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SOME REGULARITY THEOREMS
FOR CARNOT-CARATHEODORY METRICS

URSULA HAMENSTADT

1. Introduction

Let M be a smooth connected m-dimensional manifold and Q a
smooth ^-dimensional distribution on M which is bracket generating,
i.e., for every p e M the local sections of Q near p span together with
all their commutators the tangent space TpM of M at p.

A curve φ in M is called horizontal if φ is tangent almost everywhere
to Q. It is a classical result of Chow that any two points of M can be
joined by a horizontal curve (see e.g. [13, 12]). Thus if Q is equipped
with a Riemannian metric ( , ) Q , then the function dc: M x M —• K,
(p, w) —• inf{length(0>)|$!> is horizontal and joins p to w } is a distance on
M, the Carnot-Caratheodory metric induced by (Q, ( , )Q).

Let ( , ) be an extension of { , ) Q to a Riemannian metric on Λf,
and let dist be the induced distance on M. Then dc > dist, and any
rectifiable curve with respect to dc is rectifiable with respect to dist, hence
differentiable almost everywhere and moreover horizontal [13], Vice versa
every horizontal curve is locally rectifiable with respect to dc its dc -length
coincides with its usual length as a curve in (M, ( , )) (see [17]; this also
follows from the general theory of length structures in [6]). Thus (M, dc)
is a locally compact length space and complete if this is true for (M, dist).

Let p G M and ε > 0 be such that the closure of the open dc-ball
B of radius ε around p is compact. Then it follows from the theory
of locally compact length spaces [6] that every u e M with dc(p, ύ) < ε
can be joined to p by a minimizing geodesic with respect to dc, i.e., a
horizontal curve which realizes locally the ^-distance of its curve points
(this is also proved in [17]). Strichartz showed that if Q satisfies the
strong bracket generating hypothesis (see [17]), i.e., if TM is generated
by Q and [X, Q] for every nonzero local section X of Q, then these
geodesies are solutions of a system of Hamilton-Jacobi equations on the
cotangent bundle TfM of M, in particular they are smooth curves. This
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leads to the definition of an exponential map of an open neighborhood
of the zero section of T1 M onto M however its restriction to a fiber of
T M is not of maximal rank at 0.

In this paper we give a different approach to the theory of geodesies.
We extend ( , ) Q to a Riemannian metric ( , ) on M and consider
a variational problem in (M, ( , )) . We obtain a simple differential
equation for the critical points of this variational problem and show that
these critical points are geodesies with respect to dc, i.e., they are locally
minimizing curves (this answers a question in [17]). On the other hand,
Bar [1] showed that every geodesic is a critical point; together this gives a
complete description of the geodesies.

This leads to the definition of an exponential map exp^ at a given point
p e M which maps an open neighborhood Ω of 0 in TpM onto an open
neighborhood of p in M. We show that exp£ is of maximal rank on
an open and dense subset of Ω. However exp£ depends on the choice
of the extension of ( , ) Q to a Riemannian metric on M and moreover
on the choice of a local trivialization of TM adapted to our situation.
If the distribution Q satisfies the strong bracket generating hypothesis,
then ( β , ( , )Q) determines a unique Riemannian metric ( , ) on M
extending ( , ) Q and thus exp^ only depends on the local trivilization.
Moreover every dc -geodesic emanating from p is uniquely determined by
its tangent and the covariant derivative of its tangent at p, i.e., exp^ is
defined intrinsically.

As an application of the investigation of geodesies we show that any
isometry between manifolds with Carnot-Caratheodory (briefly CC-) met-
rics is necessarily smooth and clearly commutes with the exponential map.
We conclude the paper with an example where the geodesies can easily be
computed explicitly.

2. The space of Hχ -curves in M through a given point

Let p e M. We consider the Hubert manifold H\ (/, U) of all con-
tinuous, absolutely continuous curves φ: I —• U through φ(0) = p with
square integrable derivative, where U is a suitable open neighborhood of
p .

Fix a Riemannian metric ( , > on M extending ( , ) Q . Given p e M

select a local orthonormal basis {X1, , Xq} of Q and a local orthonor-

mal basis {ΛT*+1, , Xm} of the ( , )-orthogonal complement Q± of



REGULARITY THEOREMS FOR CARNOT-CARATHEODORY METRICS 821

Q. The local frame {X1, , Xm} , defined on an open dc-baΆ U of
radius p > 0 around /?, will be called admissible. Let 0 1 , , θm be
the dual coframe and let θ = (θι, , θm). θ is a 1-form on U with
values in a Euclidean m-space Rw .

The map θ , defined on H*(/, C/) by (θφ){ή = 0 / ( 0 , has its image
in the Hubert space H0(I, Rm) of square integrable curves in Rm .

Lemma 2.1. θ is a diffeomorphism of Hp (/, [/) onto an open neigh-
borhood of 0 in H0(I,Rm).

The proof uses the fact that the Banach-manifold of all continuously
differentiable curves in U starting at p is diffeomorphic to an open neigh-
borhood of 0 in the Banach space of continuous curves in T M ~ Rm (see
[9]) and a standard completion argument.

There are unique 1-forms θι- on U such that

(a) 0j = - 0 / ,

(b) dθ^Σtiθ'Aθl

(see [16]).
Let φ e Hp

χ(I, U) and let X be an element of the tangent space Hp

χ(φ)
of HP(I, U) at φ , i.e., X is a section of TM over $0 of class Hχ which
vanishes at /? = φ{0). Denote by j-tX the covariant derivative of X with
respect to the Riemannian connection of ( , ) . Then

Lemma 2.2.

7=1

Lemma 2.2 is well known and can be found in [16].
Write dθ = (dθι, • • • , dθm) dθ is a 2-form on U with values in Rm .

As a corollary of 2.2, the differential dθφ of θ at φ can be computed
as follows:

Lemma 2.3. // x e H*(φ), then dθφX = ft(ΘX) - 2dθ{φ , X).

Proof. Let Ψ: (-ε, ε) x / -> U be a variation of φ = Ψo with variation

vector field X = £ Ψ | ί = 0 such that Ψ ( - ε , ε) x {0} = p. Then

and by Lemma 2.2 the /th component of (dθφX){t) equals
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Using ^JjΨfa, /) = m§sψ(s^ 0 a n d a ε a i n L e m m a 2 2 f o r mfsψ(s^')
we obtain for the /th component of (rfθ^Z)(r) the value

m

which shows the claim, q.e.d.
Now for every u G U and X G TUM the assignment 7 -+ 2dθ(X, Y)

is a linear mapping of ΓMM into Rm. Let α*(X) be its adjoint with
respect to the scalar product ( , )u on TUM and the Euclidean scalar
product ( , ) on R m . a*{X) is a linear map of Rm into ΓMM which
satisfies (2dθ{X, 7 ) , Z) = ( 7 , α*(*)Z) for all 7 G ΓWM, Z G R m .
Moreover the assignment X —• α(ΛΓ) = θa*(X) is a smooth 1-form on
U with values in the vectpr space of linear endomorphisms of Rm . For
convenience we will also write a(X, Z) instead of a(X)Z .

Remark 2.4. The form a can also be computed as follows: Let bι

jk

[i, j , k = 1, , m) be the unique smooth functions on U which satisfy
dθι = jΣj k bι

jkθ
jΛθk and bι

jk = -bι

kj. Then an easy computation shows

θ'aiX, Z) = Σj=i Σti bi

ikθ
k{X)Zj for all Z = (Z,, , ZM) e Em .

However we do not need this formula in the sequel (compare [16]).

The pullback via θ of the L2-scalar product of H0(I, Rm) isaRieman-
nian structure g on # f ( / , C/) which induces for every compact neighbor-
hood ^ of /? in U a complete metric on H\(/, Λ) c f/f (/, ί/). If p e

flf(/,t/) and Λ Γ , r € ^ ( ^ ) , then ί f ( J Γ , y ) = /J(rfθfΛΓ(O,rf^^
The linear subspace {X G //f(^)|X(l) = 0} c H\{φ) is closed in

Hp

χ(φ)\ hence its ^-orthogonal complement J(φ) is an m-dimensional
linear subspace of H\(φ). We have

Lemma2.5. J(φ) = {X G flf (^)|^(rfθ fΛΓ)(0-β(/(ί), (rfθ ΛΓ)(ί)) =
0}.

Proof. Let 7 G H^{φ) be the preimage under dθφ of a curve of class

Hχ in Rm . By Lemma 2.3 for every X e Hp

χ(φ) we have

Thus any solution c: I -> F of the differential equation

(l) c(ί) = α(/(0)c(0

is the image under dθφ of an element of J(φ). Now (1) is a linear
differential equation whose coefficients (i.e., the entries of the matrix rep-



REGULARITY THEOREMS FOR CARNOT-CARATHEODORY METRICS 823

resenting a(φ'(t))) are as regular in t as the map t —• θφ{t), i.e., they
are square integrable. Thus (1) admits precisely m linear independent
solutions which shows the lemma, q.e.d.

