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GAUGE THEORY ON ASYMPTOTICALLY
PERIODIC 4-MANIFOLDS

CLIFFORD HENRY TAUBES

1. Introduction
S. K. Donaldson’s theorem on the nonexistence of certain closed, smooth

4-manifolds [8] (and see [12]) has the surprising corollary that there exists an
exotic smooth structure on R*. This corollary was deduced by M. Freedman
using his machine [13] for analyzing topological 4-manifolds. The existence
proof for this exotic structure is presented in [15], [12].

Subsequently, R. Gompf proved [15] that # = {oriented diffeomorphism
classes of smooth manifolds which are homeomorphic to R*} has at least four
elements. Freedman and L. Taylor [14] have produced a fifth element, and,
recently, Gompf has shown that # contains a countable, doubly indexed
family {R,, ,}% ,_o of “exotic” R*’s [16], where, R, is R* with its standard
smooth structure.

The primary purpose of this paper is to prove the following theorem.

Theorem 1.1.  There exists an uncountable family of diffeomorphism classes of
oriented 4-manifolds which are homeomorphic to R*.

The proof of the preceding theorem is a two part argument; the first part is
basically topological in content, and the second part is basically analytical. The
topological aspects of the proof were provided to the author by R. Gompf (see
(16)).

Gompf relayed to the author (after an observation of R. Kirby) that
Freedman’s original existence proof realized an exotic R* R, as follows. In
[13], Freedman constructs a closed, oriented topological 4-manifold, |E; & Ej|,
which is simply connected; and whose homology intersection form is the
definite, nondiagonalizable (over Z) unimodular symmetric form E; & Ej.
Donaldson [8] asserts that |E; @ Eg| is not smoothable, but Freedman’s
surgery techniques show that V' = |E; + Eg|\ pt. is smoothable. Now, accord-
ing to Freedman there exists R C %, compact sets K C V' and K; C R, and a

Received June 17, 1986. The author’s research was supported in part by a National Science
Foundation Postdoctoral Fellowship in Mathematics.



364 CLIFFORD HENRY TAUBES

proper diffeomorphism
(1.1) ¢:V\ K- R\K,.

Let :R - R* be a homeomorphism. For each r > 0, the open balls
B, = {x € R*:|x| < r} are embedded topologically in R by . Let

(12) R,=y7(B,).

Each R, C R is homeomorphic to R*. Each R, also inherits a differentiable
structure from the inclusion R, — R. When speaking of R, as a smooth
manifold, it is with reference to this inherited smooth structure.

Since |E; & E;| is not smoothable, there exists some r, < oo such that for
all r > ry, the smooth manifold R, is not diffeomorphic to R*. (This was
Freedman’s original observation. The number r, is determined by the condi-
tion K; C R, ) Itis natural to ask whether, for a pair r, s > r,, one could have
R, and R diffeomorphic.

It was observed by Freedman that if there is a diffeomorphic pair R, R for
r,s > r, and r <s, then there would exist a smoothing on V' which has a
differentially periodic end. Indeed, let x:R, — R, be a diffeomorphism. Let
S? (S?) be the topologically embedded boundary 3-spheres of R, (R,) in
R,,,. Thatis, dR, = S>. And similarly for R . Then x maps some open collar
N, C R, of S (take N, =y }(B,\ B,_,)) diffeomorphically onto an open
collar N, € R of SJ.

Let W =R, \ (R,\N,) =y }(B,\ B,_,). W is an open submanifold of R
which is homeomorphic S* X (r — &, s). An exotic R* with a periodic end is

(1.3) R=R UyWuU, WU, -,

where R U, W is obtained from the disjoint union of R, and W by
identifying N, C R with N, C W using the diffeomorphism x:N, — N,. The
iteration of this identification, gives the smooth manifold R.

Using the map ¢ in (1.1), one obtains from R a smoothing on ¥ which is
periodic at infinity; that is, there exist compact sets K € ¥ and K, C R and a
proper diffeomorphism

(1.4) $:V - R\K,.

