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TWISTOR SPACES, EINSTEIN METRICS AND
ISOMONODROMIC DEFORMATIONS

N. J. HITCHIN

1. Introduction

The characteristic feature of twistor theory is its ability to convert
questions in differential geometry and differential equations into equiv-
alent ones in algebraic geometry. Moreover, the natural objects in
algebraic geometry such as sheaf cohomology groups or vector bundles
correspond in a remarkably fortuitous way to solutions of equations
which have at some level a physical or geometrical significance. The
fundamental example of this is the basic correspondence between an
anti-self-dual conformal structure on a 4-manifold M and the holomor-
phic structure of a complex 3-manifold Z, its twistor space.

In this paper we shall study in depth a problem which goes one
step further: to describe an anti-self-dual conformal structure not by
algebraic geometry, but by topology, or indeed algebra - the represen-
tations of a fundamental group. The conformal structures which are
amenable to this approach are those which admit SU(2) as a symmetry
group, with certain generic properties. Each such structure describes,
and is determined by, a representation in 51/(2,C) of a free group on
3 generators. Building on the basic framework of this correspondence,
we can introduce other geometrical structures, and in particular an
Einstein metric in the conformal class. It turns out that the Einstein
condition yields a considerable simplification of the representation, so
much so that we can retrace our footsteps from the topology back to
the differential geometry and write down new explicit solutions of anti-
self-dual 5C/(2)-invariant Einstein metrics with 3-dimensional generic
orbits. Among these are two families of complete metrics on the unit
ball in R4: one two-parameter family consists of deformations of the
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hyperbolic metric, the other is a one-parameter family of deformations
of the Bergmann metric.

To set the work in context, consider the traditional approach to a
problem of this type. Given the Riemannian 4-manifold M with 3-
dimensional orbits under an SU(2) action, equations for the curvature
can typically be written as a system of ordinary differential equations
where the independent variable parametrizes the orbits. In fact, in a
number of papers, Tod [34] showed that, in the important diagonal
case, the equation which yields an anti-self-dual conformal structure is
Painleve's sixth equation. Tod's differential geometric arguments can
be replaced by twistor theoretic ones, where Painleve's equation makes
its appearance in the context of isomonodromic deformations. Recall
that this theory concerns itself with a system of first-order ordinary
differential equations with simple poles on the projective line, or equiv-
alently a meromorphic connection. An isomonodromic deformation is a
deformation of the coefficients of the equation as the poles vary in order
that the monodromy of solutions remains the same. It was R.Fuchs in
1907 who discovered Painleve VI in this context for equations with 4
poles.

The relationship with twistor theory is through the action of SU(2)
on the twistor space. In the generic case, the three holomorphic vector
fields generated by this action are linearly independent on an open
set in Z, but become dependent on a divisor Y. On the Lie algebra
level the action on the twistor space defines a homomorphism of vector
bundles

a: Z xgc -+ TZ.

The inverse of a is a meromorphic 5X(2,C) connection with a pole
on Y. Each twistor space contains a 4-parameter family of projective
lines, generically meeting the divisor in 4 points. As the lines vary, the
connection induces one with 4 poles on each line. The connection varies
as the lines vary, but the monodromy is determined by the fixed holon-
omy of the connection on the ambient space Z\Y. The monodromy,
a representation in SX(2,C) of the fundamental group of a quadruply
punctured 2-sphere, is what determines the conformal structure, but it
takes a considerable amount of effort to reconstruct that structure and
to investigate its global behaviour, hence the length of the paper.

We begin in Section 2 with a brief survey of the essential features of
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twistor geometry, and follow it in Section 3 with the effect of an SU(2)
action. Different properties of the homomorphism a divide invariant
anti-self-dual conformal structures into disjoint types. We show that
the image of a is a subsheaf of rank 2 or 3 and produce a classification
in the rank-2 case, Type I. Apart from the conformally flat metrics, the
only possibility here is for a hyperkahler metric where SU(2) fixes all
complex structures, and this rapidly yields the Eguchi-Hanson metric
or one of the Belinskii-Gibbons-Page-Pope family. In the rank-3 case,
we have a non-trivial section Λ3α of the anti-canonical bundle of Z
which vanishes on a divisor Y either with multiplicity 1 or 2. The first
case, Type III, yields Painleve VI by the argument outlined above,
and the second, Type II, Painleve III as noted in [30]. Apart from the
consideration of Einstein metrics, we deal exclusively in this paper with
the generic Type III case.

Section 4 establishes the relationship between Sfϊ7(2)-invariant twistor
spaces and the isomonodromic deformation problem, and Section 5 de-
rives the conformal structure from the residues Ai^A2^As^A4i of the
connection at the four poles on C P 1 . A useful result in a practical
direction is that the metric can be put in diagonal form if and only if
the residues A{ are all conjugate. In this case, we can write down the
conformal structure as

__ dx2 σ\ {x-\)σ\ xσ\
9 ~~ + +x(x - 1) + k + tτAλA2

 + k + tτA2A3 k

where tr A? = k. We deduce from the monodromy that this metric is
conformal to an Einstein metric if and only if k = 1/8.

In Section 6 we discuss the monodromy group Γ and its relation
to the real structure on Z in general, but also give a characterization
in the case of an Einstein metric. The group Γ in the Einstein case is
almost abelian: it lies in the normalizer of a connected abelian subgroup
H of SX(2,C), and so the kernel Γo of the map to the Weyl group
Γ -» N(H)/H =Z 2 is abelian. When the scalar curvature vanishes,
H is unipotent, otherwise semisimple. Beyond this, there is a subtle
interplay between the properties of this monodromy, the real structure
and the sign of the scalar curvature of the metric, the results of which
are given in Theorem 5.

Given the relatively simple nature of the monodromy for an Einstein
metric, we begin in Section 7 to work backwards to find explicit formu-
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las for the metric. To do this, the essential remark is that because the
monodromy has an abelian subgroup Γo of index 2, passing to a double
covering of CP1 branched over the four points gives a connection with
abelian holonomy. Thus in Section 7 we work on this elliptic curve
and calculate the pulled-back connection in terms of Weierstrass ellip-
tic functions. Because the monodromy is abelian, it can be defined via
the periods of differentials on the curve and the isomonodromic defor-
mation problem solved. In so doing, we find a solution of the following
particular case of Painleve VI:

*± = i (I + _L_ + —L-") f *a) _ (I + _L_ + ^ _ \ ffy
rfa;2 2 \y y — 1 y — xj\dxj \x x — 1 y — x/dx

, y ( y - i ) ( y - s )
8 8y2 " 8(y - I) 2 " 8(y - x)

depending on two constants Ci and c2. Explicitly, it can be written in

terms of theta functions as

i _ (i J—3V_J. )
3 V ^4(0)/

where v = ciτ + c2 and x = ΰl(0)/ϋ\(0). There are of course more

convenient ways of expressing it in order to assess its properties. The

monodromy can be written down explicitly in terms of the constants

Cι and c2: the group is generated by pi,β2,Pz where

Pi
-( 0 oΛ

and ax = eiπci, α2 = e

iπ^1+C2\ a3 = eiπC2. This is a solution which yields
others by taking limiting values of the constants. In particular the case
of zero scalar curvature gives

3 \3 \ tfJ(O)/ τr(kτ -

Section 8 is devoted to global properties of some of these Einstein
metrics. Here, to get explicit information, we express the metric in
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terms of the solution y(x) of the Painleve equation. We use a formula
of Tod for the conformal factor relating the metric g above to the Ein-
stein metric, and make repeated use of identities and expansions for
theta functions which are all culled from the classical text [33]. For
generic real values of the constants cλ, ic2 in the above solution we find
an Einstein metric on the ball whose conformal structure extends across
the boundary, and hence induces one on the 3-sphere. In this way, for
every left-invariant conformal structure Xισ\ + λ 2 σ| + λ3σl on the 3-
sphere with distinct λ; we find such a metric. On the other hand, if
two coefficients coincide, then Pedersen [29] gave a solution, and if all
are equal the hyperbolic metric is the required solution to the problem.
Thus, in the language of LeBrun [25], every left-invariant conformal
structure on S3 has "positive frequency" (with the appropriate orien-
tation). In the particular case c± = 1/2, we also obtain a family of
complete metrics which induce not a conformal structure, but a CR-
structure on the boundary. Together with the Bergmann metric on the
ball in C2, these metrics show that every left-invariant CR-structure
on S3 can be induced from a complete Einstein metric on the ball.

Finally in Section 9, we identify the Einstein metrics in the case
where the rank of a is 2, and thus, with the results of the preceding
sections, give a complete list of anti-self-dual 5fί7(2)-invariant Einstein
metrics with 3-dimensional generic orbits. We then proceed to deter-
mine the complete metrics by looking at the various domains of defini-
tion of the function y(x). The list consists of known metrics together
with the new metrics on the ball constructed here.

It is useful to see other better known metrics in a more uniform
context. In particular, the hyperkahler metric on the moduli space of
two Sfί7(2)-monopoles derived in [4] arises from a point of view more
general than the study of a spectral curve or the minor works of Halphen
[16].

Since the author embarked on this work, a number of other rela-
tionships between twistor theory, isomonodromic deformations and the
Painleve equations have appeared which shed further light on special
features of these metrics. The paper of Mason and Woodhouse [27],
relating the Painleve equation to invariant solutions of the self-dual
Yang-Mills equations highlights the existence of some distinguished
anti-self-dual 2-forms, and [28] gives different approaches to deriving
the metric.
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2. Twist or spaces and self-duality

The basic geometrical object we shall focus on in this paper is an
oriented four-dimensional manifold M with an anti-self-dual conformal
structure preserved by an action of the Lie group SU(2). Since this
group is compact, we can, if required, take it to preserve a metric in
the conformal equivalence class.

The general class of anti-self-dual conformal structures is quite wide,
but there are a number of special classes which deserve particular con-
sideration:

• anti-self-dual Einstein metrics,

• scalar-flat Kahler metrics,

• hypercomplex structures.
Here an anti-self-dual Einstein metric consists of a metric in the anti-
self-dual conformal equivalence class with Ricci tensor given by i?i<7 =
Agij. A scalar-flat Kahler metric is a metric with zero scalar curvature
which is Kahlerian with respect to a complex structure on M. It is
automatically anti-self-dual with respect to the canonical orientation.
A hypercomplex structure is a quaternionic structure on the tangent
bundle of M such that the action of i, j and A: (denoted by /, J, K) each
defines an integrable complex structure. There is a unique conformal
structure determined by this action, and it is anti-self-dual.

There is a fourth important case which lies in all three of the above.
This is the class of hyperkάhler metrics. These are Riemannian metrics
with holonomy group SU(2).

Twistor theory translates the differential geometry of anti-self-dual
conformal structures into a branch of holomorphic geometry. We briefly
recall the situation. For details the reader may consult [6], [32], [8].

Given a Riemannian four-manifold M, its twistor space Z is the unit
sphere bundle in the bundle of self-dual 2-forms Λ+, or equivalently the
projectivized spinor bundle P(Σ+). Each point z in the fibre over m £
M defines a complex structure on the tangent space Tm, compatible
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with the metric. Using the Levi-Civita connection, a tangent space Tz

of Z splits into horizontal and vertical subspaces, and the projection
p : Z -» M identifies the horizontal space with Tp(z). This space has a
complex structure defined by z, and the vertical subspace is the tangent
space of the fibre = S2 = C P 1 which has its own natural complex
structure. Thus Z is an almost complex manifold.

The almost complex structure on Z depends only on the confor-
mal equivalence class of the metric, and is integrable if and only if
the conformal structure is anti-self-dual, that is, if the self-dual part
W+ of the Weyl tensor vanishes. For an anti-self-dual four-manifold,
then, the twistor space is a complex 3-manifold. The fibres of the
projection p are, moreover, complex submanifolds. Each is a rational
curve with normal bundle isomorphic to 0(1) φ 0(1), where O(k) is
the unique holomorphic line bundle on C P 1 of degree k. These curves
belong to a four-parameter holomorphic family of rational curves in Z,
and are called twistor lines. The antipodal map on each fibre gives
Z a real structure, an antiholomorphic free involution r. The fibres,
parametrized by M, are real members of this family.

The reverse of this process holds, so that an arbitrary anti-self-dual
four-manifold can be constructed from a complex three-manifold. Let
Z be a complex three-manifold fibred by projective lines whose normal
bundle is 0(1) 0 0(1), and suppose Z admits a free antiholomorphic
involution which transforms each fibre to itself. Then Z is the twistor
space of some anti-self-dual manifold M.

It will be important in Section 5 to know how to find the conformal
structure from this approach, and this is easiest done by considering
the complexification Γm® C of the tangent space at ra. A conformal
structure over the complex numbers is equivalent to defining the null
cone (the set of tangent vectors of length zero) in the tangent space.
If it is real with no real points other than 0, then it defines a positive
definite conformal structure in Γm. In the situation of twistor theory,
the complexified tangent space is the tangent space to the full holomor-
phic family of deformations of the curve p"1(m) = CP 1 , and this is the
space of holomorphic sections of the normal bundle N. A section of N
is defined to be a null vector if it vanishes at some point of the fibre.
Since by hypothesis i\Γ = 0 ( l ) Θ 0 ( l ) , a section of N is a pair of linear
functions {aλz + a2,a3z + α4) in an affine parameter z on CP 1 . Its
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vanishing at some point is therefore given by the quadratic condition

— a2a3 = 0,

and this is the conformal structure.
One of the remarkable features of this Penrose twistor approach is

that natural geometrical properties of the four-manifold M are often
reflected in equally natural holomorphic properties of the twistor space
Z. We can illustrate this for the three classes of anti-self-dual structures
isolated above:

Theorem 1. Let Z be the twistor space of an anti-self-dual four-
manifold M. Then

• an Einstein metric in the conformal class is defined by a holo-
morphic section θ ofT*Z®K~λί2 which is compatible with r and
restricts to a non-zero form on each fibre of Z,

• a scalar-flat Kάhler metric in the conformal class is defined by a
holomorphic section s of K~ιl2 compatible with r and non-zero
on each fibre of Z,

• a hypercomplex structure in the conformal class is defined by a
holomorphic projection π : Z —> CP1 compatible with τ, and for
which π is an isomorphism on each fibre of Z.

Here UΓ~1//2 is a distinguished square root of the canonical bundle of Z.
Proof. The proofs are all in the literature. Note that there are

always three aspects: a holomorphic object, a reality condition and a
non-degeneracy condition.

For a proof in the case of Einstein metrics, see [35],[18],[8]. The
scalar curvature of the Einstein metric is given by θ Λ dθ interpreted as
a section of Λ3T* ® K~λ = (9, i.e., a (necessarily constant) holomorphic
function on Z. If the scalar curvature vanishes, then we have θΛdθ = 0,
which is the Probenius integrability condition for the holomorphic dis-
tribution defined by the twisted 1-form θ. The non-degeneracy con-
dition implies that a real twistor line is transversal to the resulting
codimension-1 foliation, and so (at least in a neighbourhood of the
line) Z fibres over the twistor line. This is the link with the hyper-
complex (in fact hyperkahler) structure as viewed at the twistor space
level.

The proof for scalar-flat Kahler metrics is due to Pontecorvo [31].
The zero-set of the section s of if"1/2 is a divisor which meets each
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fibre of Z in two antipodal points. These points define the complex
structure / and its conjugate structure —/ on M.

The case of hypercomplex manifolds can be found in [9]. Geometri-
cally, the twistor space of a hypercomplex and a hyperkahler manifold
look very similar, both fibring over C P 1 . The difference is the line
bundle π*C?(l), which is arbitrary for a hypercomplex manifold, and
is isomorphic to K~1^2 in the hyperkahler case. In the latter case, the
fibre π~λ{z) for z E C P 1 is a divisor of a section of K~λl2 and thus
defines a scalar-flat Kahler metric.