If φ has a continuous derivative, the existence of an m-dimensional
space of solutions of (1) follows from the standard theory for solutions of
ordinary differential equations with continuous coefficients. We include a
proof for the general case since it provides us with norm estimates which
are needed later.

For a curve φ of class H{ in U and an element c of the Banach
space L°°(7, Rm) of essentially bounded maps / -+ Rm provided with
the norm \c\ = esssup,€/ ||c(OH, define T c(s) — /Ja(φ\t))c(t)dt. Thus
c is a solution of (1) with c(0) = c0 for some c0 e Rm if and only if
c-Tf = c0.

Let ||L|| be the operator norm of a linear endomorphism L of the Eu-
clidean space Rm . Then φ e 7/f(7, U) means u(φ) = /J \\a{φ\t))\\dt <
oo.

Lemma 2.6. For every φ E i/f (/, U), Id - T is a continuous invertible

linear automorphism of L°°{I, Rm). The operator norm of (Id-Tφc)~ x

does not exceed (2v(φ) + 2)Mφ)+ι.

Proof Let c € L°° ( / ,K) ; then | | Γ f φ ) | | = | |/ofl(^(OMO^II <
v(φ)\c\, i.e., Tφ is a continuous linear endomorphism of L°°(/,RW)
whose operator norm does not exceed v(φ).

Let k > 0 be the smallest integer which is not smaller than 2u(φ) and

choose a partition 0 = s(0) < s(l) < •• < s(k) = 1 of / such that

XS) + 1 > l l f l ( ^ ( 0 ) l l ^ ^ < i for all j<k. Define ^ ( 0 = 5(7) + t(s(j + 1) -
*(./)) and ^.(0 = ^ ( ^ . ( 0 ) , for ί G /, and let c € L°°(/, Rw ) , c/ί) =

c{ψ.(t)). Since the operator norm of Γ is not larger than i , I d - Γ Λ

is invertible (see [15, p. 231]) and ( I d - 7 ^ ) " 1 = ΣZo K > i n Particular

the operator norm of (ld-Tφ)~ι does not exceed Σ ^ o 2 ' = 2 H e n c e

there is a unique a e L°°(7, Rw) such that we have (Id-7^ )αy = c. +
5 0 ) ^ 0 ) α ( ί ) Λ with α / 0 = α(^.(0) (7 < k). Then

c(ψj(t)) = c/0 = αy(0 - yo α(^.(j))α;.(j) ds -

= a(ψ.(t))- Γjt a{φ(s))a(s)ds,
J Jo
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which means (Id-Γ )α = c. This shows that ld-Tφ is invertible. More-
over we have

' a{φ\t))a{t)dt

and inductively |α| = s u p ^ \a.\ <2k{\ + v(φ))k\c\. This means that the

operator norm of (Id-T)~ι does not exceed 2*(1 +v(φ))k which is the

claim.

Remark 2.7. Let S c U be a smooth /c-dimensional submanifold
with tangent bundle TS. Then {φ G i/f(/, U)\φ{\) G 5} is a smooth
submanifold of //f(/, C/) of codimension m-k. Its tangent space at φ
consists of all X G Hp

χ(φ) with ΛΓ(1) G TS. Lemma 2.5 thus shows that
the g -orthogonal complement of this tangent space is just the (m - k)-

dimensional vector space {X e J{φ)\{dθφX)(l) G (TS^} .

Remark 2.8. If M is a Lie group with identity e = p, and the vec-

tor fields X{, , Xm are left-invariant, then the Lie algebra Tl of M

can naturally be identified with Rm . With this identification, θ is the

canonical left-invariant 1-form on M with values in SDΐ (see [9]). Thus

2dθ(X, Y) = (adX)(Y), where as usual ad denotes the adjoint representa-

tion of 971. Let Ad be the adjoint representation of M in Wl, and denote

by Ad* the adjoint of AdM for ueM. If φ e //f (/, M), then for every

c0 eWl the curve t -• Ad* (/)c0 satisfies the differential equation (1) of

Lemma 2.5. Thus in this case J{φ) = {X e H[(φ)\{dθφX){t) = Ad*(0 cQ

for some c0 e }

3. The manifold of curves tangent to Q

In this section we begin to investigate the submanifold HQ of HP

{{I, U)
of curves which are tangent almost everywhere to Q.

Identify Q with the subspace Θ{Q) ^ Rq of R m . The set HQ =

θ ~ H0(I, β) of curves which are tangent almost everywhere to Q is

a closed submanifold of //f(/,[/) . If P: V — (? denotes the ( , )-

orthogonal projection, then for every φ G HQ the ^-orthogonal projec-

tion P of Hp

χ(φ) onto the tangent space HQφ of HQ at ^ is defined

by PX = (dθφy
ιPdθφX.
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Let K(φ) ~ H0(I, β ± ) be the kernel of the projection P, and define

Ω(φ) = {Xe HQφ\X{\) = 0} . Then H*(φ) = Ω(φ)®(J(φ) + K(φ)), and

the ^-orthogonal complement Ω.(φ)± of Ω(φ) in HQ is contained in

P(J(φ) + K(φ)) = PJ(φ). Thus Ω(^) x = {X e HQφ\(dθφX)(t) = Pc(t)

for ceHχ(I, V) with c\t) = a{φf{t))c(ή} .
Let R: HQ -> U 9 φ -> φ(l) be the endpoint map. Then the rank of R

at φ equals the dimension of Ω(φ)± , and this dimension varies between
q = dim Q at the constant curve φ(I) = p and m = d imM. In particular
for u E U the closed subset R~\u) of //(? may not be a submanifold.

However the set {φ e HQ\ rankRφ = m} is clearly open in //(?. If
M is a Lie group, then Remark 2.8 shows that it is even open as a subset
of HQ with the C°-topology. A similar property holds in general. For its
formulation let dist again be the distance on M induced by the Rieman-
nian metric, and recall that the space C°(7, M) of continuous curves in
M with the distance d^φ, ψ) = sup{dist(^(ί), ^(0)1* € /} is a Banach
manifold, in particular a locally complete metric space. Let E: HQ - • E
be the restriction to HQ of the energy function φ —> ^/J \\φf(t)\\2dt.
First we have

Lemma 3.1. Let μ > 0 am/ ί? e i / β Π ̂ ' ^ O , μ). ΓAe« for every

ε > 0 /Aere w ί > 0 swcΛ /to supre/1| f^θγ'is) - θφ(s)) ds\\ < ε for all

γeHQnE-ι[0,μ) with dO0(y,φ)<δ.

Proof. Let U, X1, , Xm , 0 be as before and assume without loss of
generality that there is a diίfeomorphism Ψ of Rm onto U with ψ(0) =
p. Define c(t) = Ψ~ιφ(t) and denote by ||L|| its operator norm for a
linear map L between Euclidean vector spaces.

Let A be a compact neighborhood of c(I) in Rm and let

p = sup{||rfΨJ|, Hrf^lllMe A} < oo.

By the smoothness of Ψ there is then σ > 0 such that for every t e I
and every u e U with dist(φ(t), ύ) < σ

\\θ(dΨ)c{ή-θ(dΨ)ψ-iu\\<ε/SpJμ.

Choose n > 2 such that dist(φ(s), φ(ή) < σ for \s - t\ < l/n, and let

δ < σ be sufficiently small that dQO(φ,γ)<δ implies ||c(0 - Ψ " 1 γ(t)\\ <

ε/l6np for all t e l . Let y e HQnE~{[0, μ) with ί / o o ( y , ^ ) < ^ and
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define c(t) = Ψ~ιγ(t). Then

sup
tei

< sup \f\θ(dΨ)-φ)-θ(dΨ)φ))cf(s)ds

H- sup
k<n-\ 7=0

+ sup sup
k<n r<\/n

,n)Γ \c{s)-c\s))ds

pk/n+r

n) (<?(s)-c\s))ds
Jk/n

i/n))(c(s)-c'(s))\\ds

+ 2j2p\\cU/n)-c(j/n)\\
j=Q

+ p sup sup (||c(τ + j/n) - c(τ + j/n)\\ + \\c(J/n) - c(j/n)\\)
j<n r<\/n

•1

1̂ (5) -c\s)\\ds.8

Since /J Hc' and /J dx < , the latter sum does
not exceed ε which yields the claim, q.e.d.

