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PROJECTIVITY OF COMPLETE MODULI

JANOS KOLLAR

1. Introduction

The aim of this paper is to continue developing a method to prove
the projectivity of certain moduli spaces. Classically there have been two
approaches to this problem. Mumford's geometric invariant theory was
specifically designed with this aim in mind, and Griffiths' period maps can
be used in a similar manner in certain cases.

The approach of [20] and [22] starts with the observation that it is
fairly easy to construct moduli spaces which are a priori only algebraic
spaces. Frequently these spaces come endowed with a natural line bundle,
and one might hope to check that this line bundle is ample. If the moduli
space is proper, then ampleness can be checked using the Nakai-Moishezon
criterion.

Assume for simplicity that we have a smooth family of algebraic va-
rieties f:X—>Y9 and that for every fiber X the canonical line bun-
dle ωχ is very ample. The natural line bundles on Y are the bundles

lk = de t/ + (ω^ / y ) . From Hodge theory one has a natural metric with posi-

tive semidefinite curvature on f+(coχ,γ) hence λ{ is at least nonnegative.

To get something strictly positive one can consider the multiplication map

where Sk denotes the k th symmetric power. At each y e Y the kernel
of this map is exactly the space of degree k equations satisfied by the
canonical image of the fiber Xγ. Thus one can recover the fibers from
these maps. Using the curvature form on f*(ωχ/γ) > this leads to the am-
pleness of λk for k large [22, 6.14]. Moreover, the method works even if
/ is only generically smooth, but breaks down when applied to the bound-
ary of the moduli space where fSωχιγ) ι s o n ' y a n extension of bundles
with natural metrics. For curves these difficulties can be circumvented,
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though the arguments are very artificial. This leads to a new proof of the
projectivity of the moduli space of stable curves (unpublished).

Recently Viehweg [34] realized that the method of the hard covering
trick (cf. [33], [22]) can be used more effectively to exploit the multipli-
cation map. This eliminates the necessity of curvature considerations,
making the proof more general and considerably simpler. He applied this
in the context of geometric invariant theory and proved that the smooth
locus of the moduli space of surfaces of general type is quasi-projective
[34].

Here a different version of the same idea is used. For the applications
it has the advantage that it relies less on resolution of singularities, and
therefore it is applicable in positive characteristic or even over Z. The
precise formulation of the projectivity criterion is given in Lemma 3.9.

Among the assumptions necessary for this result, the condition on "semi-
positivity" is the most restrictive. This is checked in some cases in §4—first
for curves in any characteristic (Theorem 4.3) and then for stable surfaces
in characteristic zero (Theorem 4.12). These results are combined in §5 to
give a new proof of the projectivity of the moduli of stable curves over Z.
The moduli problem of stable surfaces is separated and satisfies the valua-
tive criterion of properness [23, Chapter 5]. However, it is not known to be
bounded, and thus we prove projectivity only for the proper subvarieties
(conjecturally everything).

In §6 the compactified Picard schemes defined by Altman and Kleiman
[1] are considered. This is the moduli space of torsion free rank one
sheaves. We prove that they are projective under some mild conditions
(Theorem 6.4).

For noncomplete moduli spaces the method of Viehweg [34] using "weak
positivity" is much better. Even in that case however it is simpler to avoid
using geometric invariant theory and applying his techniques directly to
the moduli space instead of the Hubert scheme. The reader familiar with
his article should have no problem combining the two methods.

I would like to thank E. Viehweg for pointing out several inaccuracies.
Notation and conventions. The notation and terminology follow Hart-

shorne's book. There are three notions that are standard in higher dimen-
sional geometry which may not be generally known.

1. A line bundle on a scheme (or algebraic space) is called nef if it has
nonnegative degree on any complete curve. This is usually used only if the
underlying space is proper.

2. A line bundle L on an irreducible scheme X is called big if the
following equivalent conditions are satisfied:
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(i) h°(X9 Lm) > constant mάimX for m > 0
(ii) for any divisor H there is an m > 0 such that mL is linearly

equivalent to H + E, where £ is effective.
3. A vector bundle E on a scheme (or algebraic space) X is called

semipositive if for every smooth complete curve C and every map / : C —•
X , any quotient bundle of f*E has nonnegative degree (see also 3.3).

2. Projectivity criterion

First we set up axiomatically the type of moduli problems that we will
be able to handle. The guiding principle is that this class should contain
the (compactified) moduli problem for surfaces of general type.

We will work over a fixed algebraically closed field K.
2.1. Moduli problem for Q-polarized varieties.

2.1.1. First we specify the objects which we want to parametrize. This
will be a class & consisting of pairs (X, L) satisfying the following as-
sumptions:

X is projective and satisfies Serre's condition 5 2 .
L is a reflexive sheaf on X which is locally free in codimension

one.
L is ample; i.e., for some r > 0 the sheaf L[r] is locally free

and ample, where as usual [r] denotes the double dual of the r th tensor
power.)

2.1.2. The class Ή is said to be open if the following condition is sat-
isfied:

For any pointed scheme s e S, any scheme X/S flat over S, and any
sheaf L/X that satisfy the following three conditions:

(i) {Xs,L\xs)e&,

(ii) L[k] is flat over S for any k > 0,

(iii) {L\Xs)
[k] = L[k]\Xs for every k,

there is an open set s e U c S such that if u e U then (Xu, L\XU) e &.
(Condition (iii) is specifically put here because it is the right condition for
surfaces.)

2.1.3. The moduli functor Jt *% associated to ^ is the following func-
tor:

Given a scheme S, Jf&(S) is the set of all pairs (ΛΓ, L), where X
is a flat and proper scheme over S, and L is a reflexive sheaf on X



238 JANOS KOLLAR

such that for every closed point s e S the conditions of 2.1.2 are satis-
fied. Two such pairs (X, L) and (Y, M) are said to be equivalent if
there is an isomorphism / : X/S —• Y/S which induces an isomorphism
(Xs, f*M\Xs) Ξ (Xs, L\XS) for every 5 E 5 . (Note that usually one re-
quires only that f*M\Xs and L\XS be numerically equivalent. Requiring
isomorphism makes things technically easier though it gives a slightly too
large moduli functor.)

If all the Xs are reduced and connected, then the equivalence condition
can be reformulated as follows: Two such pairs (X, L) and (Y, M) are
said to be isomorphic if X/S = Y/S and there is a line bundle B on S
such that L = π*5 0 Λf, where π: X -+ S is the structure map.

2.1.4. The function H{χ L)(t) = χ(X, L[t]) is called the Hilbertfunction
of (X,L). Given a family' ( 1 , 1 ) ^ ^ ^ ( 5 ) the Hilbert function of the
fibers is locally constant. Thus if we decompose the class ^ into subclasses
of pairs having the same Hilbert function, then the moduli functor of W
becomes the direct sum of the moduli functors of the subclasses. Hence
for most purposes it is sufficient to study classes with constant Hilbert
function. Then we call H(t) = H^χ L)(t) the Hilbert function of ^ .

2.1.5. The moduli functor Jt Ή associated to ^ is said to be separated
if the following condition is satisfied:

Given the spectrum T of a DVR and two pairs (Xn L.) e Jt&{T)
(i = 1, 2), every isomorphism of (Xχ, Lx) and (X2, L2) over the generic
point of T extends to an isomorphism of the pairs over T.

(This condition also might be called properness of the relation "isomor-
phism".)

2.1.6. The moduli functor ^ W associated to Ψ is said to be bounded
if there is a scheme of finite type S and a pair (X, L) e Jt ^{S) such
that for every (X, L) e ^&(SpecK) there is a point s e S such that
{X, L) and (Xs,L\Xs) are isomorphic.

2.1.7. If a moduli functor is bounded, then there is a (nonunique) par-
ticularly nice choice of the above scheme S. Let H(t) be the Hilbert
function of W. By boundedness one can choose a fixed N such that for
every (X, L) e J?&(SpecK) the sheaf L[N] is locally free, very am-
ple, and without higher cohomologies. Let P be the projective space of
dimension H(N) - 1 with fixed coordinate system.

Let H be the Grothendieck-Hilbert scheme of P parametrizing closed
subvarieties of P and a sequence of TV coherent sheaves on them. If
we embed (X, L) via the global sections of L[N], then the images are
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subvarieties with Hubert polynomials H(Nt), and the sheaves L [ / 1, / =
1, , N, have Hubert polynomials H(i + Nt). Thus there is a quasipro-
jective open subvariety HC of the Grothendieck-Hilbert scheme of P
which parametrizes exactly the images of the pairs (X, L) G ^# ̂ (Spec # )
under the imbedding given by a choice of basis in L[N]. There is a so-
called universal family Xuc over HC. A priori our conditions guarantee
only that the sheaves L[ι] are flat for i = 1, , N. However since L[N]

is locally free, we have L[ι+N] = L[ι] Θ L[N], and therefore all the sheaves
L[t] are flat over HC.

Furthermore, if (X, L) e JίΨiZ) and f: X -> Z is the structure
map, then f+L[N] is locally free and we get an embedding of (X, L) into
Proj z /*L [ i V 1. Replacing Z with an open cover |J Ui, we may assume that
/+L [ i V 1 is in fact free. Fixing a basis in the space of sections then gives a
map Ui —> HC for every i such that the original family over Ui is just
the pull-back of the universal family over HC.

