.32) <

dw .

2r

( i _ e
-"/2 = 1(1-e)

2 V '

-n/2

whence, by (8.32) in (8.10), it follows that, for any arbitrary e E (0,1),
we have found a uniform time ?e(n,Γ,e) < T such that, for any p G
M0\Γ+,

T

(8.33)

.-n/2

+ €.

This clearly proves the claim in (7.1). As for the claim in (7.2), we
proceed similarly. Here we have e G (0,1/2) arbitrary. Thence, by
(8.31), for any ίx G [ί6,T) we have
(8-34)

7 (4πr)"/2 2τ

•2(T-iα)

But then, noting |p'| = dist(p, Γ), we obtain, for any ίx G [te,T), that

dist(p,Γ)

(8.35)

ti Λ""1

(4πτ)n/2

2n/2 OO

/
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Therefore, from (8.35) in (8.29), together with (8.21), (8.18) and (8.11),
it follows that, for any e G (0,1/2), we have found a uniform te < T
such that, for any tx G [ie,T),

dist(p, Γ)
F >dι > 0

T

(8.36) J j e.
di/2

Yet this is what we were trying to prove. Q.E.D. for Step 1.
Step 2 : To establish part (a) of Lemma 6.3, let e > 0 be arbitrary.

Then, by Lemma 5.7(d), we can find a time to(e) < T such that, for all
<e[ίo(c),Γ),

(8.37) < ^ + 7 for all p G Γ+ .

So now put tc = max{to(e),ta(e/2)}, where ta(e/2) is as in (7.1) with
e replaced by e/2. Also put

(8.38) U£ =

Then, with these choices, we claim that Lemma 6.3(a) holds. For, by
(8.37), along with the continuity of θ( ,ίc) as a function on Mo, U€ is
then certainly an open neighbourhood of Γ+ in Mo, and moreover

(8.39) θ(p, t€) < - + - for all pβU€.

But also, by (2.2), we have that for any t2 G [ίc,T),

(8.40) Θ(p,ta)-Θ(PΛ)< 11 (Ψ'"hd»"-ldt

U Γ

whence, by Step 1, and the definition of ίc,

(8.41) θ(p, t2) - θ(p, te) < - + ̂  for all p G M0\Γ+ .

Thence, by (8.39) in (8.41) for the case p G £/c\Γ+, and (8.37) for the
case p G Γ+, we have that for all t G [t€,Γ), and all p G ZYC, θ(p,t) <
1 + e. Q.E.D. for Step 2.

S'fê  3 : As noted, the first claim of Lemma 6.3(b) is immediate from
Lemma 5.7(c), just by taking t€tκ to be as there. (Indeed Lemma 5.7(c)
actually proves a stronger uniform convergence result, not merely the
uniform bound from above, (6.2)).
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As for the second claim, let e > 0 be arbitrary, and then put Ke =
MO\ZYC, U€ as in part (a) of Lemma 6.3. Then Ke is a compact subset
of M0\Γ+, so by above we can find a time t€fκ€ < T such that Θ(p, t) <
1 4- e, for all p G Ke and all t G [t€,Kt,T).

But also, from part (a), we know that there is a time te < T such
that, for all t G [t€, T), Θ(p, t) < 1 + e for all p G ϊί€.

So now just put ίC)Mo = max{ί€,A:e?^}> a n d ^ e claim follows. Q.E.D.
for Step 3.

Step 4 '• By Lemma 6.3(a) we know that there is a time, ta =
tQ(en/2), such that, for all t G [<α,T),

(8.42) θ(q,t) < l + en/2 for all qeU€n/2

But then, by Lemma 5.3 and the definition of en, we must have

(8.43) θ(q) = J or 1 for all g G W£n/2 ,

and then (7.4) follows, in view of Corollary 5.6. Q.E.D. for Step 4.
Step 5 : Now let {pk,tk} be a "5-essential blow-up sequence" satis-

fying (7.3), and suppose that some subsequence (still denoted {pk}) of
these points satisfied pk G Γ+ for all k. We want to derive a contradic-
tion.

To do so, consider the collection of rescalings MpkiS. For each k these
satisfy

(8.44) 0eMβkiS for all 5,

and also, by hypothesis,

(8.45) | i | 2 (0, 5 *)><V2,

where, as usual, sk is the rescaled time corresponding to tk.
But also, by Lemma 2.5, along with the evolution equation for \A\2

(see, for instance, [3, Lemma 9.1]), we have the estimate, for all fc, that

(8.46) max max
β€[-£ln(T),oo) MH%a

<CV

where CΊ6 = CΊ6(n, C0,Γ, Jo) is independent of A;. Hence, in fact, (8.45)
may be strengthened, to give that, for each fc,

(8.47) | i | 2 (0, s) > δ/4 for all s G [sk, sk 4- δx] ,

where δι = 5/4Ci6 is independent of k.
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However, by the rescaled monotonicity identity, (2.8), we also have
that, for all &,

)J7ϊ / / P + ^I'AB<S)

(8.48)

where the notation 6( , •) is as in Lemma 5.7.
Then, by Lemma 5.7(d), the first bloc of (density) terms on the right

hand side of (8.48) tend to 0, as k —> oo (independent of the fact that
the points, Pk, are shifting around); and the same is true of the second
bloc of (boundary integral) terms, by Lemma 2.7(b). Hence we have
that also

(8.49) \\m ί ί |H + y±]\pdHnds = 0.
Sk

We are now in a position to obtain our contradiction. For, using also
Lemma 2.5, we would then be able (just as in Theorem 3.4) to find
a sequence of times {sk G [sk,sk + δι] }2L15 such that, for some subse-
quence of points (still denoted {pk}), and times (still denoted {5*}),
the rescaled surfaces Mpkjk converged smoothly on compact subsets to
some limit surface, M^, with boundary an (n — l)-plane through the
origin. By (8.49) this limit surface would then also satisfy H = —X"1",
and yet would have |A|2(0) > ί/4, in view of (8.47). This, however, is
impossible, since, by Theorem 4.2, M^ would have to be a half n-plane
through the origin. Q.E.D. for Step 5.

Now, for the proofs of Steps 6,7 and 8, let the set-up be as described
in Section 7; so, in particular, {pk,tk} is again a ί-essential blow-up
sequence, such that now (7.3) and (7.5) also hold, and W is as given
there.

Step 6 : Then here we want to begin the proof of Lemma 7.1 by
ruling out the possibility that we could have pk G M0\W for all A;, yet
have p £ Γ (i.e. p £ Γ+).

So suppose we had this situation. Then, since M0\W is closed, we'd
have p G M0\W also. But then we'd clearly be able to find a compact
set, K C M0\Γ+, containing all the pk, as well as p, and satisfying
K C M0\W, or in other words

(8.50) Θ{q) = 1 for all q G K .
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However, by Lemma 5.7(c), we'd then have that

(8.51) | | θ ( . , t ) - l | | L . . ( l o - > 0 as t->T.

Also, by Lemma 2.6(b), we'd have that

(8.52) ||&( ,*)||L~(io->0 as *-> T ,

on noting that d0 = dist(ΛΓ, Γ) > 0, where K denotes {q : q G K}.
But then we'd have a contradiction just as in the proof of the pre-

vious step, via considering a sequence of rescalings about the (varying)
centres {pk} For, by proceeding exactly as there, we'd be able to find a
subsequence of points, still denoted {p*}, and a corresponding sequence
of rescaled times sk /* oo, satisfying that the rescaled surfaces Mpkjk

converge smoothly, on compact subsets of R n + 1 , to a limit surface Moo-
This limit, M^, would this time have no boundary, and would also sat-
isfy H = —x1- (since an exact analogue of (8.49) would also hold here, in
view of (8.51) and (8.52)). Moreover, as in Step 5, it would also satisfy
\A\2{z) > δ/4 for some z G BV2^(Q) (cf. Lemma 3.2(b)).

But then, by Theorem 4.1, M^ would have to be of the form Sm x
Rn~m for some m G {1,... ,n}. Hence the Mpk,sk would be converg-
ing smoothly on compact subsets of R n + 1 to some such cylinder, and
therefore we'd have (for some m > 1)
(8.53)

where θ ^ is as in Appendix A (cf. (5.4)). Yet this would contradict
(8.51), and this proves that "Case (a)" (as described in Section 7) cannot
occur. Q.E.D. for Step 6.