If no such asymptotically periodic smoothing of ¥ (as in (1.4)) exists, then
necessarily each R, (r > r;) defines a distinct diffeomorphism class of 4-
manifolds homeomorphism to R*. Freedman had suggested that one might
prove Theorem 1.1 by using gauge theory, a la Donaldson [9], to prove that V/
has no end-periodic smoothings. Gompf asked that author whether such a
generalization of Donaldson’s arguments was possible. The answer is provided
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in Theorem 1.4 below, which asserts that certain smooth, end-periodic 4-
manifolds do not exist.

Before stating Theorem 1.4, certain preliminary definitions are required to
set the stage; in particular, a working definition of end-periodic is needed.
Loosely speaking, the end of an end-periodic 4-manifold is constructed from a
fundamental segment W by gluing copies of W together end to end. (Were the
diffeomorphism in (1.4) to exist, then W in that case would be smooth, and
homeomorphic to (0,1) X $3))

Definition 1.2. A smooth, oriented 4-manifold M is end-periodic if the
following data exists:

(1) A smooth, connected, oriented and open 4-manifold W with two ends,
N, and N_. W is called the fundamental segment. Thus, there exists a
compact set C C W such that W\ C is the disjoint union of two nonempty,
connected, open sets, N, and N _.

(2) Suppose that there is a compact set C,C N such that N\ C, has two
connected components, N, , and N, _. Assume that C, is such that W\ C,
is the disjoint union of N_U CU N,_ and N . Similarly, assume that a
compact set C_C N_ exists such that N_\ C is the disjoint union of two
connected components, N__ and N_,, and that W\ C_ is the disjoint union
of N__and N_,U CU N _. Assume that there is a diffeomorphism i: N, —
N _ which is orientation preserving and which takes N, to N_, and N, _ to
N

(3) An open set K C M, with one end, N. Suppose that a compact set
C, C N exists such that N\ C, is the disjoint union of two open sets, N,_ and
Ngy,. Assume that K\ C has two components, (K\ N)U N;,_ and N,.
Require that there exists a diffeomorphism i_:N — N_ which takes N,_ to
N__and N, to N_,. Require that i_ preserve orientation.

(4) An orientation preserving diffeomorphism ¢:M —- KU, WU, W
U, ---. Here, KU, W is obtained from the disjoint union of K and W by
identifying N C K with N_C W via i_. Also, W U , W is obtained from the
disjoint union of two copies of W, W, U W,, by identifying N, C W, with
N_c W, via i (see Figure 1). Identify End M = W, U, W, U  ---

i
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In order to define reasonable (for the present purposes) gauge theories on
such end-periodic manifolds, it is necessary to restrict the allowable fundamen-
tal segments W.

Definition 1.3. An end-periodic 4-manifold M is admissible if the funda-
mental segment W has the following properties:

(1) 7, (W) does not represent nontrivially in SU(2).

(2) H(N;R) =0 and H,(N;R) = 0.

(3) Let Y be the compact, oriented 4-manifold which is obtained from W by
identifying N, with N_ via i (see Figure 2). Require that the intersection
pairing on H,(Y;R) be positive definite.

FIGURE 2

If M is an end-periodic 4-manifold such that H,(N;R)= 0, then the
intersection pairings on H,(K;R) and H,(M;R) are nondegenerate. If also
H,(M; Z) = 0, then both H,(K;Z)and H,(M;Z) are torsion free (see Lemma
5.7). Concerning the intersection pairings, one has

Theorem 1.4. Let M be a smooth, end-periodic and admissible 4-manifold.
Suppose that m,(M) has only the trivial representation into SU(2). If H,(K;Z)
has positive definite, unimodular intersection pairing, then this pairing is
diagonalizable over L. If the intersection pairing on H,(K;Z) is only known to
be positive definite, then the intersection pairing on H,(M; Z) is unimodular and
diagonalizable over Z in the following sense: There is a sequence of free abelian
groups A { C AyC A\ C -+ C Hy(M;Z) with lim _, A, = H,(M;Z) such
that (1) A_, ® R= H,(K;R) and (2) the intersection pairing on A, is
unimodular and diagonalizable.