2.1.8. The class ^ is said to be complete if given the spectrum T of

a DVR with general point Γgen and (JTgen, Lgen) e ^&(Tgen), there is

a finite cover g: T1 -> T and a pair (X', Lf) e JίW(T') such that

(Z' ,L ') |Γ; e n and S*(* g e n ' L geJ are isomorphic.

2.1.9. If an algebraic space MC coarsely represents the functor Λf ^
(see [27, p. 99]), then MC is called the coarse moduli space of the class
*&. In terms of the space HC the moduli space can be obtained as the
quotient by the equivalence relation "isomorphism" (if it exists).

2.1.10. We say that ^ has tame automorphisms if every pair (X, L)
in ^ has a compact and reduced automorphism group. In fact, since L
is ample this implies that the automorphism groups are finite and reduced.

A fairly general existence theorem essentially due to Artin is the follow-
ing [3, 6.3] (cf. also [27, p. 172] or [20, 4.1.1]).

2.2. Theorem. Let Ψ be an open class with Hubert polynomial H(t).
Assume that the corresponding moduli problem is separated (resp. sepa-
rated and bounded, resp. separated, bounded, and complete). Assume fur-
thermore that & has tame automorphisms. Then there is a separated al-
gebraic space MC locally of finite type (resp. of finite type, resp. proper)
which coarsely represents the functor JίΉ.

Before formulating the main result we need some more definitions.
2.3. Definition. The moduli functor Jί *g associated to Ψ is said to

be functorially polarizable if the following condition is satisfied:
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For any S and (X, L) e J?&{S) there is a pair (X, Lc) e
(note that X is unchanged!) such that

(i) if (X, L) and (Γ, M) are equivalent, then (X, Lc) and ( 7 , Mc)
are isomorphic;

(ii) for any base change g: Sf -• 5 , we have an isomoφhism #* (X, Lc)
= (#**, (s*L)c).

If the condition is satisfied, then Lc is called a functorial (or canonical)
polarization of X/S. If the choice of Lc is specified, then we say that
J£ ^ is functorially (or canonically) polarized.

There are several examples of functorially polarizable moduli functors.

2.3.1. If L\Xs = ωχ for every s e S, then Lc = ωx/s is a canonical

polarization.

2.3.2. If the moduli functor under consideration is such that every fam-
ily (X, L) EJt ^{S) has a natural section σ: S —• X, then we can take
Lc = L<8)(σ*L)~1 . This applies for instance for polarized abelian varieties
or the moduli of polarized pointed varieties.

2.3.3. Essentially every bounded moduli functor parametrizing reduced,
projective, and connected schemes admits a functorial polarization. To see
this choose an m > 0 such that for every (X, L) we have Hι(X, L®m) =
0 for- / > 0. Thus k = h°(X, L®m) is independent of the choice of
(X, L). Now given any (X, L) e . # ^(5) with structure map f: X ^ S
consider the line bundle Lc = Lk ® (det/JL®"1))"1 . If L is changed to
L ® / * £ , where 5 is a line bundle on S, then (L 0 f*B)c = Lc. Thus
Lc is a functorial polarization of the moduli functor

Λ Γ V ( S ) = {(jr, L*) |(Λ:, L ) G ^ ^ ^ ) } .

This is essentially the same functor as the one we had before.
2.4. Definition. The functorial polarization of the moduli functor

Jί ^o associated to io is said to be semipositive if the following condi-
tion holds:

There is a fixed k0 such that whenever C is a complete smooth curve

and (X, L) e ^ 8"(C) with structure map / : X -• C, then for all k > kQ

the vector bundle /+((Z/)[/:1) is semipositive on C.
2.5. Line bundles on moduli spaces. Given a functional polarization of

the moduli functor ^ # ^ , and (X, L) e ^^{S) defines a series of line
bundles on 5 for ί: » 0 via λk{X) = det(/+(Lμ i)). These line bundles
are clearly functorial. Because of the presence of automorphisms, they do
not descend to the moduli space MC, but if the functor is bounded and
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Aut(Z, L) operates on det(i/°(Λf, L[k])) through a finite quotient, then
λk descends to a line bundle on MC for sufficiently divisible N. Thus
λk exists as a Q-linebundle on MC.

The following is the main result of this section.
2.6. Theorem. Let & be an open class of ^-polarized varieties with

Hubert function H(t). Assume that the corresponding moduli functor is sep-
arated, functorially polarized, semipositive, and has tame automorphisms.
Then λk is ample on every complete subspace of MC for k sufficiently
large. In particular, if %? is also bounded and complete then MC is
projective.

Proof It is somewhat inconvenient that the line bundle λk is not de-
fined directly on MC. To get around this problem, for any given proper
subspace Z c MC we will find a scheme Y, a family (X, L) e Jt &{Y),
and a finite and surjective map p: Y —• Z such that for any y € Y the
moduli point of the pair (X , L\X ) is exactly p(y). Thus λk(X) =

p*(λk). Since Z and Y are proper, the ampleness of λk is equivalent
to the ampleness of λk(X) (see 3.11). Thus it is sufficient to prove that
λk(X) is ample on Y .

2.7. Proposition. Let W be an open class of Q-polarized varieties with
Hilbert function H(t). Assume that every pair {X, L) has a finite auto-
morphism group. Let Z be a subspace of finite type of MC. Then there is
a scheme of finite type Y, a family (X, L) e Jΐ ^(Y), and a finite and
surjective map p: Y -> Z such that for any y eY the moduli point of the
pair {Xy , L\Xy) is exactly p(y).

Proof It is sufficient to prove this for irreducible subspaces. MC has
an open subspace of finite type that contains Z . Replacing & by the
subfamily given by this subspace we get a new functor which is bounded.
Thus we can assume that we start with a bounded moduli functor.

As a first step we will find an algebraic space Y1 with the required
properties.

Let HC be the corresponding Hilbert scheme parametrizing the em-
beddings of elements of ^ into P with the universal family XHC. We
have a natural map m: HC —• MC. Let HQ be the preimage of Z under
m. Let H{ be the normalization of Ho, and let X/H{ be the universal
family over H{ .

Given any z e Z one can take a subvariety £/_ c Hχ of dimension
dim/Zj — d i m r a " 1 ^ ) which intersects m~\z) in at least one isolated
point. One can also assume, by shrinking £/_, that t/_ is irreducible and
that m: t/_ —• Z is quasifinite. By construction we also have a specified
family over [/„. Finitely many of the £/, cover Z let them be Ui. The
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function fields C(ί/f ) are finite extensions of C(Z) and we can consider
their composite F. If Yχ denotes the normalization of Z in F , then
there is an open cover V{ of Yχ and finite and surjective maps pt: Vt —•
Ui. Via these maps we can pull back the families to get {X[, L'i)/Vi•. By
this construction the Vέ are quasiprojective, thus Yχ is a scheme.

Over VpVj we have two families: (X[, ^\Vf\V. and (Xl

j9L'j)\VpVj.
We define a space I s o ^ ) - representing the isomorphism functor as fol-
lows. This is the subset of V.ΠVjX AutP consisting of pairs (y, g)
such that gim^y)) = m {y). The fiber of the natural map I s o ^ ) ^ . -+
V. Π V. over y is a principal homogeneous space over the automorphisms
of (X 9 L). It is also a closed subvariety of the linear group AutP,
thus it is finite. The separatedness of the moduli problem implies that
Iso^)^- —• V. Π Vj is proper, and thus finite. Let Iso(yΊ)^ ^ e l ^ e u n i ° n

of the components that dominate Vt Π V and let 180(1 )̂̂ - be a compact-
ification of Iso(yj)?. which is finite over Yχ.

Let now Yf be a component of the normalization of the fiber products
of all the spaces I s o ^ ) * that dominate Yχ. It has a natural map onto
Y{ and let Wi be the preimage of V.. We also have the pull-back families
(X;, L.)/W.. Let Y' be the generic point of Yf, it is also a generic point
of WtΓ\Wj . By construction any isomorphism of

{Xt,Lt)\Xm and (Xj,

extends to an isomorphism of

Vj and (Xjt Lj)\W( n Wy

Now fix an i and for every j Φ i pick an isomorphism of

(X^L^W^Wj and {XpLj)\Wi^WΓ

For every j and y' this determines an isomorphism of

(Xj,9Lj,)\Wj,nWj and (Xj9 Lj)\W, Π Wy

Using this set of isomorphisms we can patch together the families (X., Lλ

to a single family over Yf. It clearly has the required properties.
The following lemma completes the proof of 2.7. The author heard it

first in a lecture of M. Artin.
2.8. Lemma. Let Z ' be an algebraic space of finite type. Then there is

a scheme Z and a finite and surjective map p: Z —• Z 7 . If Z is normal
and irreducible, then one can choose Z and p such that p is the quotient
map by a finite group action.
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Proof. We can normalize Z' and therefore it is sufficient to prove the
second part.

Let pt: Ui —> Z' be an affine etale covering of Z ' , and Z be the
normalization of Z ' in the Galois-closure of (&(£/,•): / = 1, . . .) . Then
we have p: Z —> Z' and the required group action. Given any z G Z'
there is at least one point z SLZ such that z —• z' G Z ' factors through
z —> C/f. —• Z . Thus z has a neighborhood which is a scheme. By the group
action any point in p~ι{zf) is such. This shows that Z is a scheme.