Step 7 : Here, to show that "Case (b)" is also impossible, we argue
just as outlined in the discussion of this step in Section 7. That is,
for each k, let pk be a point in Γ that achieves dist(pfc,Γ). Then, if
hypothesis (7.6) held, and passing to a subsequence if necessary, we'd
have (notingpk =pk) that FPk(pk,sk) G β α + v « ^ ( 0 ) for e a c h k A l s o >

for each k, the rescaled surfaces MPh Ste would satisfy \A\ (FPk(pk, sk)) >

a/2.
But then this would lead to a contradiction, essentially exactly as in

Step 5 above, save with the points {pk} now playing the role played
by the {pk} in that discussion. The only difference would be that, in
the analogues of (8.45) and (8.47), we'd replace the origin by the point
Fpfc(pfc,Sfc), for each fc. Q.E.D. for Step 7.
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Step 8 : Finally, to prove Lemma 7.1, we must establish that "Case
(c)" is also impossible. The idea is again to study rescalings about the
varying points {pk}, as in Step 6, but here we must be more subtle, since
the pk now do approach Γ, whence we can no longer use Lemmas 5.7(c)
or 2.6(b). In the argument that follows the first of these is replaced by
Lemma 6.3(a), while the latter is replaced by the estimate (7.2), proven
in Step 1.

To be more precise now, first set dk = dist(p*,Γ)/i/2(T — tk) for all
k. Then we want to prove that we cannot simultaneously have that
Pk G M0\W for all fc, pk -> p G Γ+ (so also p f e - 4 p G Γ ) , and

(8.54) lim dk = +oo .
kHX>

So suppose instead that we did have such a situation. To derive a
contradiction consider, as usual, the rescaled surfaces Mpfc,«. Then, just
as in Step 5, there would be some universal δλ = δι(n,M0,C0,δ0,Γ,δ)
such that, for all fc,

(8.55) max \A\2 > ί/4 for all sG[s f e,s f c + δτ].

* n i V ( 0 )

(Here the s*, as always, are the rescaled times corresponding to the tk,
and we have used Lemma 3.2(b), as well as the estimates of Lemma 2.5).

But also, by (2.8) and (2.13), we'd have that, for each A;,

(8.56)

< Γ° ί \Ά + x^\2pHnds

T

tk r

Yet, since the pk approach Γ+ as k -> oo, by assumption, so for any
given e > 0 we'd have also that, for all k sufficiently large (in terms of

e),

(8.57) tk > ίe and pkeUe,

where te,U( are as in Lemma 6.3(a). Thence, by Lemma 6.3(a), and

noting that Θ(j>k) = 1 for all k (since by assumption pk € M0\W for all
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&, and noting (7.5)), we'd have that, for any e > 0, there is a k(e) such
that, for all k > A (e),

(8.58) θ(pjfc, t) - θ(p f c) < e for all t > tk .

Therefore, by (8.58) in (8.56), we'd have that, for all k > fc(e),
(8.59)

8k

But also, by estimate (7.2), we'd have that, for all k sufficiently large
that tk > tβ(e) (c G (0,1/2) now),

oo

2

IT '
dfc/2

e~w2/2dw .

Hence, on noting (8.54), we'd have, by increasing k(e) suitably if
necessary, that for any e 6 (0,1/2) there is a k(e) such that, for all
k > Jfe(c),

( 8 6 0 ) (2^W

But then, just its in Step 5, we'd be able to find a subsequence of
points, still denoted {p*}, and corresponding times
{sk £ [skiSk + δι] }£11? such that the rescaled surfaces Mpky§k converged
smoothly on compact subsets of R n + 1 to a limit surface, Moo? which in
this case would have no boundary (in view of (8.54)), and which once
again, by (8.60), would satisfy H = —x-1. Moreover, by (8.55), it would
also have m a x ^ n β ^ _ ( 0 ) \A\2 > δ/4.

Yet then, by Theorem 4.1, it would be of the form 5 m x R n " m for
some 1 < m < n, and therefore, exactly as in Step 6 (cf. (8.53)), we'd
have that

(8.61)

However this would contradict (8.58) (taking, say, e = | e n in (8.58),
and observing that t(sk) > t(sk) = tk for all k). This contradiction then
proves that "Case (c)" also is impossible, and so completes the proof of
Step 8, and of Lemma 7.1. Q.E.D. for Step 8.



A BOUNDARY REGULARITY THEOREM 407

Step 9 : Part (b) of Theorem 6.1 now follows readily. Simply take
U = Uen/2 (Uen/2 as in Lemma 6.3(a)). Then, by Step 4 and Equa-
tion (5.3), Θ(p) < 1 on W, so W = M0\ϊί is an open set in M0\Γ+
containing B = {p : Θ(p) > 1}. Hence, for any δ > 0, there must be a
time, iδ < T, such that any <5-essential blow-up sequence must leave U
forever by time is < T; otherwise we could find such a blow-up sequence
which never ended up in W, and this would violate Lemma 7.1. Q.E.D.
for Step 9.

Step 10 : Finally, to prove part (a) of Theorem 6.1, let {pk,tk} once
again be a (̂ -essential blow-up sequence, with pk —>> p as k —> oo; so that
p is a general Type I singular point of the flow. Observe that, by Step 9,
p must then lie in the set M0\ϊί (U as in part (b) of Theorem 6.1), on
which Θ(q) > 1; so there must then be a neighbourhood, Vo, of p, in
M0\U, such that

(8.62) Θ{q) > 1 for all q G Vo .

Now suppose that p were not a special Type I singular point. Then
we'd have that

(8.63) limsup (T - t)\A\2(p,t) = 0 .
τ

Hence, by Theorem 4.1, any limit blow-up about p would have to be
an n-plane, and so we'd have

(8.64) θ(p) = 1.

But then, by the "upper semicontinuity" result, Lemma 5.7(b) (ap-
plied with, say, K = M0\ZY), we'd have, in view of (8.62), that there
would be a neighbourhood, V, of p, in Mo, such that

(8.65) θ(ςr) = l for all ? E V .

However then, by Lemma 7.1 (with W = M0\V), we'd have that
Pk £ V for all k sufficiently large, and this is a contradiction, since by
assumption the pk converge to p G V. This contradiction proves that
any such p must in fact also be a special Type I singular point of the
flow, and we are done. Q.E.D. for Step 10.

This completes the proof of Theorem 6.1. Q.E.D.

9. An improved boundary strip estimate for H2

We would now like to extend the partial boundary regularity result
of Theorem 6.1(b) to a full boundedness result, for \A\2 and all its
derivatives, in a boundary strip. Just such a form of strengthening
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was proven, for points not in the extended boundary, in [10, Section 4].
This was done via a localisation procedure, involving a careful choice
of weighting function, together with the maximum principle. However
the estimates on |A|2(p, ί), thus obtained, deteriorate as dist(p,Γ) —> 0.
Moreover, given the use of the maximum principle, the method does not
carry over directly to handle boundary points. Hence greater ingenuity
is required here.

As regards this, recall that the approach used in [10, §4] involved
essentially a two-stage procedure. The first was to show, subject to
(say) a Type I hypothesis, that a local interior estimate of the form
M2(p,*) < e/{T - t), € G (0,1/2), could be improved to a local bound
of the form \A\2(p, t) < C/(T - t)β, β = β(e) < 1. The second was then
to show that such an improved bound could, in turn, be bootstrapped
up to a uniform local estimate, |A|2(p, ί) < C.

Here, however, because we cannot avoid having to deal with boundary
points, we must instead adopt a more roundabout, four-stage approach.
The idea is to exploit that H is identically zero on Γ. This fact means
that, in applying an analogue of the above method of estimation to
if2, rather than |A|2, we do not encounter any additional problems in
dealing with "boundary points", vis-a-vis those not in Γ+. We can then,
in turn, use improvements in our estimates for H2 (in our boundary
strip), together with Allard's boundary regularity theory for varifolds,
to establish corresponding improvements in our bounds for |A|2, and
vice-versa. In this way the idea is alternately to upgrade our estimates
for H2 and \A\2, one after the other, until eventually both have been
uniformly bounded in a whole boundary strip.

To describe the above plan more precisely, recall first from [10, §4]
the following (trivially modified) notion of "e-boundedness" which was
central to the discussion presented there;

9.1 Definition. For any given e G (0,1/2) we say that a point,
p G Mo, satisfies the "e-boundedness hypothesis"', for time t0 < Γ, if for
some fixed a G (0,1/4) we have that, for all t G [to,T),

max *W*<rV
Note that the following is then an immediate consequence of Theo-

rem 6.1(b);
9.2 Corollary. There is a neighbourhood, Uo C M o, of the extended

boundary Γ +

; such that for any e G (0,1/2), and any a G (0,1/4), the
above "e-boundedness hypothesis79 holds for all p G Uo, with a uniform
time to(a,e) < T.
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With this established, our four step strategy for deriving full bound-
ary regularity can now be sketched in more detail. (In this outline,
"estimate" always means "estimate in a suitable boundary strip").

Step 1: Obtain, via the method of [10, §4], an improved estimate
for H2 of the form H2 < Cβ/{T - t)β, β G (0,1) arbitrary.

