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SOME REGULARITY THEOREMS
FOR CARNOT-CARATHEODORY METRICS

URSULA HAMENSTADT

1. Introduction

Let M be a smooth connected m-dimensional manifold and Q a
smooth g-dimensional distribution on M which is bracket generating,
i.e., for every p € M the local sections of Q near p span together with
all their commutators the tangent space TpM of M at p.

A curve ¢ in M is called horizontal if ¢ is tangent almost everywhere
to Q. It is a classical result of Chow that any two points of M can be
joined by a horizontal curve (see e.g. [13, 12]). Thus if Q is equipped
with a Riemannian metric ( , ) 0> then the function d.: M x M — R,
(p, u) — inf{length(g)|¢ is horizontal and joins p to u } is a distance on
M , the Carnot-Carathéodory metric induced by (Q, (, )o).

Let (, ) be an extension of { , ), to a Riemannian metric on M,
and let dist be the induced distance on M. Then d. > dist, and any
rectifiable curve with respect to d, is rectifiable with respect to dist, hence
differentiable almost everywhere and moreover horizontal [13]. Vice versa
every horizontal curve is locally rectifiable with respect to d_ ; its d -length
coincides with its usual length as a curve in (M, (, )) (see [17]; this also
follows from the general theory of length structures in [6]). Thus (M, d,)
is a locally compact length space and complete if this is true for (M, dist).

Let p € M and ¢ > 0 be such that the closure of the open d -ball
B of radius ¢ around p is compact. Then it follows from the theory
of locally compact length spaces [6] that every u € M with d (p, u) <e¢
can be joined to p by a minimizing geodesic with respect to d_, i.e., a
horizontal curve which realizes locally the d -distance of its curve points
(this is also proved in [17]). Strichartz showed that if Q satisfies the
strong bracket generating hypothesis (see [17]), i.e., if TM is generated
by Q and [X, Q] for every nonzero local section X of Q, then these
geodesics are solutions of a system of Hamilton-Jacobi equations on the
cotangent bundle 7'M of M, in particular they are smooth curves. This
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leads to the definition of an exponential map of an open neighborhood
of the zero section of 7'M onto M ; however its restriction to a fiber of
T'M is not of maximal rank at 0.

In this paper we give a different approach to the theory of geodesics.
We extend (, ), to a Riemannian metric (, ) on M and consider
a variational problem in (M, ( , )). We obtain a simple differential
equation for the critical points of this variational problem and show that
these critical points are geodesics with respect to d_, i.e., they are locally
minimizing curves (this answers a question in [17]). On the other hand,
Bir [1] showed that every geodesic is a critical point; together this gives a
complete description of the geodesics.

This leads to the definition of an exponential map exp; at a given point
p € M which maps an open neighborhood Q of 0 in TpM onto an open
neighborhood of p in M. We show that exp; is of maximal rank on
an open and dense subset of . However exp; depends on the choice
of the extension of ( , ) g toa Riemannian metric on M and moreover
on the choice of a local trivialization of TM adapted to our situation.
If the distribution Q satisfies the strong bracket generating hypothesis,
then (Q, (, )Q) determines a unique Riemannian metric ( , ) on M
extending ( , ) 0 and thus exp; only depends on the local trivilization.
Moreover every d -geodesic emanating from p is uniquely determined by
its tangent and the covariant derivative of its tangent at p, i.e., exp; is
defined intrinsically.

As an application of the investigation of geodesics we show that any
isometry between manifolds with Carnot-Carathéodory (briefly CC-) met-
rics is necessarily smooth and clearly commutes with the exponential map.
We conclude the paper with an example where the geodesics can easily be
computed explicitly.

2. The space of H, -curves in M through a given point

Let p € M. We consider the Hilbert manifold H{ (I, U) of all con-
tinuous, absolutely continuous curves ¢: I — U through ¢(0) = p with
square integrable derivative, where U is a suitable open neighborhood of
D.

Fix a Riemannian metric ( , ) on M extending ( , ) o- Given pe M
select a local orthonormal basis {X ! , -~ , X?} of Q and alocal orthonor-
mal basis {X?*', ..., X"} of the { , )-orthogonal complement Q" of
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Q. The local frame {X1 , -+, X™}, defined on an open d-ball U of
radius p > 0 around p, will be called admissible. Let 6" ,---, 0™ be
the dual coframe and let 6 = (0l ,--+,0™). 6 isa l-form on U with

values in a Euclidean m-space R”

The map ©, defined on H{ (I, U) by (Bp)(t) = 0¢'(t), has its image
in the Hilbert space H(/, R™) of square integrable curves in R™ .

Lemma 2.1. © is a diffeomorphism of Hf’ (I, U) onto an open neigh-
borhood of 0 in Hy(I, R™).

The proof uses the fact that the Banach-manifold of all continuously
differentiable curves in U starting at p is diffeomorphic to an open neigh-
borhood of 0 in the Banach space of continuous curves in T,M ~ R™ (see
[9]) and a standard completion argument.

There are unique 1-forms 6} on U such that

(a) 6;=-6/,
(b) d6' =1 6 A6,
(see [16]).
Let ¢ € H(I, U) and let X be an element of the tangent space H; (¢)
of H/(I, U) at ¢, i.e., X isasection of TM over ¢ of class H, which
vanishes at p = ¢(0). Denote by %X the covariant derivative of X with

respect to the Riemannian connection of {( , ). Then
Lemma 2.2.

i(D.\ _d, i TN i 1
6 (ZJ_zX) = 7.(6'(X)) +j:210j(¢ )6’ (X).

Lemma 2.2 is well known and can be found in [16].

Write d6 = (d0', .-, d68™); d6 isa2-formon U with valuesin R” .
As a corollary of 2.2, the differential d8¢ of © at ¢ can be computed
as follows:

Lemma 2.3. If x € H}(p), then d®,X = 4,(6X) - 2d0(¢’, X).

Proof. Let ¥: (—¢, &) xI — U be a variation of ¢ =¥ with variation
vector field X = 2¥|_, such that ¥(—¢, €) x {0} = p. Then

0

9
(d6,X)(1) = 5-05-¥(s. D], .

and by Lemma 2.2 the ith component of (d8¢X )(t) equals

9’<D a‘l’(s,t)) - ST 0X)0(9).
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Using 22%¥(s, 1) = 2 2¥(s, 1) and again Lemma 2.2 for £ 2¥(s, ?)

we obtain for the ith component of (d8 X)(¢) the value

E - 0,(X)8(¢"))

which shows the claim. q.e. d

Now for every u€ U and X € T, M the assignment Y — 2d6(X, Y)
is a linear mapping of T, M into R™. Let a’(X) be its adjoint with
respect to the scalar product ( , ), on 7, M and the Euclidean scalar
product ( , ) on R”. a"(X) is a linear map of R” into T, M which
satisfies (2d0(X,Y),Z) = (Y,a"(X)Z) forall Y € T M, Z € R”
Moreover the assignment X — a(X) = fa*(X) is a smooth 1-form on
U with values in the vector space of linear endomorphisms of R™ . For
convenience we will also write a(X, Z) instead of a(X)Z.

Remark 2.4. The form a can also be computed as follows: Let bi

(i J, k =1, m) be the unique smooth functions on U which satlsfy
de' =1y, ik b;kef AO* and b; = —b . Then an easy computation shows
0'a(X, Z) = 211 . O(X)Zj forallZ:(Zl,---,Zm)eR’"

However we do not need thls formula in the sequel (compare [16]).

The pullback via © of the L*-scalar product of H(1, R™) isa Rieman-
nian structure g on Hf (I, U) which induces for every compact neighbor-
hood 4 of p in U a complete metric on Hf’(I, A) C Hf(l, U).If pe
HY(I,U)and X,Y € HY(p), then 8,(X,Y)= fol (d@wX(t) , d8¢Y(t)) dt.

The linear subspace {X € Hf’(q))lX(l) = 0} C H(p) is closed in
H{’ (@) ; hence its g‘n-orthogonal complement J(¢) is an m-dimensional
linear subspace of Hj (p). We have
0}Lemma 25. J(p)={X¢e Hf’((p)lf;(dGq,X)(t)—a((p'(t), (d0,X)(1)) =

Proof. Let Y € Hf (¢) be the preimage under d9¢ of a curve of class
H, in R™. By Lemma 2.3 for every X € HY(¢) we have

g,(X, Y) = (6X(1), (8, Y)(1))

! d '
- [ (ox). @8, 1)0 - atw ). (@, ¥)e)) d
Thus any solution c¢: I — V of the differential equation

(1) c'(2) = a(p'(1))c(?)
is the image under d6¢ of an element of J(¢). Now (1) is a linear
differential equation whose coefficients (i.e., the entries of the matrix rep-
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resenting a(¢’(¢))) are as regular in ¢ as the map ¢ — 60¢'(¢), i.e., they
are square integrable. Thus (1) admits precisely m linear independent
solutions which shows the lemma. q.e.d.