2.9. Proof of 2.6. Consider the family f: X -+ Y with a relatively
ample line bundle L constructed in 2.7. Now choose integers k and 7
satisfying the following properties:

(i) Lk is /-very ample,

(ii) Rif^(Lkm) = 0 for / , ; > 0 ,

(iii) every fiber X embedded via Lk\Xy is defined (set theoretically)
by degree < j equations,

(iv) the multiplication map Sj(f^(L )) —• fjjj ) is surjective.

We claim that under these assumptions det f^(Lk'j) is ample on Y.
We will check the conditions of the Ampleness Lemma 3.9.
To set notation let V = f*(Lk). Let p = Sj then W = Sj{f+(Lk)).

For the quotient bundle we take f*(Ljk) via the multiplication map given
in (iv).

V is semipositive by assumption and p is also semipositive. The clas-
sifying map (3.8) is finite by the following reason.

For every y e Y, H°(Xy, Lk\Xy) embeds Xy to a projective space;

call it ry. Then H°(Xy,L
k\Xy) = H°{Ψy{0{l)) in a natural way and

Sj(H°(Xy, Lk\Xy)) Ξ H°(Vy, #U)) Thus the multiplication map at the
point y is the same as the restriction map

m:

The kernel of this map is exactly the set of degree j equations of Xy . By
assumption (iii), Xy is defined by degree j equations, and therefore X
can be recovered from the kernel of the multiplication map m. Thus the
classifying map has finite fibers since these fibers are exactly the same as
the fibers of the map p: Y -> MC which is finite by construction. Hence
det f*{Ljk) is ample, and the proof of 2.6 is complete.

2.10. Remark. One can easily see that condition (iv) is in fact not
necessary, but it makes the proof simpler.
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3. The ampleness lemma

In this section we prove the ampleness lemma that was used in the
proof of 2.6. We try to formulate and prove a fairly general version which
will hopefully be useful in similar situations. Therefore we start with
a general discussion about semipositive vector bundles and semipositive
representations of linear groups. Everything at the beginning is known to
experts but the author does not know of any convenient reference.

3.1. Definition, (i) Let G = X z GL{Et) be a product of general lin-
ear groups. A representation p: G —• GL(F) is called semipositive (or
polynomial) if it extends to a morphism ~p\ X . End(£'z) —> End(F).

3.2. Examples, (i) Tensor products, symmetric products, exterior prod-
ucts, and direct sums are semipositive. Quotients and subrepresentations
of semipositive representations are semipositive.

(ii) If * denotes the dual representation, and p is semipositive, then
*p* is also semipositive. This is interesting mainly in characteristic p .

(iii) If pi is a representation of Gt, then pχ <g>p2 , as a representation of
Gχ x G2, is semipositive iff the pi are semipositive. Thus in characteristic
zero one has to know only the irreducible semipositive representations of
GL{E), which are exactly the subrepresentations of tensor products and
the trivial representation.

(iv) Let Vχ, , Vn be vector bundles with typical fibers Ei and let p
be any representation of G. One can define a vector bundle p( Vχ, , Vn)
as follows. If the F are defined by transition functions gι

jk (in the same
covering), then we construct a new bundle whose topical fiber is F and
has transition functions p{g)k, ••• , gn

jk) > Clearly, p(Vχ, ••• , Vn) has
structure group G.

(v) Assume that in (iv) every F is a direct sum of line bundles £V Lf...
Then the structure group of Vi can be reduced to a torus. Thus the struc-
ture group of p(Vx, , Vn) is also a torus and is a direct sum of line
bundles of the form (g) l^> . Since p is semipositive, each of the a(j are
nonnegative.

(vi) Let Fj , , Vn and Wχ , , Wn be vector bundles such that
rk F = rk W{r, and let fi:Vi-^ Wi be sheaf homomorphisms. If p is
semipositive, there exists a natural map

'•• ,fn):p(Vl9.. 9 V n ) ^ p ( W l 9 - . - , J V n ) .

In fact it is clear that the existence of the above map characterizes semi-
positive representations.
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3.3. Definition-Proposition. A locally free sheaf V on a scheme X is
semipositive if the following equivalent conditions are satisfied:

W ^PΓOJFΪ1) isnefon Proj^F.
(ii) For every map from a proper curve f.C^X every quotient bundle

of /* V has nonnegative degree.
(iii) For every map from a proper curve f:C—>X every quotient line

bundle of f* V has nonnegative degree.
(iv) For every map from a proper curve f:C->X and for every ample

line bundle H on C the bundle i/ ® f*V is ample [11].

Proof Clearly (i) => (iii). If C c FχV is a curve, then <?FV(l)\C is a
quotient of π*V\C, where π is the projection map. Thus (iii)=>(i). If
W is a locally free quotient sheaf of /* V over a curve C of rank k,
then the /c-fold selfintersection of &ψw(\) is άegW. ΫCW is a closed

subvariety of ΫCV and we have degJΓ = [FCW] n [&>

FV(l)]k . Thus if
deg fF < 0, then <fΨV(l) is not nef, proving (ΐj=> (ii).

If V satisfies (i), then it is easy to check that <^PF(1) <8> π*H satisfies
Seshadri's ampleness criterion. Thus (i) =>• (iv).

A quotient of an ample vector bundle is ample and has positive degree
[11, 2.2 and 2.6]. Now choose H of degree one and conclude that any
line bundle quotient F of f*V has degree at least 1 - deg/7 = 0. This
shows that (iv) => (iii).

3.4. Corollary, (i) Quotients and extensions of semipositive vector bun-
dles are semipositive.

(ii) Semipositivity is an open condition in flat families.
Proof (i) follows from 3.3(iii), and (ii) from 3.3(i).
3.5. Proposition. Assume that the Vi are semipositive vector bundles

over X, and let p be a semipositive representation as above. Then
p{Vχ 9 , Vn) is again semipositive.

Proof. We will use this only for direct sums, tensor products, and sym-
metric powers in which cases this is a special case of [11, 5.2 and 6, 3.3].
The proof of the general case can be done along the lines of [11, 6.6] as
follows. By the definition of semipositivity it is sufficient to prove this
when the base is a curve C .

Let E be a semipositive vector bundle over C. If L is a line bundle
and degL > 2g(C) - 2, then ωc cannot be a quotient of E&L. Hence
Hι(C, E 0 L) = 0 which implies that if degL > 2g(C), then E <g> L is
generated by global sections. Thus we have a generically surjective map

rkE

f E :
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If we apply this to the vector bundles V., then using 3.2(v) and (vi) we
get a genetically surjective map

/>(/,, •••,fn):ΣL-b'^p{Vι,... ,Vn).
i

Let mindeg ZΓ*' = -N(g(C), p), and note that N depends only on the
genus of C and on p but not on the V . The above map shows that any
quotient of p(V{, , Vn) has degree at least -N.

Assume now that p{V{, , Vn) has a quotient line bundle of degree
e. If p: C' —• C is a map of degree rf, then pulling everything back by
p we obtain that p(p*V{, ••• ,P*Vn) has a quotient of degree rfe. In
particular de > -N(g(Cf), p). If we are in positive characteristic, then
we can use a power of the Frobenius map to get a large degree self-map of
C. Hence de > -N(g(C), p) for d large, and e > 0 as desired.

The characteristic zero case can be reduced to the positive characteristic
case by using 3.4(ii).

3.6. Proposition. Let X be a scheme, and let W be a vector bundle
with typical fiber Wχ and structure group G —• GL(Wχ). If Vx is a G-
invariant subspace of Wχ, then it defines a subbundle V c W. Assume
that W is semipositive. Then V is also semipositive if one of the following
conditions is satisfied:

(i) G is reductive and the characteristic is zero, or
(Δ) (ϋ) W is of the form p(V{, , Vn), where p and the

V. are semipositive and G = X GLr .

Proof In characteristic zero Vχ has a G-invariant complement; thus
V is a direct summand of W.

If W is of the form p(Vχ, , Vn) then V is also of the form
σiV\* '" >Vn)> where σ is a subrepresentation of p. Since p is semi-
positive, the same holds for σ by 3.2(i). Thus V is semipositive by 3.5.

3.7. Remarks, (i) It is quite possible that G reductive is sufficient in
any characteristic. Geometric reductivity of G implies that deg V > 0,
but I do not know how to get more.

(ii) One can weaken condition 3.6(ii) slightly to the following:

For every proper curve C c X there is a line bundle L
, of degree zero on C such that W <g> L is of the form

p(Y\ 9 " ' > Vn) 9 where p and the Vi are semipositive and
G = XGL

r

This is the form that will be used in §6.
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3.8. Definition. Let X be a scheme and let W be a vector bundle of
rank w with structure group p: G —• GLw . Let q: W -+ Q bea. quotient
vector bundle of rank k. Let Gr(w, k)/G denote the set of G-orbits on
the /c-dimensional quotients of a w -dimensional vector space. We call the
natural map

uGr: {closed points of X} —• Gr(w, k)/G

the classifying map. Note that this is a map of sets and usually it does not
correspond to any algebraic morphism.

We say that the classifying map is finite if
(i) every fiber of uGr is finite, and

(ii) for every x e X only finitely many elements of G leave ker*^
invariant.

3.9. Ampleness Lemma. Let X be a proper algebraic space and let
W be a semipositive vector bundle with structure group G. Let Q be a
quotient vector bundle of W. Assume that

(i) W satisfies one of conditions (Δ) in 3.6 or (Δ ;) in 3.7, and
(ii) the classifying map is finite.