Recall the definition of the automorphisms Tγ of L°°(/, V) {γ e
//f(/, t/)) preceding Lemma 2.6. From Lemma 3.1 we obtain

1Corollary 3.2. Let μ > 0
1" 1

G //£? Π J E 1 " 1 ^ , μ). 77ze« /or

) ~ ιε > 0 there is δ > 0 swc/* ίΛαί \{{ld-Tφ)~ι - (Id-Γ

ceRm with \\c\\ = 1 and all γ e HQnE'l[0, μ) with

^ < ε for all

^iγ, φ) < δ.
Proof. Choose a compact neighborhood 5 of φ(I) in [/. Since a is

a smooth 1-form on U with values in the linear space of endomorphisms
of Rm, there is a > 0 such that HαWH < α| |^| | for all u e B and
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X € TuM. This means i/(y) < ajμ for all γ e HQ Π E~ι[0, μ) Π

H*{I,B) = H.

Let ε > 0 and choose ε < ε/lQyβ + 2 ) 2 v 7 Z + 1 . Let Σ be the unitβ
sphere in E m . Then the map ψ:ΣxI -^V, (c,t)-+ ((Id-T φ )~ ι c){t) is
continuous. Hence there is p > 0 such that | |y c (ί) - ψc(s)\\ < ε/(α v/μ + 1)
for all ceΣ and s, tel with |s - ί| < p. Moreover

σ = suρ{||^c(ί)|||c e Σ , t e 1} < oo.

L e t k > l/p a n d d e f i n e ψ c { t ) = ψc([kt]/k) f o r c eΣ. T h e n ψc e
L°°(I,Rm) and \ψc - ψc\ < ε/(ay/μ + 1), where | | is the norm in
L°°(/, Rm) as before. Let γ e H; since the operator norm of Id-7^
does not exceed α^/μ + 1, we have | ( Id-Γ y )(^ c - ψc)\ <ε.

For γ e H and t e I, define a linear endomorphism A (t) of Mm by

A (t) = ^a{y\s))ds which means λ4 (ί) = /0

rA(α(/(5)))έ/j for every

linear functional λ on the vector space of linear endomorphisms of Rm .

Then

TγΨc(t)= f a(γ{t))ψc([tk]/k)dt
J[tk]/k

+ Σ / a{y\t))ψc{jlk)dt

j=o JJlk

= (A(ή-A([tk]/k))ψ([tk]/k)

7=0

Since a(^ M , ΘYU) e Rm depends smoothly on u e U for smooth vectors
fields X, Y on U 9 Lemma 3.1 shows that there is δ > 0 such that for
all y e HQ n E~ι[0, μ) with d^φ, y) < δ we have γ e H and

mp\\A(t)-A(t)\\<ε/2{k+l)σ.
tei γ φ

By the definition of σ this means

k

\τ

φΨc-
 τ

7Ψc\ ^ 2Σ\\A

φUlk) ~ Aγ{j/k)\\σ < ε9

7=0

hence

T)ψc-(ld-Tφ)ψc\
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Now by Lemma 2.6 the operator norm of ( I d - Γ ) - 1 does not exceed

(2ay/μ + 2)22y/Ji+ι from this we obtain

\(ld-Tγ)
 lc-ψc\<\(ld-Tγ)

 lc-ψc\ + \ψc-ψc\<ε

which is the claim.

Corollary 3.3. For every μ > 0 and every k < m the set {φ e

HQ\rankRφ > k} Π E'{[0,μ) is open in HQ n E~ι[0,μ) C

(C°(/,t/),rfJ.
Proof. Let φ e HQ with E(φ) < μ and ranki^ = k. Let Σ c l m

be the unit sphere in the orthogonal complement of the intersection of V
with (Id-Γp)L°°(/, Q±). Then there is by Lemma 2.5 a number e > 0

such that suρ,€ / \\P(ld-Tφ)~ιc0\\ > 2ε for all coeΣ. By Lemma 3.2 we

can find δ > 0 such that \{ld-Tγ)~ιc0 - ( I d - Γ ^ ) " 1 ^ ! < ε for all c0 e Σ

and all γ e HQ n E~ι[0, JM) with ^ ( ^ , γ) < δ . For such a y we have

sup/G/ \\P(ld-Tγ)~ιc0\\ > ε for all c0 G Σ, which means by Lemma 2.5

that ranki?y = m.

4. Critical points of the energy function

Let ψ\ (-ε, ε) —• //β be a variation of 9? = ψ0 with variation vector
field X = §^ψ\s=0 . For the derivative at s = 0 of the energy function E
on //ζ? we obtain

i.e., (dθ) xθφ' is the gradient of E at φ.

Call φ e HQ a critical point of E if (dθφy
ιθφf e a(φ)±. If the

rank of R at p is maximal, then there is a neighborhood A of 9? in //β
such that / { " ^ ( l ) ) n ;4 is a smooth submanifold of A , and φ is thus
critical for the restriction of E to this submanifold in the usual sense.

This immediately shows that every minimizing dc-geodesic φ with rank
Rφ = m is necessarily a critical point for E.

Define a smooth (2, l)-tensor field a on U by 0^M(X, 7) = a(X)ΘY

Lemma 4.1. 77*e critical points of E are smooth curves parametrized
proportional to arc length.

Proof If φ e HQ is a critical point of E, then (dθφ)~ιθφf is the
projection in HQ of an element of J(φ). Thus by Lemma 2.5 there is
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a function a: / -• Q± c Em such that

(2) *-θφ\t) + ̂ α ( ί ) - α ( / ( 0 , V (0 + α(/)) = 0.

If, by abuse of notation, we denote by P the ( , )-orthogonal projection
of TM onto Q, then (2) transforms to

(2') ^θc(ή = θa(Pc(ή,c(ή)

which is a system of first order differential equations on TU with C°°-
coefficients. Thus every solution of (2') is smooth, and moreover (2)
shows { j-tθφ'(ή, θφ'(t)) = 0, i.e., critical points of E are parametrized
proportional to arc length, q.e.d.

Now for every initial condition X e TpM there is a unique maximal

solution λ(X) of (2') which depends smoothly on X. λ(X) projects

onto a smooth curve λ(X) in U which is tangent to Q and parametrized

proportional to arc length. Since, by definition, U is just the open dc-ball

of radius p around p = λ{X){0), for every X e TpM with ||PΛΓ|| < p

the curve λ(X) is defined on / and λ(X)\j G //β is a critical point

of £ . Hence X —• A(Λr)(l) defines a smooth map exp^ of U = {X e

ΓpΛ/|||ΛXΊ| < /?} into C/. Now θ$-tλ{X){bt) = bθλ{X)'{bt) shows

θ λ ( b X ) ( ή = b λ ( X ) ( b ή o r A ( έ X ) ( 0 = λ(X){bt) f o r a l l i e E . T h u s

for every i G & w e have expc

p(tX) = λ(X)(t) (tel), i.e., t -> exp^(ίX)

(ί E /) is a critical point of £ .

Lemma 4.2. L^ ^ G TpM be such that λ(X) is defined on I and

mnkRλ(X) = m. Then for every μ > \\PX\\ there is δ > 0 and β < oc

such that d^iλiX), λ(Y)) < δ and \\PY\\ < μ implies \\Y\\ < β.
Proof. Let Σ be the unit sphere in Rm . Since rank Rλ{χ) = m , there is

then α > 0 such that \P(ld-Tλ{χ))~ιc\ > a\(Id-Tλ{χ))~ιc\ for all ceΣ.

Let ^ = i n f { | ( I d - Γ A m Γ ι φ G Σ } and σ2 = sup{\{ld-Tλ{X)y
ιc\\c G

Σ} . By Corollary 3.2 we can choose δ > 0 such that

supiαid-Γ^Γ1 - (Id-Tγ)~ι)c\ < aσx/2

for all γ eHQn E~{[0, μ2) with d^λiX), γ) < δ. For such a y we
then have

\P(ld-T)'lc\ > aσjl > aσ{σ2\(ld-Tγ)-lc\/4
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for all c e Σ. Hence if Y e TpM with \\PY\\ < μ and d^βiX), λ(Y)) <

δ, then £(λ(y))<μ2 and

1 aσχσ2\{lά-Tλ{γ))-χΘY\IA

>aσ{σ2\\Y\\/4.

This yields the claim, q.e.d.
Recall that a dc-geodesic is a curve φ in M, which is parametrized

proportional to arc length and realizes locally the ^-distance of its curve
points. If the closure of U in M is compact (which is always true if
we choose U small enough), then every u e U can be joined to p by a
minimizing dc-geodesic (see [6, 17]).

Any such geodesic which is parametrized on / is necessarily a critical
point of E. This was stated in [17], however the proof provided there is
only valid in the strong bracket generating case (where it also follows from
the fact that the map R is of maximal rank on each nontrivial curve in
Hp

χ (I, £/)). The general case was established by Bar [1]. In particular the
map exp£: U -» U is surjective.

Corollary 4.3. Let u e U be a regular value of expc. Then the set

&Ve

p)-\u)n{Y\\\PY\\ = dc(p, «)} is finite.