If ¢ has a continuous derivative, the existence of an m-dimensional
space of solutions of (1) follows from the standard theory for solutions of
ordinary differential equations with continuous coefficients. We include a
proof for the general case since it provides us with norm estimates which
are needed later.

For a curve ¢ of class H, in U and an element ¢ of the Banach
space L>(I, R™) of essentially bounded maps I — R provided with

the norm |c| = esssup,, [lc(?)|| , define Twc(s fo t)dt. Thus
c is a solution of (1) with ¢(0) = ¢, for some ¢, € R 1f and only if
c— T(o =c¢-

Let ||L|| be the operator norm of a linear endomorphism L of the Eu-
clidean space R™. Then ¢ € H(I, U) means v(p) = f, |la(¢’(t))||dt <
0.

Lemma2.6. Forevery p € H (I, U), 1d =T, isacontinuous invertible

linear automorphism of L™ (I, R™). The operator norm of (Id—Ta,c)_I
does not exceed (21/((0) +2)%@

Proof. Let ¢ € L™(I,V); then 1T, eI = | foa@’ @0)e@dr|| <
o)|c|, ie., T, is a continuous linear endomorphlsm of L=(I,R™)

whose operator norm does not exceed v(p).

Let k > 0 be the smallest integer which is not smaller than 2v(¢) and
choose a partition 0 = s(0) < s(1) < --- < s(k) = 1 of I such that
fss((j’;” la(p’ ()l dt < 4 forall j < k. Define y,(t) =s(j) +t(s(j+ 1) -

s(j)) and ¢,(t) = ¢(y;(2)), for t € I, and let c € L™(I,R"), ¢;(1) =

c( v, (¢)). Since the operator norm of T is not larger than % , Id T

is invertible (see [15, p. 231]) and (Id - T e Z, -0 q’, , in pamcular

the operator norm of (Id— T¢_) does not exceed Y o, 2—' = 2. Hence
J

there is a unique o € L™(I, R™) such that we have (Id— T, )a =+
JoV a(e'(0)a(t)dt with a,(1) = a(y,(1)) (j <k). Then

e 0
W, (0) = ¢,(0) = ()~ [ ato(®)a(s)ds = [ ae'(sDats) ds

w;(1) ,
= a(u,0) - [ alo)ats)ds.
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which means (Id —T¢)a = ¢ . This shows that Id-T, is invertible. More-
over we have

0
A a(p'(1))alt) dt

)ssz+MWgy%Q,

and inductively |a| =sup,_, |O‘j| < 2k(1 + l/(¢))k|c| . This means that the

operator norm of (Id —Tw)_l does not exceed 2k(1 + u((p))k which is the
claim.

Remark 2.7. Let S C U be a smooth k-dimensional submanifold
with tangent bundle 7'S. Then {p € H{ (I, U)|p(1) € S} is a smooth
submanifold of Hf’ (L, U) of codimension m — k. Its tangent space at ¢
consists of all X € H](p) with X(1) € T'S. Lemma 2.5 thus shows that
the g¢-0rthogona1 complement of this tangent space is just the (m — k)-

dimensional vector space {X € J(9)|(d®,X)(1) € (TS)"}.

Remark 2.8. If M is a Lie group with identity e = p, and the vec-
tor fields X', -~ , X™ are left-invariant, then the Lie algebra 9 of M
can naturally be identified with R™. With this identification, 6 is the
canonical left-invariant 1-form on M with values in 9 (see [9]). Thus
2d0(X,Y) = (ad X)(Y), where as usual ad denotes the adjoint representa-
tion of 9. Let Ad be the adjoint representation of M in 9, and denote
by Ad, the adjoint of Ad, for ue€ M. If 9 € H/(I, M), then for every
¢y € M the curve t — Ad;(t) ¢, satisfies the differential equation (1) of
Lemma 2.5. Thus in this case J(¢) = {X € H;(9)|(d®8,X)(?) = Ad,, ¢,
for some ¢, € M} .

|aj| <2 (|Cj| +

3. The manifold of curves tangent to Q

In this section we begin to investigate the submanifold HQ of Hf (I, U)
of curves which are tangent almost everywhere to Q.

Identify Q with the subspace 6(Q) = R? of R™. The set HQ =
G_IHO(I , @) of curves which are tangent almost everywhere to Q is
a closed submanifold of H (I, U). If P:V — Q denotes the (, )
orthogonal projection, then for every ¢ € HQ the g¢-orthogona1 projec-
tion P of HY(p) onto the tangent space HQ, of HQ at ¢ is defined
by PX =(d®,)”'Pde X .
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Let K(p) ~ Hy(1, Q™) be the kernel of the projection P, and define
Q(¢) ={X € HQ,|X(1) = 0}. Then H{(¢)=Q(p)®(J(9)+K(p)), and
the g¢-orthogonal complement Q(¢ )J‘ of Q(¢) in HQ is contained in
P(J(p)+K(¢)) =PJ(p). Thus Q(p)" ={X € HQ,|(d8,X)(1) = Pc(t)
for c € H,(I, V) with ¢'(¢) = a(¢(¢ )) c(t)}.

Let R: HQ — U, ¢ — ¢(1) be the endpoint map. Then the rank of R
at ¢ equals the dimension of Q(q))l , and this dimension varies between
g = dim Q at the constant curve ¢(I) = p and m = dim M . In particular
for u € U the closed subset R_l(u) of HQ may not be a submanifold.

However the set {¢ € HQ|rankR, = m} is clearly open in HQ. If
M 1is a Lie group, then Remark 2.8 shows that it is even open as a subset
of HQ with the C 0-topology. A similar property holds in general. For its
formulation let dist again be the distance on M induced by the Rieman-
nian metric, and recall that the space CO(I , M) of continuous curves in
M with the distance d_ (¢, ) = sup{dist(¢(), w(?))|t € I} is a Banach
manifold, in particular a locally complete metric space. Let E: HQ — R
be the restriction to HQ of the energy function ¢ — % fol ||(1J'(t)||2 dt.
First we have

Lemma 3.1. Let u > 0 and ¢ € HQnE_l[O,u). Then for every
€ >0 thereis 6 >0 such that sup,, || fot(()y'(s) —0¢'(s))ds| < & for all
y€HQNE™'[0, u) with d_(y, 9) < 4.

Proof. Let U, X ! ,---, X™, 0 be as before and assume without loss of
generality that there is a difftomorphism ¥ of R” onto U with ¥(0) =
p. Define c(t) = ¥~ '9(t) and denote by |L| its operator norm for a
linear map L between Euclidean vector spaces.

Let A be a compact neighborhood of ¢(I) in R™ and let

-1
p = sup{[[d'¥, I, ¥l € 4} < oo.

By the smoothness of ¥ there is then ¢ > 0 such that for every ¢ € I
and every u € U with dist(p(¢), u) <o

[0(d¥),,) — O(d¥)g-1,Il < &/8py/1.
Choose n > 2 such that dist(¢(s), ¢(t)) < g for |s—1t| < 1/n, and let

0 < o be sufficiently small that d_ (¢, y) <J implies [|c(¢) —‘1’_1y(t)|| <
e/16np forall tel. Let y € HQnE"[O, u) with d_(y, ¢) <J and
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define ¢(t) = ¥~ 'y(7). Then

/0 (87(s) - 69'(s)) ds

sup
tel
t
<sup /0 (6(d¥), - (d¥) )7 (5) ds
t
+ sup / 0(d¥), s)(E'(s) —c'(s))ds
te
/ 1(6(d¥) ) — O@¥) )7 (5)ll ds
(j+1)/n » ,
+ sup E()(d‘i’ o / (@(s) — c'(s)) ds
k/n+r » ,
+2li€rs<13)n G(d‘I’)c(k/n) /k/n (T(s)—c(s)ds
(J+1)/ ,
e[ " 1O(d®), )~ (), ;) (s) — ¢(5))l ds
j>0

< [y as

+23 plei/n) —c(/n)l
Jj=0
+psup sup (Ie(x +./n) = c(z +3/m) + i/ m) = (/)

1
+ B2 [N s) - o)l s

Since [, [Ic'(s)||ds < py/&E and ) [E'(s)||dx < py/&, the latter sum does
not exceed ¢ which yields the claim. q.e.d.