Then det Q is ample. In particular X is projective.
3.10. Remarks, (i) This is the statement where we escape geometric

invariant theory. We do not have to assume that the map goes to the sta-
ble points of Gr(n, k)/G. Note however that geometric invariant theory
proves more if it applies: the ampleness of (detQ)τkw <g> (det W)~τkQ.
This is obviously harder to get than the ampleness of det Q.

(ii) In characteristic zero Viehweg [34] proved a version of this state-
ment that works for nonproper X too. He considered the case where W
is a symmetric power of a semipositive vector bundle. He has to impose
a different positivity condition on the V , called "weak positivity". The
ample line bundle which he obtains is of the form (det Q)q ® (det W)b ,
where a, b > 0. This is somewhat weaker than the ampleness of det Q.
The reason for the difference is that there is no good ampleness criterion
for nonproper varieties, therefore he has to construct sections with bare
hands.

(iii) The idea of the proof in [22, §6] is the following. Assume that
W is a trivial vector bundle. The structure group reduces to the trivial
group and we get a finite morphism from X to a Grassmanian; hence X
is projective.

Here we assume that W is semipositive, so we have more chance to
get ampleness. Technically however this makes things more complicated.
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Thus in [22] the analogous result is proved assuming that W admits a
metric with semipositive curvature form.

Viehweg's idea [34] is to force triviality by considering the space of uni-
versal bases over X and pulling back everything. Descent is then achieved
by a beautifully simple argument.

In this last step resolution of singularities of maps is heavily used. This
causes some problems in finite characteristics; therefore we haye to proceed
in a different way (see [33], [22]).

The proof will rely on the Nakai-Moishezon criterion which we will
need in a form that is usually not stated.

3.11. Theorem {Nakai-Moishezon criterion [28], [24], and [16]). Let Z
be a proper algebraic space and let H be a line bundle on Z . Then H is
ample on Z iff for every irreducible closed subspace X c Z the aim X-fold
selfintersection of H\X is positive.

Proof. The proof given in [16, III. 1] works in this context as well.
Alternatively, one can characterize ampleness via Serre vanishing as usual.
Using [19, 111,1.4] the same proof as for algebraic varieties shows that if
p: Z —• Z is finite and surjective, then H is ample on Z iff p*H is
ample on Z . By 2.8 we can assume that Z is a scheme. Now one can
use [16, III. 1 ] to get ampleness on Z .

3.1.2. Proof of 3.9. By 3.11 we can harmlessly normalize X and so
we can assume that X is irreducible. Next we must prove that det Q has
positive selfintersection on any irreducible subvariety. If Z is a subvariety
of X, then all the conditions of 3.9 hold if we restrict everything to Z .
Thus it is sufficient to prove that det<2 has positive selfintersection on
X. Let Y be a projective scheme and r: Y —> X be a morphism which
is birational. We can pull-back everything to Y. This will not change the
selfintersection of det Q, but the classifying map will no longer be finite.
Therefore we need to prove the following:

3.13. Lemma. Let Y be a normal projective variety and let W be a
semipositive vector bundle with structure group G. Let Q be a quotient
vector bundle of W. Assume that

(i) W satisfies one of conditions (Δ) in 3.6 or (Δ ;) in 3.7, and
(ii) there is a nonempty open subset of Y such that the classifying map

restricted to that subset is finite.

Then the selfintersection number of det Q is positive.
Proof Let n = rk W. Define

n times
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Thus F is the project!vized space of matrices whose columns belong to
W. Let π: P —• Y be the projection. We have the universal basis map:

n times

or equivalently
n times

which sends a matrix to its columns. This map can also be described via
the following isomorphisms:

n times

= H°(Y, W®(W* + --- + W*)).

Let D c P be the divisor of matrices of determinant zero. The univer-
sal basis map is surjective outside D and gives a global trivialization of
π*W\F-D.

Let Wχ be a typical fiber of W. The (noncanonical) G-action p: G —•
GL(Wχ) induces a (7-action

n times

-p: G \ ~ \

Let Pχ c P(Wχ + -- + Wχ) be a general orbit. Pχ is isomorphic to
G/ker/?. The G-structure transports the closure of Pχ around; this way
we obtain P c P. Thus P is a locally trivial fiber bundle over Y whose
fiber is the closure of a projective G-orbit. Let p: P-» Y be the restriction
of π . We denote ΰ n P again by D.

We can compose the restriction of the universal basis map with p*q to
obtain: n

UGr: y^<^fp —>p*W®d? p ( l ) —»p*Q(8><^P(1).
1

This map is surjective over P - D.
For k = rk Q we take the k th exterior power of UGr. This gives

^ / * λ

U: Σ^p-

which is again surjective outside D. We expressed p*(detβ) ®^p(fc) as
the quotient of a trivial bundle of rank (jj). This gives a rational map

A: \

which is a morphism on P — D.
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By construction this map is obtained by lifting the classifying map
uGr: X -> Gr(n, k)/G to uG

x

r: P - D -> Gr(n, k) and composing u™

with the Plϋcker embedding.
Given any G-orbit T in Gr(n, k) there are only finitely many x e X

such that Pχ is mapped to T by 3.8(i). On any given Pχ the map u has
finite fibers by 3.8(ii). In particular u is quasifinite on a suitable open
subset of P .

The map u need not be a morphism since the image of U need not be
locally free. To remedy this we blow up the ideal sheaf of the image of U
to obtain g: P' -+ P . Now u extends to a morphism u : P' -• F(/\k W).
Thus there is an effective divisor £ c P ' such that

Now let H be an ample divisor on Y. Since u is generically finite,
the line bundle u*<fGr(l) is big on P ; . Thus there is a positive integer

m such that we have a nontrivial section of u*&Gr(m) <g> g*p*H~ι and
hence a nontrivial section

σ: f̂p/ -

Pushing this down to Y

{gop)^σ\t

We can rearrange this

τ:

By construction,

to

«,

r*((/?*det<2® f̂ p ( / c ) ) < S > m ®p*H l ) .

we get a nonzero map

^ - ( d e t β Γ

give a map

^p(mfc))*®7

_ i

7^(det<2)m.

If m is sufficiently large, then the natural map

π^<fψ{mk) ->pj?γ(mk)

is surjective. Thus we get a subbundle

(p.0r{mk)) ^ {πj?r{mk))\

By construction it is also a G-subbundle. (%j9γ{mk))* is semipositive by
3.5 and 3.2(ii), therefore (pt&P(mk))* is also semipositive by 3.6.

If we blow up the image sheaf of τ , then we get a birational map
s Y'^Y such that

/ ( d e t Q ) m = s*HO<fγ.
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where F is effective, and <fγ,(N) is a quotient of s*(p^F(mk))* in
particular it is semipositive by 3.4(i).

Now we can compute the selfintersection using the following formula:

where t = d i m Γ , and {d) denotes d-fold selfintersection. Note that
H + N + F is nef since it is numerically equivalent to m c{(Q), the
first term is positive since H is the pull-back of an ample divisor by a
birational morphism, and the sum is nonnegative since H + N + F and
N are nef, and F is effective.

This proves 3.13 and also 3.9.

4. Semipositivity results

In this section we check various semipositivity results that are needed
in order to apply 2.6. Before we do this we need a technical result about
partial resolutions that do not affect the normal crossing locus of a variety.

4.1. Definition, (i) An algebraic variety (or an algebraic space) X is
called semismooth if all of its closed points are analytically isomorphic to
one of the following:

a smooth point;
a double normal crossing point: xχx2 = 0 e A" or

a pinch point: x\ - xjx3 = 0 e An .

In this case the singular locus is smooth, and we will call it the double
divisor of X.

(ii) Let Y be a pure dimensional algebraic variety (or an algebraic
space) such that outside a codimension-two set Z it has only smooth
points or double normal crossing points (we will say that X is semismooth
in codimension one). A proper map f:X-*Y is called a semiresolution
if X is semismooth, / is an isomorphism in codimension one on Y, and
every component of the double divisor of X maps birationally onto the
closure of a component of the double divisor of X - Z .

4.2 Proposition [31, 1.4.3]. (i) Let Y be a two-dimensional algebraic
space over any field which is semismooth in codimension one. Then Y has
a semiresolution.
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(ii) Let Y be a pure dimensional algebraic variety over afield of char-

acteristic zero which is semismooth in codimension one. Then Y has a

semiresolution f\X—*Y. {In our construction X will be an algebraic

space even though Y is a variety.)

Proof. The two-dimensional case is treated in [31].
(ii) can be done as follows. By Hironaka [12] we can perform a series

of blow-ups centered in the locus where the multiplicity is at least three
to obtain g: Y{ —• Y such that Y{ has double points only as singularities
and that D{, the double point locus of Yχ, is smooth. Let Y2 —> Yx be
the normalization map and let D2 be the preimage of D{ . This gives a
natural involution τ on D2 . Easy local computation shows that D2 is a
Carrier divisor. Now perform a series of permissible blow-ups to resolve
the singularities of D2 in a τ-equivariant way. This gives us Y3 and D3,
and D3 is a smooth Carrier divisor. Thus Y3 is smooth along D3. Now
we can resolve the singularities of Y3 to get Y4 which still contains D3.
The fixed-point set of τ is smooth on D3. If we blow it up, then we get
a Y4 and D4, and the fixed-point set of τ on D4 has codimension one.
Now we can pinch together D4 in Y4 via τ [4, 6.1] to get an algebraic
space X. It is smooth outside the image of D4, has normal crossing
points at the image of the nonfixed points of τ , and has pinch points at
the images of τ-fixed points. Clearly X is a semiresolution of Y.