3. The action of 5(7(2)

Our anti-self-dual manifold M will now be assumed to admit an
action of the Lie group 5(7(2), preserving the conformal structure, and
with 3-dimensional orbits. Differentiably, the manifold is thus locally
a product

M^(a,b) xSU{2)/Γ

for some interval (α, b) C R and finite subgroup Γ C 5(7(2). We may
take the conformal structure to be defined by an invariant metric and
thus on each orbit it is a left invariant metric, and hence given by an
inner product B(t) on the Lie algebra g of 5ί7(2), for each t G (α, b).
Taking a unit vector field normal to the orbits, we can write the metric
in the form

g = f(t)dt2 + B(t).

Using a standard orthonormal basis {σi,σ2,σ3} of fl, B(t) =
Σf,m=i bιm(t)σισm. If the matrix 6/m can be chosen to be diagonal
for all ί, then we say that g has diagonal form:

(1) g = f(t)dt2 + a{t)2σ\ + b(t)2σ2 + c(ί)2σ3

2.

A useful characterization of diagonal metrics is provided by the fol-
lowing:

Proposition 1. Let M be a Riemannian four-manifold with a free
isometric action of 5(7(2). Its metric can be put in diagonal form
if and only if there is a free isometric action of the quaternion group
{ i l j ϋ j i j j i f c } which commutes with SU(2) and preserves each orbit

Proof. First suppose g has diagonal form. Since the action is free,
the orbits are isomorphic to 5(7(2), so we have a product decomposition
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M = (α,6) x SU(2). The basis {σuσ2,σ3} with respect to which the
metric is diagonal identifies SU(2) with the group of unit quaternions.
Consider the right action of G = {±1, ±i, ± j , ±k}. Combined with the
left action which leaves the metric invariant, we have the conjugation
action, and i acts on the Lie algebra by conjugation as

which clearly preserves the metric (1), as do the corresponding actions
of j and k.

Conversely, given the action of G on M = (α, 6) x SU(2), since it
commutes with the left action and preserves the orbits, it is obtained
by right multiplication. The conjugation action then fixes both the
form B(t) and the Killing form. As above, G acts through the adjoint
representation as Z 2 xZ 2 . But if P, Q are commuting rotations with
P2 = Q2 = l5 then the axes of P, Q and PQ are orthogonal. These are
therefore orthogonal with respect to both B(t) and the Killing form,
and thus diagonalize B(t). Since P, Q are independent of ί, the metric
is diagonalized.

We turn now to the specific case where M is anti-self-dual. Since
SU(2) preserves the conformal structure on M, its natural lifting to an
action on the twistor space Z preserves the complex structure, the real
structure r and the twistor lines. In particular, each element of the Lie
algebra g defines a holomorphic vector field on Z, so if we denote by
gc the complexification of fl, we have a homomorphism of holomorphic
vector bundles

(2) a : O ® flc -> TZ.

Proposition 2. Let M be an SU(2)-invariant anti-self-dual four
manifold with 3-dimensional orbits. Then the following hold:

1. The image of a is a subsheaf of rank 2 or 3.

2. If the rank is 2, then M is locally hypercomplex.
Proof 1. The group SU(2) has 3-dimensional orbits on M, and

hence its lifting to the bundle p : Z -> M must also have 3-dimensional
orbits. Now for z E Z let

f) = kerα* C flc.
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Since
dim(f) Π f)) > dim \) + dim f) — dimgc,

if dim f) > 2, then IjΠf) is non-zero, and contained in the real Lie algebra
g. But since SU(2) has zero-dimensional stabilizers in its action on
Z, its Lie algebra maps injectively to the tangent space Tz. Hence
dim f) < 1, and the image sheaf has rank 2 or 3.

2. If the rank is 2, then 1 < dim() < 2, from the proof of (1),
so dimf) = 1 for all points z G Z. The image is therefore a rank-2
subbundle E C TZ. Moreover, since g is a Lie algebra, J5 satisfies the
Probenius integrability condition, and defines a foliation. Note that
if the iS77(2)-action can be integrated to an SX(2,C)-action, then the
leaves of the foliation are just the orbits of SX(2,C).

We shall prove that the foliation is always transverse to a real twistor
line. First we use the non-holomorphic decomposition of the tangent
bundle of Z into horizontal and vertical parts, using a metric which is
preserved by the action. Define

aH : Z x gc -> (TZ)H

to be the horizontal component of each holomorphic vector field from
gc. Now let X be the lifting to Z of a vector field X on M generated
from the SU{2) action, that is, Xz = az(a) for a e g. By definition,

dp(X) = dp(XH) = X,

so since the orbits on M axe 3-dimensional, X is non-vanishing at each
point and thus so is XH. In other words, OLH is injective on g C gc.

We now repeat the argument in the proof of (1) using the kernel of
aH instead of the kernel of α, and deduce that the image of aH is a
complex (not necessarily holomorphic) subbundle of TZ of rank 2.

This however means that a maps surjectively onto the normal bundle
of the fibre of p : Z -» M. Thus the leaves of the foliation meet a real
twistor line transversely.

Using this, we can, in a neighbourhood of the line, identify the quo-
tient space of the foliation with the line and obtain a holomorphic fi-
bration of this neighbourhood over CPι. Prom Theorem 1 this implies
that there is a local hypercomplex structure in the conformal class.

We can go further and completely classify the rank 2 case in Propo-
sition 2:
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Theorem 2. Let M be an SU (2)-invariant anti-self-dual four man-
ifold with 3-dimensional orbits and such that the rank of a is 2. Then
the conformal structure is either

1. conformally flat, or

2. the Eguchi-Hanson metric, or

3. a member of the Belinskii-Gibbons-Page-Pope family.
Proof From Proposition 2, we know that there is a hypercomplex

structure. Moreover, the orbits of the SU(2) action on the twistor space
are contained in the fibres of the holomorphic projection π : Z —>• CP1.
This means that SU(2) preserves each complex structure J or J or
K of the hypercomplex family. Using the conformal structure, choose
an invariant vector field normal to the orbits. Then integrating the
vector field, we have a product decomposition M = (α, b) x SU(2)/Γ
with local coordinates (ί, a?i, x2, x-z) such that the normal vector field is
d/dt. Now define the vector fields Xι,X2,X3 by

(3) X i = / f > X2 = J J ? Xz = KW

The complex structure / defines the two vector fields Z\, Z2 of type
(1,0):

Z\ = — — iXij Z2 = X2 — Ϊ-X35
σt

and its integrability is equivalent to

(4) [ZuZ2] = a1Z1+b1Z2

for functions αi,6i But /, J,ϋΓ are compatible with the conformal
structure, so Xι,X2,X3 are tangent to the SU(2) orbits. Also, since
/, J, K and d/dt are invariant, these are invariant vector fields on the
orbit, hence elements of the Lie algebra g. Expanding (4) then gives

- i[XuX2] - [XUX3] = bι(t)(X2 - iXs),

and together with the similar expressions giving the integrability of J
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and

(5)

K, we obtain

dXx

dt

dX2

dt
dX3

± + [X2,Xs] = b(t)Xu

dt , [XuX2] = b{t)X3.

Now put

Xi = f{t)Xi where f(t) = exp(- / b(u)du)

and (cf [21])

s(t) = -ff(υ)dv,

then the equations (5) become Nahm 's equations

d s

(6)

ds

By a rotation, these equations for the Lie algebra of SU(2) can be
solved by setting

giving equations equivalent to Euler's equations for a spinning top:

ff

 =z of f ft = f2ff f1 Of f

The conformal structure is determined from the condition that
d/dt,Xι,X2,X3 have the same length. Using the substitutions above,
it can then be written as

j_2 1 /2 _2

ds + Jισι

2 , f2 Jl j f2 _2
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Euler's equations have two integrals fl — / | = a and ff — f£ =
that

/ί = 2}/(fi-a)(fi-b).

The general solution is an elliptic function, and gives the Belinskii-
Gibbons-Page-Pope metrics of [7]. When a = 0 and 6 ^ 0 one obtains
the Eguchi-Hanson metric ([12],[10]), and when a = 6 = 0, this is
conformally flat. In all these cases there is a hyperkahler metric in
the conformal equivalence class. This actually follows from Ashtekar's
approach [2] since the invariant vector fields Xι on SU(2)/Γ are volume-
preserving.

Having dispensed with the rank-2 case, we shall now proceed to the
more general case where a is generically an isomorphism.

4. Isomonodromic deformations

We assume from now on that the image sheaf of

a : O ® gc -» TZ

has rank 3. This means that on the complement of an analytic subset
of Z, a is an isomorphism of holomorphic vector bundles. It fails to be
an isomorphism where Λ3α = 0. But Λ3α G H°(Z, Hom(Λ3gc, Λ3T)) =
^(Z^K"1) is a section of the anticanonical bundle K~x. Its divisor
is always non-empty, since it has degree 4 on each twistor line. This
is because the normal bundle of a twistor line is 0(1) θ θ ( l ) , and its
tangent bundle 0(2), so on any twistor line we have

Note that in the case that the SU(2) action extends to a holomorphic
SX(2,C) action, then Y is simply the union of lower-dimensional orbits.

Since a is compatible with the re/al structure, Λ3α is real, and is
either identically zero on the line, vanishes with multiplicity two at a
pair of antipodal points, or vanishes non-degenerately at four points,
forming antipodal pairs. The first case cannot hold for all lines, so for
a generic line we have a non-trivial intersection.

Proposition 3. Let M be an SU(2) -invariant anti-self-dual man-
ifold with 3-dimensional orbits, and suppose the image sheaf of a has
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rank 3. The zero set of Λ3α meets a generic real twistor line in two
points if and only if the conformal structure of M admits an 577(2)-
invariant scalar-flat Kάhler metric.

Proof. Let Y be the zero-set of s = Λ3α, and suppose that s vanishes
non-degenerately at z G Y C Z. Consider all the twistor lines passing
through z. The tangents of these span the tangent space TZZ. (One
way to see this is to blow up z. The lines through z then lift to lines with
normal bundle N ® O{—1) = O ®O, and the resulting two-parameter
family meets the exceptional divisor in an open set (cf. [18])). Thus 5
vanishes non-degenerately on a generic twistor line. Those that meet Y
tangentially form an analytic subset, but this cannot contain the real
points M of the full holomorphic family. Hence, if s is non-degenerate,
a generic real twistor line meets Y in four points.

Thus, if Y meets a generic line in two points, the divisor of s must
have non-trivial multiplicity. If D is the multiple divisor, then D =
2D where D is a divisor of If"1/2, since If"1/4, (which exists lo-
cally), is a quaternionic bundle and has no real sections. But D
is 5ί7(2)-invariant, and thus from Theorem 1 it defines an SU(2)-
invariant scalar-flat Kahler metric.

Conversely, such a metric is defined by an 5ϊ7(2)-invariant section
of K'1/2. Since its divisor D contains the orbits of this group, the
homomorphism a has rank 2 on D, and so D is a component of the
divisor D of Λ3α. Now consider the complementary divisor D' = D — D
of K'1 ® K1'2 £ K-1'2. This is also invariant, and if D' φ D we have
a pencil of such invariant divisors. But this implies that α is of rank 2
on an open set, contradicting the hypothesis on a. Thus D' = D and
D = 2JD, and a generic twistor line meets the zero-set Y in two points.

Example. To illustrate the different cases, consider the example of
SA and its twistor space CP3. A conformal transformation of the sphere
induces the action of an element of PGL(2,H)c PGL(4,C) on C P 3 ,
and thus an SU(2) action is a quaternionic representation of dimension
2. Let V be the standard one-dimensional quaternionic representation
space SU(2) = Sp(ί) and let 1 denote the trivial 1-dimensional repre-
sentation. There are then three 2-dimensional quaternionic represen-
tations:

(1) F θ l , (2) V®V, (3) S3V.
In case 1 the generic orbit of the corresponding SX(2,C) action on

C P 3 is two-dimensional, so a has rank 2. In case 2, a generic orbit is
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3-dimensional, and thus the rank of a is 3, and the divisor Y is given
by Y = {(υ, w) G V Θ V : ω(v, w) = 0} where ω is the skew form on V
invariant by SX(2,C). This is a quadric in CP 3 , and so Y" meets a line
(a twistor line in this case) in two points. For the final case, it is best
to think of this as the action of SX(2,C) on the space of homogeneous
cubic polynomials p(zo,Zι). The generic orbit is three-dimensional, so
the rank of a is 3, and the divisor Y is the discriminant locus of cubics
Q(ZI/Z0) = ZQ3P(Z0,Zι) with a repeated root. This is a singular quartic
surface, which meets a generic twistor line in 4 points.

Note that if we consider the above action as PSX(2,C) acting on
cubics q(z) by Mόbius transformations, the stabilizer Γ of a generic
cubic is the group of permutations of the three roots, i.e.,

(7) Γ ί* 5 3 ϊ

the symmetric group on three letters.
Remark. The case of S'ί7(2)-invariant scalar flat Kahler metrics

has been studied in [30] and [11]. It leads to Painleve's third equation.
Although this is close in context to the current paper, we shall not
investigate it further, apart from considering the Einstein metrics in
such a conformal class later on. On the complement of F, α is an
isomorphism. We set

(8) A = α" 1 : TZ -> O ® flc;

thus A is a holomorphic 1-form with values in gc, and can therefore be
considered as a connection on the trivial bundle.

Proposition 4. The connection A on Z\Y is flat
Proof. We need to show that the curvature dA + A2 vanishes, and

it is sufficient to evaluate this 2-form on vectors of the form a(a) for
a G gc, since they span the tangent space at each point. Now

dA(a(a)Mb)) = «(o) A(a(b)) - a(b) • A(a(a)) - Λ([β(α), α(6)]),

but A(a(a)) = a and A(a(b)) = 6 are constant, so the right-hand side
is

(9) -o- | [α(α),
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since a is a Lie algebra homomorphism from gc to the vector fields on
Z. But

A2(a(a),a(b)) = A(a(a))A(a(b)) - A(a(b))A(a(a)) = [α,6],

which, together with (9), gives the result.
Remark. If the SU(2) action extends to a holomorphic 5X(2,C)

action, Z\Y is an open orbit SL(2,C)/Γ for some subgroup Γ. The
connection A is then simply the Maurer-Cartan form A = —dgg~λ, and
the holonomy group of the flat connection is Γ. We cannot necessarily
make that global assumption here, however. If H is the holonomy of A,
then the assumption requires at the very least that SL(2,C)/H should
be a manifold.

The connection A becomes singular on Y. In the generic case where
s is non-degenerate, the connection has a logarithmic singularity. This
means that in any gauge, its connection matrix has a simple pole whose
residue vanishes as a 1-form restricted to Y. It thus defines a connection
along Y.

Proposition 5. // Λ3α vanishes non-degenerately on the divisor Y,
then the connection A = a"1 has a logarithmic singularity along Y.

Proof. In local coordinates, a is represented by a holomorphic
function B(z) with values in the space of 3 x 3 matrices. The divisor
Y is then the zero set of det B. If det B has a non-degenerate zero at
z E Y, then its null-space is one-dimensional at z, so the kernel of a is
one-dimensional.

Now for any square matrix 5 , let By denote the transpose of the
matrix of cofactors. Then it is well-known that

Hence in local coordinates

det 5 '

and so A has a simple pole along Y. We need to show that the residue
restricts to zero as a 1-form on Y. For this, consider the invariant
description of Bw. We have on Z

Λ'a : Λ V -> Λ2T,
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and using the identifications Λ2flc = gc* and Λ2T ^ T* ® Λ3T, Bv

represents the dual map of Λ2α:

(Λ2α)* : T -> fl

c ® Λ3T.

Now the image of az is the tangent space TZY by the definition of α.
Thus the image of Λ2az is Λ2TZY which means that (Λ2a)* annihilates
TF, which is the required result.

The twistor space Z therefore has a meromorphic connection with a
simple pole along the smooth part of Y. We can restrict it to a generic
twistor line to obtain a flat connection on CP1\{zΐ, z2> z3,Z4}, the four
points Zi being the intersection with Y. The essential fact about this
connection concerns its holonomy group:

Proposition 6. Let Mo be a connected family of twistor lines in Z,
each of which meets Y transversally. Then the holonomy representation
of A restricted to each line is the same.