Recall the definition of the automorphisms T, of L*(I,V) (y €
Hf’ (I, U)) preceding Lemma 2.6. From Lemma 3.1 we obtain

Corollary 3.2. Let u >0 and ¢ € HQN E_I[O, u). Then for every
e >0 thereis & >0 such that (1d-T,)”" - (1d-T,)"'c| < & for all
ceR" with |c| =1 and all ye HQNE™'[0, u) with d_(7, ¢) <.

Proof. Choose a compact neighborhood B of ¢(I) in U. Since a is
a smooth 1-form on U with values in the linear space of endomorphisms
of R™, there is a > 0 such that ||a(X)| < a|/X|| for all # € B and
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X € T,M. This means v(y) < ayf forall y € HQNE™'[0, u) N
HY'(I,B)=H.

Let ¢ > 0 and choose € < &/2(2\/z + 2)2ﬁ+1. Let £ be the unit
sphere in R™. Thenthemap y:IxI -V, (c,t) — ((Id—T¢)_lc)(t) is
continuous. Hence there is p > 0 such that ||y, (¢) -y, (s)|| < &/(ay/H+1)
forall ce X and s,t €l with |s -t < p. Moreover

o =sup{|ly.()lllc€ X, t€ I} < oco.

Let k > 1/p and define ¥ (¢) = v, ([kt]/k) for c € . Then ¥, €
L®(I,R™) and |¥, — y,| < &/(ay/fi + 1), where | | is the norm in
L®(I,R™) as before. Let y € H; since the operator norm of Id-T,
does not exceed a,/i+ 1, we have |(Id—Ty)(y/c -¥.)| <E.

For y€ H and t € I, define a linear endomorphism A,(t) of R™ by
4,01 = fo 7'(s))ds which means A4, ( fo )ds for every

linear functlonal A on the vector space of llnear endomorphlsms of R™.
Then

T, ,(1) = /[ a(y (), ([k1/k) dt

k)/k
[tk]—1

J+1)/k
> / T Gk e

j=0 Jilk
= (4,(1) — 4,([tk]/k) v, ([tk]/k)
[tk]—-1

+ 374, + D7k - A GTR)w,Tk).
Jj=0

Since a(X,, 0Y,) € R™ depends smoothly on u € U for smooth vectors
fields X,Y on U, Lemma 3.1 shows that there is > 0 _such that for
all yeHQnE"‘[O u) with d_(¢,y) <6 we have y € H and

sup [|4,(1) — A, ()]l <E/2(k + 1
tel

By the definition of ¢ this means

k
T, 0, - T,0,| < 23114, (i/k) = A,(j/k)llo <F,
j=0

hence
|(1d=T,)y, —c| < |(Id-T,)y,. — (Id—T A
+|(1d-T,)y, — (Id-T, Vel <28
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Now by Lemma 2.6 the operator norm of (Id—Ty)—l does not exceed
(2a/E +2)2°V#*!; from this we obtain

d-T,) e =y | <|Ad=T)) e — g+ v, - vl <e
which is the claim.

Corollary 3.3. For every u > 0 and every k < m the set {¢ €
HQ|rankR, > k} n ET'[0,p) is open in HQ N E7'0,n) c
(C°1,U),d).

Proof. Let 9 € HQ with E(p) < u and rankR, = k. Let Z C R"™

be the unit sphere in the orthogonal complement of the intersection of V
with (Id —-T¢)L°°(I , Ql) . Then there is by Lemma 2.5 a number ¢ > 0

such that sup,; Hﬁ(ld—T(p)_lcoll > 2¢ for all ¢y € X. By Lemma 3.2 we
can find 6 > 0 such that |(Id—Ty)_]c0 - (Id—T¢)_1c0| <e forall ;€ X

and all yeHQnE_l[O,u) with d_(¢,7) <d. Forsuch a y we have

sup,, ||13(Id—Ty)_1c0|| > ¢ for all ¢, € £, which means by Lemma 2.5
that rank Ry =m.

4. Critical points of the energy function
Let y: (¢, ¢) —» HQ be a variation of ¢ = y, with variation vector
field X = %'/’k:o . For the derivative at s = 0 of the energy function E
on HQ we obtain

1
5wl = [ (@8, )0, 69/,

ie., (d8¢)—16(p' is the gradient of E at ¢.

Call ¢ € HQ a critical point of E if (dew)—lﬁ(p' € Q(p)*. If the
rank of R at ¢ is maximal, then there is a neighborhood 4 of ¢ in HQ
such that R"(qo(l)) N A is a smooth submanifold of 4, and ¢ is thus
critical for the restriction of E to this submanifold in the usual sense.

This immediately shows that every minimizing 4 -geodesic ¢ with rank
R¢ = m is necessarily a critical point for E .

Define a smooth (2, 1)-tensor field @ on U by 6a,(X, Y) =a(X)0Y
(ueU,X,YeTM).

Lemma 4.1. The critical points of E are smooth curves parametrized
proportional to arc length.

Proof. If ¢ € HQ is a critical point of E, then (d8¢)—10¢' is the
projection in H Qq, of an element of J(p). Thus by Lemma 2.5 there is
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a function a: 1 — Q" c R™ such that

@ L60'(1) + L a(t) - aly' (1), 09'(0) + alt)) =O0.

If, by abuse of notation, we denote by P the (, )-orthogonal projection
of TM onto Q, then (2) transforms to

2 %0(:(:) = 0a(Pc(t), c(t))

which is a system of first order differential equations on 7U with C*-
coefficients. Thus every solution of (2') is smooth, and moreover (2)
shows (£0¢'(t), 0¢'(1)) = 0, i.e., critical points of E are parametrized
proportional to arc length. q.e.d.

Now for every initial condition X € M there is a unique maximal
solution A(X) of (2') which depends smoothly on X. A(X) projects
onto a smooth curve A(X) in U which is tangent to Q and parametrized
proportional to arc length. Since, by definition, U is just the open d -ball
of radius p around p = A(X)(0), for every X € T, M with |PX| < p
the curve A(X) is defined on I and A(X)|, € HQ is a critical point
of E. Hence X — A(X)(1) defines a smooth map exp; of U={X¢€
T M||PX|| < p} into U. Now 60%A(X)(bt) = bOA(X) (bt) shows
GA(bX)(t) = bA(X)(bt) or ,l(bX)( ) = AM(X)(bt) for all b € R. Thus
for every X € U we have exp, X)) =AX)1) (tel),ie., t— exp;(tX)
(t e I) is a critical point of E

Lemma 4.2. Let X € T,M be such that A(X) is defined on I and
rank R, (X) = m. Then for every p > |PX| thereis 6 >0 and B < oo
such that d__(A(X), A(Y)) <J and |PY| < u implies |Y| < B.

Proof. Let X be the unit sphere in R™ . Since rank R a0 =M there is

then a > 0 such that |P(1d—T,,,)"'c| > o|(Id =T y,) 'c| forall c€ £.
Let 0, = inf{l(Id—TMX))_chc €X} and o, = sup{l(Id—TA(X))_chc €
X} . By Corollary 3.2 we can choose é > 0 such that

sggl((ld—Tl(X))“‘ —(1d-T,) ")l < a0, /2

for all y € HQNE™'[0, 4?) with d_(A(X),7) < J. Forsucha y we
then have

|P(1d — T) c|>aal/2>aalaz|(ld -T) c|/4
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forall c € X. Henceif Y € T,M with | PY|| <y and d_(A(X), A(Y)) <
d, then E(A(Y)) < u* and

~ -1 ~ -1
|P(Id—TMY)) 0Y| = ||PY| > aa]azl(ld—Tl(Y)) 0Y|/4
> ao,0,||Y|/4.

This yields the claim. q.e.d.

Recall that a d -geodesic is a curve ¢ in M, which is parametrized
proportional to arc length and realizes locally the d -distance of its curve
points. If the closure of U in M is compact (which is always true if
we choose U small enough), then every ¥ € U can be joined to p by a
minimizing d_-geodesic (see [6, 17]).

Any such geodesic which is parametrized on [ is necessarily a critical
point of E. This was stated in [17], however the proof provided there is
only valid in the strong bracket generating case (where it also follows from
the fact that the map R is of maximal rank on each nontrivial curve in
H{’ (I, U)). The general case was established by Bar [1]. In particular the
map exp,: U — U is surjective.

Corollary 4.3. Let u € U be a regular value of exp;. Then the set
(exp) ™ (W) N{YIIIPY| = d(p, )} is finite.