The next statement is the first semipositivity result.
4.3. Theorem. Let S be a complete Cohen-Macaulay surface over a

field. Assume that S is Gorenstein outside finitely many points. Let f: S —•
C be a surjective map onto a smooth curve C. If the general fiber of f
has only nodes as singularities, then f^(o^s/c) is semipositive for k > 2.

4.4. Remarks, (i) In characteristic zero this holds even for k = 1.
The proof of 4.10 works with minor simplifications.

(ii) Ekedahl pointed out to me that for k = 1 the above result is false
in positive characteristic. An example was given by Moret-Bailly [25, 3.2]
(with S smooth and / generically smooth). This is interesting since in
characteristic zero the k = 1 case is the usual starting point.

Proof If g: S* —> S is a semiresolution, then there is a natural injec-
tion g+(oJ£,\c) —• cJ£Jc which is an isomorphism along the general fiber.
Thus it is sufficient to prove the result for semismooth surfaces. If a dou-
ble curve of S maps to a point in C, then we can blow it up. Since
the relative dualizing sheaf commutes with base change, we can prove the
result after some base change. Thus we can also assume that the genus of
C is at least two, that the double curves of S are sections, and that they
split into two components under the normalization of S.
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The following is the most important part of the proof. It can be viewed
as a generalization of some results of Arakelov [2] and Szpiro [32]. In
characteristic zero it is a special case of a result of Kawamata [14].

4.5. Proposition. Let S be a smooth surface and let f:S-+C be a

surjective map onto a smooth curve C. If the general fiber of f is smooth

of genus at least two, then f^(o)^)c) is semipositive for k > 2.

Proof As before we can assume that the genus of C is at least two.
Thus S is of general type and we can assume that it is minimal. Using
standard reduction mod p techniques (see e.g. [32]), it is sufficient to
prove the claim for positive characteristic. Assuming that the statement is
false, there is a negative quotient f*(ω[ςjc) —• M~ι . Using base change

by the Frobenius map F: C —• C we can assume that in fact / + ( ω ^ c )

has a quotient of very negative degree. In particular, we may assume that

M = ωk

c~
{ 0 L, where L is very ample. Therefore we have a map

ωk

c®M® f*(ω[kjc) -> ωc,

which in turn implies that

i/'(C,^M0/>^))/O.

By looking at the Leray spectral sequence for / , this implies that

By the main result of Ekedahl [9] this is impossible if k > 2 except in

characteristic two, where this space is at most one-dimensional. The same

technique can be used to make Hx as large as we want. Thus we are done

even in characteristic 2.

4.6. Corollary {Arakelov, Szpiro, Raynaud [32, p. 56]). Assume the

notation is as in 4.5 and that there are no - 1 curves in the fibers of f.

Then ωs/c is nefi

Proof Assume that D c S is an irreducible curve such that cos/c has

negative degree on D. D cannot be contained in a fiber. If we have

-2 curves in the fibers, then they can be contracted, c: S —• S', and

ω s / c is nef iff cos>,c is nef. Thus we may assume that cos/c^ is /-ample.

Let h: D1 —• D be the normalization of D and let g: D1 —• C be the

natural map. For large k , Rι f^(ωk

s/c{-D)) = 0, and therefore we have

a surjective map

which contradicts semipositivity.
The next result is a kind of "log-generalisation" of 4.5.
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4.7. Proposition. Let S —• C be a map from a smooth complete surface

to a smooth curve. Assume that the general fiber of f is smooth. Let C

be a set of distinct sections of f. Then f+(cϋζiC{ΣaiCi)) is semipositive

provided that k>2 and at < k for every i.

Proof. Let g: S* —> S be a blow-up and let C\ be the proper transform

of Cr Then f^ω^^iΣ^C )) is a subsheaf of Λ(ωJ / c (Σ*/(?,)), and

the two agree generically. Therefore it is sufficient to prove the claim after

some blow-ups, and we may assume that the Cf are disjoint.
We prove the claim by induction on Σ a{. If the general fiber of /

has genus at least two, then 4.5 settles the case when at. = 0. Assume that
the general fiber is smooth elliptic. In this case ωs,c is nef by using [7,
p. 27] and Igusa's inequality χ(#s) > 0 [13]. If the general fiber is smooth

rational and Σa

t< Ik - 1, then f^(cok

s,c(Σai^i)) *s z e r o a n c * w e a r e

done. There can be only one section with positive selfintersection by the
Hodge index theorem; let this be CQ . Let DQ = aQC0 + Σ / > 0 biCi, where
bt < ai and a0 -h Σi>o 6, = 2fc - 1. Then Λ(ω^ / C(i)o)) is zero and hence
semipositive. Starting with these cases we will add one section at a time
and prove semipositivity step by step.

If the result is already proved for a sum of sections 1D _X, then pick
another section Ct and let D. = D._x + Ct. Assume first that the general
fiber of / has genus at least one. Even though S need not be minimal,
4.6 implies that ωs,c Ct > 0. We claim that the same holds for rational
general fiber. By adjunction, o)S/C(Ct)\Ct = <fc . Therefore ω 5 / c Ct =
-Ct Ct>0 since CtφCQ.

Now consider the exact sequence

0 - ωk

s/c(Dj_{) - ωk

s/c(Dj) - ωk

s/c(D.)\Ct - 0.

If p is the coefficient of Ct in D., then ωk

s/c{Dj)\Ct = ωk

sj£\Ct, and so

it has positive degree. Since Rιfittω
k

s/c(Dj_ι) = 0 for k > 2, we get that

Λ ( ω 5 / c ( Σ Λ ι C/)) is successive extension of Λ(ω 5 / C ) and the bundles

Λ(ω!s/c l^f) ^ " these are semipositive and therefore we are done.
The result remains true if instead of assuming that the C{ are sections

we require that the natural maps Cz —• C be separable. It is probably
false in the inseparable case.

4.8. Proof of 4.3. As we noted before, we are reduced to the case where
S is semismooth and D, the double curve of S, consists of sections of
f:S-+C. If g: S' —• S is the normalization and Df is the preimage of
D, then we can also assume that each component of D' is again a section.
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Assume first that the general fiber has a component which is a smooth
rational curve that intersects the rest in one point only. Let S{ denote
the surface which we obtain by throwing away the component containing
that rational curve. Let G be the section corresponding to the removed
component on Sx. Then f*(cok

s/c) = f+{ωk

s /c((k - l)G)). Thus it is
sufficient to prove that the latter is semipositive.

Next assume that the general fiber has a component which is a smooth
rational curve that intersects the rest in two points only. Let Sχ denote
the surface which we obtain by throwing away the component containing
that rational curve and glueing together the remaining surface along the
two sections corresponding to the removed component. Then fm(ω%c) =

Λ(</c)
If S has a component T such that the general fiber of T/C is a nodal

rational curve, then let T' be the normalization of T and let D be the
preimage of the double curve. Then f*(ωk

τ/c) = f^(ωk

r/c{kD)) thus

/*( ω r/c) is semipositive by 4.7.
Therefore 4.3 follows if we prove the following:
4.9. Proposition. Let S be a semismooth surface and let f: S —> C

be a surjective map. Assume that the general fiber of f is a stable curve
{hence with at most nodes). If D is the double curve of S, assume that it
consists of sections of f: S —• C. If g: S' —• S is the normalization and
D' is the preimage of D, then assume further that each component of Df

is again a section. Let G be any union of some disjoint sections that do
not meet D. Then f*(ωk

s/c((k - l)G)) is semipositive.

Proof By 4.7 we know that (f°g)*(ωk,/c({k - 1)(G + D'))) is semi-
positive.

Now observe that g*ωs,c = ωsf,c(Df), and that we have an exact
sequence

0 - gΛωS>/c((k ~ ι)°)) - ωs/c((k ~ ι)°) - ωs/c\D =

h ωk

sj^ and using the proje

the following sequence:

Tensoring the latter with ωk

sj^ and using the projection formula, we get

f

0 - *.<4 / c ((fc - OΦ' + G)) - ωk

s/c((k - l)G) - <9D - 0.
s/c(

Taking into account that Rι (/og)#ωk

s,/c{(k - l)(Df + G)) = 0 for k > 2,

this gives the sequence

0 - (/o g)A',c^k ~ ! ) ( ^ + G)) - f.ωk

s/c((k - l)G) - fj9D - 0.
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fj0D is isomorphic to the sum of several copies of ffc, therefore

f*(cos,c((k — l)G)) is semipositive for k > 2. This completes the proof

of 4.9 and therefore also the proof of 4.3.
The proof of the next result goes pretty much along the lines developed

by Fujita [10] and Viehweg [33]. They always treated smooth varieties
whereas we need to consider nonnormal varieties with semi-log-canonical
singularities. The basic philosophy states that this should not make too
much difference; in fact one could expect all the relevant proofs to go
through without change. In our case this indeed happens. However, this
is not always true. The very important result of [33, 1,5.4] fails to hold
even for families of curves with nodes.