Proof. Let
πx(Z\Y)-> SL(2,C)

be the holonomy representation of A. Then restricted to a twistor line
we obtain

π 1 (CP 1 \{z l l . . . , Z4» -> *ΛZ\Y) -»• SL(2, C).

In a connected family, the homotopy class of the inclusion of the punc-
tured projective line in Z\Y is unchanged, so the first homomorphism
is independent of the twistor line in the family. Since the second ho-
momorphism is fixed, the holonomy is unchanged.

Such a family of connections is called an isomonodromic deformation
(see eg. [26]). The more general problem is to consider a GL(m,C) con-
nection on the trivial bundle over C P 1 with simple poles at z l 5 . . . , zn:

An isomonodromic deformation A+(zu ..., zn) for (zx,..., zn) G U C
C n is a family with constant holonomy. It necessarily satisfies the
Schlesinger equation [26]:

(io) ^ ^^ 1 ^
• _/ Zi Zi
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In our case, we have four points z\,..., 24, and the Ai G gc are trace-
free 2 x 2 matrices. By a projective transformation we can make these
points 0,1, x, 00. Then

Z Z — 1 Z ~ X

and Schlesinger's equation becomes:

_[A*,A1]
dx

(λΛ\ 2 •
dx

dA3

dx

where the last equation is

x '

\ Λ Λ 1
1 "^^3 ? "^^11

a;

equivalent to

[A3,
x-

A2]
-1

A\ + A2 + A3 = — A4 = const.

It is the differential equation (11) which is the analytical key to finding
the ιS77(2)-invariant anti-self-dual conformal structures. It is applicable
so long as we can show that the cross-ratio x of the four points zx,..., 2r4

varies as the twistor line varies in its 4-parameter family.
Proposition 7. Let Mo be a connected family of twistor lines P

in Z, each of which meets Y transversally. Then the cross-ratio of the
four points {zι,z2i z^^z^} = P Γ\Y is a nonconstant function.

Proof Prom the proof of Proposition 5, at a smooth point z eY,
the image of az is TZY. Since P meets Y transversally, this means
that α : Z x gc —> TZ always maps onto the normal bundle to P.
We therefore have a surjective homomorphism of holomorphic vector
bundles

β : O <g> flc -> N.

Since β is surjective, its kernel is a line bundle of degree — deg N =
—2, so we have an exact sequence of sheaves:

Under α, the kernel maps isomorphically to the sheaf of sections of the
tangent bundle TP which vanish at the four points P ΠY. Prom the
long exact cohomology sequence we have

0 -> flc -> H\P,N)^H\P,O{-2)) -> 0,
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and since H°(PyN) is 4-dimensional and gc is 3-dimensional, the map
δ is surjective. But aδ is the Kodaira-Spencer map for deformations
of the four points on P, so since it is non-trivial, the cross-ratio is
non-constant.

The above provides a useful local parametrization of the twistor lines,
and hence of the manifold M. The SU(2) action on Z maps one twistor
line Pi biholomorphically to another P2. Since the divisor Y is invari-
ant, then the action makes the points of intersection correspond, and
by projective invariance, the cross-ratio x is constant on each orbit, and
from Proposition 7 is a non-constant function on the space of twistor
lines M. The function x is real because the four points P Π Y o n a real
twistor line occur in antipodal pairs.

The holonomy representation is fixed by Z itself. A twistor line
defines a connection with the same holonomy, determined by the triple

(12) A1(x), A2{x), A3(z),

which, as x varies, is a solution to the Schlesinger equation (11). By
the 5i7(2)-invariance of the connection A, if g E 517(2), then

(gy(A)=g-1Ag,

thus the action of SU(2) on the triples is described by

(13) Ai(x) •"• 9-ιAiix)9

We can now identify a point of M with the triple. This will be conve-
nient in the next section for determining the conformal structure.

5. Residues and conformal structures

The connection

&*-*

on a twistor line has residues i4 l 5 . . . , A4 at the four points of intersec-
tion with Y. The invariants

tτA\, tτA\, tτA\, tτA\
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play an important role both in the theory of isomonodromic defor-
mations and in the geometrical interpretation here. Note that from
Schlesinger's equation (10),

d(tr A2) = ̂ Σ t r ^ K Λ ] ) ^ ^ = 0,
Z Z

so that the invariants are independent of z1? z2l z3, z±.
The real structure r imposes relations on the invariants. Recall that

r arises from the antipodal map z »-» — 1/z on the twistor line P = C P 1

and, since we have an action of 5Ϊ7(2), the real structure a *-> —a* on
the Lie algebra gc of SX(2,C). Thus, if PΠ Y = {zx, - 1 / * ! , z2, -l/* 2},
the connection A restricted to P can be written

. A\dz A2dz A*dz Aλdz
A — x i f i r i _

' i 1 / - ' ' ι i / - '

2r — ^ 2T + 1 / ^ ! Z — Z2 Z + \JZ2

and for reality we must have

(14) A2 = -Al A4 = -A*3.

This means in particular, that

I 1 O I vΐ •ΛΛ.'y "—~ l»Γ Λ i XlL UΛ.O —~ I Γ ΛΛ.Λ

Since A is a meromorphic differential on CP 1 , the sum of the residues
is zero, so we must also have

(16) A1-A*1+A2-A*2= 0.

The following two results show how the invariants can determine
geometrical properties of the conformal structure.

Theorem 3. Let M be an SU(2) -invariant anti-self-dual four-
manifold with 3-dimensional orbits and Λ3a non-degenerate. Then the
conformal structure has diagonal form if and only if

ti Al = tτAl = tr A3 = tr A\ = k G Λ.

(Note that once the invariants are assumed to be equal, the real struc-
ture (15) implies that they are real.)
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Proof. Suppose first that the conformal structure has diagonal
form. Prom Proposition 1, for each point m G M, there is an isometric
action of the group D = Z 2 x Z 2 fixing ra. It acts on the 3-dimensional
space (Λ^)+ via the diagonal matrices in SO(3) and so, apart from
vectors which lie on the axes of these rotations, each orbit has length
4. Now from the description in Section 2, the unit sphere in this space
is the twistor line P corresponding to m, and since D acts isometri-
cally, it preserves the intersection P Π Y. For a generic twistor line,
this consists of four distinct points, which are not the axes, and so D
acts transitively on the four points. Since D preserves the conformal
structure, it preserves the connection A, and hence acts transitively on
the residues, which must therefore have the same invariants tr^l?.

Conversely, suppose the residues have the same invariant k. By
Proposition 1, we need to find an action of the quaternion group G on
the universal covering of M. For this, it is useful to think of a point
m as a triple as in (12), or more conveniently with regard to the real
structure, as a quadruple of matrices with zero sum:

associated to antipodal pairs of points zχy —l/iϊ,22, —l/z2 as above.
If we consider CP1 = 5 2 CR3, the antipodal pairs define two lines

LUL2 through the origin. The perpendicular to the plane of Iq,Z/2

and the two bisectors of the angles between them define three orthog-
onal axes in R3. Rotations of π about these axes define a subgroup
D = Z 2 x Z 2 of 50(3) which acts transitively on the four points. To
obtain an action of G on M, we need to lift the action to SU(2)/ ± 1
acting by conjugation on the matrices associated to the points.

Now if a = — a* is in the Lie algebra g of £{7(2), a rotation by π
fixing a is given by

F[X) ~ λ tr(α') X'

Consider the element of D which sends Zι to — 1/ii and z2 to —l/z2.
We want to lift this to an action which interchanges the corresponding
residues.
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Let a = (Ax — A\) G {j, and consider the rotation P above. Then

P{Al) ~ 2 tr(A1 - A\Y {Al ~ Al) ~ A l

~2(2k-2tτA1AirΛl ι) ι

and so P interchanges the residues Aλ and —A\. On the other hand
from (16),

A1-AI = -(A2^A;)

so that replacing Ax by A2 above gives the same rotation P. Thus P
interchanges both pairs of residues.

If Aι — A{ = 0 then A2 — A2 = 0 again from (16), and a rotation of
π about the axis through [Al5 A2] G g interchanges the same pairs.

Now consider the problem of interchanging Ax and A2, i.e. a pair
corresponding to non-antipodal points on the sphere. Prom (16),

Ax + A2 = A\ + A*

so that Aι + A2 is self-adjoint. Putting a = i(Ax + A2) G fl, a similar
argument to the above provides the required rotation.

The inverse image in SU(2) of this lifting of the action of Z 2 xZ 2 to
the space of residues gives us the action of G to which we can apply
Proposition 1 and deduce that the conformal structure can be put in
diagonal form.

Theorem 4. Let M be an SU(2) -invariant anti-self-dual four-
manifold with 3-dimensional orbits and Λ3α non-degenerate. If the
conformal structure admits an Einstein metric, then

tτA\ = tτA\ = t r ^ = tτA\ = 1/8.

The following corollary is immediate from Theorems 3 and 4.
Corollary 1. An SU(2)-invariant self-dual Einstein metric with 3-

dimensional orbits and Λ3α nondegenerate can be put in diagonal form.
Remark. By differential geometric arguments, the diagonalizabil-

ity in fact holds for any Einstein metric with 3-dimensional orbits (see
e.g. [34])
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Proof. Suppose the conformal structure admits an Einstein metric.
Then by Theorem 1, the twistor space has an invariant twisted 1-form
0, a section of T*Z ® K~ι/2. Composing α : O ® gc ->• TZ with
0 : TZ -> If1/* gives

which, using the Killing form, we may consider as a section of the
bundle K-1'2 ®flc.

Now let 5 = Λ3α, a section of K~x. We define

Φ=βs-χ/\

so that we obtain a 2-valued function φ : Z —>> gc, branched around Y.
More importantly, it is SrC/(2)-invariant. Now consider the connection
A = α" 1 and its covariant derivative V. By definition,

But 5fί7(2)-invariance of φ means that

a(a) -φ + [a,φ]=0

for alia E g. Thus φ is actually covariant constant with respect to the
connection A.

Restrict to a twistor line, and suppose s vanishes at z = 0. Since s
is assumed to vanish non-degenerately, φ has the local form

φ(z) = z

where φ(z) is holomorphic. Since φ is covariant constant, we have

and hence

But if Ai is the residue of A at z = 0, and ̂ 0 is the first non-vanishing
coefficient in the power series expansion of Ψ, then

[Auψo] = - φ 0 .
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This implies that the eigenvalues of Ai are ±1/4 and hence tr A? = 1/8.

We shall next derive an analytical form for the conformal structure
in terms of the matrices Au A2, A3. Recall from Section 2 that the null
cone of the structure consists of the sections of the normal bundle to a
twistor line which vanish at some point.

First we choose a holomorphic 1-parameter family of twistor lines
such that the cross-ratio x varies in U CC:

/ : CP1 xU->Z,

and parametrized such that /(0),/( l) ,/(#),/(oo) are the points of
intersection with Y. Pulling back the connection A on Z, we obtain
a connection on C P 1 x U with a pole along the divisors z = 0,z =
1,2 = x,z = oo. Because the singularity is logarithmic, its residue
vanishes on each divisor, and so gives a well-defined connection there.
By parallel translation along the divisors, there is a trivialization such
that

/̂ _v „*, .. Λ dz dz A dz — dx
(17) Γ(A) = A1— + A2 - + A3 .

z z — \ z — x
(This is the origin of the Schlesinger equation (10), which is essentially
a restatement of the flatness of this connection (see [26]).)

Now recall that A = α" 1 where a : O ® gc -> TZ identifies the
tangent bundle to the twistor space with the trivial bundle Z x gc

on Z\Y. We shall use this identification to describe tangent vectors,
and determine the conformal structure by only considering the generic
sections of the normal bundle which vanish outside Y. The formula
(17) gives the tangent vector to a twistor line

(18) £ £ ±
and the vector field along the twistor line tangent to the deformation

parametrized by x:

(19)
z — x

The complexified tangent space to a twistor line is defined by the
sections of the normal bundle N which are the images of linear com-
binations of the tangent vector fields f*(d/dx) and a G flc. A section
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of N vanishes if the vector field is tangent to the twistor line, so from
(18),(19) the null cone is defined by the condition

(20) a ^
z x

for some z e CPι and λ EC.
The null cone is given by an expression of the form

where G is a non-degenerate symmetric form on gc. To evaluate G, note
that if ξ = 0, then for all z, a = A{z) satisfies (20), thus G(A{z), A(z)) =
0 for all z EC. Equating coefficients, this gives

G(A1,A1) = 0, G(A2,A2) = 0, G(A3,A3) = 0,

(21) G(AUA2) = 7 G{A2, A3) = (x - 1) 7 G(A3, Ax) = -xΊ

for some 7. If 7 = 0, since G is nondegenerate, we must have the Ai
all null and proportional. But then from (20) this is the unique null
vector tangent to the complexified orbit, which is a contradiction.

Now substitute a defined by (20) into the equation of the null cone,
and we obtain

0 = cξ2 + ξG(b, XA + ξ-^-) + G(XA + ξ^-, XA + ^
z x z x

) ( ξ , ζ
z — x z — x z — x

for all £, λ and z. Prom the coefficients of ξ2 and G(A3, A3) = 0 we
obtain c = 0 and G(6, A3) = 0. Prom the other coefficients we find

Now from (21) we evaluate b:

( 2 2 ) άi
x x - 1 x(x - 1)

The conformal structure is thus defined by the metric
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Prom this expression, we see that the tangent vector field X = d/dx — b
is normal to the orbits, and

g(X,X) = -2G(6,6) + G{b,b) = -G(6,6) = -2/x{x - 1)

from (22), where we have set 7, which is a non-zero factor of #, equal
to 1. If m(x) is an integral curve of X, we can parametrize the space
of real twistor lines by (x>h) •-> hm(x) for h E 577(2), and then the
metric has the form

where G is conjugate to G. Working with a general metric of this form
is not easy, so suppose now that the metric can be put in diagonal
form. Then the diagonal entries of G are its eigenvalues relative to the
Killing form, and since G and G are conjugate, these are the same.
If B denotes the matrix of the quadratic form trα 2, then we need to
determine the roots of

det(G - \B) = 0.

Now the matrix G^ = G(A^Aj) is given from (21) by

which is non-singular, so the A{ are linearly independent and we can
use them as a basis. In this basis, B^ = tr A{Aj. But from Theorem
3, if the metric is diagonal, tτA? = k for all residues, thus

( k tr AχA2 tr A3

tτAιA2 k tr
tr A3A1 tr A2A3 k

where moreover, tτAl = tr(Aχ + A2 + A3)
2 = fc, and so

tr AχA2 + tr A2A3 + tr A3Aχ = — k.

Now if σι = #i + x2 + x3, the following identity is easily proven:
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%2

(23) det I x3 -σx xx j = -2{xx +x2)(x2

X2 Xι —C

Using this, the roots of det(G — XB) are:

1 % x-1 x
, Λ — —

2' k + tτA2A3'

and using the fact that the standard basis i,j,k of g satisfies tr ϊ 2 =
trj2 = trfc2 = —2, we find the conformal structure in diagonal form;

σ ί . (x ~ l)σl x σ l
' ' 9 x[x - 1) + k + tr AγA2 ^ k + tτA2A3 k + tτA3Ax'

Remark. If we set

(25) Ωj = -(fc + tr AXA2), Ω̂  = (A; + tr A2A3),

then the conformal structure (24) is defined by

dx2 σ\ ( l - s ) σ 2 gσg
9 Ω? + +9 0 α;(l - a;) Ω? + Ω2 + Ω2 '

and differentiating (25) with respect to x, we find, using the Schlesinger
equation for isomonodromic deformations (11),

But in the Lie algebra of SX(2,C), we have the identity

tr A\ tr AχA2 tr A$A
τA^ tτA\ trA2A

tr A3AX tr A2A3 tr A3(
tτA^ tτA\
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so from the determinant expansion (23),

(tr([A1,A2]A3))2 = -
= -4(k + tr A1A2)(k + tr A2A3)(k + tr A3Aχ).