Proof. The set A = (exp;)_'(u) N {Y||]ﬁY|| =d.(p, u)} is nonempty
and closed in TpM . Since u is a regular value for exp; , A 1s moreover
discrete. Assume that there is a sequence {X,} C 4 such that || X, || — oo
(k — o). Then A(X,) is a minimizing geodesic joining p to u; its energy
equals d.(p, u)2 . Thus by passing to a subsequence we may assume that
the curves A(X,) converges in (CO(I ,U),d,) to acurve ¢ which is
necessarily a minimizing d_-geodesic joining p to . Then ¢ = A(X) for
some X € A and Lemma 4.2 shows that there is k, > 0 and f < oo
such that || X, || < B forall k > k,. This contradicts the assumption that
| X, || = oo and shows that 4 is bounded, hence finite.

5. Calculus of variation
Since the rank of exp; at 0 € TpM is not maximal the above con-
siderations do not necessarily imply that A(X) is a d -geodesic for every
XeU,ie.,is locally minimizing with respect to d,. To show that this

is nevertheless true we compute the variation of the energy at the critical
point A(X) (X e U).
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Lemma 5.1 (First variational formula). Let X € T,M be such that
A(X) is defined on I and let y: (—¢, &) — HQ be a variation of A(X) =
Yo with variation vector field Y = Zy| _,. Then a";E(y/s)IFO = (Y(1),
A(X)(1)).

Proof. With ¢ = A(X) we have

1
FEWo= [ (@810, 00 )

_ /0 (@8, ¥)(0), BA(X)(1) d

- /0l <%0Y(t), 0}1(X)(t)> dt

1
+ [[6¥(, ato'0), B3Ot
=(Y (1), A(X)(1)). q.e.d.

Recall that d6 is a smooth 2-form on U with values in R™ . Hence for
u € U and every tangent vector Y € T, M the derivative Y(d6) of d6
in the direction of Y is a bilinear mapping of 7, M into R™ depending
smoothly on Y.

It will be convenient, furthermore, to use the following notational con-
vention: Recall that for every u € U the restriction of 6 to T, M is
a linear isomorphism of 7,M onto R™, i.e., for every W € R™ there
is a unique W(u) € T,M such that 6W(u) = W . Thus whenever no
confusion about the base point u is possible we can write d0(W, Z) or
do(W, Z(u)) or d6(W(u), Z) to denote the vector dO(W (u), Z(u)) €
R™ . Similarly we denote by a(W) the linear map a(W (u)) (uc U, W,
Z € R™). With this convention the second variational formula for E can
be expressed as follows:

Lemma 5.2 (Second variational formula). Let X € T,M be such that

A(X) is defined on I, and let y: (—¢, 8)2 — HQ be a 2-parameter varia-
tion of ¢ = w(0, 0) with fixed endpoints y(—¢, €)*(1) = ¢(1) and varia-
tion vector fields Y = Zy/| Z=2Lyl, oo Then

0 0

aaE(‘//(u ’ S))lu:_g:o

I ~
= /0 ((d8,Z)(1), (dB,Y)(t) - a(Y (1), 6A(X)(1))) dt

u=s=0"’

I ~
+/0 2(Z(1)dO)(9' (), Y (1)), 6AX)(2)) dt.
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Proof. Since

5 o 7o 8,0 0
%%E(W(u,ﬂ)luzszo—/o <a_u§95“” 05"/>u=s=o a

1
+ / (d®,Y)(1), (d8,Z(1) dt,

0
we have to transform the first integral. Define W (t) = 3 -05- 2 -W|,_,_o; then

I d,0 0y O
35957 =3 6§W+2d6< FT)
yields
%% % |u=s=0=%W(t)+2d0((p'(t) W (1)) +2d6(d8,Z(1), Y(1))
+2(Z()dO)(9' (1), Y(1)).

(

Since W (1) =0 we have fo( (de,W)(1), 6 AX)()dt=0,ie.,
1

| e, wyo. 00/ ar

= - / l (d8,W)(1), (Id—P)0A(X)(1)) dt.
0

But b 2202ycQ= PR™ shows
(P -1d(d®,W)(1)
= (Id-P)(2d6(d®,Z(t), Y (1)) + 2(Z(1)d6)(9' (1), Y (1)));

hence
170 0 0 /
/o <%aem\ylu=s=0’ Oy (t)> dt

- / ](2d0(d8¢Z(t), Y(t) + 2(Z (1) d6)(¢ (1), Y(1)), OA(X)(2)) dt
0

and from this the lemma follows.

Remark 5.3. Assume again that M is a Lie group and that the vector
fields X', .-, X™ are left-invariant. By Remark 2.8 we have J(¢p) =
{X € H{(9)|(d®,X)(t) = Ad, ¢, for some ¢, € M}. For Y € M let
(ad(Y))" be the adjoint of the linear endomorphism ad(Y) of 9. Then

the formula of Lemma 5.2 reduces to

0 0
o7 5 EC¥, 9)l,ccg

=/ ((d©,Z)(1), (dB,Y)(1) - (ad(0Y (1)))" (BA(X)(1))) dt.

0
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Thus if Y is contained in the zero space of the Hessian of E at ¢, then
Y is a solution of the differential equation

(3) (d8,Y)(1) = P(AdL, ¢, + (2d(8Y (1)) (BA(X) (1))

for some ¢, € M. Every solution of (3) is uniquely determined by the
choice of ¢, and the initial condition Y (0); in particular the dimension
of the vector space of solutions of (3) vanishing at ¢ = 0 equals rank R 0 =

dim Q(p)" which in contrast to the fact that the Riemannian situation
may be strictly smaller than dim M .

Next we want to compute the zero space of the Hessian of E . For this
the following notation will be useful: Given ¢ € HQ and Z € H(/, R™)
there is a unique vector field £ Z € Hf’((o) such that Z(1) = £6(f Z)(t) -

a(¢'(1), 6(f Z)(t)). Write also (f Z)(t) = f, Z(t)dt. For every W €
HY ((p) we then have
dt (]lz (1) = (@O, W (1), a(][z )+ (W (1), Z(1).

Now if w is a (2, 0)-tensor on U with values in R™, then for each
ue U and X € T M the assignment Y — w(X, Y) is a linear map of
T,M into R™. We denote by (w(X))" its adjoint. With these notation
we obtain

Corollary 5.4. Under the assumptions of Lemma 5.2 we have

g 0
B (1, 5))|mco

/ <d6 Z(1),d®,Y(t 0][ a(d®,Y (1), O1(X)(x)) d
- 0][ 2(Y(2) d6)(¢' (1)) 61(X)(x) dt> d.

Proof. The claim follows from Lemma 5.2 and the following computa-
tion:

- /l(de¢y(z), a(Z(t), OA(X)(1))) dt
0

= / 1(e)Z(z), a(d®,Y (1), OA(X)(1))) dt
0

and since Z(1) = 0, integration by parts shows that the latter integral
equals

_/0' <d6¢Z(t), 0 ][ota(dawY(r), 01(X)(t))dt> dt
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Analogously
/ (Y0 doYe (), Z(1), 030 dt
- [ (02(1), (Y() oo (1)) 0)(1)) e
/ <dez e]l 7)d0)(¢' (1)) 6A(X)(x )dr> dr. qed.

Corollary 5.4 shows that if a field Y € H Q¢ is contained in the zero
space of the Hessian of E at ¢, then there is ¥ € J(p) such that

@ de,Y(t) = P (deﬁ(t) + 0]{) a(d®,Y (1), 6A(X)(t))dr
’ ~
+ 071 2((Y (1) d0)(9' (1)) 0A(X)(1) d‘c) )
0

This differential equation can be transformed to a differential equation
of the form ¢'(t) = f(t, c(t)) for some smooth function f: I xV — V
which is linear in the second variable as follows (then c¢(¢) is interpreted
as 0Y(t)): We have

a(d®, Y (1), 0A(X)(1))
=%0(Y(t) 0A(X)(1) — (¢’ (na)(Y (1), OA(X)(2))

—a(Y (1), a(9'(2), OA(X)(2)))
 +2a(db(¢'(1), Y (1), OAX)(1)),

and hence
0][ta(d9 Y (), 03(X)(1)) dr

a(Y(2), OA(X)( t))+9][< "(7), a(Y (1), 6A(X)(2)))

—(¢'(D)a)(Y (1), OA(X)(1))
—a(Y (1), a(p' (), OA(X)(1)))

+ 2a(d8(¢' (1), Y (1)), ei(X)(z))) dt
= f(t, 0Y(1)),
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where f: I x V — V is clearly linear in the second variable. Thus

21070 =P (48,70)+ fu, 0¥()

(4) ; 0]{) (Y (2)d0)(¢' (1)) 6A(X)(7) dr)

—2d0(¢'(1), Y ()

is clearly an equation of the required form.

Thus for every Y € J(p) and every Y, € T M there is a unique
solution Y of (4) with initial condition Y (0) = Y,,. Such a field is called
a Jacobi field along ¢ .