Theorem 1.4, as argued, implies Theorem 1.1. Additional corollaries to
Theorem 1.4 have been pointed out to the author. The proofs below are due to
R. Gompf.

Proposition 1.5 (R. Gompf [16]). There exists a family (R ,:s,t € (0,0)} of
distinct elements in # (exotic R*’s). R, embeds in R, . if and only if s < s’
andt < t'. If s > 5" or if t > t, there is a compact set in R, which does not
embed in R . .. No two elements of {R,} have diffeomorphic ends.

Proposition 1.6 (M. Freedman). Let M be a closed, definite, TOP 4-manifold
with nonstandard intersection form and with m = 1 (e.g., Eg, E;#E;). Then M
has no simplicial triangulation.



GAUGE THEORY 367

This result provides examples of manifolds with no simplicial triangulation.
No examples of such manifolds of dimension # 4 have been found. A. Casson
[6] has independently proved that any closed TOP 4-manifold with nontrivial
Kirby-Siebenmann invariant has no simplicial triangulation.

Proof. 1f M were triangulated, it would be PL except at a finite number of
vertices. Coalesce these to a single point p (whose link is fake S*). Now M \ p
is PL, hence smoothable; and its end is smoothly (fake S3) X R, which is
periodic and contradicts Theorem 1.4.

Proposition 1.7 (S. Akbulut). Let 2 be a homology 3-sphere which bounds a
smooth 4-manifold with nonstandard, definite intersection form and with =, = 1
(e.g., the Poincaré homology 3-sphere). Then Z# -2 does not bound a contract-
ible 4-manifold; or a definite 4-manifold with =, = 1.

Proposition 1.8 (R. Gompf). Let Z be as in the previous proposition. Then
= does not embed in any manifold homeomorphic to S* X S'#,CP? representing
a generator of H;.

Proof. 1f it did, take 1/2 the universal cover and cap off to contradict
Theorem 1.4.

Given as facts the technical results of §§3-10, the proof of Theorem 1.4
follows the argument of Donaldson in [9]. With extra restrictions on K, the
argument of Fintushel-Stern in [11] carries over to the end-periodic category
too. The Fintushel-Stern argument is given in §2. The full proof of Theorem
1.4 is given in §11. The technology that is developed in §§3-10 will, presum-
ably, allow arguments on compact M to generally transplant to admissible,
end-periodic manifolds.

On a different vein, the end-periodic technology—and especially the com-
pactness results in §10—suggests an interesting interaction between the homo-
topy type of the segment W and the topology of K. For example, Freedman
constructs a simply connected oriented top 4-manifold whose intersection form
is the unimodular matrix E;. By Quinn [25], |Eg|\ pt. has a smoothing.
Rohlin’s theorem prevents a smooth product, S* X (0, ), from occurring as
the end of E;\ pt. (A. Casson [6] proves that no smooth homotopy sphere X
(0, 00) can appear). Theorem 1.4 rules out periodic ends with segments
homeomorphic to §* X (0,1). It is known [13] that there exists a smooth,
simply connected 4-manifold with intersection matrix Eg with a product end,
2 X (0, o0), where 2 = Poincaré homology sphere. Since #,(Z) has two repre-
sentations in SU(2)/Ad SU(2), Theorem 1.4 is not violated. Here, one sees the
representations of ,(2) intimately tied to the properties of the quadratic form
E,. This suggests a nonlinear version of the index theorems of Atiyah-Singer-
Patodi [5]. It should also be intimately related to Casson’s recent work in [6].
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Before turning to §2, the author gratefully thanks R. Gompf and M. H.
Freedman for their advice and suggestions concerning the material in this
article.

2. The proof of Theorem 1.1

Suppose that V = (Eg#E,)\ pt. has an end-periodic smoothing, that is,
End V is homeomorphic to S* X (0,0) and diffeomorphic to an exotic,
periodic smoothing of $* X (0, o). Asin[11], one can find a class e € H,(V; Z)
with e - e = 2. As explained in §9, the class e determines an end-periodic (see
§7) principal SO(3)-bundle, P — V. This bundle has a reducible self-dual
connection with square integrable curvature form (Proposition 9.1). In fact,
there is a moduli space, M, of orbits under Aut P of self-dual connections on
P with the following properties: M is a manifold except at the orbit of this
reducible connection (Proposition 8.2); the dimension of M is 1. Also, M has
one endpoint, the orbit of the reducible connection (Propositions 8.2 and 9.3).
Finally, M is compact (Proposition 10.1). Thus, M is a compact 1-dimensional
manifold with one endpoint.