Thus tr([j4i, -A2M3) is a distinguished square root of 4ΩJΩ2Ω3, and then
the equations (26) can be written as

Ω2Ω3

(27) Ω'2 = -

x(l-as)'
Ω3Ωj

1-x

These are the equations derived by Tod [34] directly from the cur-
vature of an anti-self-dual diagonalizable metric. The expression ΩJ —
Ω2 — Ω3 is a constant from (27). Prom the definition of the Ωi? it is
given by

(28) Ωj - Ωg - Ω3 = -3A; - tτA1A2 - tr A2A3 - tτA^x = -2k.

In particular from Theorem 4, for an Einstein metric k — 1/8 , and so
ΩJ - Ω\ - Ω\ = -1/4.

6. The monodromy group

The holonomy of the flat connection on Z\Y is obtained by parallel
translation around closed paths and defines, after fixing a base point
6, a representation of the fundamental group

On a twistor line, the holonomy may also be considered as the effect of
analytic continuation of solutions to the system of ordinary differential
equations

d z f ^ i

around closed paths through b hence the use of the classical term mon-
odromy, which we shall use interchangeably with holonomy henceforth.
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Changing the basepoint to b' effects an overall conjugation (by the mon-
odromy along a path from b to &') of the monodromy representation.

For the punctured twistor lines above, we obtain a representation
of the group πι(S2\{zι,..., z4}). This is a free group on 3 generators
7I)72J73? where j { is a simple loop from b passing once around ^ .
Moving b close to z^ it is easy to see that p(7i) is conjugate to

exp(—2πiAi).

The fact that the invariants tr A2 are independent of z\%..., z4 is now
evident from the isomonodromic property of the monodromy around

7ί
Just as for the residues, the real structure also has implications for

the monodromy. The connection A on the trivial principal bundle
Z x 5L(2,C) is invariant under the real structure

thus if 7 is a closed loop through z € Z with holonomy hΊ E SX(2,C),
then T(J) is a loop through r(z) and

(29) Λr(,) = Λ;-1.

We need to consider the monodromy on a real twistor line, where the
connection has poles at 2 l5 z2> £3, z4. To this end we take two antipodal
points N and 5 on CP1 = S2 and two orthogonal great circles through
N. This gives four paths /?i, β2, βs, β\ in cyclic order from N to S which
divide the sphere into four segments each of which we may assume
contains one of the singular points. Choosing N as a base point, the
generators η{ of the fundamental group πι(S2\{zϊl..., z4}) are

Note the obvious relation

(30) 7i727374 = 1,

which of course is carried through to the monodromy.
Now applying the antipodal map r, we have
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and so

τ{Ίi) = βςxβ* = βΓ1 (7i7274) βi,

τ ( 7 2 ) = ft"1/?! = ft"1 (7i7273)A,

(31) τ ( 7 3 ) = ft"1 ft = β^ (727374) A ,

τ(74) = β?β* = βΓ1 (7i7374) A

Setting /Oj = p( 7 i) in the monodromy representation, and σ the mon-
odromy along βi, we obtain

(32)

In a more analytical form which will be useful later, we take the
great circle βiβ^1, parametrized by θ € [0,2π). The antipodal map is
then θ ι-> θ + π, and the reality of the connection is expressed from
(14) as

(33) A(θ + π) = -A*(θ).

Now let M(θ) be a fundamental matrix solution of

(34) ^ + AM = 0.

Writing M(θ) = M{θ + π), and using (33), we obtain

But

from (34). Hence there is a constant matrix H such that

(35) M*-1(θ) = M(θ + π)H.

It follows that

M(θ + 2π) = M * - 1 ^ + τ)H-χ = M{Θ)H*H~\
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and so the monodromy around the great circle is defined by the matrix
H*H~~ι, and H itself defines the monodromy σ in (32).

The study of the monodromy will lead us to a complete description of
a very important case of S77(2)-invariant anti-self-dual geometry: the
Einstein metrics in this class. To begin, we shall prove the following
theorem, which characterizes these metrics by their monodromy. In the
succeeding chapters we shall use this information to derive analytical
formulae for the metrics.

Theorem 5. Let M be an SU"(2)-invariant anti-self-dual Einstein
manifold with scalar curvature R and such that its twistor space Z
has Λ3α non-degenerate. Then the monodromy of the connection A is
conjugate to the representation defined by:

IfR<0,Pj = ( 0-iaj) where

= λ, a2 = λetθ, α 3 = eιθ, α 4 =

ax = iλ, α2 = iμ, α3 = iμ — iλ, α4 = 0.

ax = e**, α 2 = λe**, α 3 = λ, α 4 = 1,

and θ, X and μ are real

Proof. First note that from Theorem 4, each Pj is conjugate to

and consequently satisfies fή = —1. There are some basic algebraic
consequences of this, given by the following lemmas.

Lemma 1. The monodromy group Γ is non-abelian.
Proof. Suppose Γ is abelian. Since fή = — 1, then there is a basis

such that
(i θ\

Pl= 0-J'
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and since ρ<ι,pι,p± commute with pu they axe diagonal in the same
basis and hence

Parallel translation from the base point b thus preserves the subspaces
defined by the two basis vectors, and defines two dual complementary
line sub-bundles L and L* of the trivial bundle away from the singular
points.

Now if we choose a basis such that Ax is diagonal, then it is easy to
see that near z = 0 the covariant constant functions f(z) relative to
the connection A can be written as

where aι,a2 are holomorphic. Thus the solutions with monodromy i
and —i are multiples of the first and second basis vectors respectively,
and the line bundles L and L* extend as the eigenspaces of the residues
across the singular points.

But a subbundle of the trivial bundle must have non-positive degree,
so that deg L < 0 and deg L* < 0 and hence deg L = 0. Since the degree
is zero on C P 1 , L (and hence L*) is trivial, and so given by a basis
of C 2 . This basis thus diagonalizes all residues A^ which are therefore
proportional. But from (21) this means G = 0 which is a contradiction
to the non-singularity of the metric.

Lemma 2. The subgroup of πχ(CP1\{^i,22,23,24}) consisting of
the words of even length in the generators 71,72,73 maps under the
monodromy representation to an abelian subgroup of SL(2,C).

Proof. We have the relations

(36) P\=PI = PI = PI = -1

and

(37) P1P2P3P4 = 1.

We need to show that piPj commutes with pkpt for all indices i, j , A;, I €
{1,2,3}. Now since

(PiPj)'1 = PjPi
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from (36), the ordering of the indices is immaterial.
By symmetry, it is enough to show that pλp2 commutes with p2P3

But

P1P2P2P3 = -P1P3 = Piplp3 = P1P4P1P2 = P2P3P1P2

using (36) and (37).
Let Γo be the subgroup of the monodromy group Γ generated by

words of even length. This is the image of a subgroup of index 2
in 7r1(CP1\{^i,^2,^3,^4}), and hence is either the whole group Γ or
itself of index 2. However, Γ is non-abelian from Lemma 1, and Γo

abelian, so it is of index 2. If Γo consisted of scalar matrices alone,
then the whole monodromy group would be abelian, thus the abelian
group Γo C SX(2,C) contains a non-trivial element and is contained
in a 1-parameter subgroup. Such a subgroup is conjugate either to a
group H of matrices of the form

or

Since Γo is normal in Γ, the group Γ lies in the normalizer N(H) of H
in SX(2,C), and in fact Γ/Γo = N(H)/H =Z 2 , the Weyl group. Thus
the generators pj of Γ are of the form

or

for a eC* and b EC.
It remains to determine the real structure and its relation to the sign

of the scalar curvature.
Now the subgroup of words of even length in π1(CP1\{z1, z%, z3, z±})

is of index 2, and hence defines a double covering X of the punctured
sphere. Since the representation p is abelian on this group, it factors
through its abelianization, the homology group Hι(X,Z). It is straight-
forward to see that this is isomorphic to Z5 and generated by

2/1 = 7 i , 2/2 = 72> 2/3 = Ta
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Prom (31) the real structure acts on this as

(38) τ(yx) = yϊ\ r(ϊte) = yiifeVs, r(y3) =

Suppose we consider first the case R Φ 0. Then choosing a common
eigenspace of the matrix piPj defines a homomorphism

χ:Hλ{X,Z)-+ C .

Clearly the compatibility of the connection with the real structure im-
plies that x is real in a suitable sense. There are two possibilities,
dependent on whether r preserves or interchanges the eigenspaces. In
turn this is determined by the sign of the scalar curvature:

Lemma 3. If R > 0, then χ(τ(x)) = χ(x), and if R < 0 then
χ(r(x)) = χ(x)-i for all x G HX{X,Z).

Proof. In twistor language, the scalar curvature of the metric
defined by the twisted 1-form θ is given by

θ Λ dθ e H°{Z, /^T'iK'1)) S H°(Z, O)^C

as shown, for instance in [8].
To perform the calculation, let s = Λ3α and on some open set in Z\Y

define the 1-form φ = θ/s1/2. Since φ is Sfί7(2)-invariant, it satisfies

dφ(a(x),a(y)) = -φ(a[x,y])

for x,y G fl. Choosing a standard orthonormal basis {^1,̂ 21^3} =
{ΐ, j , k} for the Lie algebra of 5ί7(2), this gives

3

= tτφ2(φAdφ)(a{x1),a{x2),a(x3)) = -2^2φ(a(xi))2 = tτφ
i=l

using the notation of Theorem 4. Hence if R is the scalar curvature,

(39) 2

cRecall that φ is a 2-valued invariant function φ : Z —>- gc

Now let us consider the effect on the monodromy pιp2 = p(xi)
around the great circle Aβf1. This encircles two branchpoints, and
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we can find a single-valued real branch of s'1/2, and therefore we may
assume that φ is single-valued. Now, as in Theorem 4, but using the
parametrization by the angle 0, we have

and from (34)

It follows that P = M~λφM is a constant. On the other hand, the
reality condition on the twisted 1-form implies that φ(θ + π) = —φ*(θ),
thus

P = M(θ + π)-χφ{θ + π)M(θ + π) = -

using (35). Hence

(40) P* = -H*-λPH*.

As remarked above, the monodromy around this loop is defined by
H*H~ι. Prom (40), it commutes with P. Hence we may write

(41)

and

H =

Now

so

H

P

from (40)

••* = H*{cJ+c2

eg so trP = 0.

P2 =

H*H~ι

pη = (ci

. Thus

i(trP2)J

= cj + c2P,

D)H* =

tr02)/

{cJ-c2P){cJ+c2P)H.

from the definition of P and (39).
Hence,

— -Rc2c2) = 1 and cλc2 =

Moreover since det(ci J + c2P) = 1, we also have
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We deduce immediately that cx and c2 are real and that c\ — \Rc\ =
1. But the eigenvalues of the monodromy Cχl + c2P are C\ ± c2y/R/2,
thus if the scalar curvature R is positive, the eigenvalues of this mon-
odromy element are of the form λ, λ"1 with λ real, and if the curvature
is negative, they are λ, λ"1 with λλ = 1.

But now τ(xι) = Xι so χ(r(xι)) = χ(x\) = λ = χ{xχ) ΊΐR is positive,
and χ(xi)" 1 if R is negative.

To complete the proof of Theorem 5, suppose first that R > 0. Since
P is semisimple, the monodromy elements PiPj commute with P and
are thus diagonalizable, so each p^, being non-trivial in the normalizer
of the corresponding diagonal subgroup, is of the form

and
ί-ai/aj 0 \

»"» = { o - v « J '
The real structure gives

using χ(yi) =pl = ~]
Thus

a2 α 2 '
άι a\a3

and so

a2 α3

for λ e R . By a change of basis we can set α4 = 1, and the relation
P1P2P3P4 = 1 implies that α3 = α2βΓ15 which finally gives the full
monodromy

αi = e**, α2 = λeι6>, α3 = λ, α4 = 1.
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The case of R < 0 is entirely similar.
It remains to deal with the case R = 0. Each generating monodromy

element pj is of the form

Pj - C3)
and so the monodromy preserves the subspace spanned by the first ba-
sis vector. This defines a line bundle L on C P 1 with a meromorphic
connection whose residue at the point Zj is ±1/4. The line bundle is a
subbundle of the trivial bundle on which the connection A is defined,
and so must have non-positive degree. If it is trivial, then there is a
vector vGC 2 which is an eigenvector for each residue Aj. But from the
reality conditions (15) and (16), this implies that the Aj are simulta-
neously diagonal, which (as in Lemma 1) is impossible, so L must have
negative degree. The degree is given by the sum of the residues of any
connection, and so in this case is a number of the form ± | ± | ± | ± | ,
and we only obtain a negative integer, -1, by taking the negative sign
at each pole. Hence

and
_ (-1 i(aι - a2)\

p ι p 2 - \ o - l ) •

Thus Cι = — L Prom (41), we obtain

H + H* = c2PH.

Now choose a unitary basis of eigenvectors for H + H*. then in this
basis

'a bλ

moreover, since P is nilpotent and non-zero, one eigenvalue of H+H* is
zero, and one non-zero, so d + d = 0, say, and a + a φ 0. The condition
det H — 0 then forces d = 0 and 66 = 1. Prom this we deduce that in
this unitary basis,

= (O -b{a

" \0 0.
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But the first basis vector is the common — i eigenspace for all the pj
and so these have the form (42) with respect to a unitary basis.

Now using the reality conditions (32) and H = σ, we obtain

—άι = 2iab + aλ — a2 + α4,

—α2 = 2iab + aλ — a2 + α3,

—α3 = 2iab + a2 — a3 + α4,

—α4 = 2iab + αi — α3 + α4,

and from pιp2p3p4 = 1 we obtain aλ — a2 + a3 — α4 = 0.
Subtracting in pairs we find that aλ — α2, α 2—a 3, α 3—α 4 are imaginary.

By a change of basis we can set α4 = 0 and then aι,a2,a3 are imaginary.

7. Elliptic curves and Einstein metrics

In this section, we shall adopt a geometrical approach to the mon-
odromy for an Einstein metric, and thereby obtain explicit formu-
lae. Our starting point is to consider the elliptic curve C defined as
the double covering of CP1 branched over the four singular points
{zl5Z2,23,z4} of the connection A. If the corresponding ramification
points on C are denoted by {^1,^2,^3,^4}, then

π1(C\{wuw2,w3,w4c}) C τr1(CP1\{zuz2,z3,zA})

is a subgroup of index two. As is readily seen, it is in fact the subgroup
of words of even length in the generators 71,72,73 of the free group
πi(CP1\{^1,^2,^3,^4}), so the covering X of the previous section is
simply ^{^1,^2,^3,^4}. The key to obtaining explicit solutions is
now Lemma 2, which says that the image of this subgroup in the mon-
odromy group is abelian. Put another way, if we pull back the con-
nection A to C, then we obtain a connection with abelian holonomy,
and we can then reduce the question of finding that monodromy to the
calculation of periods of differentials on the curve C.

Let A denote the connection A pulled back to C. Since the residues
of A in the Einstein case have eigenvalues ±1/4, A has poles at the
points Wi with residue conjugate to
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because of the local branching z — Zi = (w — Wi)2 + . . . It follows that
a local covariant constant section has the form

(43)

()-1'2ft\+.. or s = (w-

First consider the case where the scalar curvature R is non-zero.
Prom Theorem 5, we see that the monodromy of the connection on C
preserves two 1-dimensional subspaces of C2, and so we obtain two line
subbundles L\ and L2 of the trivial bundle over C\{wι,w2,Wz,W4\.
Moreover, A induces a connection on each of them. Consider a local
covariant constant section s of L\ in a neighbourhood of w = W{. From
(43) we see that L\ extends to C, and the induced connection extends
to a connection with a pole of residue ±1/2.