By the linearity of (4') the Jacobi fields along ¢ form a vector space
of dimension m + rank R _, and the zero space of the Hessian of E at ¢
consists exactly of the space of Jacobi fields along ¢ vanishing at ¢t = 0
and t=1.

As in the Riemannian situation the space of Jacobi fields vanishing at
t = 0 equals the space of variational vector fields along ¢ of variations
by geodesics.

Lemma5.5. Let y(s,t)=A(X,+sX,)(t) forsome X,, X, €V . Then
%y/l s—o i5 the Jacobi field Y along ¢ = y, with initial condition Y (0) =
which is determined by the field Y € J(p) with d8¢ Y(0)=X

Proof. Let a(s,t) = (1 — P)OA(X, + sX,)(t) and define Y(r) =
Ly(s, t)|,_o- Since

999y 204_ a(%y/,eg-y/+a)50

ot ot ot ot
and
0 .0
ds 6[W| 0 =d8,Y,
we have
00,0 o 0 d 0 0
(5557957*”*&5?“) = 7199 Y * 5155%=0

= (Y(D)a)(¢'(1), 09 (1) + a(0, 1))
+a(d®,Y (1), 09’ (1) + (0, 1))

! 0
+a ((0 (1),d8,Y(t) + $a|s=0) ,
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which means

g (de V() + g5l - <¢’(z), 48,Y(1) + 2ol

= (Y(D)a)(9' (1), OA(X)(1)) +a(d9¢Y(l), OA(X,)(1)).

Y(0) = X, =d®,Y(0)+ £a(0, 0). Since
o' (1), d@ Y(t)) = 0, it follows from the

Let Y € J(p ) be such that d6¢
by Lemma 2.5 %de(a)’( ) — a(
above equation that

de,Y () + %a = 0][0 (Y(v)a)(9' (1), OA(X,)(r))) dT
+6 ]10 ' a(d®, Y (x), 03(X,)(1)) d7 +d®, ¥ (1),

hence we only have to show that (Y (¢)a)(Z, W) =2((Y(£)d6)Z)"W for
all Z, WeR". Let X €R™. Then

0

@y (23 W), X)L = (Y (DD)(Z, W), X)L

d
=25 (W b, \(Z, X))g
=2(W, (Y(1)do)(Z, X))
=2((Y(0d6)2)' W, X),

which implies (Y (t)a)(Z, W) =2((Y(t)d0)Z)*W as required.

Remark 5.6. (a) For X € T,M let null(X) be the dimension of
the vector space of Jacobi fields along A(X) vanishing at A(X)(0) and
A(X)(1). It then follows from Corollary 5.4 and Lemma 5.5 that the rank

of exp; at X equals rank R, ;) —null(X ). In particular if X € TZ(X oM

is such that A(X)(¢) = A(X)(1—1), then the rank of expi(x)m at X equals
the rank of exp; at X.

(b) By Sard’s theorem almost every u € U is a regular value for exp; .
If u € U is such a point, then (a) shows that p is a regular value for
expﬁ. Let X € TpM be such that ¢t — exp; tX is a minimizing geodesic
joining p to u. Then exp; has maximal rank at X and hence by (a) and
5.4 and 5.5 the zero space of the Hessian of E at A(X) vanishes. Since
A(X) is minimizing, this means that the Hessian of E at A(X) is positive
definite.

We now have a closer look at the Hessian of E at the critical point
@ . Assume that p < 2 as in the beginning of this section is sufficiently
small such that the closed d -ball of radius p around p is compact. For
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X € T,M with IPX|| < p, ¢ = A(X) is defined on I and thus can be
viewed as an element of HQ. For Y, Z e H Q¢ define

I,(Y,Z)= /((d@ Z)(1), (d8,Y)(1) —a(Y (), OA(X)(2)) dt
/ A(Z(1)dO) (@' (1), Y (1)), BA(X)(1)) dt.

Then we have

Lemma 5.7. There is k € (0, p/2] such that I,(Y,Y) > 0 for all
X eT,M with | X||<x andall 0#Y € HQ, 4, .

Proof. Since A(sX)(t) = A(X)(st) for all X € TpM and s,t e, it
suffices to show that there is ¥ € (0, p/2] such that forall X € T M with

IPX|| = p/2, all & <x/|X||,and all ¥ € HQ,, which do not vanish
identically on [0, d] we have

I(Y,Y)= /((a’8 Y)(1), (a'e Y)(t) ~a(Y (1), 0A(X)(1))) dt

/2 (1) dO) @' (1), Y (1), OA(X)(1)) dt > 0,

where as before ¢ = A(X). To show this let B be the compact d -ball of
radius p/2 around p. Then there is ¢ > 1 such that for all u € B, all
W, WeR",and Ze T M

) d6, 0w, Wl < W W],
(i) lla, (W, W) S clWIIWl,
(iii) |(ZdO)W , W)l < cl|lZ| W] |W]/2.

Nowif Y € HQ, , then Y(0) = 0 and consequently Y (¢ = [, £0Y(s)ds
forallt € I. Since ¢(I) C B and %HY(S) =(d©,Y)(s)- 2d0(qo (s), Y(s))
it follows from (i) and [|8¢'(s)|| = p/2 <1 for all s €I that

[

For s <t we have ||Y(s)| < fo || u)||du, hence

[

d

ds < /0 I, Y))lds +c [ Y (s)]ds.

d ' ‘N d
2 0v(5)| ds < /0 (@8, Y)(s)l|ds +ct /0 “ZE(’Y“) ds
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2
ds)
<(l-ct) (/udey ||ds)2

< (-1_7)2/0 I(@®, Y)(s)I ds.

Now (ii) and (2) for 8A(X) show || LA(X)(?)] < cllA(X)()]| and con-
sequently ||A(X)(?)|| < e”||X||. Thus for § < 1/c we obtain

/ 6((d8¢Y)(t), ad”(0Y (1), 0A(X)(1))) dt
0

5 , 12/ 4 ) ) ; 12
s(/o TCCR) dz) (/ lad" (6Y (1), BA(X)(1)| dz)
1/2
< ce” x| (/ I(@®, V)0 dt) (/ 1Y () dt

Inserting ||Y (¢ || < (d/(1 —cd) )fo II( d9 Y)(s)||ds (t <), this yields

Thus if ¢ < 1/c, then

Y@l < (]0 d

0¥ (s)

Y(0Y (1), OA(X)(2))) dt

J
< (6/(1 - coee” x| [ @@, V)0 dr.
0

On the other hand it follows from (iii) that

6 ~
/0 2(Y(0)d6)(9'(0), Y (1)), OA(X)(1)) dt

b ) 5
SC(/O 1Y (o) dt) ( /0 Ill(X)(t)lldt)

)
<@/t - eaY)ee” x| [, )OI .

Thus if we choose ¢ > 0 sufficiently small that
8/(1 = c6) < min{1, (2| X|)""},
then I;(Y , Y) is not smaller than a positive multiple of fo II( d8 Y)( t)|| dt

wh1ch is positive for all Y € HQ not vanishing 1dent1cally on [0, d].
This is the claim.
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Corollary 5.8. exp; is of maximal rank on an open and dense subset
of {X e T,M|| X|| < x}.

Proof. We argue by contradiction and assume that there is an open
subset U of {X € T,M||X|| < k} such that exp; is singular at every
X € U. By ev. diminishing the size of U we may assume that the
rank of exp, is constant on U and that exp, U is a smooth embedded
submanifold N of M of dimension »n = rank exp; |y <m.For XeU
the tangent space of N at u = exp; X equals the vector space of all
endpoints of Jacobi fields along A(X), which vanish at p = A(X)(0), and
by 5.6, 5.7, and the choice of U this space is just {Y(1)|Y € HQMX)} .
This means in particular that Q, is contained in 7,N for all u € N.
Hence for all u € N, T,N contains the span at u of the Lie algebra
generated by Q, . This spanis 7, M since Q is bracket generating which
implies the contradiction m > dim N =dimT,N > dim T, M =m.

Corollary 5.9.  Every critical point of E is a geodesic with respect to d., .

Proof. Let X € T)M with || X|| =k, let ¢ = A(X), and assume
rankR, =n < m. Then W = {d8¢Y(l)¢(l)IY € J(p), PY =0} is an
(m — n)-dimensional subspace of TW)M .