Proof. The set A = {expc

p)~ι(u) n {y | | |Py| | = dc{p, u)} is nonempty
and closed in 7 M. Since u is a regular value for exp^ , A is moreover
discrete. Assume that there is a sequence {Xk} c A such that \\Xk\\ —• oo
(k —• oo). Then λ(Xk) is a minimizing geodesic joining p to u its energy
equals dc(p, w)2. Thus by passing to a subsequence we may assume that
the curves λ{Xk) converges in (C°(7, U), d^) to a curve ^ which is
necessarily a minimizing d?c-geodesic joining p to w. Then ^ = λ(-Y) for
some X G A and Lemma 4.2 shows that there is k0 > 0 and /? < oo
such that ||ΛfJ| < β for all k > k0. This contradicts the assumption that
| |X II —> oo and shows that A is bounded, hence finite.

5. Calculus of variation

Since the rank of exp£ at 0 € T M is not maximal the above con-
siderations do not necessarily imply that λ(X) is a dc-geodesic for every
X e U, i.e., is locally minimizing with respect to dc. To show that this
is nevertheless true we compute the variation of the energy at the critical
point λ(X) (XeU).
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Lemma 5.1 (First variational formula). Let X e TpM be such that

λ(X) is defined on I and let ψ: {-ε, ε) -> HQ be a variation of λ(X) =

ψ0 with variation vector field Y = fsψ\s=0 Then fsE(ψs)\s=0 = (Y(l),

Proof With φ = λ(X) we have

= j\(dθφY)(t),θλ(X)(t))dt

[\θY(t),a(φ'(t),θλ(X)(t)))dt
Jo

q.e.d.

Recall that dθ is a smooth 2-form on U with values in Rm . Hence for
u e U and every tangent vector Y e TUM the derivative Y{dθ) of dθ
in the direction of Y is a bilinear mapping of TUM into Rm depending
smoothly on Y.

It will be convenient, furthermore, to use the following notational con-
vention: Recall that for every u e U the restriction of θ to TuM is
a linear isomorphism of TUM onto Rm, i.e., for every W e Rm there
is a unique W(u) e TUM such that ΘW(u) = W. Thus whenever no
confusion about the base point u is possible we can write dθ(W, Z) or
dθ(W, Z(u)) or dθ(W(u), Z) to denote the vector dθ(W(u), Z(u)) e
Rm . Similarly we denote by a(W) the linear map a(W(u)) (ueU, W ,
Z e Rm). With this convention the second variational formula for E can
be expressed as follows:

Lemma 5.2 (Second variational formula). Let X e TpM be such that

λ(X) is defined on I, and let ψ: (-ε, ε)1 —> HQ be a 2-parameter varia-

tion of φ = ψ{0, 0) with fixed endpoints ψ{-ε, ε)2(l) = φ(l) and varia-

tion vector fields Y = §-sψ\u=s^> z = fuΨ\u=s=o- τ h e n

= j\(dθfZ)(t), (dθφY)(t) - a(Y(ή, θλ(X)(t))) dt

+ (l2{{Z{t)dθ){φ\t), Y(ή), θλ{X){t))dt.
Jo
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Proof. Since

+ j\(dθφY)(ή,(dβφZ(t)))dt,

we have to transform the first integral. Define W{t) = -§^θ§fV\u=s=0 then

yields

^-γθ^-*¥\u=s=Q = i-W(t) + 2dθ(φ'(t), W{t)) + 2dθ(dθφZ(t), Y{t))

+ 2(Z(t)dθ)(φ'(t),Y(t)).

Since ^(1) = 0 we have fo

ι((dθφW)(ή, θλ{X){t))dt = 0, i.e.,

({dQφW){t),θφ\t))dt

= - f\(dθ W){t), (lά-P)θλ(X)(t))dt.
Jo ψ

Q = P^-m shows

(P-id(dβφw)(t)

= (lά-P){2dθ{dθφZ(t),Y{t)) + 2(Z{t)dθ)(φ\t),

hence

= [ (2dθ(dθZ(t)9 Y(ή) + 2{Z(t)dθ)(φ(ή9 Y(t))9θλ(X)(t))dt,
Jo ψ

and from this the lemma follows.
Remark 5.3. Assume again that M is a Lie group and that the vector

fields X1, ••• , Xm are left-invariant. By Remark 2.8 we have J{φ) =
{X e He

{(φ)\(dθφX){t) = Ad*{ήc0 for some c0 e 9JI}. For Y em let
(ad(7))* be the adjoint of the linear endomorphism ad(7) of 9JL Then
the formula of Lemma 5.2 reduces to

= j\(dθfZ)(t), (dθφY)(t) - (ad(ΘY(t))γ(θλ(X)(ί)))dt.
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Thus if Y is contained in the zero space of the Hessian of E at φ , then
Y is a solution of the differential equation

(3) (dθφY)(t) = P(Ad; ω c0 + (Bd(ΘY(t)))m(θλ{X)(t)))

for some cQ e 9JI. Every solution of (3) is uniquely determined by the
choice of c0 and the initial condition 7(0) in particular the dimension
of the vector space of solutions of (3) vanishing at t = 0 equals rank R =

dimΩ(^)"1 which in contrast to the fact that the Riemannian situation
may be strictly smaller than dim M.

Next we want to compute the zero space of the Hessian of E. For this
the following notation will be useful: Given φ e HQ and Z e HQ(I, Rm)
there is a unique vector field fZe H[(φ) such that Z{t) = $-tθ(f Z)(t) -
<*(φ'(t),θ{fZ)(t)). Write also {fZ){t) = f^Z(τ)dτ. For every We
H\(ψ) w e then have

= (dθφw(t),θ(fz)(ή) + (θW(t),z(t)).

Now if ω is a (2, 0)-tensor on U with values in Rm , then for each
u G U and X e TUM the assignment Y —• ω(X, Y) is a linear map of
ΓMM into Rm . We denote by (ω(X))* its adjoint. With these notation
we obtain

Corollary 5.4. Under the assumptions of Lemma 5.2 we have

dθφZ(ή, dθφY(ή -θ£a(dθφY(τ), θλ{X){τ))dτ

- θ j ' 2((Y(τ)dθ)(φ'(τ)))*θλ(X)(τ)dτ^ dt.

Proof. The claim follows from Lemma 5.2 and the following computa-

tion:

- / (dθY(t),a(Z(ή,θλ(X)(ή))dt
Jo ψ

= f\θZ(t),a(dθY(t),θλ(X)(t)))dt,
Jo

and since Z(l) = 0, integration by parts shows that the latter integral

equals

- f (dθφZ(t),θj'a(dθφY(τ),θλ(X)(τ))dτ^ dt.
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Analogously

f\(Y(t)dθ)(9(t)9Z(t))9θl(X)(t))dt
Jo

= ί\θZ(t), {{Y{t)dθ){φ\t)))*θλ{X){t))dt
Jo

Z(t), θ £((Y(τ)dθ)(φ(τ))γθλ(X)(τ) dτ^ dt. q.e.d.dθφ

Corollary 5.4 shows that if a field Y e HQφ is contained in the zero

space of the Hessian of E at φ , then there is Ϋ e J(φ) such that

(4)

dθφY(t) = P (dθfΫ(t) + θ £a(dθφY(τ), θλ(X)(τ))dτ

+ θ£2((Y(τ)dθ)(φ'(τ)))*θλ(X)(τ)dή .

This differential equation can be transformed to a differential equation
of the form c(ί) = f{t, c(ί)) for some smooth function / : / x V —> V
which is linear in the second variable as follows (then c{t) is interpreted
as ΘY(ή): We have

a(dθφY(t),θλ(X)(ή)

= £-a(Y(ή,θλ(X)(ή) - (φ'(ήa)(Y(t), θλ(X)(ή)

-a(Y(t),a(φ'(t),θλ(X)(t)))

+ 2a(dθ(φ'(t),Y(t)),θλ(X)(t)),

and hence

a(dθφY(ί),θλ(X)(τ))dτ

= a(Y(t), θλ(X)(ή) + θ£ (a{φ\τ), a(Y(τ), θλ(X)(τ)))

-(φ'(τ)a)(Y(τ),θλ(X)(τ))

-a{Y{τ),a{φ\τ),θλ{X)(τ)))

+ 2a(dθ(φ'(τ), Y(τ)), θλ(X)(τ)ή dτ

= f{t,ΘY{t)),
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where / : / xV -> V is clearly linear in the second variable. Thus

τ) dθ){φ\τ)))*θλ{X){τ)

-2dθ(φ'(t)9Y(ή)

is clearly an equation of the required form.
Thus for every Ϋ e J(φ) and every Yo e TpM there is a unique

solution Y of (4) with initial condition 7(0) = YQ . Such a field is called
a Jacobi field along φ.