Now the sum of the residues of a meromorphic connection on a line
bundle L is equal to — deg L, so in our case this number i s ± | ± | ± | ± | .
On the other hand, Lλ is embedded as a holomorphic subbundle of
CxC 2 , and so its dual L\ must have at least two linearly independent
sections. This means, for an elliptic curve, that deg Lx < —2, and hence
is equal to— 2 = — | — \ — \ — ̂ , so that the residues must all be 1/2.

The same holds for L2. Note that the involution on C (the covering
transformation of C -* CP1) interchanges Lλ and L 2 J since the p i ? and
hence all odd words, are non-trivial in the Weyl group N(H)/H in the
proof of Theorem 5. The subbundles L\ and L2 of C x C 2 coincide over
the ramification points.

In a more analytical form, we represent the covering C -> C P 1 as
the meromorphic function on C given by the Weierstrass p function:

z = p(ti),

where u E C/Λ = C, and Λ is the lattice generated by {2α;i,2α;3}.
The involution on C is n ^ —u, and its fixed points, the ramification
points of the covering, are u = Q,ωι,ω2,ω$ (we shall use the notation
in [33] for formulas involving elliptic functions). Since p is of degree
2, any line bundle of degree 2 on C is the pull back of 0(1) by the
meromorphic function ρ(u — c) for some c. Thus we may take Lλ and
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L2 to be generated respectively by the two vectors in C 2 :

1 \
(44) Vι = I , λ I and υ2 = I , N . .

The connection A preserves Li, so there is a meromorphic 1-form
θγdu on C such that

(45) (4- + P(U)A) ( ,
\du J \p(u-c)

Now θ\du is a connection form relative to the local trivialization Vι of
Li. The meromorphic section Vi has a double pole where ρ(u — c) = oo,
i.e., at u = c. As we have seen, the connection has simple poles at the
ramification points with residue 1/2, so θ\ is an elliptic function with
simple poles of residue 1/2 at u = 0,α;1,α;2,α;3 and a simple pole with
residue — 2 at u = c. Now

2p'(u)

has simple poles of residue 1/2 at u = ωi,ω2)ω3 and a simple pole of
residue —3/2 at it = 0. Moreover,

2p'(c/2)

p(u-c/2)-p(c/2)

has a simple pole of residue 2 at « = c and residue — 2 at tt = 0. Thus
there is a constant n such that

J 2p'(«) p(« - c/2) - p(c/2) +

The constants K and c need to be determined from the monodromy
of A. For a line bundle, however, the monodromy of a connection is
easily obtained by integrating the connection form over closed loops,
or their homology classes:

/ θλdu).
Ί

Now consider the map on homology induced by the inclusion

i:H1(C\{wuw2,w3,w4}, Z) -> H^C.Z).
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The classes y* = 7? bound in C, so Hλ{C,Z) =Z 2 is generated by
i(xi),z(x2) Moreover, since from (38) τ{xχ) = xλ and τ(x2) = 2x\ —
#2 — Vι — 2/2, «(#i) is a real generator and i(xx — x2) an imaginary
one. Thus the periods of θγdu over these cycles are determined by the
monodromy elements pxp2 and p3p2 of the connection on C P 1 . In the
fundamental rectangle, the cycles are represented by lines parallel to
the x and y axes respectively.

To calculate the periods, we first use the general formula for the
Weierstrass zeta function

(47) ζ(u + a)-ζ(u-a)-2ζ(a)= P ' ( θ )

(u) - p(a)

and the definition of the sigma function

to obtain

p(u) - p(a) σ(u - a)

and hence

θλdu = \ log p'{u) + 2 log σ M - 4C(c/2)u + «ti.
Z ίJllA — C)

Finally, using

where ηι — C(^t)> we obtain the monodromy e λ l , e λ s of θλ where:

8ωiC(c/2) + 2κωu

λ3 =4η3c- 8ω3ζ(c/2) + 2κω3.

Prom the Legendre relation ηλω3 — η3ωλ = iπ/2, we find

(48) λiα;3 - λ3α>i = 2πic,

(49) λ!7/3 - \3ηx = 4πiζ(c/2) - iπn.
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Each twistor line has a connection with the same monodromy, so λi
and λ3 are fixed by the metric. Note that the ambiguity in the choice
of logarithm is reflected in the two choices of lifting of the cycles 7172
and 7372. The equations (48) and (49) then define c and /ς, and hence
the connection form 01? in terms of the basic invariants ω^ηi of the
elliptic curve. It will be more convenient to replace the parameters c
and K by ω and η defined by:

ω = 2c, and η = 4£(c/2) — n

thus giving

λ 3 = 2ωη3 -2ηω3.

Note that, from Theorem 5, λx is imaginary and λ3 real for a metric
with scalar curvature R < 0, and vice versa for R > 0.

To derive the full connection, we can use (47) and (49) to rewrite
(46) as

θx = (C(2u) - 2ζ(u)) + 2(C(u) - ζ(u - c) - 2C(c/2))

(50)

and, since θ2 is obtained by replacing c by —c, and taking the opposite

period, we have

02 = C(2w) - 2ζ(u + c)+η.

These expressions, together with (45) provide a formula for the con-

nection matrix A:

(51) p'(u)(p(u + c)-p(u-c))A

\(
u - c) - p'(ti - c) θ2p(u + c) - pι(u + c)J \-p{u -c) 1

In practice, this is very cumbersome to use, so we shall make use of a
different approach to the isomonodromic deformation problem, which
involves just a single function. A reference for this is [20].

First note that if, in the general context of isomonodromic deforma-
tions, the connection on C P 1 is put in the form

A2 t A3A{z) = ^-
z z — 1 z — x
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then each entry of the matrix A^z) is of the form q(z)/[z(z-l)(z-x)]
for some quadratic polynomial q. Now if, as in our case, A^ = — (Aι +
A2 + A3) is diagonalizable, then there is a basis such that

and Au can be written

A / _ x _ * ( * τ :

z(z-l)(z-x)

for some y G CP1\{0, l,x, oo}. If the Ai(x) satisfy Schlesinger's equa-
tion (10), then the function y(x) satisfies the Painleve equation

2\ \
_ ( , 1 ) ( )

dx2 2\y y-\ y-xj\dxj

( 5 2 )
+ )

a: — 1 y — xjdx
+ V + 7 ((y-l) 2

where

(53)

For our purposes it is useful to note the geometrical form of the def-
inition of y(x) given by (52): the solution y(x) to the Painleve equa-
tion corresponding to an isomonodromic deformation A{z) is the point
y € CP1\{0,1, z, 00} at which A(y) and ̂ 4^ have a common eigenvec-
tor, corresponding to the eigenvalue λ at oo.

Now in our example, z = ρ(u) = oo if u = 0, and from (45) we see
that the vector
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is an eigenvector of A^. Moreover, since, as noted in the course of
its calculation, 0X has a simple pole at u = 0 with residue +1/2, the
corresponding eigenvalue of A on CP1 is +1/4. Thus the values of the
coefficients in the Painleve equation (52) are a = 1/8,/? = —1/8,7 =

1/8 and δ = 3/8.
To obtain y(x), we must find the value of ρ(u) at which v is again

an eigenvalue of A. Equivalently, we want

The formula (52), after some manipulation, then gives the condition:

0 _θ P'ju ~ c) p'(u + c)
p(u-c)-p(c) p(u + c)-p{c)'

Using (47) and the expressions for 0X and 02, this yields:

2C(tι + c) - 2ζ{u -c)-2μ
= ζ(u) + C(u - 2c) - 2C(« - c) - (C(« + 2c) + C(u) - 2C(u + c)),

from which

p'(2c)
-2η = ζ(u - 2c) - ζ(u + 2c) = -2C(2c)

p(u) - p(2c)"

Solving for p(u), setting ω = 2c and using the Mobius transformation
which takes the branch points ex, e2, e3 to 0,1, z, we obtain the solution
to the Painleve equation as

(54) y(x) = i = ^ . ,

where

and

for constants fci,fc3.
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Remark. In the above form, it is not entirely clear that y is a
function of x alone. If we express the Weierstrass elliptic functions in
terms of theta functions #α(ϊ/,τ), then y(x) is also defined as

(X)- ^ 1
[ } 32ΰ4(O)tfί(O) 3

W t f i M ^/H^H + πtMtf?(ι/)tf(i/) -

where 1/ = (*iτ - fc3)/2 and a: = tf|(0)/#|(0). The above is the func-
tion which we shall use in the next sections to generate new solutions
of the Einstein equations. Before doing that, however, we should for
completeness consider the case R = 0, although the corresponding
equations were solved already in the context of elliptic integrals in [4]
and [5]. The advantage of our current viewpoint is the wider context
in which the formula appears.

Consider then the case of R = 0. Here, from Theorem 5, the mon-
odromy preserves a subbundle L of C P 1 x C 2 . Prom the proof of the
theorem, L has degree —1 and so L = O(—1). We can therefore take
L to be spanned by the vector

C)
Now the connection preserves L and so

Again from the proof of the theorem, the meromorphic 1-form θ has
simple poles, and residues 1/4 over the finite branch points ei,e2,e3.
Thus

dz dz dz
~ 4(z - ex) 4(z - e2) 4(z - e 3) '

If we now set
f{z) = (z- e x ) (z - e2)(z - e 3 )

and
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then
V«i = 0.

Now put

then Vs2 = asx + bs2, but since < Si,s2 > = —1 with respect to the
skew pairing on C2, preserved by the SX(2,C) connection A, we have

0 = d< sus2 >=<Vsus2 > + < suVs2 >= 6,

and so Vs2 = asi
Thus the connection matrix A is given by

Each entry in this matrix A(z) must be of the form q(z)/f for some
quadratic polynomial q(z). Taking account of the powers of z in the
denominator, we obtain

(57)

for some constant c, to be determined from the monodromy.
To make this relationship, note that f1/2 == y/(z — eχ)(z — e2)(z — e3)

is single valued on the elliptic curve C; in fact setting z = ρ(u), then
p'(u) = 2/1/2. Thus the section Si ® 5χ (considered as a nilpotent el-
ement in the Lie algebra g of SX(2,C)) is single valued and covariant
constant. Moreover,

V(si ® 52) = a(sι ® Si),

so the two-dimensional subspace of g spanned by Si ® ŝ  and Si ® s2

is preserved by the connection. We already know the monodromy is
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abelian but from this point of view, around a cycle x it is given by a
matrix conjugate to

Ία\ , r
I where a = a.

r / Jx
\0

Using (57) we have

+ (2c-p(u))du,

and so the periods of this form over the real and imaginary cycles of C
are

(58) X1=4cω1+2ηu

(59) \3 = 4cω3 + 2η3.

Now replacing the nilpotent element Si <g> Si by a multiple of itself gives
another basis of the same type, so only the ratio Ax/A3 is an invariant of
the monodromy. We can now compare with the form of the monodromy
in Theorem 5. Here the monodromy around the two cycles is given by

( o - i ) *»d ( o - i j

and so λi/λ3 = (μ — λ)/λ and is in particular a real number fc0. Using
the Legendre relation from (59) we obtain

(60)
2(koω3-ω1)

We need to find the corresponding solution to the Painleve equation,
and for this consider (55) as z —> oo. It is easy to see, using (57), that
the residue of A at infinity has the eigenvector

0
corresponding to the eigenvalue 1/4, and so the solution to the Painleve
equation is the point z = y at which this vector is again an eigenvector.
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Prom (55) this is where f'/2fz - 1/z2 - f~1/2a = 0, or from (57) where
z = 2c. By (60), we therefore obtain

(61) y{x) = ^ - ,

where

(kω3 -

We may summarize our calculations in the following theorem:
Theorem 6. Let M be an SU(2)-invariant anti-self-dual Einstein

manifold with scalar curvature R and such that its twistor space Z
has Λ3α non-degenerate. Then the corresponding solution y(x) to the
Painleve equation is given as follows:

• ForR< 0,

y(x) = ,
e2 - e i

where

p'(ω) e3 - ei

and

ω =

η = Ms - **

for constants kχ,k3 eR.

• For R = 0,

y(χ) =

where

{koω3 -

and k0 €R.

• For R> 0,
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where

, ρ'(ω) e 3 - βi

£ = P M + / ; <*™* * =) - 7/) e 2

and

a; =

for constants kχ,kz
Remarks.
1. In [19], some algebraic Einstein metrics with R > 0 were produced

directly from the twistor construction, by using a relationship with
Poncelet polygons. The connection with the Painleve equation and
isomonodromic deformations was central in that description, but the
essential fact giving algebraic solutions was that the monodromy group
was finite, in fact a binary dihedral group. In our discussion here, we
have seen that the monodromy group for an Einstein metric has the
basic property that it has an abelian subgroup of index two. Of course
this is true in particular for the covering of the rotations in the binary
dihedral group. The values of the constants kι, k3 in Theorem 6 relating
to monodromy given by the dihedral group of symmetries of a regular
A -gon are k3 = 2/k and kx = 0.

2. A possible interpretation of the algebraic metrics in [19] was
given there in terms of the moduli space of charge 2 monopoles on a
hyperbolic space of curvature —1/p2 where p + 1 = l/(2fc3). The alge-
braicity of these metrics when 2/A;3 EZ is consistent with the fact that
the corresponding solutions of the Bogomolny equations are algebraic.
However, solutions exist for all values of the curvature, and so one ex-
pects appropriate metrics for all values of k3. This is what the above
formula yields. In fact, the asymptotic analysis of [19] giving the global
structure of the metric is independent of whether k is an integer or not.

3. The natural metric on the moduli space of Euclidean charge 2
monopoles is hyperkahler and was calculated in [4], The solution to
the Painleve equation which corresponds to it was derived as a limiting
procedure of the dihedral metrics as k ->• 00 in [19]. By comparison
with Theorem 6, it corresponds to the value of the constant k0 = 0.
We leave it as an exercise to relate the general solution of the SU(2)-
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invariant hyperkahler metrics as discussed in [4] and [5] to the general
solution of the corresponding Painleve equation above.

8. Einstein metrics on the 4-ball

We shall now use the explicit formulae of the previous section to pro-
duce a family of complete anti-self-dual Einstein metrics with negative
scalar curvature on the interior of the unit ball. There are two basic
models for such metrics. The first is the hyperbolic metric on the unit
ball

9 = n r 2 ) 2 ( d a ; i + dxl + dxl + dχ2*)'

It is the symmetric space 50(4,1)/SΌ(4) with its natural metric.
Away from the origin, this special metric is defined on (0,1) x S3 and
as such can be written in the form

dr2 r2

(62) 9 = JΓ^Ϋ + W^y{σl + σl + σl)

The conformal structure extends over the boundary and induces the
standard conformal structure on the sphere r = 1.

The second model is the Bergmann metric on the unit ball in C 2 .
This is the symmetric space S77(2, l)/C/(2) and is the metric dual to
the Fubini-Study metric on CP 2 . In diagonal form it can be given by

( β 3 )

r2σ2 r2

In this case the conformal structure does not extend across the bound-
ary. Asymptotically, by putting s = 1 — r and letting 5 —> 0, the metric
is a multiple of

ds2 1 2 1 2 1 2
9 = ^ + 2-sσϊ + 4έσ> + 2Sσί + -

The conformal structure on an SU(2) orbit degenerates: the coefficient
of σ2 decays faster than the others, and what is left is a conformal
structure on the two-dimensional subbundle of the tangent bundle of
S3 annihilated by σ2. This is a left-invariant CR-structure, whose ex-
istence is a natural consequence of the fact that the Bergmann metric
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is a Kahler metric respecting a complex structure which extends to the
boundary.

We begin with the first model. Its essential features for our purposes
are that it is invariant under SO(4) and blows up on the 3-sphere r = 1,
although the conformal structure extends smoothly across the sphere.
In the terminology of [22], the sphere is the conformal infinity of the
Einstein metric. The metrics we shall define will be invariant under
SU(2) C 5Ό(4), and induce on their conformal infinity a left-invariant
conformal structure on the 3-sphere S3 = SU(2).