Choose a smooth (m — n)-dimensional submanifold S of U con-
taining ¢(1) with the property that W is the tangent space of S at
¢(1). Then A = {y € H{(I, U)|y(1) € S} is a smooth submanifold
of Hf’ (I, U). By Remark 2.7 for every ¥ € A the gw-orthogonal com-
plement of the tangent space AW of A at y consists of all Y € J(y)

with d8,Y(1),,, € (TS)". By the definition of W this means that HQ
meets A transversally at ¢ . Moreover the gw-orthogonal complement of

the intersection Aq,ﬂH Qq, in HQ¢ is just Q(go)L. Thus there is an open
neighborhood A4 of ¢ in HQ such that AN A is a smooth submanifold
of HQ and ¢ is a critical point of the restriction of E to ANA.

By Lemma 5.7 the Hessian of E|,., at ¢ is positive definite. Hence
there is an open neighborhood B of ¢ in AN A such that E(y) > E(p)
forall w € B, say B is the intersection of ANA with the preimage under
© of a 2e-neighborhood of A¢’ in the Hilbert space Hy(I, Q) for some
e>0.

Assume that there is 7 € [0, 1 — &] such that d (¢(7), ¢(7 +¢)) <
||I3X||s. Let w:[7, 1 +¢&] — U be a minimizing geodesic joining y/(7) =
o(1) to y(t+¢€) = @(r+¢). Then the curve

p(t) iftel0,r]ulrt+e, 1],
_’{ w(t) iftelr, t+el
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is contained in B (recall || X| = x < 1) and its energy is strictly smaller
than E(¢). This is a contradiction.

6. Isometries

In this section we investigate isometries of CC-metrics and show that
they are necessarily smooth maps. Let f: (M,d,) — (M,d,) be an
isometry. Then f is a homeomorphism which maps the space of H,-
curves in M which are tangent almost everywhere to Q onto the space of
H,-curves in M which are tangent almost everywhere to the distribution
@ inducing Jc.

Let peM and let U be an open neighborhood of p m M such that
™ |U and TM | () admit admissible trivializations X', , X™ and

X, x! , X™ as before. Then the assignment ¢ — fo ¢ is a bijection of
HQ {(o € HY(1, U)|¢'(t) € Q for almost all ¢ € I} onto

HQ = {q)er”)(I f(U))|e'(t)e @ for almost all ¢ € I}.

Now if ¢: I — U is an element of HQ, then ¢ is rectifiable with
respect to d,, and moreover ||¢'(¢)|| equals the dilation of ¢ at ¢ for
almost every t €1, ie.,

d.(o(t), p(t+e¢))

llp"(2)|] = lim sup —
e—0 €

(see [14, 17]). Since f is an isometry, this means ||(f(o)'(t)||a =o' )|
for almost every t €1, i.e., the map ¢ — fop commutes with the energy
function.

The above trialization of TM on U gives rise to an exponential map
exp; at p as before, which is defined on an open star-shaped neighborhood
W of 0in TpM . In the same way an exponential map expjf(p) at f(p) is
defined on an open neighborhood W of 0in Tf(p)ﬁ . For X € W, define
A(X) € HQ by A(X)(t) = exp; tX (tel), ie., we assume in the sequel
always that A(X) is parametrized on 7. It follows from Corollary 5.9 that
for every X € W there is X € W such that FA(X) = f o A(X) = A(X),
i.e.,, the map F: A(X) — foA(X) is a bijection of the space of geodesics
in U, which emanate from p and are parametrized on I onto the space
of geodesics in f ) Wthh emanate from f(p) and are parametrized on
I. Notice that X € T,, )M with /l(X ) = FA(X) is not necessarily unique.
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Lemma6.1. Let X € T,M, X € T, M, and FA(X) = A(X). If exp;
is of maximal rank at X and expi,(p) is of maximal rank at X , then:

i) f exp; tX = expcf(p) tX forall t for which exp; tX is defined,

(ii) there is an open neighborhood Q of X in T,M , which is mapped
by exp diffeomorphically into U, and adlﬂeomorphlsm ¥ of f (exp Q)
into Ty, M such that FAY) = A(‘Pofoexp Y) forall Y e Q.

Proof. (i) Assume that there is v > 1 such that f exp vX # expf(p) vX.

Since ¢ — fexp tX (t€]0, v]) is a geodesic in M thereis Y € Tf(p)M

such that fexpp tX = expfp tY forall ¢ € [0, v]. Now expf(p)uY #
expf,, v X shows X # Y. On the other hand A(Y) = FA(X) = A(X)
which means P(1d T3, )y = P’(Id-:rl(;))“f( (compare Lemma 2.6)
—1 . o .

or P(Id - A(X)) (Y-X)=0 in contiadlctlon to rank RAU?) =m.

(ii) By the assumptions on X and X there are open neighborhoods B
of X in T,M and B of X in Tf(p)M with the following properties:

(i) exp; maps B diffeomorphically onto an open neighborhood A

of uin U.

(ii) There is a diffeomorphism ¥ of fA4 onto B such that exp?(p) oV
=1d
14

Assume that B contains the 24-neighborhood of X in Tpﬁ . If the
lemma does not hold, then there is a sequence {X,} C B with X, — X

(k — oo0) such that FA(X,) = A(Y,) for some Y, € Tf(p)M with ||Y, —

fll > ¢ forall k> 0. Since d__(A(X X), A(Yk)) — 0 (k — o), Lemma 4.2
shows that the sequence {Y,} C T o) M is bounded; hence passing to a
subsequence we may assume that {Y, }, converges to some Y € Tf(p)M .
Clearly ||Y — X|| > J. Since d (A(Yk) AMY)) - 0 (k — 00), it follows

that A(Y) = A(X). But this means P(ld - TA(X))_IY P(ld - T(X))_IX

or P(Id TMX))_'(Y — X) =0 in contradiction to rank R,{(}) = m. This
shows the claim. q.e.d.

Now we are ready to show .

Theorem 6.2. An isometry (M ,d,) — (M, d,) is smooth.

Proof. We show first that an isometry f: (M, d,) — (]l7 , dc) is smooth
on an open dense subset of M . This follows from a successive application
of the following.

Sublemma. Let N C M be a smooth embedded submanifold of dimen-
sion n < m. Assume that the restriction of f to N is smooth. Then for
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every point p of an open dense subset of N there is an open neighborhood
U of p in N and a smooth (n + 1)-dimensional embedded submanifold
N of M containing U such that the restriction of f to N is smooth.

To show the sublemma observe that since Q is bracket generating, N
contains an open dense subset with the property that for every p of this
set the tangent space T,N of N at p does not contain Q.

Since, as an isometry of (M, d,) onto (A7 , Jc) , [ is absolutely contin-
uous with respect to Lebesgue measure (compare [12]), there is ¥ € T,M
such that PY is transversal to N at p, u=AY)(1) is a regular value
for exp;, and f(u) is a regular value for exp}(p). Let X € T,M be
such that A(X)(¢) = A(Y)(1 —t¢). By Remark 5.6 p is a regular value for
expi, and f(p) is a regular value for expcf(u). Choose Q C T,M and
¥: f(exp, Q) — T, M asin Lemma 6.1. Then Qn(exp;)”' (N) =W is
a smooth submanifold of Q. Since the restriction of f to N is smooth,
the same is true for the restriction of Df = Wo fo epo to W. Since
A(X) meets N transversally at A(X)(1), there is an open neighborhood
B of X in W and a number ¢ > 0 such that N = {exp,tY|Y €
B,te(1—-¢,1+e¢)} is a smooth embedded submanifold of M. But
fexp,tY = exp), t(DfY) forall Y € B and t € (1 —¢, 1+¢) shows
that the restriction of f to N is smooth. This finishes the proof of the
sublemma.

To finish the proof of the theorem let p € M be arbitrary. Then there
is a regular value w € M of exp; such that f(w) is a regular value of
exp;(p) and f is smooth near w. Let A(Y) (Y € T,M) bea minimizing
geodesic joining p to w, and let Q and ¥ be as in Lemma 6.1. If we
choose Q sufficiently small, then Df =W¥o fo expf7 is a diffeomorphism
of Q into Tf(p)]Tf such that FA(Z) = A(DfZ) forall Z € Q. Lemma
6.1 shows f exp; t1Z = exp?m t(DfZ) forall Z €Q and all ¢ for which
both sides are defined.

For Z € Q, define o(Z) = —A(Z)(1) and B(Z) = —A(DfZ)(1), where
A(Z) is as before. Then o and B are smooth maps of Q into TM and
TA7, resp., and expi(z)“) is of maximal rank at a(Z) and exp?l(z)(” is
of maximal rank at §(Z). Hence there is a compact neighborhood K of
Y in Q and ¢ > 0 such that, forevery Z € K, expfuz)“) and expcﬂ(z)(,)
are of maximal rank at (1 + ¢)a(Z) and (1 +¢)B(Z) respectively.