By the linearity of (4') the Jacobi fields along φ form a vector space
of dimension m + ranki?^ , and the zero space of the Hessian of E at φ
consists exactly of the space of Jacobi fields along φ vanishing at t = 0
and t = 1.

As in the Riemannian situation the space of Jacobi fields vanishing at
t = 0 equals the space of variational vector fields along φ of variations
by geodesies.

Lemma 5.5. Let ψ(s, t) = λ(X{ +sX2)(t) for some Xχ, X2eV. Then

§jψ\s=0 is the Jacobi field Y along φ = ψ0 with initial condition Y(0) = 0

which is determined by the field Y e J(φ) with dθφΫ(0) = X2.

Proof. Let a(s,t) = (1 - P)θλ(X{ + sX2)(t) and define Y{t) =

JΓsΨ(s,t)\s=o- Since

d nd d (d ndθ ^ { θ ψ +

and

we have

(d d ad d d \ d d d

\TsTtθTtψ + dϊdia)s=0 = Ttde'γ + Ttdϊa^
= (Y(ήa)(φ'(t),θφ'

+ a(dθφY(ί),θφ'(t)
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which means

Tt (dθ*m + la^=o) - a

, θUxx)(t)).

Let Ϋ e J(φ) be such that dθψΫ(O) = X2 = dθφY(O) + §-sa(0, 0). Since

by Lemma 2.5 $-tdθfΫ(t) - a(φ'{t), dθφΫ(ή) = 0, it follows from the

above equation that

dθφY(t) + ^-a = θ-f\(Y(τ)a)(φ'(τ),θλ(Xi)(τ)))dτ
os Jo

+ θ-f' a(dθ Y(τ), θλ(Xι )(τ)) dτ + dθ Ϋ(t),
Jo ψ

hence we only have to show that {Y{t)a){Z, W) = 2{{Y(t) dθ)Z)* W for
all Z , W e Rm . Let X e l m . Then

= 2(W9(Y(t)dθ){Z,X))

= 2(((Y(t)dθ)Z)*W,X),

which implies {Y{t)a)(Z , W) = 2{(Y{t)dθ)Z)*W as required.
Remark 5.6. (a) For X e TpM let null(^Γ) be the dimension of

the vector space of Jacobi fields along λ(X) vanishing at λ(X)(0) and
λ(X)(l). It then follows from Corollary 5.4 and Lemma 5.5 that the rank
of exp£ at X equals ranki?™ -null(JQ . In particular if X e Tχ,χ),χ)M

is such that λ{X){t) = λ(X)(\-t), then the rank of e x p ^ ) ( 1 ) at X equals

the rank of exp^ at X.

(b) By Sard's theorem almost every u e U is a regular value for exp£ .
If u e U is such a point, then (a) shows that p is a regular value for
exp^ . Let X e TpM be such that t —• exp^ tX is a minimizing geodesic
joining p to u. Then exp^ has maximal rank at X and hence by (a) and
5.4 and 5.5 the zero space of the Hessian of E at λ(X) vanishes. Since
λ(X) is minimizing, this means that the Hessian of E at λ(X) is positive
definite.

We now have a closer look at the Hessian of E at the critical point
φ. Assume that p < 2 as in the beginning of this section is sufficiently
small such that the closed <ic-ball of radius p around p is compact. For
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X e TpM with ||PΛΓ|| < p, φ = λ{X) is defined on / and thus can be
viewed as an element of HQ. For Y, Z e HQ define

IX(Y,Z)= j ((dθφZ)(ή,(dθφY)(ή-a(Y(ή,θλ(X)(t)))dt

• f
Jo

2((Z(ή dθ)(φf(0,7(0), θλ(X)(ή) dt.

Y e H Q λ { x ) .
f o r a l l X e T p M a n d s , t e l , it

Then we have

Lemma 5.7. There is K e (0, p/2] such that Iχ(Y, Y) > 0 for all
X e TpM with \\X\\ < K and all

Proof Since λ(sX)(ή = λ(X)

suffices to show that there is K e (0, ρ/2] such that for all X e TpM with

||PΛΓ|| = ρ/2, all δ < κ/\\X\\, and all Y e HQλ{χ) which do not vanish

identically on [0, δ] we have

Iδ(Y,Y)= ί ((dθφY)(t)AdeφY)(t)-a(Y(ή,θλ(X)(t)))dt
J o

2((Y(t)dθ)(φ'(t),Y(t)),θλ(X)(t))dt>0,

where as before φ — λ{X). To show this let B be the compact ί/c-ball of
radius p/2 around p. Then there is c > 1 such that for all u e B, all

W, W e Rm , and Z e TUM

(i)

(ϋ)
(iii)

Now if y e tfζ^ , then 7(0) = 0 and consequently ΘY(t) = /„' Jj6»7(ί) J s

for all ί e l . Since φ(I) c β and ^ 0 7 ( s ) = («/θ,y)(s)-2dθ(«»'(s), y(s))

it follows from (i) and ||0f»'(*)ll = p/2<\ for all s e / that

?5< Λ|(rfθ yj^iirfί + c/'iiy^iiί/j.

For 5 < t we have ||7(5)|| < /„' \\£θY(u)\\du, hence

ds < f'\\(dθY)(
Jo ψ

s)\\ds ds.
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T h u s i f t<l/c, then

< 77-^2 f \\{d%Y){s)tf ds.
(i-ctyJo φ

Now (ii) and (2) for θλ{X) show \\j-tλ{X)(t)\\ < c\\λ(X)(t)\\ and con-

sequently ||λ(ΛΓ)(ί)|| < ̂ Ίl^l l T h u s for ί < 1/c we obtain

ί\(deY){t)9ad\θY{t)9θl{X)(t)))dt
Jo ψ

1/2

\\(dθY)(t)\\z dt \\ad {ΘY(t)9θλ(X){t))\\2dt

1/2

Inserting \\Y(t)\\2 < (δ/(l - cδf) β \\(dβφY)(s)\\ ds (t<δ), this yields

fg({dθΦY)(t),adΛ(ΘY(t), θλ(X)(t)))dt

< (δ/(l -cδ))cecδ\\X\\ / \\(dθY)(t)fdt.
Jo ψ

On the other hand it follows from (iii) that
rδ

f°2((Y(t)dθ)(φ(t), Y{t))9θλ(X)(t))dt
Jo

<c \\Y(t)fdt \\λ(X)(t)\\dt

< (δ3/(l -cδ)2)cecδ\\X\\ [0 \\(dθφY)(t)f dt.
Jo ψ

Thus if we choose δ > 0 sufficiently small that

δ/(l-cδ)<min{U(2c\\X\\)-1},

then Iδ(Y, Y) is not smaller than a positive multiple of f* \\(dθφ Y)(t)\\2 dt
which is positive for all Y € HQ not vanishing identically on [ 0 , 5 ] .
This is the claim.
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Corollary 5.8. exp£ is of maximal rank on an open and dense subset
of{XeTpM\\\X\\<κ).

Proof. We argue by contradiction and assume that there is an open
subset U of {X e TpM\\\X\\ < K} such that exp£ is singular at every
X e U. By ev. diminishing the size of U we may assume that the
rank of exp£ is constant on U and that exp£ U is a smooth embedded
submanifold N of M of dimension n = rankexp^ \Ό <m. For X e U
the tangent space of N at u = exρ£ X equals the vector space of all
endpoints of Jacobi fields along λ(X), which vanish at p = λ(X)(0), and
by 5.6, 5.7, and the choice of U this space is just {Γ(l) |y e HQλ,χA.
This means in particular that Qu is contained in TUN for all u e N.
Hence for all u e N, TuN contains the span at u of the Lie algebra
generated by Qu . This span is TUM since Q is bracket generating which
implies the contradiction m > dim TV = dim TuN > dim TUM = m .

Corollary 5.9. Every critical point of E is a geodesic with respect to dc.
Proof Let X e TpM with ||ΛΓ|| = K , let φ = λ(X), and assume

ranki?^ = n <m. Then W = {dθφY(l)φ(ι)\Y € J(φ),PY = 0} is an
(m - Az)-dimensional subspace of Tφ^M.

Choose a smooth [m - «)-dimensional submanifold S of U con-
taining φ(l) with the property that W is the tangent space of S at
φ(l). Then Λ = {ψ e //f(/, U)\ψ(l) e S} is a smooth submanifold
of H\(/, V). By Remark 2.7 for every ψ e A the g -orthogonal com-
plement of the tangent space Λ^ of Λ at ψ consists of all Y e J(ψ)
with dθψY(l)ψ{ι) e (TS)1-. By the definition of W this means that HQ
meets Λ transversally at φ . Moreover the ^-orthogonal complement of
the intersection A ΠHQ in HQ is just Ω.(φ)± . Thus there is an open
neighborhood A of φ in HQ such that A Π Λ is a smooth submanifold
of HQ and φ is a critical point of the restriction of E to A n Λ.