Step 2: Noting the improved estimate for H2 of Step 1, use Allard's
boundary regularity theory for varifolds ([1]) to establish a correspond-
ing improved estimate for \A\2 of the form \A\2 < C0/(T-t)β, β G (0,1)
arbitrary. This is done via studying, for arbitrary boundary points x0,
the rescaled surfaces Mt = τ~β(Mt — x0).

Step 3: Deduce a uniform bound for H2 by bootstrapping up the
argument of Step 1, making use of the improved estimate for | A|2 of the
previous step.

Step 4- Finally, bootstrap up also the improved bound of Step 2,
for |A|2, to a uniform estimate in a boundary strip (again via use of
Allard's results).

Steps 2, 3 and 4 are carried out in Sections 10 to 12 respectively.
As regards implementing Step 1 of this plan, we begin with some

notation, and a preliminary computational lemma. Let a G (0,1/4)
be (for the present) arbitrary, and let λ G C°°(Rn + 1,R) denote the
function λ(x) = exp(—|x|2/2), so that

(9.1) λ(x) G (0,1) for all x , λ > 1/2 for all \x\ < 1/2 ,

(9.2) X(x) = λ(R) where R = \x\ , ^ < 0 for all R,
dR

(9.3) \D\{x)\ = 2\x\λ{x) for all x,

(9.4) |Aiλ(x)| < C1 7(n)(l + |x|2)λ(x)

for all x, and for all 1 < i, j < n + 1, and for all x with |a;| > τ α / 2 , and
for all te[tt,T), for some fixed ίx(α) < Γ,

(9.5) iλ(£) < 1.

Next, for any fixed p € Mo, set ψp, μp : Mo x [0, T) -> R by

(9.6) ψP(fi,t) = λ{F{P't)~a

F{P't))> μP(p,t)=ψp(p,t)H2(β,t).
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9.3 Lemma. The function μp satisfies the differential inequality
that

ftμp< Δ(μp) - 2 ^ Vμp

(9.7) / \
+ ( 2\A\2 + C1 8(n)(l + τ~2a) max |H| μp .\ Mt J

Proof. We only sketch the derivation of (9.7) (cf. [10, Lemma 4.1]
for an analogous computation, set out in greater detail). Note that
the evolution equation for H2 is dt{H2) = A{H2) - 2\VH\2 + 2H2\A\2.
Thus, by property (9.2), we have directly that

^-μp(p, t) = φp{AH2 - 2\VH\2 4- 2H2\A\2)

a(F(β,t)-F(p,t))

(9.8)

< φp(AH2 - 2\VH\2 + 2H2\A\2)

< Δ(φpH
2) - 2Vψp • VH2 - H2Aφp

But now, at any point p on Mt we have (cf. [10, (4.15)]) that

Aφp = ARn+1ψp - u(v{φp)) - Hu{φp),

whence, by properties (9.3) and (9.4), we may estimate that

(9.9)

Therefore, by (9.9) in (9.8), together with property (9.3) again, we
obtain that

ftμp< A(μp)-2^ Vμp + ψ\Vψp\
2

+ (2\A\2 + C20(n)(1 + τ-2*) msxMt |H|) μp .

Inequality (9.7) now follows by applying property (9.3) one last time to
the third term on the right hand side of this estimate. Q.E.D.

We are now ready to carry out Step 1 of our plan, sketched above.
This is accomplished by the following lemma.
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9.5 Lemma. LetU0 be the neighbourhood o/Γ+ in Corollary 9.2.
Then for any β G (0,1) there is a constant C2\ = C2i(n,/3, C0,T) such
that, onU0, we have the improved estimate for H2 that, for allt G [0,T),

H2(p,t)<
(T-t) β '

Proof Let a G (0,1/4),/? G (0,1) be arbitrary (a to be suitably
fixed later), and set e = /?/3. Then let ί0 be as in Corollary 9.2 (for
our choices of α, e), so that the e-boundedness hypothesis holds for all
p G Uo with this uniform time to(a,β).

Now fix p G Wo arbitrarily, and then set

μmax(t) = max(μp(p,t)) , Mt = {p G Mo : μp(p,t) = μmax{t)}
p€Mo

Then observe that, by property (9.5) and the Type I hypothesis, (1.3),
we will have, for all t G [ίi, T), and all p G Mo with |P(p, ί) - P(p, t) | >
τ α / 2 , that μp(p,t) < nC0. Therefore if, at any such time t, we have
μrnαaί*) > ^Co, then it must hold that |F(p,t) - F(p,*)| < rα/2 for all
p G .M*. Hence we must have (noting also (3.2)) that, for all t G [<i,T)
and for all such p,

=> F(p,ί) G -B T «/2 + V ^C^F(P)

But then, from Corollary 9.2, we may conclude that, for all t >

(9.10) μmax{t) > nCo => \A\2{p,t) < ̂

for all p G Mt Moreover, we must obviously have (since H|Γ= 0) that,
for all ί,

(9.11) μmax{t)>0=*MtnΓ = φi

while also, by the Type I hypothesis, (1.3), we have the estimate that

(9.12) max |H| < JnC0/2τ .

So now put t2 = max{io,^i5T - 1}, and suppose t G [̂ 2,̂ ) is such
that μmax{t) > nC 0. Then from (9.10), (9.11) and (9.12) in (9.7) we see
that, at any such instant, we'll have

( 9 , 3 )
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So also now fix a = 1/8, and set t3(n) to be the least time such that
C22Tiμ < c for all t G [ί3,Γ). Then, putting ί4 = max{ί2,ί3} =
£4(n,/?,T), we see that we'll have, for ί G [ί4,T), that

(9.14) Jt

μmax{t) ~ ^μmax{t) Ξ rμmaxW

whenever μmax{t) > nC0.
So now define

Q = {t G [*4,T) : μm α x(*) > nC 0 } , C(*) = max(μm β j B(t),nC 0) .

Then, by (9.14), we'll have (at least a.e.) that

^ C ( * ) < f C ( * ) , * e α

-

Hence, for any t G [ί4,T), we'll have by integration from ί4 to ί that
ζ{t) < ^f, where, by the Type I hypothesis, C2 3 = C2z(n,β,CQ,T)
satisfies that

< nC0(T - U)β~ι .

To finish the argument it remains only to notice that then, since
λ(0) = 1, so we obtain that, for all ΐ G [*4(n,/?,T),T),

(9.15) H2(p,t) = μp(p,t) < μmax(t) < ζ(t) < ^ .

The result then follows, from (9.15) and the Type I hypothesis, since
p G UQ was arbitrary here. Q.E.D.

10. An improved boundary strip estimate for \A\2

Turning now to Step 2 of our strategy, we accomplish this via a series
of lemmas. The key element is first to obtain the improved estimate for
\A\2 on the boundary, Γ. It is then not difficult to extend it to a whole
boundary strip, via a method very similar to that employed in Step 1
above.

We begin by establishing an "area ratio bound" that holds uniformly
for all the surfaces Mu t G [T/2,T). This will be needed shortly to
allow us to extract varifold limits from sequences of suitable rescalings
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of the surfaces, {Mt}. The notation in this lemma (cf. Lemma 2.1) is
that, for any x0 G R n + 1 , and any To G [0, oo), we set

-|x-xo|

10.1 Lemma, (a). There is a uniform constant, <724 = C2t(n, Γ, T),
independent of the choice of x0 and TQ, such that, for all
t G [0,min{Γo,Γ}), |5X o,τo(ί)| < C2 4.

(b). There is a uniform constant, C25 = C25(n, Γ, |M 0 | ,T), such
that, for all x0 G R n + 1 , all t0 G [T/2,T), and all r > 0, we have
r-»\{Mt0Γ)Br(x0))\<C25.

Proof. Of (a). Consider the uniform estimate, (7.1). This was
proven (see Section 8) in the case where T is as in the Type I hypothesis,
(1.3), but it is clear from the proof that it holds equally well in the event
that "T" is replaced by any To G (0, oo). (After all, (7.1) is a statement
purely about the boundary, and could be considered even in the absence
of any related "flow of surfaces". In particular the Type I hypothesis is
of course never needed). Moreover, although the proof is given in terms
of points of the form jδ, p G M0\Γ+, it is also evident that the argument
holds, unaltered, for the case of any point x0 ^ Γ in place of p.

Thus we get that, for any e > 0, and any To G (0, oo), there exists
a time Γ(n,Γ,e,T0) < To such that, for any point x0 ^ Γ, and for all
t2 G[Γ,min{T0,Γ}),

n- χ dί < i + e .