Since {¢Z|— Z € K} has nonempty interior, Corollary 5.8 shows that
there is W € K such that A(—eW)(1) = u is a regular value for exp; ,
and f(u) is a regular value for exp, -
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Let X = —(1+&)A(W)(—¢) and X = —(1 +&)A(DfW)(~¢). We have
A(X)(t) = exp,((1+&)t — &)W and A(X)(t) = expcf(p)((l +e)t—e)(DfW),
and consequently FA(X) = A(X).

By Lemma 6.1 there is an open neigthorhood B of X in T M and
a diffeomorphism ® of B into T, M such that FA(Z) = A(®Z) for

all Z € B. Since exp;, is of maximal rank at ¢X/(1 + ¢), for sufficiently
small B the map Z — A(Z)(e/(1 + ¢)) is a diffecomorphism of B onto
an open neighborhood of p. But fA(Z)(t) = A(®Z)(¢) for all 1 € I and
Z € B then implies that f is smooth near p. Hence the proof of the
theorem is finished.

7. The strong bracket generating case

In this section we investigate the group of isometries of a CC-metric
d. which is induced by a distribution Q satisfying the strong bracket
generating hypothesis (see [17]), i.e., for every nonzero section X of Q,
TM is generated by Q and [X, Q].

Let N be the annihilator of Q in the cotangent bundle T°M of M.
N is a smooth k = (m — g)-dimensional subbundle of T*M .

Lemma 7.1. Every Riemannian metric on Q gives rise to a unique
Riemannian metric on N .

Proof- Let pe M, 0 # w, € Np , and let @ be a local section of N
through o, . If X, Y are local sections of Q near p, then

do(X,Y) = 3{X(o(Y)) - Y(0(X)) - o([X, Y])} = —j0([X, Y]),
in particular dw(X e Yp) only depends on w, , not on the choice of the
extension w. Since the commutators of sections of Q span T M, the
restriction of dw to Q, doesnot vanish. This means that there is a natural
injective bundle map J of N into the exterior product Q" A Q" . Since a
Riemannian metric on Q induces a Riemannian metric on Q* A Q" this
metric can be pulled back via J to a metricon N. q.e.d.

For asection w of N,defineamap Jw: Q — T*M by (Jo(X))(Y) =
dw(X,Y). Since Q satisfies the strong bracket generating hypothesis, Jw
is an injective bundle map and Jw(Q) is complementary to N .

Lemma72. Let o', -, w* be a local orthonormal basis of N with
respect to the metric of 7.1. Then for every i € {1, --- , k} the (m —1)-
dimensional subspace of T; M , which is spanned by J w'(Qp)U{wi,li #7J},
1 k

-,

only depends on @ N

s and is transversal to {Awf,l/l € R}.
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Proof. Clearly Al"] = span(J wi(Qp) U {wf;li # j}) is transversal to a);.
To show that A[’; only depends on o L, a)’; let @' , @* be an-

other local orthonormal basis of N near p with E; = w; . Then there is
a smooth function (g; j) of a neighborhood of p in M into the special

orthonormal group SO(k) such that (g;,)(p) = Id and @ =Y ;8,0 -
We have (dgjj)p =0 for j=1,.---,n. Let Xl,m , X7 be a local
orthonormal basis of Q near p and let ¢’ = Jw'(X’). Then dg,; =

a

Yo ale*+y P szwﬂ with smooth functions aij and b;j , and
do' = ngij AN + Zg,.jdwj
J J
=Y a’d"ne + Y bf" N+ g de.
a,j B,j

Since @’/ =0 for j =1,---, n, this implies (J@')(X) = (Jo')(X) +
Y oy (X)w' for every X € Q,, ie, (JB)X) - (Jo')(X) €
span{w’ li #j} as claimed.

Corollary 7.3. If Q satisfies the strong bracket generating hypothesis,
then every Riemannian metric ( , ), on Q can intrinsically be extended
to a Riemannian metricon M .

Proof. Let p € M . By 7.2 the choice of an orthonormal basis w:, y . N

4
of Np determines for every i € {1, --- , k} an (m — 1)-dimensional sub-

space of T; M , which annihilates a 1-dimensional subspace A of TpM
transversal to the kernel of w; . Let Z' € A' be such that wl’,(Z,.) =1.
The vectors Z l, ,Zk span a k-dimensional subspace of TpM which

is complementary to Q, ; we thus can define an extension g(w}, sy w’;)

of ((, )Q)p by choosing the vectors Z', .- , Z¥ orthonormal and per-
pendicular to Qp.

Now the space of orthonormal bases of Np can be identified with the
orthogonal group O(k). Let u be the normalized Haar measure on O(k)
(which satisfies 4(O(k)) = 1), and define (X, Y), = fo(k) g(&) (X, Y)du(é)
for X, Y eT,M. Then {, ), isa scalar product on T,M extending the
product on Qp and moreover is defined intrinsically by (@, (, ) Q). q.e.d.

The Riemannian metric ( , ) on M defined in 7.3 will be called the
canonical extension of ( , )o-
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Since every isometry of d_ is smooth, 7.3 yields

Corollary 7.4.  The group of isometries of d_ is a closed subgroup of the
Lie group of isometries of the canonical extension of { , ) 0
Lemma 7.5.

O%A(X)'(t)|t=0 — Pad"(PoX, (1 - P)6X)
— (1= P)ad"(POX, POX).

Proof. Let ¢ = A(X). Then 60¢'(0) = POX, £0¢'(t)|_, =
Pad*(POX, 6X), and, moreover by Lemma 2.3, §2¢(r) = L0¢'(1) -
ad”*(0¢'(t), 8¢’ (1)) . Together this yields the claim.

Corollary 7.6. If Q satisfies the strong bracket generating hypothesis,
then every d -geodesic through p is uniquely determined by its tangent and
its covariant derivative at p . In particular exp; is intrinsically defined.

Proof. For Y € Qp the map oy : Q",L — Qp, Z — f’ap(GY,GZ)
does not depend on the choice of the local trivialization of TM near p,
and is injective. The corollary thus follows from 7.5 and the fact that
every Riemannian metric on a strong bracket generating distribution can
intrinsically be extended to a Riemannian metric on M .

8. Nilpotent homogeneous Lie groups

In this section we investigate the group of isometries of a left-invariant
CC-metric d, on a nilpotent homogeneous Lie group. Thus let N be a
nilpotent homogeneous simply connected Lie group whose Lie algebra O
is generated by a complement Q of its derived algebra [D, 9], i.e., if
Q'= Q and ot = [0, Qi], then there is k > 1 such that M = @le 0
(direct sum). For every r > 0 the assignment 6,: Y\, X' — ¥ r'x’
(X ‘e Qi) is a Lie algebra automorphism of 9t which integrates to an
automorphism A, of N. Let d, be a left-invariant CC-metric on N
induced by a scalar product ( , )Q on Q. Then {A|t > 0} isa I-
parameter group of homotheties with respect to d., i.e., d.(A.p, Au) =
rd (p,u) forall p, ue N, r>0 (compare [13]).

Choose an extension of ( , )Q to a scalar product ( , ) on 9 such

that the decomposition I = @f;l Q' is ( , )-orthogonal and a left-
invariant ( , ) -orthonormal trivialization of TN . Denote as before by
A(X) (X €M) the geodesic through the identity A(X)(0) = e with respect
to these data. Since 05‘,13(A,A(X)(s)) = t@(%A(X)(s)) for all £ > 0 and

s €R, we have A A(X) = A(°5,, X).
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Lemma 8.1. Every isometry of (N, d,) fixing the identity e permutes
the 1-parameter subgroups of N which are tangent to Q.

Proof. For every X € Q the geodesic A(X) is the 1-parameter subgroup
in N defined by X and is globally minimizing since the 1-parameter
subgroups tangent to Q are globally minimizing geodesics with respect to
the Riemannian metric ( , ) on N. Since f is smooth, fA(X) is a
globally minimizing geodesic in (N, d.) with rank R ) = rank R A =
k for some k <m.

For Y € Q, define rank(Y) to be the dimension of the smallest ad Y-
invariant subspace of 9 containing Q. Remark 2.8 shows rank R, 2
rank(p’(0)) for every smooth curve ¢: I — N through ¢(0) = e which
is tangent to @, and moreover the rank is preserved by every diffeomor-
phism of N which leaves Q invariant and fixes e. If ¢ is a 1-parameter
subgroup of N tangent to Q then rankR¢ = rank(¢’(0)).