By Lemma 5.7 the Hessian of E\AnA at φ is positive definite. Hence
there is an open neighborhood B of φ in A πΛ such that E(ψ) > E{φ)
for all ψ e B, say 5 is the intersection of An A with the preimage under
θ of a 2ε-neighborhood of θφf in the Hubert space HQ(I, (?) for some
ε > 0 .

Assume that there is τ e [0, 1 - ε] such that dc(φ(τ), φ(τ + ε)) <
. Let ^ : [τ, τ + ε] -+ U be a minimizing geodesic joining ψ{τ) =

to ψ(τ + ε) = #>(τ -I- ε). Then the curve

r p(/) if * e [ 0 , τ ] u [ τ + ε, 1],

I if ί € [ τ , τ + ε]
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is contained in B (recall \\X\\ = K < 1) and its energy is strictly smaller
than E(φ). This is a contradiction.

6. Isometries

In this section we investigate isometries of CC-metrics and show that
they are necessarily smooth maps. Let / : (M, dc) -• (M, dc) be an
isometry. Then / is a homeomorphism which maps the space of in-
curves in M which are tangent almost everywhere to Q onto the space of
Hχ -curves in M which are tangent almost everywhere to the distribution
Q inducing dc.

Let p G M and let U be an open neighborhood of p in M such that
TM\υ and ΓAfL,™ admit admissible trivializations Xι, - , Xm and

X1, , Xm as before. Then the assignment φ —• / o ^ is a bijection of
HQ = {φe H[(/, C/)|/(0 E β for almost all ί G /} onto

HQ = {φe H{{P\I9 f(U))\φ\t) G Q for almost all ί G /}.

Now if ^ : / -» [/ is an element of HQ, then φ is rectifiable with
respect to dc, and moreover ||ί/(0ll equals the dilation of φ at t for
almost every t G / , i.e.,

(see [14, 17]). Since / is an isometry, this means \\{fφ)\t)\\~ = ||

for almost every t e I, i.e., the map φ ^ foφ commutes with the energy
function.

The above trialization of TM on U gives rise to an exponential map

exp£ at p as before, which is defined on an open star-shaped neighborhood

W of 0 in TpM. In the same way an exponential map exp^( } at f(p) is

defined on an open neighborhood W of 0 in Tf{p)M. For X e W, define

λ(X) e HQ by λ(X)(ή = exp£ tX (t G 7), i.e., we assume in the sequel

always that λ{X) is parametrizecUm I. It follows from Corollary 5.9 that

for every X e W there is X e W such that Fλ(X) = foλ(X) = λ(X),

i.e., the map F: λ(X) —• foλ(X) is a bijection of the space of geodesies

in U, which emanate from p and are parametrized on / onto the space

of geodesies in f(U) which emanate from /(/?) and are parametrized on

/ . Notice that X e Tf{p)M with λ(X) = Fλ(X) is not necessarily unique.
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Lemma 6.1. Let X e TpM, X e Tf{p)M, and Fλ{X) = λ(X). 7/exp^

is of maximal rank at X and expVx is of maximal rank at X, then:

(i) /exp£ tX = exp^(p) tX for all t for which expc

p tX is defined,

(ii) there is an open neighborhood Ω of X in TpM, which is mapped

by exp£ diffeomorphically into U, and a diffeomorphism Ψ of /(expc Ω)

into Tf{p)M such that Fλ{Y) = λ(Ψofo eχpc

p Y) for all Y e Ω.

Proof (i) Assume that there is v > 1 such that /exp^ vX φ expS( ) vX.

Since t —> /exp^ / ^ (ί G [0, ι/]) is a geodesic in M there is Y € Tf, JΛ

s u c h t h a t fexpc

ptX = expc

f{p)tY f o r a l l t e[0,v]. N o w expc

f{p)ι>Y φ

Qxpc

f{p)uX shows XφY. On the other hand λ(7) = Fλ(X) = λ{X)

which means ?(ld-T~,)~ιY = P(Id-T.~)~ιX (compare Lemma 2.6)

or P(Id-T.~)~ι(Y - X) = 0 in contradiction to rank Ru~ = m .

(ii) By the assumptions on X and X there are open neighborhoods B

of X in TpM and ΰ of I in Tf,,M with the following properties:

(i) exp£ maps B diffeomorphically onto an open neighborhood A
of u in U.

(ii) There is a diffeomorphism Ψ of fA onto 5 such that expS^x oψ

Assume that B contains the 2δ-neighborhood of I in Tp M. If the

lemma does not hold, then there is a sequence {Xk} c B with Xk —> X

(k -* oo) such that Fλ{Xk) = λ(Yk) for some Yk e Tf{p)M with \\Yk -

X\\ > δ for all k > 0. Since d^λ^C), Λ( 7 J ) -> 0 (A: -• oo), Lemma 4.2

shows that the sequence {Yk} c T^p)M is bounded; hence passing to a

subsequence we may assume that {i^}^ converges to some Γ G T,, ,M.

Clearly | |Γ - j?|| > 5 . Since d^λiYJ, λ(r)) ^ 0 (fc -> oo), it follows

that λ(Y) = λ(X). But this means ?{Id-T~)~ιY = P(ld-T.~)~ιX

or P(ld-Tu~)~ι(Y - X) = 0 in contradiction to rank R~=m. This

shows the claim, q.e.d.
Now we are ready to show

Theorem 6.2. An isometry (M, dc) -> (Af, rfc) w smooth.

Proof We show first that an isometry f:(M,dc)^{M,dc)is smooth
on an open dense subset of M. This follows from a successive application
of the following.

Sublemma. Let N c M be a smooth embedded submanifold of dimen-
sion n < m. Assume that the restriction of f to N is smooth. Then for
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every point p of an open dense subset of N there is an open neighborhood
U of p in N and a smooth (n + 1)-dimensional embedded submanifold
N of M containing U such that the restriction of f to N is smooth.

To show the sublemma observe that since Q is bracket generating, TV
contains an open dense subset with the property that for every p of this
set the tangent space TpN of N at p does not contain Q .

Since, as an isometry of (M, dc) onto (M, dc), / is absolutely contin-
uous with respect to Lebesgue measure (compare [12]), there is Y e TpM

such that PY is transversal to N at p, u = λ(Y)(\) is a regular value
for exp£, and f(u) is a regular value for exp^v,. Let X € TUM be
such that λ(X)(t) = λ(Y)(l - t). By Remark 5.6 p is a regular value for
exp£, and f{p) is a regular value for exp^(ω). Choose Ω c TUM and

Ψ: /(exp^Ω) -> Tf{μ)M as in Lemma 6.1. Then Ω n ί e x p ^ ) " 1 ^ ) = W is
a smooth submanifold of Ω. Since the restriction offtoN is smooth,
the same is true for the restriction of Df = Ψ o / o exp^ to W. Since
λ(X) meets N transversally at λ(X)(l), there is an open neighborhood
B of X in W and a number ε > 0 such that TV = {expc

utY\Y e
B, t e (I — e, I + e)} is a smooth embedded submanifold of M. But
/exp£ *y = exp^.(M) ί(A/T) for all Y e B and / € (1 - ε, 1 + ε) shows
that the restriction of / to 7? is smooth. This finishes the proof of the
sublemma.

To finish the proof of the theorem let p e M be arbitrary. Then there
is a regular value w e M of exp£ such that f(w) is a regular value of
exp/(/>) a n c * f *s s m o o t h n e a r ^ ^ e t λ(y) (Ye TpM) be a minimizing
geodesic joining p to w 9 and let Ω and Ψ be as in Lemma 6.1. If we
choose Ω sufficiently small, then Df = Ψo/oexp£ is a diffeomorphism

of Ω into Tf{p)M such that Fλ(Z) = λ(DfZ) for all Z e Ω. Lemma

6.1 shows /exp£ tZ = exp^(/7) t(DfZ) for all Z e Ω and all ί for which

both sides are defined.
For Z G Ω, define α(Z) = -A(Z)(1) and jS(Z) = -λ(Z)/Z)(l), where

1(Z) is as before. Then a and β are smooth maps of Ω into TM and
ΓΛf, resp., and exp^(Z)(1) is of maximal rank at α(Z) and exp^A(Z)(1) is
of maximal rank at β(Z). Hence there is a compact neighborhood K of
Y in Ω and ε > 0 such that, for every Z e K, exp^(Z)(1) and e ^
are of maximal rank at (1 + e)α(Z) and (1 + ε)β(Z) respectively.