The existence of such a metric in a collar neighbourhood of S3 fol-
lows from a rather general twistorial result of LeBrun [22], and was the
motivation for Pedersen's work [29], which succeeded in finding explic-
itly the metrics which are invariant under U(2) C SΌ(4). Pedersen's
metrics extend to the whole of the ball and the more general question
of whether an arbitrary left invariant metric extends is the theme of
Tod's paper [34]. Prom the work of Graham and Lee [15], (see the
discussion in [25]), it is known that a metric sufficiently close to the
bi-invariant metric will extend to a possibly non-anti-self-dual Einstein
metric.

Our point of view is to select from our explicit solutions for SU{2)-
invariant anti-self-dual Einstein metrics the ones with negative scalar
curvature, and to investigate the global behaviour of the metric as the
parameter x in (24) lies within a suitable interval. So far, we have only
considered the conformal structure, for that is all the general twistor
space gives us. In the anti-self-dual Einstein case it is the twisted form
θ on the twistor space which defines the metric (see [8]) within the
conformal structure, but there is a more direct expression given by
Tod ([34]). With the conformal structure given by

as in (24), the conformal factor to give an Einstein metric g = e2ug0

with scalar curvature Λ is

(65) -4Λe2u =

+ 2Ω1Ω2Ω3(g(Ω* + Ω*) - (1 - 4Ω|)(Ω1 - (1 - a

2Ω3(Ω| - (1 - z
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As we saw in Section 5, the Ω̂  are derived from the residues of the

connection matrix A, which in turn, from [20] is determined from the

solution to the Painleve equation. Explicitly, in the Einstein case, we

have

dy ,_y(y-l)(y-x)( 1 1
dx~ x(x-l) \2Z 2y 2(y-l) + 2(y

which defines the auxiliary variable z, and then

"» " .(I-*) Γ 2(y-l))V 2y)>

( 6 7 ) Ωί = y2(y-wy-*)(

1 \

-x))>

a2=(y-l)2y(y-χ) ( 1
3 (l-x) V 2y

We shall take a solution to the Painleve equation giving negative

scalar curvature. Prom Theorem 6 this is

y{χ) = _ e * ,

where

(68) ξ = p(ω) + ** ̂  and a; = ^ — j - ,

and

ω =

η = M a - * M i

for constants kλ, A;3 ER. Note that the real structure implies that x is
real and ω,η imaginary.

First consider the conformal structure. This is non-degenerate for
x φ 0, l,oo so long as the Ωf are finite and non-vanishing. Prom the
Painleve property of y{x), the only branch points or essential singular-
ities are at x = 0, l,oo, so y(x) is meromorphic outside these values
of x. If y Φ 0, l,£,oo, then from (67), Ω* is finite. By consider-
ing the (holomorphic) linear factors in z in these formulae, if the Ω*
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vanish at all, they vanish in pairs. But the Ω* satisfy the first or-
der differential equation (27). If Ω! = Ω2 = 0 at some point, then
Ωi = 0, Ω2 = 0, Ω3 = const, is the unique solution with this initial
value. This is a constant solution, which is clearly not the case here.

In Propositions 8-13, we establish some basic properties of the func-
tion y(x) which provide the tools for determining the global behaviour
of these metrics. These properties are concerned with the behaviour of
y(x) at the special values 0,1, a;, oo.

Proposition 8. Let y(x) be a solution to the Painleυe equation (52),
and suppose that y has a singularity atx = x0 where x0 φ 0,1, oo. Then

• y(x) has a simple pole of the form

• // the residue is 2xo(xo — I), then the conformal structure (24)
extends from the punctured ball B4\0 = S3 x (xo^o + e) to the
whole ball B4.

• If the residue is — 2xo(xo — 1), then the conformal structure ex-
tends from S3 x (x0, Xo + e) to S3 x (x0 -e,xo + e).

Proof. Since y(x) is meromorphic at x = x0, the first part of the
proposition follows by substitution of the Laurent polynomial in the
Painleve equation, and equating coefficients.

If the residue is 2xo(xo — 1), then by substituting in (66), we obtain

z = (x - xo)2 + . . . ,

from which, in (67),

Ωj = -ZoOzo - l)/(x - xo)2 + ,

Ω^ = α ; o ( α ; o - l ) 2 / ^ - ^ ) 2 + . . . ,

Ω2 = -xl(x0 - l)/(x - xo)2 + ,

and then the conformal structure is given by

dx2 (x — X o ) 2 ^ 2 ( x — # o ) 2 0 " 2 ( x — %o)2&2

x ( l £ ) # ( £ 1) £ ( x 1) x ( ^ 1)

which, comparing with the hyperbolic metric (62) at r = 0, clearly

extends over the puncture. Note also that if x0 > 1, the conformal

structure is negative definite.



84 N. J. HITCHIN

If the residue is —2a;o(a;o — 1)> then

z == f-...,

and therefore

2 _ J_ = (^ - xp) , (x - xp)

2y 2xo(#o ~ 1) 2xo(^o - 1)

thus it follows by substituting in (67), that the Ω? are regular at x = x0.
In fact, they are non-vanishing too, for if

with n > 2, we obtain

Ω? = A{x - x o ) n ~ 2

which contradicts the fact (27) that Ω'x = —Ω2Ω3/x(l — x). Hence the

conformal structure is non-singular.

We need to consider the two possibilities for our particular solution.

Here y(x) has a pole if

* "~" 2(ζ{ω)-η)

is infinite, and this holds if and only if ω = 2nω3, for some integer n,
or ζ(ω) = η.

Proposition 9. Let y(x) be the solution to the Painleve equation
given by (68). If ζ(ω) = η, then the residue is — 2XQ(X$ — 1), and if
ω = 2nω3 at x — xOj then the residue of y(x) is 2XQ(XQ — 1).

Proof. It is sufficient to consider ξ near ω = kλω3 — ik3ux = 0 so
that r = u)$/u)ι = ik^/hi.

By using the standard expansion of Weierstrass elliptic functions,
coming from
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and its derivatives, we obtain ξ = —η(xo)/ω + But

η(x0) = kιη3 - ik3ηx = kχ(η3 - τηx) = -fc1

using the Legendre relation, so

πi
ξ +

We need to relate the parameter r in the upper half-plane to the cross
ratio x. For this we use

Differentiating with respect to r and using the heat equation

satisfied by theta functions, we find

dτ πi [ΰ3(0) ΰ4(0)\ '

and from the relation

1 ?9" (0)

we obtain

(69)

Thus
2rro(63 - e 2)

ζ (x-xo)
giving

For the second case, using the theta function ΰχ(ι/,τ), we have the
standard relation

(70) C(u)
( 7 0 ) C ( U )
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where v = u/2ωχ^ r = ω3/ωχ. Using the definitions ω =
ik3ωι,η = kχη3 — ik3ηχ and the Legendre relation, we can then write

(71) CM ~V=^ ( | | ( f c W 2 ~ ifc3/2, r) + ih

Thus around a zero r = τ0 of ζ(ω) — 77, we have an expansion:

By the heat equation we can express this as

However, differentiating the expression (70) leads to

1 fϋ'Λ" 1 Γ/tfi'Y nfu'A'fu'A]

•'w—MU) ~£*IU)-2U)U)]
which, in consequence of the fact that

at τ0, gives

(*jc%\ f ( \ »U/j I( \( \ _ι_

Substituting in the formula (68) for ξ we obtain

thus

and finally

y{x) = , _ e \ ί χ . - \ +

/yo\ —ZXQ[XQ — 3

(x - Xo)
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Proposition 10. Ify(x),y(x) — 1 or y(x)—x vanishes at x = x0, then

ί \ ^- ( X ~ X θ ) . / x Λ , (X - Xθ) ,

2(x0 — 1) 2x0

or y(x) =XoTK

 2

 ?

ίΛe conformal structure is singular if the lower sign holds.
Proof. The method of proof is by expansion as in Proposition 8. If

y(x) = —(α; — £O)/2(#o — 1) + . . . , then z = z0 +... is regular, in which
case

Here Ωj vanishes to higher order than either ΩJ or Ωg, so the confor-
mal structure can not be extended over either a zero-dimensional or
two-dimensional orbit. The other cases are similar, with Ω3 and Ωf
vanishing.

Now y vanishes if ξ = βi, which from (68) is when

Using the identity

(74) C l ( ϋ ) s < ( u

this is equivalent to ω = ωι (mod 2ωi,2ω3) or Ci(ω) = V- B u t ω =

kχω3 — ik3ωι is imaginary and ωι real, so only the second case may
occur.

Proposition 11. If ζι{ω) = η at x = x0, then the solution to the
Painleve equation has the form y(x) = — (x — xo)/2(xo — 1) +

Proof The calculation is similar to Proposition 9. By (68) and
(74), ξ satisfies
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but we have the relation

Cl(u) _ „ = ±.M
Following the arguments of Proposition 9 with the theta function
we obtain

iu)2

ζι{ω) -η= —ιρ'(ω + ωx){τ - r0) + . . . ,

and so from (75),

^ 2 ( β 1 - P M ) > V + u,,)

π p'(ω)

and differentiating the formula

(ei-e2)(e1 - e3)p(u + ωi) = βi +

gives
2iα;? . w w x

ί - βi = ^(ei - e2)(e1 - e3)(τ - r0) + ...
Hence, converting from r to a;,

^ ( β , - e,)(τ - r.) + . . .

2xo(e3 - e2)

This discussion of the behaviour of y (x) at some of the special values
is sufficient for the regularity arguments which follow. However, we
have so far only discussed the regularity of the conformal structure,
and not the Einstein metric within that conformal class. The following
proposition tells us when the metric is regular.

Proposition 12. Suppose the conformal structure is non-singular.
Then the Einstein metric in the conformal class is well defined if

Proof Prom the twistor point of view, the metric is well-defined
for those twistor lines on which the twisted 1-form θ is non-vanishing.
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Recall, as in the proof of Theorem 4, that on the twistor space Z, we
have

a n d Θ : 1 / 2

and the composition is defined by

x H-> tτ(βx)

for β a holomorphic section of gc ® K'1/2. Since A = α" 1 , it follows
that θ vanishes on a twistor line if and only if

tτ(Aβ) = 0.

Now in terms of the eigenvectors Vι,v2 (44), we can write, up to a
constant multiple,

β = Vι ® V2 + V2 ® Vl

using the skew form on C 2 to identify with its dual. Thus

= 2 < Avuv2 >,

and now applying the formula (45) we see that

(7β) .rw) = ̂  + < ^ ; f - ' > W
So tτ(Aβ) vanishes if

(77) 0i H p—•— = ϋ.

p(u + c) - p(u - c)
From (50) and (47), this can be written as

0 = C(2tι) - 2ζ(u -c)-η- ζ{2u) + ζ(2c) + 2ζ(u - c)

from the definition of ω.
Proposition 13 Let xo,Xχ be two consecutive values of x at which

ω is a lattice point Then there is a unique point x G (xo,Xι) at which
CM = η.

Proof. At :ro,:ri, #i(ω,τ) has a simple zero, and it follows that
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tends to +00 as x -» xo+ and — 00 as x -> Xι—. Since #1 only vanishes
at the lattice points, f(x) is regular in the interval and thus has an odd
number (with multiplicity) of zeros, and hence at least one.

From (72), the sign of the derivative of/ is determined by p'(ω), and
this vanishes only when ω is a half-period. Since x0 and Xι correspond
to neighbouring lattice points, there is only one point x G (xo?^i) at
which ρ'(ω) = 0. This cannot be a zero of ζ(ω) — η by using ζ((2n +
1)^3) = (2n + 1)773 and the Legendre relation, so the zeroes of f(x) are
simple, and there is an odd number.

On the other hand, in each interval (XQ,X)J (x,Xι) there can be at
most one zero, since the sign of / ' is constant in each, thus the number
of zeros is odd, less than two, and hence one.

We now put together these results to obtain:

Theorem 7. Let y(x) be the solution to the Painleυe equation (68),
where k3 > 0 and 0 < kλ < 2. Let xn = x{ik3/(kx + 2n — 2)), for each
positive integer n. Then the following hold:

1. If kι < I, the poles of y(x) with negative residue are xux2j.>.
withxn e ( rr n ,x n + 1 ) .

2. If kι > I, the poles of y(x) with negative residue are xo,xι,...

with xn e {xn,xn+ι) and x0 = 1.

3. The function y(x) defines a complete anti-self-dual Einstein met-

ric for x E (^nj^n+i] The metric is defined on the unit ball, with

x = £ n + i the origin and x = xn the boundary.
Proof To begin with, note that

=

where q = e*πr, so that for a real elliptic curve with q = e π σ , x > 1 and
σ —>> 0 corresponds to x —)• oo, whereas <τ —» oo gives a; -> 1. Moreover,
since dx/dσ is negative from (69), x is decreasing as a function of σ.

Take a solution y(x), assuming without loss of generality that k3 > 0
and 0 < &! < 2. Then ω = fej^ — ik3ωχ is a lattice point if and only if

U)3 k3

σ ~ iωx ~ kλ + 2n - 2

for n a positive integer. Let xn be the corresponding values of x(iσ).
Then {xn} is an increasing sequence. By Proposition 13, there is a
unique zero xn of ζ(ω) — η in each interval (xn,xn+i)
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We wish to enumerate all such zeros, not just those for x > xχm

Suppose x < xι. Then σ > k3/kι. As in Proposition 13, we define

f(σ) = ^{hiσ/2 - ifcs/2, <σ) + kxπ.

The zeros of / are the zeros of ζ(ω) — η = /(σ)/(2ω1) and hence the
poles of y(x) with negative residue.

Near v = 0, ΰ[/ΰi ~ πcotπz/, which shows that f(σ) -> —oo as
σ —> k3/kχ+. On the other hand, the expansion

^(i/) = J£ (- l ) n 2 9

( n + 1 / 2 ) 2 sin(2n + l)πi/
n=0

implies that f(σ) -¥ π(kχ — 1) as σ —» oo.
Suppose kι < 1. Then / is negative at both ends of the interval

(k3/kx,oo). If it vanishes in the interval, it must do so with derivatives
of both signs. However, ρ'(ω) vanishes only when ω = i(kισ — k3)/2 is
a half period, and there are no such values when σ > k3/kχ. Thus, as
in Proposition 13, if / vanishes, the sign of its derivative is fixed. We
conclude that f(σ) is negative for all σ > k3/kx.

Now suppose kx > 1. In this case / is positive as σ —> oo, and hence
has an odd number of zeros in the interval. Since ω is a half-period
when σ = k3/(kx — 1), we can repeat the argument of Proposition 13
and deduce that there is a unique such zero.

Finally consider kx = 1. Since ω = ω3 — ik3ωλ, the points xn are
given by

k3

and so the largest such value is σ = k3. Now for σ > k3 we need to
know if

vanishes. But (see [33])

where q = e*πr, so differentiating with respect to v shows (78) vanishes
if and only if
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But we have an expansion

4π ϊ?4 ̂  ~ ̂  1 - 2ί/2s-1 cos 2πu + g4*"2'

The denominator can be written, for v — —iks/2, as

e-(4s-2)πσγe(2s-l)πσ _ eπk3/2\re(2s-l)πσ __ e~πk3/2\

and if σ > k3 > 0, this is positive, and so in this range #4 is non-zero.
Hence / is negative for all σ > k3.

It follows that the poles of y(x) with negative residue are xu x2 . . . if
hi < 1, and xo,Xι... if kλ > 1 where xn E (xn?^fn-i) (setting x0 = 1)

To deal with Part 3 of the Theorem, note that from Proposition 9,
y(x) has a pole with positive residue at xn and negative residue at xn,
so y —> —00 at both ends of the interval (xn,xn+ι) It follows that
y(x) must be negative in the whole interval, for if the graph crosses the
x-axis it must do so at some point with a positive derivative. However,
from Proposition 11, only a negative derivative can occur. This means
that in particular, y, y — 1 and y — x are non-zero in the interval, and
so the conformal structure is non-singular. Since it is negative definite
at x = xn, it is negative definite everywhere. Prom Proposition 12, the
Einstein metric is well-defined for x G (xn,xn+χ).