A bit of experimentation with a length of string will convincingly demon-
strate that no such M exists. Hence, Eg#E; \ pt. has no end-periodic smooth-
ing. As argued, this implies Theorem 1.1.

Theorem 1.4 is proved in §11. The remainder of this paper contains the
machinery that the proofs require. The strategy is to translate the formalism in
[14], [9], [12], [11] from compact manifolds to end-periodic manifolds. Given a
convenient Fredholm theory for the anti-self-dual DeRham complex (and its
twisted counterparts),

d P_d
(2.1) 0 - CP(M) > CE(T*M) > C®(P_A, T*M) - 0,

the formalism translates relatively easily. Here, C°(-) are functions/sections
with compact support. Also, P_= (1 — ), with * = the Hodge dual of an
end-periodic metric on TM (see §3). §§3-4 are concerned with Fredholm
theory for elliptic complexes on end-periodic manifolds. Because the expense is
not too high, §§3-4 consider the theory for a quite general class of such
complexes on manifolds of dimension > 2. The analysis here is modeled
closely on the work of Lockhart and McOwen and their analysis of operators
on manifolds with product ends [21]. However, there is a crucial difference in
the two problems. The situation for end-periodic complexes is summarized in
Theorem 3.1.
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In §5, the specific case of the anti-self-dual DeRham complex is considered.
The result in §5 is a computation of the Betti-numbers of this complex in terms
of the homology of the compact piece, K C M. Here, one should compare [5]
and [21].

§6 is a digression concerning the complex in (2.1) with P_ defined by a
metric which is not strictly end-periodic, but only asymptotically so. The set of
strictly end-periodic metrics is too specialized; for these metrics, the moduli
space is not guaranteed to be manifold away from the reducible orbits.

In §§7-11, gauge theories on end-periodic 4-manifolds are discussed. §7
defines a useful Banach manifold of connections on an end-periodic principal
bundle. The appropriate Banach Lie group of gauge transformations is defined
in §7, and the orbit space is shown to be a smooth Banach manifold. Here the
Fredholm theory of §§3-6 allows a more or less direct translation of the
arguments in [24], [2], [12].

§8 proves that for a generic metric (defined in §6), the self-dual moduli
spaces are smooth manifolds away from the reducible orbits. The neighbor-
hoods of the reducible orbits are also described. Here, again, the Fredholm
theory in §§3-6 allows a direct translation from [8], [12].

In §9, the moduli spaces are shown to be nonempty. The arguments from
[11] (Proposition 9.1) and [28], [30] (Proposition 9.2) are modified to the
end-periodic case.

In §10, the boundary of the moduli space is described. Here, the argument
diverges significantly from the compact case (cf. [8], [12]). In particular, the
topology of the segments which make up End M now plays a crucial role. The
flat connections on these segments determine the structure of the end of the
moduli space.

§11 contains the complete proof of Theorem 1.4. Here, the new argument of
Donaldson in [9] is adapted to the end-periodic situation.

3. End-periodic differential operators

Suppose that M is an end-periodic n-manifold as given by Definition 1.2.
To understand Fredholm theory on such M, it is convenient to introduce the
furled up manifold,

(3.1) Y=Ww/~,

where ~ identifies N, with N_ via i. The manifold Y is compact, oriented
with Z-fold cover

(3.2) Y=  UNW Uy WUy W, -,
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with projection : ¥ — Y. Here, each W, is a copy of the fundamental domain
W. End-periodicity identifies M \ (K'\ N) with

(3.3) EndM = W,Uy W, Uy W, Uy -,

as a subset of Y. The deck transformations of ¥ act on End M as a faithful
representation of the semigroup Z, = {0,1,2, - - - } generated by

(3.4) T:W,=W,,.
A vector bundle, E —» M, will be called end-periodic if T lifts to a bundle map
(3.5) T:Ely, - Ely, -

Alternately, E is end-periodic if
(3.6) E|gpgm = m*Ey,
where 7: End M — Y is the projection and E, — Y is a vector bundle.