Furthermore, it is clear that, for any e > 0, the time ί*(n, Γ, e, To) may
be taken to be of the form To — σ*(n, Γ, e), for some σ* > 0 independent
of To. Simply observe that pXo,τo(x5 <) = PxoΉ (x, t + (Ά - To)) for any
TcTxG (0,cx>).

Hence, taking say e = 1/2, we get that, for any To G (0,oo), there
exists a σ**(n,Γ) > 0 such that, for any x0 ^ Γ, and for all t2 G
[T0-σ**,min{T0,T}),

Si,
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But also then it is evident that, for any Γo G (0, oo), and any x0 £ Γ,
we can find a constant C2β = C2e(n, Γ,T) such that

(10.2) I

Combining now (10.1) and (10.2) then yields the desired estimate, for
the case of points x0 $. Γ. The case of boundary points, x0 G Γ, follows
similarly, this time by inspection of Lemma 2.7 and its proof (rather
than (7.1)).

Of (b). The proof of this part was shown to us (in the boundaryless
setting) by Brian White. Fix x0 G Rn + 1,* 0 € [T/2,Γ) and r > 0
arbitrarily. Then recall that the monotonicity identity, (2.2), holds for
any To £ (0,oo), not just the first singular time T. So now apply (2.2)
with T replaced by To = to+r2. (Note that this time To may conceivably
be greater than the critical time, T, but this does not matter as we shall
only employ (2.2) for times ί1? t2 < t0 < T). This yields (with the choices
tx = 0, ί2 = to) that

(10.3) I p^TodHn < I p^TodHn + |£ X o , T o (* o ) |
MtQ Mo

But now, writing this out explicitly, and noting the result of part (a),
this says that

< | M | + CΛ Γ | O | 2 4

M{ ~ (4π(t0 + r*))n/2

Yet this, noting t 0 > T/2, implies precisely the desired estimate, that

(10.4) r~n\Mt0 Π Br(xo)| < e1/4(2n/2T"n/2 |M0 | + C24) .

We next need a series of abstract lemmas about varifolds. For their
statement, and the subsequent analysis in this section, recall the nota-
tion of 1.1.

10.2 Lemma (Allard). Let S1 denote the unit circle inside {0} x
R2 C R n + 1

? let Pw denote orthogonal projection onto any subspace
W C R n + 1 , and let ζ : R n + 1 \(R n " 1 x {0}) -> {0} x R2 denote P{0}χR2
followed by anticlockwise rotation in {0} x R2 by π/2. Suppose C is an
n-dimensional υarifold cone in R n + 1

; stationary away from R n - 1 x {0};

and satisfying Θn(||C||,x) > 1 for \\C\\-almost every x G R ^ ^ ί R ^ 1 x
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{0}). Finally let Tc denote the linear functional on C 0 0 ^ 1 ) given by

(JBi(0)\(Λ»-iχ{0}))xG(n+l,n)

iϊere G(n+ l,n) is the Grassmannian ofn-planes in R n + 1 . Then
(a) 7^ w α multiple of H1 L S1.

(b) IfTc = 0 then P{0}XR* {spt\\C\\) Π S 1 is α /ϊmίe se* of points.
(c) J/Σ is α rectifiable, integer multiplicity n-varifold in Bx(0), the

unit ball in R n + 1 , and ifΣ is stationary away from (Rn~ι x {0})Πf?i(0),
and if spt(||Σ||) C V^°) for some fixed δ0 > 0, then any tangent cone,
C, toΈatO must be a sum of integer multiplicity half n-spaces, all lying
in the wedge V^δo).

Proof Of (a) and (b). These are special cases of Lemma 5.1 of
Allard, [1].

Of (c). This follows by the same reasoning as in the first part of the
proof of Lemma 5.2 of Allard, [1]. Simply construct the functional TQ
corresponding to the varifold cone C obtained via the reflection principle
(see [1, Lemma 3.2]) from the cone C. Then by part (a), together with
the wedge condition, we must have that TQ = 0. The result then follows
from part (b). Q.E.D.

10.3 Proposition. Suppose {Σj} is a family of smooth, orientable
hypersurfaces in Bι(0), with smooth boundaries {dΈj}, satisfying that

(i) ΣjCΫ^ for all j , 0 e dΣj for all j
(ii) the dΈj converge smoothly to 2?i(0) Π (R"" 1 x {0}) as j -¥ oo;

and
(iii) there is a constant C2γ such that, for all j, sup Σ . |Hj | < C27,

where Hj(x) denotes the mean curvature vector ofΈj at x.

Suppose that the Σj converge as varifolds to an n-varifold, Σ, in
J3χ(0). Then Σ is integer multiplicity and rectifiable (and if in fact
we have supΣ. \Άj\ -> 0 as j —> oo then Σ is also stationary away from
βi(0)Π(Rn~ 1 x {0})). Moreover, any tangent cone toΣ atO is a single,
multiplicity one, half n-plane.

Proof. That Σ is integer multiplicity and n-rectifiable follows from
[9, Theorem 42.7 and Remark 42.8], as does the stationarity assertion.
To see the tangent cone claim, let C denote any such cone; say C is the
varifold limit as k —>> oo of λ ^ Σ for some sequence of real numbers λk \
0. Then, since Σ is itself the limit of the Σ J 5 observe that, corresponding
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to this sequence {A*}, we can find a related sequence {j(k) /* 00} of
integers such that, in terms of varifold convergence, we have

/in κ\ \~1v _v n
^lu.oj λk ^j(k) —r ^

In other words, C may be viewed as the limit of a sequence of smooth
hypersurfaces Σk = λj^Σ^fc), satisfying now that

(i*) Σk C γV°) for all fc , 0 G dΣk for all k

(ii*) the dΣk converge smoothly to Rn~1 x {0} as A; -* 00; and

(iii*) sup£;fc \ΈLk\ —» 0 as k -» 00 , where HΛ(x) denotes the mean

curvature vector of Σk at x.
Yet also then we know that C must be stationary away from Rn~x x

{0}, and so by Lemma 10.2(c) must have the form of a sum of half

n-planes with boundary R n - 1 x {0}, % , all lying in the wedge

and appearing with some integer multiplicities; say

1

(10.6) C =

We want to show that we must have / = 1, ni = 1.
The first step towards establishing this is to show, more weakly, that

we must at least have

(10.7)

To prove this note that, instead of considering varifold convergence
of the Σfc, we can also view the Σk as rectifiable, integer multiplicity
currents. Then, as currents, the Σk must also converge weakly to some
limit current C, which is an integer multiplicity rectifiable cone with
support in V"^0).

But then clearly C must simply be the same as C, except that the
Hi are now endowed with orientations, and the multiplicities may now
be different, since we may get cancellation of oppositely oriented half n-
planes in the limit. Evidently though the half n-planes can only cancel
in pairs, so we must have that

(10.8) 6 = J2
t = l

where [%] denotes Hi with a choice of orientation, and where, for each
1 < i < /,

(10.9) m — mi = even.
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But also now, as currents, the boundaries of the Σk must in addition
be converging to dC = £<=i mid[Hi]. Furthermore, letting [Q] denote
the current [ R n - 1 x {0}J with multiplicity one and orientation given by
βi Λ Λ en_χ at each point, we clearly have first that, by (ii*),

(10.10) UmβΣ J k = [Q],

and also, for each 1 < i < /, d[Hi] = ±[Q], so that

(10.11)

for some numbers κι £ {0,1}, i = 1, . . . , I.

Thus we must have that Σ i = i ( — l ) * i m t = 1? a n d hence Σ<=i m t =
odd; and then this, together with (10.9), immediately implies (10.7).

Now, however, we are in good shape, since we can then argue as
follows. For any vector field X G C£°(i?i(0);Rn + 1), we have, by the
usual First Variation formula for smooth surfaces (see [9, p. 46]), that,
for each fc,

(10.12) /div έ f c X dHn = - ί (X,ήk)dHn~ ι -
j J

Σ f c dtk Σfc

Here ήk denotes the inward unit conormal to Σk along dΈk.
Then the second term on the right hand side of this equality tends to

zero as k —• oo, by (iii*). Also, by virtue of the smooth convergence of
the dΣk to R n~ x x {0}, of (ii*), we have that there is some vector field,
r)(x), along R 7 1" 1 x {0}, such that

(10.13) ll<?(x)ll<l for all x ,

and

(10.14) lim ί {X,ήk)dHn-λ = ί {X,ή)dHn~ι .
k-¥OO J J

dtk Rn~1x{0}

On the other hand, though, in view of (10.5), we have that, as k -> oo,
the left hand side of (10.12) converges to / σ d i v c X d i ϊ n .