4.10. Definition [23, 4.17]. A singularity (5, S) is called semi-log-
canonical if the following conditions are satisfied:

(i) (s, S) is Cohen-Macaulay;
(ii) (s, S) is semismooth in codimension one;

(iii) ω[

s

 ] is locally free for some k > 0
(iv) if / : X —> S is a semiresolution with exceptional divisors Ci and

ωk

χ ^ f*{ωψ β ^ C f l / Q ) , then ai > -k for every /.

We will be mainly interested in the surface case where a complete clas-
sification is known:

4.11. Proposition [15], [23, 4.24]. The semi-log-canonical surface sin-
gularities are the following:

semismooth points,
DuVal singularities,
simple elliptic singularities,
cusps and degenerate cusps,
quotients of the above by certain cyclic group actions.

4.12. Theorem. Let Z be a complete variety over a field of charac-
teristic zero. Assume that Z satisfies Serre's condition S2 and that it is
Gorenstein in codimension one. Let f:Z—>C be a map onto a smooth
curve. Assume that the general fiber of f has only semi-log-canonical sin-
gularities, and further that ω of the general fiber is ample. Then f*(ωz/c)
is semipositive for every k > 1.

The proof will be done in three steps.
4.13. Lemma. Let Z be a complete semismooth variety over afield of

characteristic zero, and let f:Z-+C be a surjective map. Assume that
the double locus is flat over C. Then £ ( ω z / c ) is semipositive.
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Proof. Let D be the double locus of Z . Let g: Zf —> Z be the nor-
malization and let D' be the preimage of D. We have an exact sequence

This

0

gives

- ( /

a

0

long

0-*i

exact

z'/c ~

?*ωz'/c -*

sequence

•+/,(ωz/c)

ωZ/C ^ ωZ;

-Λ(ωZ/cl-

,C\D -• 0.

Z)) - ^ i?1 (/° ω z '/c

By Fujita [10] (fog)^ωzt,c is semipositive. Therefore we are done if we
can prove that the kernel of the map

is semipositive. To show this note that

g*{ωz/c\D) = {g*ωz/c)\Df = ωz,/c(Dr)\D' = ωD,/c.

Therefore f^(ωz/c\D) is a direct summand of fjoDt,c and δ factors

through the natural map

δ':{fo g).ωD,/c -+R\fo g\ωz,jc.

By [21, 2.6] the sheaves (/o g)*coD,/c and Rx(f o g)^ωz>/c are deter-
mined by some variations of Hodge structures, and the connecting map δ
is induced by a map between these variations of Hodge structures. There-
fore the kernel of δ is a direct summand of / ^ ( ω z / c | D ) . The latter is
semipositive as before; hence any of its direct summands are semipositive.
This proves 4.13.

4.14. Proof of 4.12 for k = 1. Here we do not need the ampleness
assumption. We take a minimal semiresolution (see [23, 4.9]) Zgen of
the general fiber Z g e n of / . This extends to a semiresolution over the
preimage of an open set in C. We complete this somehow and then take
a semiresolution of this space to get g: X —• Z . As earlier we may assume
that the double locus of X is flat over C.

If z is a point of the general fiber of / which is not semirational, then
it is a Gorenstein point (cf. e.g.[23, 4.24]). If isgen denotes the reduced
preimage of z in Z g e n , then 2?gen is a divisor with normal crossings only,
and in a neighborhood of Eσen the pull-back of ω7 equals ω7, {E).

8 c n ^gen gen »

We can take the closure E of E in X. By further blowing up in some
fibers we may assume that E is a Cartier divisor. By our construction the
natural map g^(ωχ/c(E)) —> ω z / c is an isomorphism over the general
fiber. Furthermore, the short exact sequence

0 _> coχ/c _> ωx/c(E) -+ ωE/c - 0
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gives rise to a long exact sequence

0 ^ (f°g)*coχ/c -> {fog)^ωx/c{E) -+ {fo

Again we know that (f°g)*(ωx/c) and (f°g)ΛωE/c^ are semipositive.
As in the proof of 4.13 the kernel of δ is a direct summand and thus
semipositive. This completes the proof of the special case k = 1.

Before completing the proof we need the following:
4.15. Lemma. Let Y be a variety with semi-log-canonical singularities.

Assume that ωψ is very ample. For a general section σ of ω[γ] take a
k th root of σ. Then the resulting variety Y1 again has semi-log-canonical
singularities.

Proof This can be proved in the same way as [29, 1.7 and 1.13].
4.16. Proof of 4.12. This will be done very much along the lines of

[33]. As before we can assume that the nonnormal locus of Z is flat over
C .

Let us fix k such that on the general fiber ω[k] is Cartier and very
ample. Fix an ample line bundle / i o n C. Then f^{ωψ/c) ® Hks~ι is
semipositive if s is sufficiently large. We fix one such s. This implies
that

oW/ r / [k] x Λ ττkS\ nfW / r / [&] \ Λ ττks—\\ Λ ττfΠ
s ( f M ) ® H ) s ( f Λ ω ) ® H Ϊ ® H

is generated by global sections if m > 2 • (genus of C). The natural map

is surjective over the general fiber. By blowing up away from the general
fiber we may assume that its image M is locally free and then we have

where E is a effective Cartier divisor supported in some fibers of / .
By construction M is generated by global sections. We pick one suffi-

ciently general; its zero locus is denoted by T. If we take the k th roots of
T + E, then we get a variety Z ' and a cyclic covering map p: Z ' —• Z .
(We emphasize that Z ' is the nonnormalized cover.) Next we claim that

k-\

P^z'ic = Σ(ωz/c ® ("z/c » f*HS)Ύ]

i=0

(The [1] of course just denotes double dual.)
Indeed, by easy general results this holds over the locus where every-

thing is Cartier, i.e., in codimension one in our case. Since both sides are
reflexive, the isomorphism is automatic from this.
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By 4.14 and 4.15 we know that (/o/?)+ω z/ / c is semipositive, hence so

are its direct summands. Therefore we know that

l((ωz/c ® (ωz/c ® fHψ-l]f]) = /.(ωgc) ® Hks~s

is semipositive.

If we pick the smallest possible value for s such that /^(ω^L) φ//*"" 1

is semipositive, then the above yields a contradiction unless s < k . Thus

we obtain that f*(ω[k]

/c) ® Hk and also f*(ωψ/c) ® Hk for 7 < A: are

always semipositive. We can choose H to have degree one, and therefore

we see that any quotient line bundle of f+(coψ/C) for j < k has degree at

least -k2 . This implies that there cannot be any negative quotients at all
since a suitable base change t: C' —• C produces a more negative quotient
of Λ(ω^ ]

χ c / / c ) . This completes the proof of 4.12.

5. Projectivity of certain moduli spaces

In this section we put together the previous results to give a new proof
of the projectivity of the moduli space of stable curves over Z and to
investigate the moduli space of surfaces of general type.

5.1. Theorem [17], [18], [26]. Let ~^g be the moduli space of stable

curves of genus g > 2 over Z. Then Jί is projective over Z.

Proof First we have to check the existence as an algebraic space. Be-
ing a stable curve is an open condition. Boundedness holds since ω3

c is
very ample. Completeness and separatedness follow from the stable re-
duction theorem [8], [5]. The automorphism group is finite and reduced
since H°(TC) = 0. The relative dualizing sheaf provides a functorial po-
larization which is semipositive by 4.3. Thus Jlg is projective over any
field.

The image of the three-canonical map is a curve of degree 6g-6, thus it
is defined by equations of degree at most 6g-6. Hence λιSg_ιs is ample.
Using a little more about curves we know that the three-canonical images
are defined by quadratic equations, thus in fact already λ6 is ample.

To show projectivity over Z we need to remark that the Q-line bundles
λm exist over Jt . Thus λ6 is relatively ample over Z. This completes
the proof.

For surfaces, first we have to make precise the moduli problem which
we are considering.
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5.2. Definition, (i) A stable surface is a proper two-dimensional re-
duced scheme S over a field of characteristic zero such that S has only
semi-log-canonical singularities (4.10-4.11), and ω[

s

] is locally free and
ample for some k > 0.

(ii) A. family of stable surfaces over a scheme Y is a proper flat scheme
XIY such that:

(a) every fiber is a stable surface,

(b) for every closed point y e Y and every k > 0 we have a natural

isomorphism ω[£}γ\Xy = (ωχ/γ\Xy)
[k].

5.3. Remarks, (i) This notion of stability has nothing to do with geo-
metric invariant theory. In fact, stable surfaces are frequently asymptoti-
cally unstable in the sense of [26] with respect to the canonical line bundle
(see e.g. [30, p. 37]).

(ii) The second condition on the families can be explained as follows.
First, since ωs is usually too small we also need its powers to be flat over
any base. This is exactly the condition. Also, without it separatedness of
the moduli space would fail.

5.4. Definition, (i) Given a rational number K2 and an integer χ,

let Jl'2 be the functor that associates to a scheme Y the families of

Sy
stable surfaces where every closed fiber Sy satisfies ωs ωs = K1 and

s ) = χ . Here of course we define

1 [k] [k]

y y k y >

where ω[

s

 ] is locally free, k > 0, and " " denotes the intersection prod-

uct.

This makes good sense since the numbers ωs ωs and χ{&s ) are

deformation invariant.
(ii) A stable surface S is called smoothable if there is a one-parameter

family of stable surfaces such that the central fiber is S and the general
fiber has only DuVal singularities. (This is clearly a closed condition.)