Since {εZ\ - Z e K} has nonempty interior, Corollary 5.8 shows that
there is W e K such that λ(-εW)(l) = u is a regular value for £
and f(u) is a regular value for exp^(/7)
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Let X = -(1 + ε)λ(W)(-ε) and X = -(1 + e)l(D/W)(-e). We have
λ(X)(ή = expc

p((l+ε)t-ε)W and λ(*)(0 = expc

f(p)((l + ε)t-ε){DfW),
and consequently Fλ(X) = λ(Z).

By Lemma 6.1 there is an open neighborhood B of X in TuM and

a diffeomorphism Φ of B into Tf{u)M such that Fλ(Z) = A(ΦZ) for

all Z e B . Since exp^ is of maximal rank at εX/(l + ε), for sufficiently

small B the map Z —• λ(Z)(ε/(l + ε)) is a diffeomorphism of B onto

an open neighborhood of p . But fλ(Z){t) = λ(ΦZ)(ί) for all / e I and

Z e B then implies that / is smooth near p. Hence the proof of the

theorem is finished.

7. The strong bracket generating case

In this section we investigate the group of isometries of a CC-metric
dc which is induced by a distribution Q satisfying the strong bracket
generating hypothesis (see [17]), i.e., for every nonzero section X of Q,
TM is generated by Q and [X, Q].

Let N be the annihilator of Q in the cotangent bundle Γ*M of M.
TV is a smooth k = (m - #)-dimensional subbundle of Γ*Λ/.

Lemma 7.1. £Very Riemannian metric on Q gives rise to a unique
Riemannian metric on N.

Proof. Let p e M, 0 ^ ωp e Np, and let ω be a local section of N
through ωp . If X, Γ are local sections of β near /?, then

dω{X, Y) = \{X{ω(Y)) - Y(ω(X)) - ω([X, Y])} = -\ω([X 9 Y]),

in particular dω(Xp, Y ) only depends on ωp , not on the choice of the
extension ω. Since the commutators of sections of Q span TM, the
restriction of dω to Qp does not vanish. This means that there is a natural
injective bundle map J oί N into the exterior product Q* /\Q*. Since a
Riemannian metric on Q induces a Riemannian metric on Q* Λ (?*, this
metric can be pulled back via / to a metric on TV. q.e.d.

For a section ω of N, define a map Jω: Q —• T*M by (Jω(X))(Y) =
dω(X, Y). Since (? satisfies the strong bracket generating hypothesis, Jω
is an injective bundle map and Jω(Q) is complementary to N .

Lemma 7.2. Let ωι, , ωk be a local orthonormal basis of N with

respect to the metric of 7.1. Then for every i e {1, , k} the (m - 1)-

dimensionalsubspace of TpM, which is spanned by Jωι(Qp)u{ωj

p\i φ j},

only depends on ωp, , ωp and is transversal to {λωι

p\λ e R}.
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Proof. Clearly A\ = span{Jωι(Q) U {ωί\i φ j}) is transversal to ωι .

To show that Aι

p only depends on ωp, , ωp let ω , , ω be an-

other local orthonormal basis of N near p with ω^ = ωι

p . Then there is
p

i

^ p

a smooth function (gf..) of a neighborhood of p in M into the special
f..

orthonormal group SO(fc) such that (g^ip) = Id and ωι = Σj8ijωJ

We have {dgjj)p = 0 for j = 1, , n . Let X1, , X9 be a local

orthonormal basis of Q near p and let σj = Jωι(Xj). Then rfg^. =

smooth functions α υ and 6«7, and

= Σ *
α . 7 β,J

Since α77 = 0 for j = 1, , n, this implies (Jωι)(X) =

\ /7 j jf j //) I or everv v\. ^ cy l e ι •/ ίtί ) ι J\.) (

span{ω7|/ Φ j} as claimed.

Corollary 7.3. If Q satisfies the strong bracket generating hypothesis,
then every Riemannian metric ( , ) Q on Q can intrinsically be extended
to a Riemannian metric on M.

Proof Let p e M. By 7.2 the choice of an orthonormal basis ωp , .-.ωk

p

of Np determines for every / € {1, , k} an (m - 1)-dimensional sub-

space of T*M, which annihilates a 1-dimensional subspace A1 of TpM

transversal to the kernel of ωι

p . Let Zι e A1 be such that (ul

p{Zt) = 1.

The vectors Z 1 , ••• , Z * span a k -dimensional subspace of TpM which

is complementary to Qp we thus can define an extension g(ωι

p, - , ωp)

of (( , ) f i) by choosing the vectors Z 1 , , Zk orthonormal and per-
pendicular to Qp .

Now the space of orthonormal bases of N can be identified with the
orthogonal group O(k). Let μ be the normalized Haar measure on O(k)
(which satisfies μ(O(k))= 1), and define (X, Y)p = fO{k)g(ξ)(X, Y)dμ{ξ)
for X, Y G TpM. Then { , ) p is a scalar product on TpM extending the
product on Qp and moreover is defined intrinsically by (Q, ( , )Q). q.e.d.

The Riemannian metric ( , ) on M defined in 7.3 will be called the
canonical extension of ( , ) Q .
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Since every isometry of dc is smooth, 7.3 yields

Corollary 7.4. The group of isometries of dc is a closed subgroup of the

Lie group of isometries of the canonical extension of ( , ) Q .

Lemma 7.5.

-{l-P)ad*(PΘX,PΘX).

Proof Let φ = λ(X). Then 0/(0) = PΘX, £θφ'{t)\ί=0 =

Pad\PΘX, ΘX), and, moreover by Lemma 2.3, θ%-tφ'(t) = j-tθφ'{t) -

ad*{θφ'(t), θφ'(ή). Together this yields the claim.

Corollary 7.6. If Q satisfies the strong bracket generating hypothesis,

then every dc-geodesic through p is uniquely determined by its tangent and

its covariant derivative at p. In particular expc is intrinsically defined.

Proof For Y e Qp the map aγ: Q^ -> Qp, Z - Pap(ΘY, ΘZ)
does not depend on the choice of the local trivialization of TM near p,
and is injective. The corollary thus follows from 7.5 and the fact that
every Riemannian metric on a strong bracket generating distribution can
intrinsically be extended to a Riemannian metric on M.

8. Nilpotent homogeneous Lie groups

In this section we investigate the group of isometries of a left-invariant

CC-metric dc on a nilpotent homogeneous Lie group. Thus let TV be a

nilpotent homogeneous simply connected Lie group whose Lie algebra DJl

is generated by a complement Q of its derived algebra [OT, 9Jί], i.e., if

Q{ = Q and QM = [Q, Q z], then there is k > 1 such that OK = φf= 1 Q
ι

(direct sum). For every r > 0 the assignment δr: Σk

i=ι X1 -• £ * = 1 rιXι

(X1 e Qι) is a Lie algebra automorphism of UJl which integrates to an

automorphism Δr of N. Let dc be a left-invariant CC-metric on TV

induced by a scalar product ( , ) Q on Q. Then {ΔJί > 0} is a 1-

parameter group of homotheties with respect to dc, i.e., dc(Arp, Aru) =

rdc{p ,u) for all p , w e N, r > 0 (compare [13]).
Choose an extension of ( , ) Q to a scalar product ( , ) on ffl such

that the decomposition SJt = 0 * 1 1 β
z is ( , )-orthogonal and a left-

invariant ( , ) -orthonormal trivialization of TN. Denote as before by

λ(X) (X e Wl) the geodesic through the identity λ(X)(0) = e with respect

to these data. Since θ£{Atλ(X)(s)) = tθ{£λ(X){s)) for a l l/ > 0 and

s e R, we have Atλ(X) = λ{t2δι/tX).
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Lemma 8.1. Every isometry of (N, dc) fixing the identity e permutes
the 1-parameter subgroups of N which are tangent to Q.

Proof For every X e Q the geodesic λ(X) is the 1-parameter subgroup
in N defined by X and is globally minimizing since the 1-parameter
subgroups tangent to Q are globally minimizing geodesies with respect to
the Riemannian metric ( , ) on N. Since / is smooth, fλ(X) is a
globally minimizing geodesic in (N, dc) with ranki?^ ( y ) = ranki?A ( χ ) =
k for some k < m .

For Y E Q, define rank(Γ) to be the dimension of the smallest ad Y-
invariant subspace of 9Jt containing Q. Remark 2.8 shows ranki? >
rank(^'(0)) for every smooth curve φ: I -> N through φ(0) = e which
is tangent to Q, and moreover the rank is preserved by every diffeomor-
phism of N which leaves Q invariant and fixes e. If φ is a 1-parameter
subgroup of N tangent to Q then ranki? = rank($/(0)).