Putting all this, together with (10.6), into (10.12), we thence get that,

Λ ί Γ
(10.15) Y > i / dWniXdHn = - / (X,ή)dHn-1 .
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Yet clearly, letting η{ denote the (constant) inward unit conormal to Hi

along d%i = R n - 1 x {0}, we have, for each i, that η{ G Vδo, and

(10.16) /diyHiXdHn = - / (X,ηi)dHn"1 .

Ki R«-iχ{0}

Thence, by (10.16) in (10.15), we have that, for any X G

(10.17) / lxAή-Ttniηi))dHn'1=0.

However, unless / = 1 and ni = 1, we have, from (10.7) in Lemma B.I
of Appendix B, that Σί=i nir\i would be a vector in Vδo of length strictly
greater than one. But this observation, together with (10.13), would
give a contradiction in (10.17); and this proves that we must indeed
have I = 1 and nx = 1, as desired. Q.E.D.

As a final preliminary we recall the following special case of Allard's
boundary regularity theorem for varifolds. This version is for a pri-
ori smooth hypersurfaces with boundary in R n + 1 , which, while much
weaker than Allard's general result, is all we shall need in this paper
(see [1, Corollary on p. 419]).

10.4 Theorem (Allard). Suppose B is a smooth (n—1)-dimensional
submanifold of Bι(0), the open unit ball in R n + 1

; and suppose K > 0
bounds the curvature of B in the sense that, for every point b G f i , and
every unit normal, ξ, to B at b, we have, for all y G B,

(10.18) |(y-6,0| <κ|y-6|2/2-

Suppose M is a smooth n-dimensional submanifold of Bι(0)\B, rela-
tively closed in Bx(0)\B, with mean curvature vector H(x).

Then, given any q,e with n < q < oo and 0 < e < 1, there is a
δ = 5(n, g, e) > 0, independent of M, such that, provided we have

(i) dist(0, M) < δ , κ<δ and
(ii) Hk(M)<{l + δ)ωn/2; and

(iii) (fM\H(x.)\<dHn) <δ,

then the following hold:
(a) B Π Bι(0) is contained in the closure of M relative to Bχ(0);

and

(b) after a suitable rotation in R n + 1 , sending M to M* say, then

M* Π {B[^r(e)(0) x R) may be written as the graph of a Chl~n/q function
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/ : £i(-r(e)(0) n P&χ{o}(M*) -> R satisfying /(0) = 0 , |Z?/(0)| = 0,
and

(10.19) \Df{z2)-Df {zJl < e|z2 - z x l 1 " ^ for all z 1 ? z 2 .

Here PR* X{oy denotes orthogonal projection onto R n x {0}, as in Lem-
ma 10.2, B^(0) denotes the p-ball about 0 in R n x {0}, and r(e) is a
function with r(e) \ 0 as e \ 0.

We are now finally ready to return to our task of obtaining an im-
proved boundary estimate for |A|2(p, t) for our evolving surfaces, Mt. As
a start we establish a number of results leading up to a certain "graph-
ical representation theorem", locally about boundary points x0 G Γ, for
certain rescalings of the Mt (see Lemma 10.7).

Throughout the remainder of this section, let β G (0,1/2) be fixed
arbitrarily, and then let us adopt the notation, for any x 0 G Γ and any
U G [0,T), that Σ X o tm denotes the hypersurface [(T-U)~β(Mu -x 0 ) ] Π
5i(0).

10.5 Result. For any e0 > 0, any sequence of times {tj /* T}, and
any sequence of boundary points {XJ G Γ}, there exists a subsequence of
the corresponding hypersurfaces ΣXjitj, say {^χJk,tJk}

<^L1f and an integer
k0, and a radius p0 > 0, such that, for all k > k0, and for all p G {0,p0],

(10.20) \ΣXJh,tik Π 5,(0)1 < (1 + eo)^f .

Proof Consider the sequence of surfaces {Σ^^.} viewed as
n-varifolds. Note that, by Lemma 9.5, these surfaces satisfy that

(10.21) sup |H(x)| -> 0 as j -> oo .
Σ

Now, by Lemma 10.1(b), we have a uniform area estimate on all
these surfaces (at least once tj > T/2). Thus, by compactness (see [9,
Theorem 42.7]), there must be a subsequence of them, say { Σ ^ , ^ }Π=i'
that converge as varifolds to some limit, Σ, as k -> oo. Henceforth in
this proof, for ease, we write Σk for ΣXJk }ίj.fc.

Now, by Proposition 10.3, Σ must be an integer multiplicity rectifiable
varifold, stationary away from (Rn x (0})ίΊi?i(0), and more importantly
must have density 1/2 at 0. But then, for any eλ > 0, we must be able
to find a radius px = pi(ei) > 0 such that
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and then in turn, since the Σk are converging as varifolds to Σ, we must
be able to find a kλ G N such that, for all k > kλ

(10.22) \ Σ k n B

 < ^

Note that this almost completes the proof (with e0 = €χ), but not
quite, since we have only obtained (10.22) for the particular radius ρu

and not yet for all p G (0,pi].
To overcome this, however, we can just invoke Theorem 10.4 as fol-

lows. In that theorem take e = 1/2 and (say) q = 2n, and then let δι
denote the delta corresponding to these choices. Then set €χ = <$i/2,
and put px to be the radius in (10.22) corresponding to this choice of
€χ. Finally take the surface M in the theorem to be successively the
surfaces p^Σjfc Π #i(0), k > k\.

Then it is clear, from (10.21) and (10.22), that, for all k sufficiently
large, these hypersurfaces satisfy the hypotheses (i), (ii) and (iii) of
Theorem 10.4. Hence there is some k0 G N, and some fixed radius p2 >
0, such that, for all k > fc0, all the surfaces pϊ 1ΣjbΠJ5P2(0) have graphical
representations as graphs of C1 > 1 / 2 functions, /*, over appropriate pieces
of hyperplanes through the origin, with all the fk satisfying a uniform
C1>1>/2-norm estimate.

But then this clearly implies that we can find a uniform radius p0 > 0
such that, for all k > fc0, the surfaces Σk satisfy that

|Σ* Π B,(0)| < (1 + eo)^f- for all p G (0,p0],

and this completes the proof. Q.E.D.
10.6 Corollary. Given any e2 > 0 there is a uniform radius

^0(̂ 2) > 0, and a uniform time h(e2) < T, such that, for every x0 G Γ
and every t* G [ί5,Γ), the corresponding surface ΣX o > ί, =
[(T - tm)-β(Mtm - x0)] Π 5i(0) satisfies that

(10.23) |ΣX 0, t, Π Bp(0)\ < (1 + e2)^f for all p G (0,σ0] .

Proof. Suppose the result were false. Then for some e2 > 0 we
could find a sequence of radii {pj \ 0}, and corresponding sequences of
boundary points {x̂  G Γ} and times {tj /* T}, such that, for each j ,

| Σ β i ι t i Π Bσ. (0)| > (1 + € 2 ) ^ - for some σά G (0, Pj] .

But then, no matter how we fixed p0 in Result 10.5, we'd have, for the
sequence of surfaces {Σ^.^.}, that regardless of what subsequence of
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them, say {Σk = ^χjk,tjh}^=v we considered, then for all k sufficiently
large (so that ρjh < p0) there would be a radius σjk < p0 such that

Yet this would contradict Result 10.5. Q.E.D.
Using results 10.6 and 10.4, we can now give a form of "uniform

graphical representation at boundary points" lemma. To state it we
adopt the following notation.

For any x 0 6 Γ recall that 7£Xo denotes the rotation in R n + 1 sending
the wedge V*o to Vχ0 (see 1.1). Then, for any x 0 G Γ, any U < T, and
any radius p > 0, we set
(10.24)

£*,,,.,, = π x o {p-ι(T - U)~β(Mu - xo)) Π (B{n)(0) x R) Π B a (0) .

Finally we let δ0 > 0 also be as in 1.1.
10.7 Lemma. Let β G (0,1/2) and e3 G (0,1) be arbitrary. Then

there is a fixed time t6 = £6(n, Co, T, Γ,/?, €3, ί 0 ) < T, and a fixed radius
p* = p*(/3, €3, δ0) G (0,1), such that, for any x 0 G Γ and any U G [te,T),

(a) the surface ΣX 0 ) t # ) P i > may be written as the graph of a C 1 ' 1 / 2

function, /Xo,t*, over (its projection into) the fixed hyperplane R n x {0};
and

(b) each such function /Xo,ίΦ moreover satisfies that, for all Zi,z 2

in its domain,
(10.25)

| |

C2s = C^βί̂ o? β,e3) is independent of the choice o/x 0 and t*.
10.8 Remark. It will be clear from the proof that, if we preferred,

we could, for any K < 1, prove the same result with uClil^2n replaced
by ucι'κn (and with (10.25) also modified appropriately), provided we
then let t6 and p* depend also on K.