There remains the question of the behaviour of the Einstein metric
at the puncture and at the boundary, where we know it is singular.
On the twistor space, the twisted 1-form is already well-defined at
the boundary, and by Hartog's theorem extends over the twistor line
corresponding to the puncture. This means that the inverse of the
conformal factor (65) is smooth, but may vanish. To determine if it
vanishes, we could calculate more expansions, but we can also rely on
more general facts. The most important feature is that the conformal
structure is everywhere regular. Choosing an Einstein metric within
the conformal class can be done by solving a (conformally invariant)
linear differential equation: if the metric is g = /~~23o> then / satisfies
the equation

where Ho is the trace-free part of the hessian, and Rico the trace-free
Ricci tensor of some metric in the conformal class. This overdetermined
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equation severely restricts the behaviour of / at a zero. For an isolated
zero, we must have, in normal coordinates, / = or2 + However,
the scalar curvature of the Einstein metric is given by

Since this is a negative constant, / can not in fact vanish at an iso-
lated point. Thus the metric is non-singular at the puncture. On the
boundary hypersurface / must have a simple zero (see also [15]), which
makes the metric complete.

The metric constructed in Theorem 7 depends on two parameters
kij k3 effectively describing the monodromy group. It is natural to ask
how the conformal structure on the boundary of the ball depends on
the parameters. For this we must calculate ΩJ, Ω| and Ω3 at the point
where ζ(ω) = η. From Proposition 12 this corresponds to the conformal
factor becoming singular, i.e., to the vanishing of the denominator:

(79) a?ΩiΩ2 + 2Ω3(Ω* - (1 - zJΩ*) = 0.

This provides one relation, and we also have the conserved quantity
(28),

(80) Ω* - Ω* - Ω* =-1/4.

A third equation can be obtained by considering the determinant of
the connection matrix at x = xn. This is a meromorphic quadratic
differential (det A)dz2 which around z = 0 has an expansion:

detA = -—— + - (tτA1A2 + -
16z2 z \ x

and so, using (25), evaluating the coefficient of 1/z gives a linear equa-
tion in Ω| and Ω2. Using z = (w — βi)/(e2 — ei), the poles are at w = e i?

and the connection form is

Aidw

Now at x = xn, 0i is given by (77), and it follows from (45) that

p(u + c) - p(u - c)

p'(u)Av2 = , ' ' γ rVi,
p(u + c)- ρ(u - c)
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and so

p'(u + c)p'(u-c)
p'(u)2

(p(u + c) - p{u - c))2

= p(2c) - p{2u) = p(ω) - p(2u)

by a well-known identity. Expanding the right-hand side in p(u) = w
around w = βi gives

16(w - ex)2 (w - ex) 8{e1 - e2)(e1 - e3)

thus
tr AXA2 tTAxA3 _ (βi+2ρ(α;))
(ei - e2) (ei - e3) 8(eχ - e2)(eχ - e 3 ) '

which yields the equation

Γ>2 Mπ2 ( 1 + ^ ) P M a

(81)
12 4 ( e ! - e 2 ) 4'

The expansions about the other poles lead to similar equations which
are linearly equivalent, given the relation (80).

We need to consider the signs involved here. For this, note the fact
that, if u is imaginary, p(u) is real and p(u) -> —oo if u -> 0 or 2ω3.
The maximum in between occurs at the turning point u = ω3, with
value e3 and thus p{ω) < e3. Prom (81), this means that

Continuing, by (81),(79) and (80) we obtain a quadratic equation for
Ω3 which yields the two solutions Ω3 = 1/4 and Ωg = a(a — x)/4(l — x).
Since from (64), for x > 1, Ω3 must be negative to get a definite metric,
it is the second case which holds and gives

2 _ α(l - a) 2 _ {l-a)(x-a) 2 _ a(x - a)
U l ~ - i y U2~ Ax ' ^3"4(rr-l)

Using (64), and the fact that a > x, the positive definite conformal
structure on the sphere is then defined by

(82) (α - x)σ\ + aσ\ + (a - l)σ\,
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and since a > x, it follows that a > a — 1 > a — x.
Remark. Note that the function y(x) depends only on kι modulo

2Z, as befits its dependence on the monodromy eπikl. However, for each
choice of logarithm kx + 2n, there is a metric on the ball, inducing a
different conformal structure on the boundary sphere, for x can be read
off from the conformal structure in (82). The analytic continuation of a
single solution y(x) to the Painleve equation thus defines many Einstein
metrics.

The obvious question to ask is whether every invariant conformal
structure on SU(2) can be obtained in this way. Let the conformal
structure be given by

Xισx + λ2σ2 + λ3σ3.

Clearly, from (82), since x Φ 0,1, the A* must be distinct. Assuming
this, choose a basis such that λ2 > λ3 > \χ > 0 and define

Ύ ~~*

Then x > 1. Now consider the elliptic curve in Weierstrass form

p'(u)2 = 4(p(ti) - βi)(p(tι) - e2)(ρ(u) - e3),

with ei = λ2 - (λi + λ2 + λ3)/3,e2 = λ3 - (λx + λ2 + λ3)/3,e3 =
λi - (λx + λ2 + λ3)/3, so that

x =

Take ω to satisfy

Now ω must be imaginary: as above, for imaginary values of w, p(u)
lies in the interval (—oo,e3), and since

e3 = λi - (λi + λ2 + λ3)/3 > -(λi + λ2 + λ3)/3,

the value — (λi + λ2 + λ3)/3 is achieved at two imaginary points ±ω.
This choice, by a simple manipulation, leads to the conformal structure
(82) with a satisfying

(1 + ff) _ ρ(ω) _ a
12 4(e !-e 2 ) " 4 '
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as in formula (81).
Finally define η by

ζ(ω) = η.

Since ζ(u) is real and odd, η is imaginary. Now define real numbers

fci = 2(ω% -

k3 = -2(ωη3 - ω3η)/π.

For the sphere to arise as the boundary of one of the metrics of
Theorem 7, we need to show that k3 Φ 0. Suppose k3 = 0. Then since
ω is defined up to sign and addition of 2nω3 and y(x) depends only on
the monodromy, we can take kλ < 1. In fact, since the monodromy is
non-abelian, kx < 1. The relation ζ(ω) = η implies that

By the identity

i W , / ) ^

this is equivalent to
ΰ'1(k1/2,-l/τ)=0.

But the expansion

1 0;(i/) _ 1
( 8 3 ) ^ΰ^ή " 4 C ° t π l /

shows that for a real elliptic curve with r = iσ, the right-hand side is
positive if &i < 1. But then ζ(ω) — η is never zero, which contradicts
the definition of η.

From the above discussion, we can prove the following theorem:
Theorem 8. Given any left-invariant conformal structure on the

3-sphere, there exists a unique complete anti-self-dual Einstein metric
on the 4-ball which induces the given conformal structure on the sphere
at infinity.

Proof Choose a basis such that the conformal structure is given by
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with λ2 > λ3 > λi > 0. If equality holds anywhere, then Pedersen's
metric [29] or the hyperbolic metric provides the solution. Otherwise,
use the solution of Theorem 7, with the values of kι, k3 given above.

As to uniqueness, LeBrun's twistor method [22] shows that the lo-
cal metric in a collar neighbourhood is determined by the conformal
structure: the twistor space is the space of null geodesies of the com-
plexification of the conformal structure on the 3-manifold. Thus an
Sίί7(2)-invariant conformal structure generates an 5ί7(2)-invariant Ein-
stein metric, and hence one of the cases considered here. The only
choice is then whether to take the solution for x < xn in Theorem 7,
or for x > xn. But the second case is an analytic continuation of the
first, and if it can be completed to the ball, we would have an anti-
self-dual conformal structure on a compact 4-manifold homeomorphic
to S4. Since the signature of the sphere is zero, but also represented
by the C2 norm of the Weyl tensor, it must be conformally flat and
hence the Einstein metric is the hyperbolic metric. This yields the
standard conformal structure on 5 3, and so any other metric is unique.
Of course, since the upper and lower hemispheres are isometric the
metric is also unique in this case too.

Remark.
1. The classification of Theorem 13 in the final section will show in

fact that we do not need to prescribe the topology of the interior as
the ball — there are no other complete anti-self-dual Einstein metrics
which induce a left invariant conformal structure on the 3-sphere.

2. Since we have seen in the proof of Theorem 8 that the explicit
metrics of Theorem 7 are the same as the twistor-theoretic ones whose
existence was shown by LeBrun, it is useful to note how the isomon-
odromic deformation story fits in to his approach. We recall that the
twistor space Z is the space of complex null geodesies on SX(2,C) with
respect to a left-invariant metric. Consider the action of SX(2,C) on
Z. The monodromy group Γ should in principle be the stabilizer of a
generic point in Z, i.e., a null geodesic. A geodesic j(z) is stabilized
by g e SL{2,C) iί

gΊ{z) =Ί(z + k).

In the general context of geodesies of left-invariant metrics on Lie
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groups (see [1], for example) we set

-id-r
ω< = Ί Tz

Then ωc satisfies Euler's equation, which is of the form

For 377(2), the problem is the same as the motion of a rigid body,
where ωc is interpreted as the angular velocity in the body. It is clearly
invariant by any left multiplication, in particular by g above and hence
periodic. In fact, Euler's equation, as discussed in Section 3, can be
solved with elliptic functions, and j(z) therefore satisfies a linear equa-
tion

ΊLz=Ίω<
on an elliptic curve. In this context, g is a monodromy element for the
solution. We leave it to the reader to link up this monodromy problem
for a connection on an elliptic curve with our discussion in Section 7.
The explicit formulae for the motion of a rigid body given in [33] as an
application of elliptic functions may be of some help.

Let us consider now the function (68) with fci = 1 and k3 > 0. This
will provide a one-parameter family of metrics in some ways modelled
on the Bergmann metric. In particular, it will induce a left-invariant
CR-structure on the boundary.

Theorem 9. Let y(x) be the solution to the Painleve equation (68)
with kι = 1 and k3 > 0. Let xλ = x{ik3). Then y(x) defines for
x G (l,xi] a complete anti-self-dual Einstein metric on the unit ball
with x = Xι the origin.

Proof Prom Theorem 7, y(x) has no poles in (l,Xi) and so is
regular for all x G (l,xi). Moreover, as in the proof of that theorem,
y(x) -> —oo as x -» xλ—. As x -> 1+, σ —> oo and we can use the
expansion

oo

tf^i/) = ^2 (-l)n2g ( n + 1 / 2 ) 2 sin(2n + l)πi/
n=0

and its derivatives to estimate y(x). We find

(84) y(x) = - 1 - (2 + cosh πA;3)s/4 + . . . ,
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where x = 1 + s. In particular, the limit is negative as x -» 1+.
Since from Proposition 11, the graph of y(x) can only cross the rc-axis
with negative derivative, it follows that y(x) is always negative, and
in particular never equal to 0,1 or x, hence the Einstein metric is well
defined, and as in Theorem 7, extends over the puncture at x = xx.

The behaviour as x -> 1 can be seen by using (64) and (65). We
obtain

Ω2 = -^cosh2(πλ;3/2) + . . . ,

Ω2 = 4 sinh2(πV2) cosh2(πfc3/2) + . . . ,
lo

*ύ3 —

and this yields a metric which is asymptotically a constant multiple of

ds2 4 2 16

+ +s2 scosh2ίπ]fc3/2) x s2sinh2(πfc3/2)cosh2(πfc3/2)
4 o .

σ;

which is clearly complete as s -> 0.

Note that the coefficient of σ\ vanishes to order s2 just as in the

Bergmann metric. Moreover on the annihilator of σ2, we have the

conformal structure

h = cosh2(πfc3/2)σ2 + sinh2(πA;3/2)σ3.

Prom this, we evidently have the following:

Theorem 10. Let h be a left-invariant CR-structure on S 3. Then
there is a complete anti-self-dual Einstein metric on the ball which in-
duces h on the boundary.

Proof Choosing a suitable basis, any invariant CR-structure can
be represented in the form

\χσx + λ3σ3

with λi > λ3 > 0. If λx = λ3, the Bergmann metric provides the
required solution. Otherwise, take Λ3 > 0 satisfying

tanh(πfc3/2) =
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and use the metric of Theorem 9.

9. A classification of Έinstein metrics

In the previous sections we have seen how monodromy considerations
enable us to write down explicitly the solutions to Einstein's equations
which arise from Painleve's sixth equation, whereas the general SU(2)-
invariant anti-self-dual conformal structure is still as intractable as the
general Painleve transcendent. Recall that in Section 4 we mentioned
the fact that the general anti-self-dual conformal structure with Λ3α
vanishing with multiplicity 2 can be solved with Painleve's third equa-
tion, and hence more Painleve transcendents. It turns out that the
Einstein condition again provides a simplification which we shall use
in this section to complete the classification of anti-self-dual Einstein
metrics with SU(2) symmetry and 3-dimensional generic orbits.

We shall prove the following:
Theorem 11. Let M be an SU(2) -invariant anti-self-dual Einstein

manifold with 3-dimensional orbits, and suppose that on its twistor
space Λ3a vanishes on a divisor D with multiplicity 2. Then the Ein-
stein metric is defined by an SU(2)-invariant U(l) monopole on a 3-
dimensional space of constant curvature.

Before beginning the proof, let us recall the particular construction of
anti-self-dual conformal structures by means of U(l) monopoles. This
has its origin in the Gibbons-Hawking Ansatz for hyperkahler metrics
[13], where the 3-space is R 3 and was used in the case of S3 by Pedersen
[29] and H3 by LeBrun [24]. A C/(l) monopole on a 3-manifold N3 with
Riemannian metric h is a connection A on a principal C/(l)-bundle,
and a function V such that V and the curvature F are related by the
Bogomolny equations

F = - * dV.

This is essentially equivalent to V being harmonic.
When h is of constant curvature, the conformal structure

on the 4-dimensional principal Ϊ7(l)-bundle over N is anti-self-dual.
Moreover, when V and A are SU(2)-invariant, the metric
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is Einstein for a suitable choice of function / (see [29]). In this sym-
metric situation, we have the following:

• If N =R 3 , then V = e + m/r and / = c, which gives a metric
with scalar curvature R = 0.

• If N = S3, then V = e + mcotp and / = c(ecosp — rasinp)"1,
where p is the distance from the fixed point of the SU(2) action
on N. This gives an Einstein metric with scalar curvature R =
-3e/c2.

• IfiV = H3

η then V = e+racothpand/ = cίecoshp+rasinhp)"1,
where p is the distance from the fixed point. This gives an Ein-
stein metric with scalar curvature R = 3e/c2

In all cases e, ra, and c are real constants.
Proof of theorem. We shall use the twistor approach. Prom this

point of view, a U(l) monopole over a space of constant curvature is
give by a holomorphic principal C* bundle over its minitwistor space T
which is of degree 0 on each twistor line in T (see [17]). The minitwistor
space of R 3 is the tangent bundle of C P 1 with twistor lines the sections;
of S3 the quadric CP 1 x C P 1 C C P 3 with twistor lines plane sections;
and of H3 an open set in the quadric. Thus we need to prove that,
if Z is the twistor space of the Einstein manifold in the theorem, it
can be expressed (at least locally around a twistor line) as a principal
holomorphic C* bundle over a minitwistor space T, and such that the
twistor lines of Z map into twistor lines of T. In fact, the existence of a
C* action is a global assertion, and it is sufficient for our purposes for
Z to fibre over T with the fibres orbits of a holomorphic vector field.

From the hypothesis of the theorem, we have Λ3α vanishing with
multiplicity 2 on £>, thus 2D is a divisor of K~λ and (working locally
or passing to a double covering) there is a holomorphic section v of
K~1/2 vanishing on D. Since D is Sf/(2)-invariant, so is υ. But as in
Theorem 4, the twisted 1-form θ on the twistor space of an Einstein
manifold defines by composition with a a section β of K~1^2 ® gc, and
hence a 3-dimensional subspace gc C H°(Z, K~χ/2). The section v lies
outside this subspace since it is invariant whereas the representation gc

is irreducible. We thus have a 4-dimensional subspace U of the space
of sections.