For every r > 0, f{r) = Δ r /Δ 1 / r is an isometry of (N, dc) fixing e.
Let B be the compact rfc-ball of radius 2||X|| around e. By Ascoli's
theorem there is a sequence r. (/ > 0) such that rf. —• 0 (/ —• oo) and
that the sequence of maps /(rf.) converges uniformly on B to a map / .
Since / is an isometry of (B, dc) fixing e, by 7.2 a diffeomorphism of
B, and fλ(X) is a minimizing geodesic in (iV, rfc) with ranki?yA(;r) =

Let i4 c 9H be the ( , )-orthogonal complement in SDt of SDl Π ( I d -

Tjλ{χ))L°°{I, Q±), and let ? : an -• ̂ 1 be the ( , )-orthogonal projection.

Since mnkRjλ{χ) = rank(/A(X)/(0)), Remark 2.8 shows that A equals the

smallest ad(/λ(X)/(O))-invariant subspace of 9Jί containing Q and hence

is invariant under the automorphisms δr (r > 0). By 3.2, A is transversal

to ann ( I d - Γ / ( r μ w ) L ° ° ( / , Q±) for all sufficiently large i > 0; we may

assume that this is true for all /. This means that there is a unique

Y € A such that fλ{X) = λ(Y). Now f{r)λ{X) = λ{rδι/rY) for all
r > 0, and since ^ is invariant under the automorphisms δr (r > 0),

we have | | ? ( r ί 1 / r y) | | = lk^ 1 / r^| |, and hence by Remark 4.3 the sequence

Hr^j^yy is uniformly bounded. But if Y = Yχ + Y2 with Yχ e Q and

Y2 e Q±, we have ||r<51/rΓ|| > H^ll/^ f°Γ all r > 0 and consequently
since rz —> 0 necessarily 72 = 0, i.e., A(7) is a 1-parameter subgroup in
TV as claimed, q.e.d.

For / > 1, denote by Hi the Lie subgroup of N whose Lie algebra

is the ideal f)z = 0 y = l QJ'. ( , ) β induces a left-invariant CC-metric rff.
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on the factor group N/Hi in such a way that the canonical projection
n{\ (N, dc) -* (N/H , rf.) is distance decreasing.

Let exp be the exponential map of N and call two pairs (u, X),
(v, Y) e N x Q parallel if the function t —> dc(uexptX, υexptY) is
bounded on R.

Lemma 8.2. If (u, X) and (υ , Y) are parallel, then X = Y.
Proof. Let Ψ be the restriction to Q of the map π2 o exp. Ψ is

an isometry of (Q, ( , )Q) onto (N/H2, d2). The Campbell-Hausdorff

f o r m u l a [ 5 ] s h o w s π 2 ( u e x ρ t X ) = Ψ ( ( Ψ ~ ι π 2 u ) + tX) f o r a l l u e N a n d
X E Q, and hence

d2(π2(uQxptX), π2(υexptY))

= \\(Ψ~lπ2u - Ψ~ιπ2v) + t{X - Y)\\ > \t\ \\X - Y\\ - const.

Since the latter expression is uniformly bounded for all t eR whenever
(u, X) and (υ, Y) are parallel, the lemma follows, q.e.d.

Let Z be the center of N. Then we have
Lemma 8.3. p e Z if and only if (p, X) is parallel to (e, X) for all

XeQ.
Proof If p e Z then dc{exptX, pexptX) = dc(e,p) for all t e R,

i.e., (p, JT) is parallel to (e, X) for all XeQ.
On the other hand, if u = exp(Σti AT1") £ Z(Z' e Qι), then there is

XeQ such that [X, J ^ i X1] φ 0. Let - 2 = min{/ > 1|[Z, JίΓ1'] ̂  0}
and let Ψ be the restriction to S = φfl/ βz of the map π. o exp. Under
the identification of S with 9Jt/l);, Ψ can be viewed as the exponential
map of N/Hj, i.e., group multiplication in N/Hj can be computed via
the Campbell-Hausdorff formula in S. This means

= d^π.e, Ψ((ψ-ιπjU) + t[Xj,X])),

which is unbounded in teR. Since π is distance-decreasing, (u,X) is
not parallel to (e, X). q.e.d.

A special case of the following corollary is due to Pansu [13, Proposition
18.5]:

Corollary 8.4. Every isometry of {N, dc) fixing the identity e is a Lie
group automorphism of N.

Proof By a theorem of Pansu [13] there is an automorphism Ψ of N
such that de(Ψ o f)\Q = Id \Q . Ψ is necessarily an isometry with respect
to dc hence we only have to show that there is no nontrivial isometry /
of (N, dc) with f(e) = e and def\Q = Id|β .
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We proceed by induction on the degree of nilpotency ofN. If this
degree equals 1, then (N, dc) is Euclidian and hence there is nothing to
show. Thus let k > 2 and assume the claim is known for all groups of
degree < k - 1. Let TV be a group of degree k and let / be as above.
By 8.1, / permutes the integral curves of left-invariant vector fields and
hence maps parallel elements (u, X) and {v , X) of N xQ onto parallel
elements. Since f(e) = e and /exp/X = exptX for all X eQ, teR,
this implies by 8.2 and 8.3 the following:

(i) / preserves the center Z of N,
(ii) f(pexptX) = f(p)exptX f o r all p e Z , X eQ, a n d teR.

For every p e Z the map f : u —• f{p)~Xf{up) is an isometry of (N, dc)
fixing e which by (ii) satisfies defp\Q = lά\Q. By (i) ^ preserves the
center Z of N and hence induces a transformation / of the factor
group N/Z which is an isometry with respect to the induced CC-metric.
Since the degree of nilpotency of N/Z equals k - 1, by the induction
hypothesis fp equals the identity of N/Z . This is true for every p e Z .
Thus the differential of / preserves the left-invariant vector fields tangent
to Q. Since Q generates 9Jt, / is the identity. Hence the proof is
finished, q.e.d.

We conclude this work with the following example.
Example 8.5. (a) The Lie algebra # of the 3-dimensional Heisenberg

group H3 is spanned by vectors X, Y , and Z which satisfy the relations
[X, Y] = Z and [X, Z] = [Y, Z] = 0. Let ( , ) be the scalar product
on ft for which this basis is orthonormal, and let dc be the left-invariant
Carnot-Caratheodory metric on H3 induced by Q = span{Λf, Y} and

( > )Q = ( 5 )\Q- We want to compute the geodesies λ{W): t —• exp^ tW
of dc through the identity e (compare [10]). For x0, y 0, z0 e R write
(9l(x0X + y o 7 + zQZ)(t) = x(t)X + y(t)Y + z(t)Z . By using the relations
(adX)*Z = Y and (adF)*Z = -X equation (2) of Lemma 4.1 trans-
forms into the following system of differential equations for the coordinate
functions x9y9 z:

x'(ή = -y(t)z(t), x(0) = x0,

Hence

θλ(x0X +

= (xQ cos zQt - y0 sin zot)X -h (x0 sin zQt + y0 cos zot)Y.
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The Lie group exponential map exp of H3 induces global coordinates

on H3 via the identification of exp(x{X+x2Y+x3Z) with (x{, χ2, x3) e

R 3 . In these coordinates the vector fields X, Y, and Z are given by [14]

dx{ 2Xldx^ dx2 2X'dx3> dx3

Thus for z0 φ 0 the geodesic λ(X + zQZ) has the coordinate representa-
tion

λ(X + z0Z)(ή = z~l (sin zQt, 1 - cos z oί, ί/2 - sin zo//2zo),

in particular λ{X + z0Z)(2π/z0) = (0 ,0, π/z^). For every α e S 1 -

[0, 2π] the isometry of (#, ( , )) which fixes the center of ή and acts

as a rotation of angle a in the plane β is an automorphism of S) which

integrates to an automorphism Ψα of H3. Ψa is an isometry with respect

to dc which maps for every Wef) the geodesic λ(W) onto λ(dΨaW).

Thus for every s > 0 there is a S'-family {A(rfΨα(JΓ + y/πJsZ))\a e S1}

of minimizing dc-geodesies joining e to λ(dx¥a(X + yJπ/sZ))(2y/πs) =

(0, 0, 5). In particular each of the dc-geodesics {>l(M^)|||PίF|| = 1} min-

imizes exactly on the interval [0, 2π(||H^||2 - 1) " 1 / 2 ] .

(b) Let H = H3xH3 be the direct product of two copies of H3 with Lie

algebra # = S) x fj, equipped with the left-invariant Riemannian metric

( , )° which is the product of the metrics ( , ) on S) above. Let dc be

induced by (Q x Q, ( , > " | β x C ) . Then the map (H3, dc) -+ (H, dc),

u —• (M, e) is an isometric embedding. In particular for every X e Q

the 1-parameter subgroup in H, which is tangent to (X, 0) at e, is a

minimizing afc-geodesic in 77. However the rank of R along this geodesic

equals 5, i.e., the exponential map exp^ of (//, dc) at e is singular along

{{tX,0)eJ)\XeQ9teR}.
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