Proof. Take any x 0 G Γ and £* < T. Let e4 > 0 be a small constant,
to be chosen later in terms of e3 and 50> and let q = 2n (say). Then let
δι = £i(n, e 3 , ί 0 ) denote the delta from Theorem 10.4 corresponding to
this e4 and g. Finally put σ0 = σo(n, €3, Jo) and ί5 = ί 5(n, €3,tf0) to be,
respectively, the radius and time from Corollary 10.6 corresponding to
the choice e2 = ί i

Then observe that, by Corollary 10.6, the surface EXO)ii,)<To will sat-
isfy hypothesis (ii) of Theorem 10.4 (with δ j = £1), provided ί* > ί5.
(Indeed this will be true of all the surfaces Σ X 0 ) t φ > p , p G (0,σ0]). But
also then, noting Lemma 9.5, we can clearly find a uniform time t7 =
ί 7(n, Co, T, Γ,/?, δλ) <T such that, provided U > h, the surface Σ X θ ) ^ > σ o
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will additionally satisfy hypotheses (i) and (iii) of Theorem 10.4 (with

So now put t6 = max{t5, ί7}, which, as required, is independent of our
particular choice of x 0. Then, by Theorem 10.4, we obtain, in view of
the way we defined £χ, that, provided t* > ί6, the surface ΣXo,tΦ,σo may
be written as the graph of a C 1 ' 1/ 2 function, ffXo,ίΦ,σo, over (its projection
into) the n-dimensional ball of radius 1 — r(e4) in a suitable hyperplane,
ΠXo,tΦ,σo, through the origin in R n + 1 ; and moreover this function <7Xo,tΦ,σo

satisfies that 5Xo,ίΦ,σo(0) = 0, |Z>ffXo,ίφ,σo(0)| = 0, and

(10.26) |Z}<7Xθ)ίφ)σo(z2) — DgXOiUt(To(z1)\ < e4 |z2 — Zij1/2

for all Zχ,z2 in its domain.
Note in particular that (10.26) implies (taking z 2 = 0) that

(10.27) \D9*o,U,σ0(*l)\ < t*

for all zx in the domain of <7Xo,tΦ,σo.
But also now it is clear that the hyperplane ΠX o }tm^σo must contain

R n - 1 x {0} and be lying in the wedge V{δo). (Indeed s i n c e j Z ^ ^ ^ O ) !
is zero we see that Π X o £ φ > σ o is just the tangent plane to Σ X 0 ) f φ ) ( 7 0 at the
origin).

So now simply select e4 = e4(e3, δ0) to satisfy first of all that e4 < €3;
secondly that 1 - r(e4) > 1/2; and thirdly (noting (10.27)) that it is
small enough in terms of δ0 that, within the cylinder BR0'(0) x R of
radius Ro(δQ) = |sin(<50/2), the surface Σ X θ j ί φ ) σ o is still a graph over its
projection into R n x {0}. See Figure 1.

Then with this choice of e4 it is clear, on noting the arbitrariness of
x 0 G Γ in the above discussion, that we are done, on simply setting
p+ = RQCΓQ. Q.E.D.

Now at last, armed with this "graphical representation" result, we
can derive the improved boundary estimate for |A|2(p,ί) that we have
been seeking.

10.9 Theorem. For any β G (0,1/2) there is a uniform constant
C2g = C2 9(n,Co,T,Γ,/?, δ0) such that

(10.28) n g « | i 4 | 2 ( p , i ) < ^ " "

Proof. Fix x 0 G Γ and β G (0,1/2) arbitrarily. Then let * 6,p* be
as in Lemma 10.7 with e3 = 1/2, and fix any t G [te,T). Then, for this
choice of t, put

(10.29) t. = I(τ + t) , u=p.(T-U)0
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FIGURE 1. ΣX o ^ σ o may be written as a graph over (its
projection into) the 1/2-ball about 0 in the hyperplane
ΠXo,^,σo C γ(δo\ whose slope with respect to ΠXθ)ίφ>σo is
very small. Hence, within some cylinder Bj£(0) x R,
with RQ determined by δ0, ΣX θ ) ί φ > σ o may also be written
as a graph over (its projection into) the fixed hyperplane
R n x {0}.

and, for each t G [U,U], write Σt = TtXo(Mt - x0) Π {B^(0) x R) Π
B2rΛ®) Then, by Lemma 10.7, we have that, for each t G [tβ?**]?

(10.30) Σt = graph(w(x,ί)) ,

where u{t)(-) = u( ,t) : PRnx{0}(Σt) Π B^(0) -^ R is a C M / 2 function,
satisfying that u^(0) = 0 and, for all Zi,z2 in its domain,
(10.31)

ςc28(δ0,β) , \DU{

Note furthermore that, since Γ* = ^ X o (Γ - x0) Π (B^(0) x R) Π52r. (0)
is remaining unchanging, the domains PR^χ{o}(Σt)ΠB^(0) are actually
fixed, independent of t E [te,U], so we write Ω" = PRnχ{o}(Σt)nBM(0).

But also now it is clear that the surfaces Σt are still flowing by mean
curvature, unaffected by the rotation ?tXo, and so the function u : Ω" x
[te,t*] -> R- satisfies the linear differential equation (see, for instance,
[4, equation (2)]) that

(10.32)

where

(10.33)

d
, t)DiDάu(κ, t) = 0 ,
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and we are using the Einstein summation convention in (10.32).
Note that, in treating (10.32) as a linear equation, we are using the

usual "doublethink" of ignoring that the functions D{U in the definition
of αjj(x, t) are related to our solution, u, of (10.32), and are treating
them just as given functions on Ω" x [tβ,t*].

Now we are done, however, simply by invoking the parabolic machin-
ery of [8]. For observe that, by (10.31), our differential equation (10.32)
is uniformly parabolic on Ω" x [t6,t+] (indeed the least eigenvalue of
dijfct) is bounded below, on Ω;/ x [tβ,U], by (1 + C2s)~1)- Moreover
the coefficient functions α^ (x, t) are of class C0'1/2 in Ω;/ x [t6, ί*], with a
uniform estimate on their C°'1//2-norms determined only by C2s\ and the
part of dΩ" given by Γ" = PRnχ {0}(Γ*) is of class C 2 ' 1 / 2 (with a uniform
estimate also, determined only by the geometry of Γ, and independent
of the choice of x0).

Therefore we can apply to (10.32) the spatially scale-invariant version
of estimate (10.5) of [8, Theorem 10.1, p. 351-352]. Doing so we obtain
the estimate that

^ ) C 3 o ( r , c 2 8 ) (̂ Il̂ ( 5

(10.34) +C 3 1 (Γ,C 2 8 ) ( max ||u( ,ίβ)||L2(Ω") + \\Du\\L2(Q,Λ ,

where Φ(x) denotes the (time-independent) function u\ , where

and where the spatially scale-invariant norms used in (10.34) are explic-
itly given by

5/2

[ί>2u(x'')] ̂ ( ^ + 3 [ d t U { X } " ) ] 1/4;(tβ <")

(10.35)

and

(10-36)
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and

In (10.37) we have used that Φ is independent of t (since it is the function
whose graph is the fixed boundary Γ*); and also the derivatives Ϊ)Φ and
D2Φ on the right hand side of (10.37) represent derivatives only along

But now (10.34) immediately implies that we have ||^||c72 1/2(Ω'x(tβ,t)) <
C3 2 for some constant C3 2 = C32(Γ, C2 8, t 6 ), whence in particular we ob-
tain that

4
(Λ(\ QQ\ IΓ>2Λ,| * * " / " *
I 1 0 - * 8 ) \ D U n.O»vί«. fΛ ^ ^ ^ 3 2

This, however, obviously yields (noting the definition of r» in (10.29))
that |£>2u(0, ί) | < 22+2βp:2C32(T - ϊ)~2β, and this in turn implies that

(10.39) μ | 2 ( x 0 , ί ) < C 2 9 ( T - ί ) - ^ ,

for some constant C2 9 = C29(n,/?,/0*,C32). The result now follows by
checking the dependencies of the constants p* and C3 2, and noting that
x0 G Γ and t G [te,T) were arbitrary here (along with using (1.3) to
handle the case of times less than ί6). Q.E.D.

10.10 Remark. The higher derivative analogues of estimate (10.34)
also then hold, of course, by the usual bootstrapping method.

Now that we have this improved boundary estimate for \A\2 it is
straightforward to extend it to the whole boundary strip, Uo, along the
lines of the proof of Lemma 9.5.