(iii) Let Jfs™i be the subfunctor of Jtκi where all the fibers are
smoothable stable surfaces.

5.5. Proposition [23, Chapter 5]. The functor ^W™ is coarsely repre-
sented by a separated algebraic space locally of finite type. It also satisfies
the valuative criterion of properness.

5.6. Corollary. If for some K2 and some χ the functor ^*™i is

bounded, then it is coarsely represented by a projective algebraic scheme.

Proof The canonical polarization is semipositive by 4.12.
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6. Compactiίied Picard schemes

If X is a singular projective variety then its Picard scheme is in general
not compact. Considerable attention was given to its compactifications,
especially in the case of curves. In the general case a geometrically mean-
ingful compactification was described by Altman and Kleiman [1]. They
proved that this compactification is a proper scheme; however the question
of projectivity remains open. Here we will study this question.

6.1. Definition, (i) Let X be a proper scheme and let L be an ample
line bundle. The Hubert polynomial of a sheaf F is the polynomial

H(t)=χ(X,F®Lt).

(ii) Let X/S be a flat relatively projective scheme with a relatively ample

line bundle L. For a polynomial H(t) we define the relative compactified

Picard functor ^ ^ / 5 as follows:

F is a sheaf over X xχ Z flat over Z such that for

every z e Z F\X xs {z} is torsion free or rank one

with Hubert polynomial H\ modulo the equivalence

relation F ~ F <g>π*M where M is a line bundle on

Z and π: X xs Z —> Z is the natural projection.

6.2. Theorem (Altman-Kleiman [1]). Assume that X/S is projective,
flat, and has geometrically integral fibers. Let L be a relatively ample line

bundle and let H be a polynomial Then ^^H

χ,s is coarsely represented

by a proper and separated scheme < ^ ^ / i S .

6.3. Remark. In their first paper [1, 1,7.9], they prove that ^ ^ / i S

exists as an algebraic space. We will not need that it is a scheme.

6.4. Theorem. Let X/S, H, and L be as in 6.2. Assume furthermore

that S is of finite type. Then ^oH

χίS is protective over S.
Proof. We can obviously assume that S is connected, in particular

various numerical invariants will be constant over S. We will use this
without mentioning it again.

Again we try to apply the Ampleness Lemma. To do this we have to

come up with a vector bundle on ^'^/S Assume for a moment that there
TT TT

exists a universal sheaf F over / : X xs ^^χ/S -* ̂ ^x/s Then we can
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try to use f^F . This might not be a vector bundle but the main problem is
ΎT

that the universal sheaf is not unique. If M is any line bundle on ^^χjS ,

then F ® f*M is also a universal sheaf. Thus we have to find a way to

rigidify F. The approach of [1, 11,1.2] is the following. Assume that /

has a section s: ~^>H

χjs -• X xs^*x/s s u c h t h a t F i s l o c a l l y f r e e along
the image of s. Then we can replace F by F ® (s*F)~ι, i.e., we take
the unique universal sheaf which is trivial along s. Unfortunately such
a section almost never exists globally, and different sections give different
rigidification, thus patching is a problem. We will go around this obstacle
using the following.

6.5. Proposition. Assume the notation used above. Let n = dim X/S.
Let g: U —• &'*χ/S be a morphism. Assume that a universal sheaf F
exists over U xs X and that L is relatively very ample over U xs X. Let
Lχ, , Ln c U xs X be the zero sets of n sections tt: @Ux x —• L.
Assume the following-.

(i) / : Lj n n Ln —• U is finite and etale,
(ii) F is locally free along Lxn- -nLn,

(iii) RΪfSF 0 L~j) = 0 for i > 0 and 0 < j < n .
Then del f^(F\L{ n Π Ln) is independent of the choice of the L(, and
will be denoted by N(F, L). If M is a line bundle on U, then

N(F, L ® f*M) = N(F, L) ® M^,

where d is the selfintersection number of L on the fibers.
Proof Using the sections t~ι: L~{ —• ̂ f we can build the Koszul

complex:

0 - M f g Γ " -,...-. ( ^ ^ i " 1 - (OV® L O -" FlLin > * 'nLn -> °

T h i s complex is exact since F is locally free along L { D -•- Π L n . By
a s s u m p t i o n (iii) it stays exact if we apply / j , . T h u s

delfφ(F\Lx n nLn) = f[[detfm(FβL"1")]1"01^ ,
ι=0

which clearly shows independence of the choice of the Li. The last claim
follows from the observation that f*{F\Lχ n Π L J is a vector bundle
of rank d.

6.6. Notation. To formulate our next result we need some notation.
Assume that we are given g: Y -* ΊfycH

χjS and a section s: y/5 -> 7 xs X
such that for every y E Γ the sheaf /^ ( j ; ) is locally free at s(y) e Xg{y).
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Then there is a universal sheaf Fγ on YxsX by [1,11, 1.6]. Let fγ\ Yxs

X —• Y be the projection. For large k the sheaf Fγ = Fγ ® Lk satisfies
the conditions of 6.5 locally on Y. Thus locally on Y we can construct
the vector bundles fγ+(Fγ <g> Lk) and N(Fγ <g> Lk , L). By 6.5 these glue
together to global vector bundles.

6.7. Proposition. We use the notation and assumptions as in 6.4, 6.5,
and 6.6. Then for every k > 0 and m > 0 /Aere is α vector bundle
W(k, m) on &ieXιS with the following property:

For every Y as above there is a canonical isomorphism

Proof First we construct W(k, m) locally. Any point of 3°icH

χ,s has
an open neighborhood U such that over U there is an etale section
g: Y/U —• U xs X such that the conditions of 6.7 are satisfied. Thus
there is a universal sheaf over Y xs X, and so we have the vector bundle

fγ. (Fγ ® L*+ w) 0 ( ( / r F y 0 L^'))^" 1 0 7V(Fy 0 L* , L)" 1 ,

which is independent of the choice of F. Indeed, if F is replaced by
F ® f*M where M is a line bundle on Y, then the first factor changes
by M, the second by Λ/^"1 , and the third by M~d . Thus the product
is unchanged and can be descended to a bundle on U. Because of the
unicity we can then patch them together to a single W(k, m).

6.8. Proposition. The above W(k, m) is seminegative, i.e., W{k, m)*

is semipositive on every fiber of &ic X,s/S.

Proof Pick any s e S and let Xs be the corresponding variety. Pick
a complete smooth curve C mapping to the fiber of 3°^H

χ,s over s . For
every c e C there is the corresponding rank one sheaf Fc on Xs x {c} . Let
V c Λ̂  be the smooth locus. Then Fc is locally free on V in codimension
one, and there is a point x e Xs such that Fc is locally free at x for every
c. This point gives a section 5: C —• C x X5 which satisfies the conditions
of 6.6. Thus there is a universal sheaf F on C x Xs.

Now let us look at the definition of N(F, L). The subscheme Lχ n Π
L/7 consists of finitely many disjoint trivial sections of C x Xs. We can
rigidify F such that s*F = ffc . If Ms any other section such that F is
locally free along the image of /, then t* F is algebraically equivalent to
s*F (Xs is integral, hence irreducible). Thus N(F, L) is a degree zero
line bundle on C .

Therefore it is sufficient to prove that f^(F 0 L1) is seminegative. For
some large r consider the rth order infinitesimal neighborhood s(C)r
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of s(C). Since F <g> LJ\s(C) is trivial and f^(s(C)r) is a trivial vector

bundle, f^(F ® Lj\s(C)r) is an extension of several copies of &c . For r

large, / Φ (F <g> Lj) injects into / J i 7 <g> LJ\s{C)r). Thus any subbundle of

f^(F ® Z/) is a subbundle of /^(F ® Z/|.s(C)r), hence it has nonpositive

degree. Therefore any quotient bundle of (f*(F ® Lj))* has nonnegative

degree. This is what we wanted to show.
6.9. Corollary. W(k9 m)* satisfies condition (Δ ;) from 3.7.
Proo/ We just showed that up to a degree zero line bundle W(k9 m)\C

is isomorphic to

fγ*(Fγ®L ) ® ( ( / r F y ® L ))

where y = C x I r Each of these factors is seminegative and the tensor
product is semipositive.

6.10. Proof of 6 A. By replacing L with a large tensor power we may
assume that Rιf^(Lj) = 0 for / > 0 and j > 0. This is possible since S
is of finite type.

Choose k such that
(i) tff^F (8) Lj) = 0 for i > 0 and j > k - n , and

(ii) f*(f*(F ®Lj))^F®Lj is surjective for j > k .
By (i) W(7 , m) is a vector bundle for j > k . Now let

and choose m such that f*{f^(K®Lj)) —• K®Lj is surjective for j > m .
We can consider the multiplication map

mult: JF(fc, 0)®X(L w ) -> »F(ik, m).