For every r > 0, f(r) = A,fAl/r is an isometry of (N, d,) fixing e.
Let B be the compact d -ball of radius 2||.X]|| around e. By Ascoli’s
theorem there is a sequence r; (i > 0) such that r, - 0 (i — oo) and
that the sequence of maps f(r;) converges uniformly on B to a map f.
Since f is an isometry of (B, d.) fixing e, by 7.2 a diffeomorphism of
B, and fA(X) is a minimizing geodesic in (N, d.) with rank R
rank(fA(X)'(0)) = k.

Let A C 9 be the ( , )-orthogonal complement in 9 of WM N (Id —
Tﬁ( X))L°°(I , Ql) ,andlet P: 9 — A be the (, )-orthogonal projection.
Since rank Rﬁ( x) = rank(fA(X)'(0)), Remark 2.8 shows that 4 equals the

smallest ad(fA(X)'(0))-invariant subspace of 9 containing Q and hence
is invariant under the automorphisms J, (r > 0). By 3.2, A4 is transversal
to MN(Id-T,, . X))L°°(I , Q") for all sufficiently large i > 0; we may
assume that this is true for all /. This means that there is a unique
Y € A4 such that fA(X) = A(Y). Now f(r)A(X) = A(r,,Y) for all
r > 0, and since A is invariant under the automorphisms 6, (r > 0),
we have ||P(rd, /,Y)|| = ||rd, /,Y|| , and hence by Remark 4.3 the sequence

l|r;6, /,l_Yll is uniformly bounded. Butif ¥ =Y, +Y, with ¥, € Q and
Y, e Q" , we have ||r61/,Y|| > ||Y,||/r for all r > 0 and consequently
since r; — 0 necessarily Y, =0, i.e., A(Y) is a 1-parameter subgroup in
N asclaimed. q.e.d.

For i > 1, denote by H, the Lie subgroup of N whose Lie algebra
is the ideal b, = @57:,. Q. (, )p induces a left-invariant CC-metric d,

Tax) =
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on the factor group N/H; in such a way that the canonical projection
m;: (N,d.)— (N/H,, d,) is distance decreasing.

Let exp be the exponential map of N and call two pairs (u, X),
(v,Y) € N x Q parallel if the function ¢t — d (uexptX,vexptY) is
bounded on R.

Lemma 8.2. If (u, X) and (v, Y) are parallel, then X =Y .

Proof. Let ¥ be the restriction to Q of the map n, oexp. ¥ is
an isometry of (Q, (, )Q) onto (N/H,, d,). The Campbell-Hausdorff

formula [5] shows m,(uexptX) = ‘I’((‘I’_'nzu) +tX) forall ue N and
X € 0, and hence

dy(n,(uexptX), n,(vexptY))
= | 'myu =¥ 'm,w) + t(X = V)| > |t] | X — Y| — const.

Since the latter expression is uniformly bounded for all 1 € R whenever
(u, X) and (v, Y) are parallel, the lemma follows. q.e.d.

Let Z be the center of N. Then we have

Lemma 8.3. pe Z ifand only if (p, X) is parallel to (e, X) for all
XeQ.

Proof. If p € Z then d (exptX, pexptX) =d_ (e, p) forall t € R,
ie., (p, X) is parallel to (e, X) forall Xe Q.

On the other hand, if u = exp(F_, X') ¢ Z(X' € Q'), then there is
X € Q such that [X,¥° X'1#0. Let j—2=min{i > 1|[X, X'] # 0}
and let ¥ be the restriction to S = @’_, Q' of the map = ;oexp. Under
the identification of S with 90t/h 1B ¥ can be viewed as the exponential
map of N/H i 1.e., group multiplication in N/Hj can be computed via
the Campbell-Hausdorff formula in S. This means

d(n;exptX, n(uexptX))=d;(ne, ‘P((‘I’—lnju) +1Xx’, X1),

which is unbounded in ¢ € R. Since T is distance-decreasing, (u, X) is
not parallel to (e, X). q.e.d.

A special case of the following corollary is due to Pansu [13, Proposition
18.5]:

Corollary 8.4. Every isometry of (N, d,) fixing the identity e is a Lie
group automorphism of N .

Proof. By a theorem of Pansu [13] there is an automorphism ¥ of N
such that d,(¥ o f)| o=1d lg- ¥ is necessarily an isometry with respect
to d, ; hence we only have to show that there is no nontrivial isometry f
of (N,d,) with f(e) =e and def|Q =1Id|,.
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We proceed by induction on the degree of nilpotency of N . If this
degree equals 1, then (N, d,) is Euclidian and hence there is nothing to
show. Thus let k > 2 and assume the claim is known for all groups of
degree <k —1. Let N be a group of degree k£ and let f be as above.
By 8.1, f permutes the integral curves of left-invariant vector fields and
hence maps parallel elements (#, X) and (v, X) of N x Q onto parallel
elements. Since f(e) =e and fexptX =exptX forall X € Q, t€R,
this implies by 8.2 and 8.3 the following:

(i) f preserves the center Z of N,
(i) f(pexptX)= f(p)exptX forall peZ, Xe€Q,and teR.

Forevery p € Z themap f,: u — f(p)"" f(up) is an isometry of (N, d.)
fixing e which by (ii) satisfies d,f |, = Id|,. By (i) f, preserves the
center Z of N and hence induces a transformation 7p of the factor
group N/Z which is an isometry with respect to the induced CC-metric.
Since the degree of nilpotency of N/Z equals k — 1, by the induction
hypothesis 7,, equals the identity of N/Z . This is true for every pe Z .
Thus the differential of f preserves the left-invariant vector fields tangent
to Q. Since Q generates M, f is the identity. Hence the proof is
finished. q.e.d.

We conclude this work with the following example.

Example 8.5. (a) The Lie algebra $ of the 3-dimensional Heisenberg
group H s spanned by vectors X, Y, and Z which satisfy the relations
[X,Y]=Z and [X,Z]=[Y,Z]=0. Let {, ) be the scalar product
on $ for which this basis is orthonormal, and let d, be the left-invariant
Carnot-Carathéodory metric on H® induced by Q = span{X, Y} and
(, )Q ={(, )IQ. We want to compute the geodesics A(W): t — exp;, tW
of d. through the identity e (compare [10]). For x;, y,, z, € R write
0;1(on +y,Y +2,Z)(t) = x(1) X + y(1)Y + z(t)Z . By using the relations
(adX)*Z =Y and (adY)*Z = —X equation (2) of Lemma 4.1 trans-
forms into the following system of differential equations for the coordinate
functions x, y, z:

xX'()=-y(nz(t),  x(0)=x,,
(1) = x(0)z2(0), y(0) =y,
Z()=0, z(0) = z,.
Hence

OA(x, X + ¥, Y +2,Z) ()

= (xy €08 zyt — y,sin zy1) X + (x, sin zyt + y,cos z,t)Y.
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The Lie group exponential map exp of H 3 induces global coordinates
on H* via the identification of exp(x, X +x,Y +x,Z) with (x,, x,, x;) €
R>. In these coordinates the vector fields X , Y ,and Z are given by [14]

0 1 9 i} 1 o 0
=——zX,=—, Y=—+x,—, = —.

Ax, 27%0x, dx, + 3% dx, dx;y
Thus for z, # 0 the geodesic A(X + z,Z) has the coordinate representa-
tion

MX +2yZ)(t) = z5 ' (sin zgt, 1 = cos zyt, /2 — sin zyt/22,) ,

in particular A(X + z,Z)(2n/z,) = (0, 0, n/zé). For every a € S' ~
[0, 2x] the isometry of (£, ( , )) which fixes the center of $ and acts
as a rotation of angle « in the plane Q is an automorphism of §§ which
integrates to an automorphism ¥_ of H 3. ¥ is an isometry with respect
to d, which maps for every W € § the geodesic A(W) onto A(d¥ W).
Thus for every s > 0 there is a S'-family {A(d¥, (X + /7/sZ))la € S'}
of minimizing d_-geodesics joining e to A(dY,(X + /7/sZ))(2y/7s) =
(0, 0, 5). In particular each of the d -geodesics {A(W)|||}~’W|| = 1} min-
imizes exactly on the interval [0, 2z(|W|* — 1)"/].

(b) Let H = H>xH* be the direct product of two copies of H> with Lie
algebra $ = H x §, equipped with the left-invariant Riemannian metric
(, )0 which is the product of the metrics ( , ) on $ above. Let EC be
induced by (@ x @, (, ) lgxo)- Then the map (H?,d.) - (H,d,),
u — (u, e) is an isometric embedding. In particular for every X € Q
the 1-parameter subgroup in H, which is tangent to (X, 0) at e, is a
minimizing Ec-geodesic in H. However the rank of R along this geodesic
equals 5, i.e., the exponential map expg of (H, 30) at e is singular along
{(tX,0eHXeQ,teR}.
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