10.11 Lemma. LetU0 be the neighbourhood o/Γ+ in Corollary 9.2.
Then, for any β 6 (0,1/2) there is a constant C3 3 = C33(n, β, Co, T, Γ, δ0)
such that, on Uo, we have the improved estimate for \A\2 that, for all

te[o,τ),

Proof As in Lemma 9.5, let a G (0,1/4), β G (0,1/2) be arbitrary
(a to be chosen later), and set e = 2/3/3. Then let to(a,β) be as in
Corollary 9.2, so that the e-boundedness hypothesis (see 9.1) holds for
all p G Uo with this uniform time ί0.

Next fix p G Uo arbitrarily. Then put

(10.40) χp(β,t) = (T-t)2βφp{p,t)\A\2(β,t),



426 ANDREW STONE

where φp is as in (9.6), and furthermore set
(10.41)

Xmax(t) = max (χ p(p,ί)), M*t = {p G Mo : χp(p,ί) = χmax{t)} •
p€Mo

Now, by Theorem 10.9, we have that, for all t E [0,Γ),

(10.42) a

But thence, combining property (9.5) of the function λ, the Type I hy-
pothesis, (1.3), estimate (3.2), and Corollary 9.2, together with (10.42),
we may readily deduce (proceeding exactly as in the proof of Lemma 9.5)
that we can find a uniform time ί2 = *2(α?β) > T — 1 such that, for all
te[t2lr),

(10.43) χmαx(t) > max{CΌ,C29} =*M*tΠΓ = φ

and
(10.44)

Xmαxit) > max{C0,C29} = * \A\2(p,t) < γ ~ t for all p E M*t .

Yet also we can derive, for our function χp, an analogue of the differential
inequality (9.7) for μp. Computing as in the proof of Lemma 9.3, we
get that

(2\A\2 - 22 + Cs4(n)(l + τ-2«) max \H\) χp .
\ T Aft /

Therefore, from (10.43) and (10.44) in this inequality, together with
the estimate (9.12) for maxMt |H|, we obtain that, for all t G [*2JΓ),

Xmαx{t) > max{C0, C29} = » -Γ,

2 e 2 / J + G35(n)τ f .
T

So now, as in Lemma 9.5, fix α = 1/8, and set t3(n) to be the least
time such that C35τ

1/4 < e for all t E [t3,T). Then, putting t4 =
max{ί2,^3} = U(n,β,T), we get, for t G [^4,^), that, whenever χmαx(t)
> max{C0, C2 9}, we'll have

(10.46) JtXmαΛt) < ^—-XrnαΛt) < 0

The result of the lemma now follows easily, noting the definition of
χp, and the arbitrariness of our choice of p G Uo (cf. the proof of
Lemma 9.5). Q.E.D.
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To conclude this section it is convenient to re-express the result of
Lemma 10.11 as follows. Let Uλ C Uo C Mo be the sub-neighbourhood
of the extended boundary, Γ+, defined by

(10.47) U1 = {p£M0: dist(p,Γ) < dm/2} ,

where d* > 0 is set to be ιmnpeMo\Uo{dist{β^T)}. Then Lemma 10.11
trivially implies;

10.12 Corollary. Let Ux be as above. Then for any a E (0,1/4)
there is a uniform time ί8 = ίs(α, Co,d*) < T such that, for any β E
(0,1/2), and any t E [ts^T), the estimate

(10.48)

holds for all p E lλχ, where C33(n,/3, C 0,T, Γ,<50) is as in Lemma 10.11.

11. Boundedness of H2 in a boundary strip

Having established the improved estimate for |A|2(p,ί) of the previ-
ous section, it is now a relatively simple matter to bootstrap up the
boundary strip estimate for i ϊ 2 , of Lemma 9.5, to a full boundedness
result.

11.1 Lemma. LetUi be as in (10.47). Then there is a constant
Cz6(n,CQ,T,Γ,δo) such that, onlA\, we have the improved estimate for
H2 that, for all t E [0,T),

H (p, t) < C3β

Proof. Fix p E lλ\ arbitrarily. Then proceed exactly as in the
proof of Lemma 9.5, up until immediately prior to equation (9.13) (so
in particular the quantities α, λ,V>p,μp,μmαχ and M^ as well as tQ and
t2, are as there), with the exception that we alter (9.10) as follows. In
that equation, in the proof of Lemma 9.5, we used Corollary 9.2 to gain
control of |A|2(p,t) for points p E Mu t > max{to,ti}. Now, however,
by virtue of our improved estimate for \A\2 on the boundary strip W1? of
Corollary 10.12, we may instead replace (9.10) by the stronger estimate
that, for all t > max{ίχ,t8},

(11.1) μmax(t) > nCo = » \A\2(p,t) < C 3 7 (n,C 0 ,T,ΓA) r" 1/2

for all p E Mt. Here we have taken β = 1/4 in Corollary 10.12 (though
actually any β E (0,1/2) would serve equally well for our purposes),
and t$ is as there.
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Then, by using (11.1) rather than (9.10) in writing down the analogue
of (9.13), we now get instead that

± 2CTl/2 + C^n)τΦ~2\ It)(112) ±a (t)<
at T

at any instant t G [tg,T) at which μmaχ(t) > n<70. Here t9 =
max{ί i , t 8 ,T-l} .

But thus, taking a = 1/8 again, we obtain now that, for every t G
[ί9,T) for which μm β x(t) > nC0,

( 1 1 . 3 ) 5 £ / w ( t ) < C 3 8 ( n , C o , T , Γ , ( J o ) T ^ V W

In other words, letting £ and ζ(t) also be as in the proof of Lemma 9.5
(with " V replaced by % " ) , we get now that (at least a.e., as usual),

| c ( * ) < c 3 8 τ - 3 / 4 c ( ί ) , t e g

^ C ( * ) = o , te[t9,τ)\g ,

and then the boundedness claim easily follows by direct integration (and
noting that pEWi was arbitrary here). Q.E.D.

12. Pull boundary regularity

To complete the four-step program for establishing full boundary reg-
ularity, outlined in Section 9, it remains to extend the boundedness re-
sult for if2, in the boundary neighbourhood Wx, of Lemma 11.1, to a
corresponding boundedness result in U\ for \A\2. This, however, may
be established by precisely the same procedure as used in Section 10, so
we spare the reader a repetition of the argument here.

Noting that the higher derivative estimates on A in our boundary
strip can also now readily be established, for instance by graphical rep-
resentation methods (cf. Remark 10.10), we thence obtain;

12.1 Theorem. Suppose hypotheses A and B of Section 1 hold, and
suppose that the hypersurfaces {Mt} .Q τ) are flowing by mean curvature
as in (1.1). Then there is a fixed neighbourhood, U\ C Mo, of the
extended boundary Γ+, and a constant C39 = Csg(n^ Co,T,Γ,ίo)> such
that, for all peUλ, and all t G [0,T),

\A\2(p,t)<C39.

Furthermore, corresponding boundary strip estimates hold also on all
derivatives of the second fundamental form in time and space.
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Finally this clearly implies the full boundary regularity result stated
at the outset.

12.2 Remarks. (i) Note that, while the Type I hypothesis was
used strongly at several points in proving Theorem 6.1, for the discussion
in Sections 9 to 12 it may be replaced by the much weaker assumption
that, for some δ G (0,1), we have maxMt \A\2 < Cδ/(T - t)1*6. Simply
modify the arguments along the lines discussed in [10, Section 4] for the
boundaryless case.

(ii) Observe that, throughout the proof of the Boundary Regularity
Theorem, the first condition in Hypothesis B that Γ lie on the boundary
of some uniformly convex body Λf, with moreover Mo C Λf, was needed
just to give us a "wedge condition" at each point x0 € Γ, namely that
there exists some wedge of two half-hyperplanes, VXo, with opening angle
less than π — 50, δ0 > 0, which contains each Mt, t < T. This wedge
condition in turn was required to study sequences of blow-ups of the
surfaces Mt about points x0 G Γ (in particular to apply Allard's lemma,
Lemma 10.2, as well as Proposition 10.3 and Lemma B.I).

In view of these observations we see that the first part of Hypothesis
B may in fact be weakened to the requirement merely that Γ lie on
some hypersurface, Ή, which is uniformly mean-convex; i.e. satisfies
H > e everywhere, for some e > 0. The reason this will suffice is that
in this setting one can still recover the required "wedge condition" at
each boundary point.

This may be done by taking the pieces into which H is split by Γ
and flowing each by mean curvature flow for a short time, while holding
them fixed along Γ. By the maximum principle the collection of hyper-
surfaces so produced will enclose each Mt, t < T, and moreover, by the
mean-convexity condition, will satisfy that for each x0 G Γ the two hy-
persurfaces which meet at x0 will have tangent planes at x0 which will
form a wedge of angle less than π — δ0 for some δ0 > 0. Furthermore,
while this wedge will not necessarily enclose each of the surfaces Mu it
(or rather a translate of it to the origin) will enclose any limit rescaling
of them about x0. Since this is all that we required in the original ar-
guments we see that this weaker form of of the first part of Hypothesis
B will still suffice in the Boundary Regularity Theorem. I am grateful
to Prof. Gerhard Huisken, and to the referees, for pointing this out as
a possible improvement on the original version of the theorem.