In general, a geometric object on M will be called end-periodic if it
transforms naturally under T of (3.4). This is equivalent to saying that it is the
pull-back via « of an object on Y. Both definitions are, at times, convenient.
For example, let E, F be end-periodic vector bundles over M. A differential
operator 9 : C°(E) — C§*(F) is end-periodic if
(3.7) 3Ts = Tds
for all s € C®(E|gpq »)- Equivalently, 9 is end-periodic if, under the isomor-
phisms E|g 4 = 7*Ey and F|g,qy = 7*Fy, one has 9|g,q, = 7*3y, where
0y:C®(Ey) = C*®(Fy)is a differential operator over Y.

Let {E,}L, be a set of end-periodic vector bundles over M. Let
{0,011 CP(E)) = C(E;, 1)} No P be a set of degree > 0, end-periodic dif-
ferential operators. This data defines an end-periodic, elliptic differential
complex over M,

N 3
(3.8) (E, 0} =0 CF(E,) » - = CF(Ey) -0,

if the corresponding symbol sequence is exact, and if 9;,,9, = 0.

For such an end-periodic, elliptic, differential complex, the question arises:
To what Banach space completions of {Cg°(E;)} does { E,d} extend as a
Fredholm complex? Here one is looking for Banach space completions, L( ),
of C°(E;) for j € {0,1,..., N '} such that 9, extends to a bounded operator
with closed range from L(j) — L(j + 1). In addition, one requires that for
Jj€{0,,---, N} the induced map

4 :L(j)/lmaj - L(j+1)
has finite dimensional kernel. Here, set L(N + 1) = L(-1) =0, 3, = 0, and
dye1 =0.
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Lockhart and McOwen [21] answer the preceding question for a 2-step
elliptic complex,

0> CP(E) > C(F) > 0

over an n-manifold whose end has the product structure: (n — 1)-manifold X
(0, 00). Their work will be seen here to generalize.

To begin the analysis, fix a Riemannian metric on TM which is end-
periodic (over End M, require that the metric be pulled back via # from Y). If
E — M is an end-periodic vector bundle, give E a fiber metric which is also
end-periodic. All norms, inner products, and integrals will be computed using
these end-periodic metrics, unless specified otherwise. Inner products will be
denoted by ( , ).

To measure distances on End M, one requires functions 7: End M — (0, c0)
and p: ¥ — R. They are defined as follows: Choose any smooth #: W — [0,1]
such that t|y = 0 and t|, = 1. (Thus, dr descends to Y as a smooth 1-form.)
Define p on Y by setting p(x) =n + #(x) if x € W,. Extend to M by
bumping p to zero in N and extending by zero to the rest of K. Call the
result 7.

Decay restrictions on sections of an end-periodic bundle E — M are best
enforced using weights. As done in [21], for 1 < p < o0, and for § € R, define
the weighted space L{(E) as the Banach space completion of C§°(E) in the
norm

69) il = |, avaterin)|”

To define weighted Sobolev spaces which control the derivatives of sections
of E, one must choose a connection on E which is periodic on End ,,. If E is
associated to the frame bundle of M (i.e. TM, T *M, the bundles of p-forms,
A T *M, and the bundles of ( p, ¢)-tensors, ®pTM ®,T*M), by fiat, the
Christoffel-Levi-Civita connection from the metric will be used. For some
other vector bundle E — M, a connection A is end-periodic if, under the
isomorphism E|g,4, = 7*E,, it is identified with the pull-back 7*4, of a
connection on E,. Thus, the covariant derivative of an end-periodic connec-
tion commutes with 7 of (3.5). If E and F are end-periodic vector bundles
over M with the end-periodic metrics and connections, then E® F, E& F
will always be given the obvious product periodic structures (unless specified
to the contrary).
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For1 < p < 00,0 <j < o0, and & € R, define the weighted Sobolev space
L7s(E) to be the completion of Cg°(E) in the norm

J 1/p
e® Y Iv"‘)slp) :
k=0

where V¥ = vv .- v, k-times, and v : C3(E ®, T*M) > C*(E ® .,
T *M) is the covariant derivative from the end-periodic connections on E and
T*M.