At a point p e 3°^HχjS where the corresponding sheaf is Fp/Xp this map
is (up to a multiplicative constant)

[H\Xp , F p β LΛ) β // ° (^ , L w ) - // ° (^ , F p ®

Note that

Xp ,Fp®Lk)® H°(Xp , Lm) - / Λ * p , ^ ® Lk+m)]

= H°{Xp, k e r [ ^ ® i/°(Z p, F p ® L*) -> F p ® Lfc] ® Lm).
p ^

Therefore by the choice of k and m we can recover

k e r [ ^ ® H\xp, Fp ® Lfc) - F, ® Lfc]

from the multiplication map. Thus we can also recover Fp itself.
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Now we only need to apply the Ampleness Lemma 3.9. We choose any
Hi xs is) a n c * w a n t t 0 show that it is projective. For the semipositive

vector bundle W we choose {W(k, 0)®f^(Lm))*. Since f*{Lm) is a triv-
ial bundle, W is semipositive by 6.8 and satisfies condition (Δ') by 6.9.
For the quotient bundle Q we choose the dual of the kernel of mult. As
we just showed, Fp can be recovered from the kernel of the multiplication
map, thus the classifying map is finite. Now 3.9 implies that

w - W(k + m)]*)

is relatively ample on ^ί'^.s/S. This was to be proved.

6.11. Remark. In the proof we used that S is of finite type only to
ensure that for some fixed k the line bundle Lk is relatively very ample
(see [1,1,3.4] for the remaining assertions). It is expected that the choice
of such a A: is always possible. For surfaces this was proved in [20, 2.1.2].

Although not necessary for our considerations, it is frequently very con-
venient to have a universal family. The following result states that a uni-
versal family exists locally in the etale topology on S.

6.12. Theorem. Assume that X/S is projective, flat, and has geometri-
cally integral fibers, and that there is a section σ: S —• X such that X/S
is smooth along σ(S) (this is always the case if S is a point or the spec-
trum of a Henselian local ring). Then there exists a universal family over
X xs ^^χ/S -

Proof The idea is the same as in [1, 11,1.2]: we rigidify the functor
by trivializing along σ. Unfortunately, the universal family will not be
locally free along σ, thus it is not clear how to trivialize. This will be
taken care of by the following:

6.13. Lemma. Let f: X —• S be smooth and let F be a sheaf on X,
flat over S. Assume that for every s e S the restriction F\XS is torsion
free of rank one. Then the double dual of F is locally free.

Proof. The question is local on X so we may assume that X and S
are local and complete. Let 0 e S be the closed point. If the fiber has
dimension one, then F itself is free. Now assume that the dimension of
the fibers is two. We will prove that there is a map F —• ffχ which is an
isomorphism in codimension two. This will imply that i7** is free.

If / is an ideal of ffs of finite colength, then let Rr = &χl(f*I) and
Xj = S p e c ^ / ( / 7 ) . Similarly let F 7 = F/[(f*I) F]. If m is the
maximal ideal, then Fm is a rank one torsion free sheaf on a smooth
surface; thus it has a free resolution of the form
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for some integer n. If we have a resolution like this for some / and
I D J, then by flatness of F this resolution has a lifting as follows:

Q ^ nΠ Pi / ? Λ + 1 QI ) p > 0

I ί ϊ
0 > R] - ^ - + Rn;x - ^ - > Fj > 0

where the vertical maps are the natural quotient maps. The map p3 is

given by an n x (n + 1) matrix ^4y . We can define a map r y : i?*+1 —• i?y

given by the n x n cofactors of Aj . The sequence

is exact; thus r3 factors through q3 to get a map / y: F3 —• i? 7 . Further-
more from the construction it is clear that /, is an extension of /7, so
that we obtain a map i: F -+<fχ which is an isomorphism in codimension
one. This is what we wanted.

Now assume that the dimension of the fiber is at least three. By the
above discussion F** is locally free outside a codimension three subset
Z . We claim that this in fact implies that it is locally free. To see this
we can localize at a general point of XmΓ\Z . Thus we can assume that
F**\Xm is locally free outside the closed point x .

For every / , i7**(8)i?/ is locally free outside the origin. We can compute
the Picard group of Xr - {x} as follows. Let / be an ideal of &s such
that J/I has length one. By flatness we get the following exact sequence:

where denotes the group of units. This gives rise to

From the local-global cohomology exact sequence we get that

Hl(Xm-{x},&χJ^H2

0(Xm,(?χJ = 0,

since Xm is smooth of dimension at least three. Thus

H\X, -{x}, (<V/7)*) = H\xm - W / ; ) = o,
in

which shows that F** is locally free on any infinitesimal neighborhood of
X . Therefore it is locally free.
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6.14. Proofof6.il. The section σ induces a section &icXιS —> X x 5

w e a ^ s o denote by σ. By [1,11,1.6] there is an open cover

of &beX/S such that a universal family F( exists over CΛ. If cr
denotes the restriction of σ to L/ , then let

By construction we have a canonical isomorphism σ*((F?)**) = ^ .

Therefore we can patch together the sheaves F? to a single sheaf Fc.

This is the unique universal sheaf such that σ*((Fc)**) = @= .

References

[1] A. Altman & S. Kleiman, Compactifying the Picard scheme. I, Advances in Math. 35
(1980) 50-112; II, Amer. J. Math. 101 (1979) 10-41.

[2] S. Arakelov, Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR
35(1971) 1269-1293.

[3] M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974) 165-189.
[4] , Algebraisation of formal moduli. II, Ann. of Math. (2) 91 (1970) 88-135.
[5] M. Artin & G. Winters, Degenerate fibers and stable reduction of curves, Topology 10

(1971)373-384.
[6] C. Barton, Tensor products of ample vector bundles in characteristic p , Amer. J. Math.

93(1971)429-438.
[7] E. Bombieri & D. Mumford, Enriques' classification of surfaces in characteristic p . II,

Complex Analysis and Algebraic Geometry, Cambridge Univ. Press, 1977, 23-42.
[8] P. Deligne & D. Mumford, The irreducibility of space of curves of given genus, Inst.

Hautes Etudes Sci. Publ. Math. 36 (1969) 75-110.
[9] T. Ekedahl, Canonical models of surfaces of general type in positive characteristic, Inst.

Hautes Etudes Sci. Publ. Math. 67 (1989) 97-144.
[10] T. Fujita, Kaehler fiber spaces over curves, J. Math. Soc. Japan 30 (1978) 779-794.
[11] R. Hartshorne, Ample vector bundles, Inst. Hautes Etudes Sci. Publ. Math. 29 (1966)

63-94.
[12] H. Hironaka, Resolution of singularities of an algebraic variety over afield of characteristic

zero, Ann. of Math. (2) 79 (1964) 109-326.
[13] J. Igusa, Betti and Picard numbers of abstract algebraic surfaces, Prac. Nat. Acad. Sci.

U.S.A. 46(1960) 724-726.
[14] Y. Kawamata, Kodaira dimension of algebraic fiberspaces over curves, Invent. Math. 66

(1982) 57-71.
[ 15] , The crepant blowing-up of 3-dimensional canonical singularities and its application

to the degeneration of surfaces, Ann. of Math. (2) 127 (1988) 93-163.
[16] S. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966) 293-

344.
[17] F. Knudsen & D. Mumford, The projectivity of the moduli space of stable curves. I, Math.

Scand. 39(1976) 19-55.
[18] F. Knudsen, The projectivity of the moduli space of stable curves, II—III, Math. Scand.

52(1983) 161-212.
[19] D. Knutson, Algebraic spaces, Lecture Notes in Math., Vol. 203. Springer, Berlin, 1971.
[20] J. Kollar, Toward moduli of singular varieties, Compositio Math. 56 (1985) 369-398.



268 JANOS KOLLAR

[21] , Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986) 171 —
202.

[22] , Subadditivity of the Kodaira dimension: Fibers of general type, Algebraic Ge-
ometry, Sendai 1985, Advanced Studies in Pure Math., Vol. 10, Kinokuniya-North
Holland, 1987, 361-398.

[23] J. Kollar & N. I. Shepherd-Barron, Threefolds and deformations of surface singularities,
Invent. Math. 91 (1988) 299-338.

[24] B. Moishezon, A criterion for projectivity of complete abstract algebraic varieties, Amer.
Math. Soc. Transl. 63 (1967) 1-50.

[25] L. Moret-Bailly, Families de Courbes et de Varietes Abeliennes, Asterisque 86 (1981)
125-140.

[26] D. Mumford, Stability of projective varieties, Enseignement Math. 23 (1977) 39-110.
[27] D. Mumford & J. Fogarthy, Geometric invariant theory, 2nd edition, Springer, Berlin,

1982.
[28] Y. Nakai, A criterion of ample sheaf on a projective scheme, Amer. J. Math. 85 (1963)

14-26.
[29] M. Reid, Canonical threefolds, in Geometrie Algebrique Angers (A. Beauville, ed.),

Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, 273-310.
[30] N. I. Shepherd-Barron, Degenerations with numerically effective canonical divisor, The

Birational Theory of Degenerations, Birkhauser, Boston, 1983, 33-84.
[31] D. van Straten, Weakly normal surface singularities and their improvements, Thesis,

Leiden, 1987 (to appear).
[32] L. Szpiro, Proprietes numerique dufaisceau dualisant relatif, Asterisque 86 (1981) 44-78.
[33] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension. I, Algebraic Va-

rieties and Analytic Varieties, Advanced Studies in Pure Math., Vol. 1, Kinokuniya-
North Holland, 1983, 329-353; II, Classification of Algebraic and Analytic Mani-
folds, Birkhauser, Boston, 1983, 567-590.

[34] , Weak positivity and the stability of certain Hilbert points, Invent. Math. 96 (1989),
639-667.

UNIVERSITY OF UTAH