We claim that there are no base points for this system, that is there
are no points where all sections vanish. Suppose for a contradiction
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that z E Z is such a point. Since s vanishes at z, this point lies in
D. But the base locus is invariant by SU(2), which has 3-dimensional
orbits, hence a neighbourhood Do ofz'mD is contained in the locus. By
reality, the same is true of the antipodal point τ(z). Thus all sections
u E J7 vanish on Do + τ(D0). Now let P be a real twistor line passing
through z. Since K~χl2 is of degree 2 on P, D meets it only in the
points z,τ(z). Nearby twistor lines meet D in Do and τ(D0), thus in
a neighbourhood of P, all sections u £ U vanish only on Do + T{DQ).

Thus each u can be written u = fυ for some holomorphic function /
in a neighbourhood of P. But on any twistor space all holomorphic
functions are constant, thus u is 5ί7(2)-invariant, which we know not
to be the case. Hence there are no base points.

Since there are no base points, we can use the system U to define
a holomorphic map p : Z -> C P 3 with the property that p*(O(l)) =
K~λ/2. Since K~χl2 has degree 2 on twistor lines, each twistor line
maps to a conic in CP 3 . Now 5 = tr(/32) is an Sί7(2)-invariant section
of if"1, and so its divisor is a component of the zero set of Λ3α. Hence,
at least in a neighbourhood of a twistor line, s = Xυ2 for some constant
λ. But the equation

tr(/?2) = Xv2

defines a subvariety of degree 2 in CP 3 , a nonsingular quadric if λ φ 0
and a quadric cone if λ = 0. Note that from (39), which is equally valid
in the present context, λ = 0 iff the scalar curvature R = 0. Thus if
R φ 0, p maps Z to a quadric and the twistor lines map to conies in
the quadric, i.e., to plane sections. If R = 0, p maps to the cone, but
the complement of the vertex is isomorphic to TCP 1 , and the sections
are plane sections missing the vertex. In either case, then, the image is
the minitwistor space for a 3-manifold of constant curvature, and the
twistor lines correspond.

It remains to find the vector field along the fibres. For this, note
(see [8], for example), that any real holomorphic section of K~χl2 cor-
responds to a section ω of the bundle Λ^ on M satisfying a certain
differential equation D2ω = 0, and as a consequence of this and the Ein-
stein condition, the vector field X dual to the 1-form d*ω is a Killing
vector field. Thus the section v generates an 5ί/(2)-invariant vector
field, which preserves the metric and hence induces a holomorphic vec-
tor field on the twistor space. Being invariant, it leaves fixed each
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section in Ϊ7, and so acts along the fibres of the projection p.
The only thing left to check is that X is not zero. However, if this

were so, then ω would satisfy D2ω = 0 and dω = 0 and would then
be covariant constant by the definition of D2. But then the holonomy
would reduce to U(2) (i.e., the metric would be Kahler) or be trivial.
On the other hand, as we have remarked in Section 2, an anti-self-dual
Kahler metric has zero scalar curvature, and since the metric is Ein-
stein, this makes it hyperkahler. Since the Kahler form ω is invariant,
the action of SU(2) on the full 3-dimensional space of covariant con-
stant forms is trivial. In twistor terms, however, this means that the
rank of α is 2, the case excluded here and dealt with in Theorem 2.
The theorem is thus proved.

We can now put together Theorems 2, 6, and 11 to obtain a list of
all invariant anti-self-dual Einstein metrics:

Theorem 12. Let M be an SU(2)-invariant anti-self-dual Einstein
metric with 3-dimensional generic orbits. Then M is locally isometric
to one of the following:

1. a 4-τnanifold of constant curvature,

2. the Eguchi-Hanson metric,

3. the Belinskii-Gibbons-Page-Pope metric,

4- an SU(2)-invariant U(l)-monopole over a 3-manifold of constant
curvature,

5. a metric defined by the solution to Painleve's sixth equation in
Theorem 6.

Remark. The metrics which appear in two places in the list are
those which have two different SU(2) actions, or equivalently which
have an isometry group which is a compact Lie group of rank 2. Only
5Ό(4), SO(5) and SU(3) can act on a 4-manifold and these give the
standard metrics on S4 and CP2. For the solution of Painleve VI which
gives rise to these, see [19].

A more useful classification is to consider the global condition of
completeness. In this case we obtain the following list.

Theorem 13. Let M be a complete SU(2)-invariant anti-self-dual
Einstein metric with 3-dimensional generic orbits.

1. If R> 0, then M is isometric to:

(a) the constant curvature metric on S4,
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(b) the Fubini-Study metric on CP2.

2. If R = 0, then M is isometric to:

(a) the flat metric on R4,
(b) the Taub-NUT metric on R4,
(c) the Eguchi-Hanson metric on the cotangent bundle of S2,
(d) the C2 metric on the moduli space of two SU(2)-monopoles

onR3.

3. If R < 0, then M is isometric to:

(a) the metric of constant negative curvature on the unit ball in

(b) the Pedersen metric on the unit ball,
(c) one of the metrics of Theorem 7 on the unit ball,
(d) the Pedersen/LeBrun metric on a line bundle of degree — n

over S2,
(e) the Bergmann metric on the unit ball,
(f) one of the metrics of Theorem 9 on the unit ball

Proof. For the purposes of the proof, we shall distinguish the three
types of solutions as follows:

• Type I: Λ3α = 0.

• Type II: Λ3α ψ 0 and vanishes with multiplicity 2.

• Type III: Λ3α φ 0 and vanishes nondegenerately.
(1) First consider the case R > 0. It is a well-known consequence of

Myers' theorem that a complete Einstein manifold with positive scalar
curvature is compact. We can then use Theorem (13.30) of [8] to deduce
that M is isometric to CP2 or 54, without using directly the symmetry
assumption.

(2) Next consider the case R = 0, and metrics of Type I. Here
Theorem 2 tells us that the metric is either conformally flat, Eguchi-
Hanson or Belinskii-Gibbons-Page-Pope. The latter is well-known to be
incomplete, and the Eguchi-Hanson metric is complete. A conformally
flat Einstein metric with zero scalar curvature is flat, and so M is
covered by R4. Since SU(2) is simply connected, its action on M lifts
to R4, where it has a unique fixed point, the origin. But SU(2) must
commute with the covering transformations, which therefore have a
fixed point which is a contradiction unless M =R4.

Now consider Type II metrics. Here the non-flat ones axe given, up
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to a scalar multiple, by taking V = 1 + m/r. When m > 0, this gives
the Taub-NUT metric (see e.g.[8]) which is complete, and when m < 0
a metric which is incomplete at r = —m.

The metrics of Type III, and their completeness properties, are dis-
cussed in [4], in fact in the same context as the Taub-NUT metric. The
only complete one is the 2-monopole hyperkahler metric.

(3) Now consider the case R < 0. Beginning with Type I, the only
possibility is a conformally flat metric and hence a manifold of constant
negative curvature. Again, since the SU(2) action on H4 has a unique
fixed point, M must be isometric to H4.

As for the metrics of Type II, there are two cases in Theorem 11,
involving trigonometric or hyperbolic functions. Since we require neg-
ative scalar curvature, the formula for R shows that we can take c =
1,6 = 1 in the trigonometric case and c = l , e = —lin the hyperbolic
case. In diagonal form the metrics (from [29]) can be written as

9 = (cosp —
4 m ! * ϊ ] .

(1 + racotp)

or

9 = (-coshp + msinhp)
[(-1 +mcothp)(rfp2 + 4sinh2 p{σ\ + σ2

2))

, 4 m 2]
(-1 + mcothp) 3 J'

In both cases, near p = 0, the metric is given by

g = 4m(d(ρL/zy + {p ' ) (σ( + σ\ + σ^)) + . . . ,

which clearly extends to the puncture p = 0, as remarked in [29].
In the first case, the conformal structure is regular, but the metric

blows up at p = po, where cotp0 = m and this induces the conformal
structure

on the sphere. If m > 0, the metric is regular for 0 < p < p0, and
this is Pedersen's metric (also found analytically in [14]) on the ball,
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inducing a conformal structure σ\ + σ2 + λσ | on the boundary when
λ < 1. For p > po, the metric becomes singular and incomplete at
P = Pi where cotp = —1/ra, and for p > px it changes signature. If
ra < 0, the behaviour is similar, replacing p by π — p.

In the second, hyperbolic, case when ra > 1 the metric is singular at
p = p0^ where cothp0 = ra and this induces the conformal structure

2
o . o . ra» o

ra2 — I

on the sphere. Since cothp > I > 1/ra, in this case the conformal
structure is regular for all p. For p < po this is the Pedersen metric on
the ball inducing the conformal structure af+a^+Xal on the boundary
for λ > 1. We need to estimate the metric as p -> oo. This is easily
seen to be

which is incomplete, and in fact has a conical singularity around a
2-sphere, for setting r = e~p, the metric is a multiple of

+ (——r) r2σ2 + σ\ + σ2.

It can be extended to a metric on a smooth manifold, the complex line
bundle of degree n over S2 if ra satisfies ra = n/(n — 2). In this case,
the conformal structure was found by LeBrun in [23] in the context
of scalar-flat Kahler metrics (see also [30]), but it is a continuation
of Pedersen's metric. The result is a complete Einstein metric with
conformal infinity the Lens space 5 3 /Z n . If p < 0, the metric is negative
definite.

When ra = 1 the metric is defined for all p > 0 and is the Bergmann
metric (see [29]). If ra < 1, the conformal factor is still non-vanishing,
but the conformal structure is singular where cothp = 1/ra. Since the
coefficients of both σ\ and σ\ vanish, the metric does not extend to any
2-dimensional orbit.

Finally consider the generic case Type III, which relies on the solu-
tion (68) to the Painleve equation. From Proposition 8, we saw that
the two types of poles of y(x), with positive or negative residues, give
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rise respectively to punctures or boundaries of Einstein metrics. When
the conformal structure becomes singular as in Proposition 10, with
ίl\ -> 0, the conformal factor (65) approaches

Ω2(x0 - 4(1 -

2Ω 1 Ω 3 ( l-z 0 ) 2 '

Here we have used ΩJ — ίl\ — Ω\ = —1/4, which also shows that all three
do not vanish simultaneously. Since, as in Proposition 10, Ω\ vanishes
to higher order than either Ω2 or Ω3, the conformal factor tends to
zero, and we do not obtain a complete metric at such a singularity.

Thus a complete Einstein metric must be defined on intervals in
which the conformal structure is nonsingular, and whose end-points
are either 1,00 or poles of y(x).

There are four possible domains of definition:
1. a finite interval (xo?^i)5

2. an interval (l,Xi),

3. an interval (#1,00),

4. the whole interval (1,00),
where x0, ^1 are poles of y(x), and there are no poles in the interval. We
begin with the case k3 φ 0, assuming as usual k3 > 0 and 0 < kx < 2.
Suppose first that fc2 / 0,1.

Prom Theorem 7, y(x) has poles at the points x(ik3/(kι + 2n — 2)) =
xn and as n —> 00, xn —> 00, which means that any interval of the form
(3) or (4) contains poles and so cannot define a complete metric.

For a finite interval, Proposition 13 describes the situation. On the
interval (xn^xn+χ) we have a complete metric already. If such a metric
existed on {xn,Xn), the conformal structure would be an analytic con-
tinuation and we could produce an anti-self-dual conformal structure
on a manifold homeomorphic to S4. As argued in Theorem 8, this must
be conformally flat, which is a contradiction.

Thus the metrics of Theorem 7 are the only complete ones occurring
on a finite interval.

It remains to consider case (2), and for that we must estimate y(x)
as x —> 1, or equivalently σ -> 00. In this limit, it is convenient to
normalize the choice of k3,kχ by taking 0 < kι < 1 and not fixing the
sign of k3. Since y(x) depends only on the monodromy, this has no
effect on the estimates.
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Using the expansion

J ( / > 2 sin(2n
n=0

with v = i(kiσ — k3)/2 we obtain an expansion in increasing powers of
e~σ

(85) ^ » = iπ ( - 1 - 2e2πiu + 2e-2πσ-2πi" + . . . ) ,

and differentiating this to obtain expressions for p(ω) and p'(ω) we
find

By this expansion for y(a ) near a; = 1, the Einstein metric from (64)
and (65) is of the form

(87) g =

where x = 1 + s and c is a constant. Putting t = s*1/2 the metric can
be seen to have a conical singularity of angle πfci/(l — kι) around an
RJP2 orbit (cf [19]) or twice the angle around an S2 orbit on a double
covering. If the angle is 2πn for an integer.n, then the metric is well
defined on a quotient by a right action of Z n . But this requires the
coefficients of σ\ and σ\ to be equal, which leads to the case of metrics
of Type II. If the angle is 2π/n, then the metric is defined on an n-
fold covering branched over the orbit, but for topological reasons the
generic orbit of SU(2) is then S3/G where G is the quaternion group,
or a double covering.

Returning to the normalization with fc3 > 0, Proposition 13 shows
that the first pole x = x0 of y(x) has positive residue if 0 < hi < 1
and negative residue if 1 < kx < 2. In the first case, y(x) -> —oo
as x —y xQ—, so that xQ is a puncture. But a smooth metric requires
the orbit of 577(2) to be a 3-sphere, and not a quotient as above.
In the second case, y(x) -> +oo as x -> xQ—. But from (86), y(x)
approaches 1 from below as x -> 1+, thus the graph of y(x) must meet
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the line y = x with positive derivative, which gives a singular conformal
structure from Proposition 10.

Hence the generic case kλ φ 0,1, k3 > 0 produces only the complete
metrics of Theorem 7.

Consider next the special case kx = 0, where we can now take k3 > 0.
The arguments above hold except for the expansion as x —> 1. Here, v
is independent of σ and as σ -» oo, we use the expansion

( 8 8) r T T T = 7 c o t ™

which yields the following behaviour for y(x) near x = 1:

2), ^ x 9
^^ - I)2 + .

sinh2

Since y(x) has derivative 1/2 at x = 1, if y -» +oo as x -> Xi~,
the graph must meet the line y = rr at some point x0 with y(x) — x
having positive derivative, giving a singular conformal structure from
Proposition 10. On the other hand if y —> —oo, then xx is the point
σ = k3/2 and as σ -> k3/2+, the expansion (83) shows that ϋ^/iΰx is
large and negative. But from (88) it is positive as σ -> oo, so again
y(x) must have a pole in the interval.

Now consider the other special case kx = 1 and k3 > 0. Again the

arguments above deal with the case of an interval (# 0,#i). Let (l,#i)

be an interval on which a metric is defined and complete. Then Xι

must be the first pole of y(x). From Proposition 13, X\ = x(ik3). But

then Theorem 9 describes a complete metric.

Finally consider the case k3 = 0. We can now choose 0 < kι < 1,

and in fact since the monodromy is non-abelian, kx φ 0,1. In this case

CJ = k\ω3 and is never a period, so there axe no punctures. The other

pole of y(#), for a boundary, occurs when

Differentiating the identity

(89) ίiWτ,-l
%\J%
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is equivalent to
ΰ'1(k1/2,-l/τ)=0,

but the expansion (83) shows that this never occurs if kx < 1, thus
y(x) is regular on the whole interval (1, oo). As x —> 1, the asymptotic
form (87) still holds, with fc3 = 0. The arguments advanced there hold
too and imply that kι = 2/3 or 1/2. In this case, with k3 = 0, the
monodromy is then from Theorem 5 finite, in fact the binary dihedral
groups of the symmetries of a triangle or square. As discussed in ([19]),
these cases are analytic continuations of the standard metrics on S4 and
CP 2 , and the Einstein metrics of negative scalar curvature in these
families are the hyperbolic metric and Bergmann metric, dealt with
elsewhere and not, in fact, admitting an SU(2) action of Type III.

Since all cases of Type and monodromy have now been considered,
the classification follows.
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