Appendix A - The possible "limiting heat density" values

Recall that, for smooth n-dimensional surfaces without boundary in



430 ANDREW STONE

R n + 1 satisfying H > 0, there are (by Theorem 4.1) precisely n + 1 pos-
sible embedded "limit surface" solutions to H = —xx, up to rotations
i n R n + 1 . These are

M^' 0 ) ΞΞ R n

and

M£>m) = Sm(^) x R n " m , m = 1,2,... ,n .

Similarly, by Theorem 4.2, there is (again up to rotation) only one
possible smooth, embedded hypersurface in R n + 1 satisfying both H > 0
and H = -x-1-, and with boundary an (n - l)-plane through the origin.
This is (for want of better notation)

M£-λ) = {(*!,...,*„+!) I *n+l = 0 , Xn > 0} .

Now, for each m,n, m < n, set (cf. Lemma 5.3, and in particular
(5.4))

(Al) Θ(n,m
• (2τr)»/3

Then an explicit formula for these values, Q(n>m\ was found in [10,
Appendix A]. Indeed the computations there yield the following lemma,
which encapsulates all the main facts we need to know about these
numbers:

A.I Lemma, (a) For each m,n, m < n, the numbers θ^n'm^ are
given, in terms of the Gamma function, by

Ί / 2 , ra = - 1

(A2) Θ ( n'm ) = {h m = 0

Note that each θ ( n ' m ) depends only on m, and not on n. Thus we
henceforth write simply Q(mϊ in place of Θ^n'mK

(b) . For each fixed n E N the values of Θ^m\ m = —1,0,1, . . . , n,
are all distinct, and bigger than 1 for m > 0. Indeed the numbers
|@(m) . m = i 5 2 , . . . } form a strictly decreasing sequence in m, with

A.2 R e m a r k . Some sample values may easily be computed from
(A.2). For instance we have that, for all n,

~ 1.520 , θ ( 2 ) = 4/e ~ 1.472

= 2̂ AF (3/2e)3/2 - 1.453 , θ ( 4 ) = 32/3e2 ~ 1.444 .
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Appendix B - A geometrical lemma

B.I Lemma. Let V denote any wedge in R 2 with wedge angle strictly
less than π, say

V = {(x,y):y>0 and \y/x\ > δo}

for some δ0 > 0. Suppose {tyi,..., Jfefc+i} is any collection of an odd
number of unit vectors all lying in the wedge V. Set η = ΣΪlL*1 η% .
Then η eV and \\η\\ > 1, with a strict inequality unless k = 0.

Proof. The following argument was pointed out to us by Prof.
Paul Cohen. We begin by proving a preliminary claim, namely that if
^i5^2j^3 a r e three vectors in V, with ξ2 lying between (here understood
to include the possibility of being parallel to) ξi and £3, and if

11611 = 11611 = 1 , | |6ll>i,
then ξ = ξι + ξ2 + £3 is a vector in V lying between ξι and ξ3, and with

U\\ > II6II > 1.
To see this claim just observe that ξλ + ξ3 will be a vector in V of

some positive length. Also, it will lie along the bisector of ξι and £3,
and so will have positive inner product with £2 But then clearly ^ G F ,
and, as desired,

lieil2 = II6II2 + 2(6,6 + 6) +116 +6II2 > II6II2

Having proven the claim, the lemma is now easily established by
induction, as follows. The case k = 0 is trivial, and the case k = 1 is
covered by the claim. Now suppose it has been proven true for families
of (2/ — 1) unit vectors in V, / > 2, and suppose {771,... ,%/+i} is any
family of (21 + 1) unit vectors in V. Without loss of generality we may
take it that 772,..., f]iι lie between ηι and τ?2/+i

Then, by the inductive hypothesis, ή = Σ%.2 Vi is a vector clearly
lying between 7/1 and 7/2/+i, and satisfying | |^| | > 1. Yet then, by
the claim proven at the outset, we'll have that Σ*JιX f}i 6 V, and
II ΣfJi1 Vi\\ = \\m +V + %z+i|| > I, as desired. Q.E.D.

Appendix C - A remark on short-time existence

We do not wish here to discuss in detail short-time existence for the
flow (1.1) (which is checked by first solving geometrically for the flow as
a graph over M o for some short time, then solving an associated system
of ODEs to find a continuous family of reparametrisations of M o which
turn this graphical solution into a solution of the parametrised evolution,
(1.1)).
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However, in this regard, two serious issues arise concerning the ap-
plicability of our boundary regularity theorem to situations such as the
case, described in the abstract, where the initial surface is a "cap" of a
sphere. Both relate to the fact that, in the original flow of the "cap",
H is discontinuous on Γ at time zero, jumping instantaneously down to
be zero on the boundary (i.e. (1.2) is not satisfied right back to t = 0).
Precisely, these issues are as follows.

(i) Do we really have short-time existence for the flow in such a
setting, say in the class Choc(M0 x [0,T)) Π C2>Q(M0 x (0,T)) for some
T > 0. Note that this question is not easily addressed directly from
the standard theory of, say, [8], since the discussion there of short-
time existence for Dirichlet problems always assumes a so-called "first
order compatibility condition", which here translates precisely to the
condition that JEf|r = 0 on Mo.

(ii) Even if we do have a solution for a short time might the flow not
also instantaneously develop regions (near Γ) where H is negative, so
meaning that the mean convexity (H > 0) hypothesis for the boundary
regularity theorem is not satisfied by any of the surfaces at times shortly
after the flow has begun.

Fortunately both these potential problems can be handled, and we
have:

C.I Theorem. Suppose λί C R n + 1 is a smooth uniformly convex
domain, and suppose Mo is a smooth n-dimensional hypersurface con-
tained in λί, with smooth embedded boundary dM0 = Γ C dλί of finite
(n — 1)-dimensional Hausdorff measure. Then for this initial surface Mo

the flow (1.1) has a solution in the class C^a{M0 x [0,T))nC 2 'α(M 0 x
(0, T)), a G (0,1) arbitrary, at least for some short time T depending
only on λί, Mo and Γ. Moreover the surfaces Mt, for each t G (0,T),
all satisfy Mt C λί, H\Γ = 0, and H > 0 everywhere.

C.2 Remark. The proof of this theorem is based on an approxi-
mation argument, together with suitable C1>α estimates (as opposed to
the usual C 2 'α bounds) for the flow. (The key point is that in these
estimates we want dependence now only on C1'α-norms of the initial
data). We content ourselves with outlining the proof below, and refer
the reader to [11] for the details.

Sketch of Proof. The two main parts to the proof are as follows.
Step 1: Find a sequence of approximating initial surfaces {MQ }

which satisfy that:
(i) Each MQ has boundary Γ = 5M0, and is expressable as the

graph over Mo of a smooth function /W); i.e.

M o

ω = {x + / ω ( * M χ ) : x e Mo c Rn+\
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where z/(x) denotes a (smoothly varying) choice of unit normal for Mo

at x, and where / ( i )(x) = 0 for all x G Γ.

(ii) The surfaces M^ converge to Mo in the C1>α-sense as j —> oo;
that is

(iii) The mean curvature, Hϋ), of M^ is uniformly bounded inde-
pendent of j , and satisfies that H^ > 0 everywhere and H^\Γ = 0.

The key point about these approximating surfaces is that, while tend-
ing to Mo in a C1'"-sense, they will also all retain the property of having
non-negative mean curvature everywhere under the flow, since they do
each satisfy the conditions that H > 0 and H\a%Ai) = 0 .

'σM0

Step 2: Next establish suitable a priori estimates, for smooth graph-
ical solutions of (1.1), depending only on the C1>a-norm of the initial
and boundary data.

Using these derive first that there is a uniform minimum time of
existence for the flows of each of the initial surfaces M^ constructed
in Step 1. Also thence deduce (by viewing Mo as the C^-limit of the
cauchy sequence of initial surfaces {M^}) that a solution exists for a
short time for the flow (1.1) with initial data Mo, at least in the class
Cha{M0 x [0,T)) nC 2 ' α (M 0 x (0,Γ)).

Finally, noting that on M0\Γ the solutions corresponding to the
{MQ} will actually be converging smoothly (on any fixed small time
interval, as j —» oo) to the solution corresponding to Mo, establish that
the surfaces Mt obtained from flowing Mo must also satisfy H > 0 ev-
erywhere, as desired, since this non-negativity under the flow does hold
for H^\ for each j (as observed in Step 1 above). Q.E.D.
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