Let { E;}]_, be a set of end-periodic vector bundles over M, and let { E,d}
be an elliptic differential complex, which is end-periodic. This extends to a
sequence of bounded linear operators,

(3.10) Isllzp, = [ fM d vol

3 Ay
(311) 0 Lp,,5(E) > LYy s(E1) = -+ = L{5(Ey) =0,

where m; = degree d; and g = L) m;. Here, k > 0.

To understand the conditions under which (3.11) is a Fredholm complex, it
is necessary to consider the equivalent sequence over the compact space Y.
Since {E; = 7*E; y} and {9, = 7*9,,} over End M, one has the following
elliptic complex on Y:

al. a B
(312)  (Ey,3y) =0 C™(Eyy) = -+ = C*(Eyy) = 0.

Foreach j € {1,---, N} let
(3.13) a’fY:Cw(Ej-H,Y) - COO(EJ,Y)

J

denote the formal L>-adjoint. Since Y is compact, the cohomology of { E,dy }
is finite dimensional; that is, for each j € {1,---, N}, one has the isomor-
phism

(3.14) H/(Ey,dy) = {‘P € Cw(Ej,Y)3aj+1.Y4’ =0and 3y = O}

of finite-dimensional vector spaces. The index of this complex, Ind{ £, 9}, is
the number

N -
(3.15) Ind{E;,d,} = Y. (-1)’dim H/(Ey,3,).
j=1

The Atiyah-Singer index theorem computes Ind{ E,d, } from the topology of
Y [8].

A necessary condition for (3.11) to define a Fredholm complex is the
vanishing of Ind{d, }. There is a second condition which involves an action of
HER(Y) (the first DeRham cohomology of Y) on the complex { Ey,dy }.
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Observe that the function p on Y does not descend to Y. However, its
exterior derivative, dp, is the pull-back from Y of a closed one-form, y €
C*®(T*Y). The DeRham cohomology class, [y] (# 0) € H}z(Y) generates the
kernel of m*:H}p(Y) > Hbe(Y). The one-form y induces a sequence of
differential operators {0, ,(v): C*(E; y) = C*(E; Y)} ! via the formula

(3.16) 01(¥)s = m%(e-ep[aﬁl,y,eep]s),

with p of (3.8) considered as a multivalued “function” on Y. This o, ,(y) is a
differential operator with C* coefficients of order one less than that of 3,1y
(If order 9, y = 1, then g, () is, pointwise, the symbol of 9, evaluated
on the 1-form y—thus giving a section of Hom(E, y; E; . ; y).

If s € kerd,,; y, then

(3‘17) j+1(Y)s j+1 Y(ps)
which shows that o, ,(v):kerd; y = kerd, ., y. Also, if s = 9, yf, then

,+1(Y)S /+1 YP vf= ,+1 YO (v)f

which shows that ¢;,,(y):Imd; y = Imd,, y. Then, in the usual way, o;,,
induces a map on the cohomology H*(E,0y):

(3.18) Galv]:H/(Ey,dy) = H/*(Ey,0y).

(3.17) shows that the maps {& +1[y]} - "~ depend only on the cohomology class
[v] € Hpe

If each operator d; has degree 1, then 6, ,(y)g;(y) = 0, since the symbol
sequence for the complex in (3.12) is exact.

Theorem 3.1.  Let 3 = {9,,,: C°(E;) = C°(E;, 1)}~ be an end-periodic,
elliptic differential complex over an end-periodic n-manifold, M. Suppose that the
associated complex {9,.,y:C®(E;y) = C*(E;,,y)} has index =0 and is
such that for each j € {0,-- -, N}, the induced map

5,1 :H/(Ey,dy)/img, > H/*'(E,,3y)/Im3,, 5,

is injective. Then there is a discrete set D € R without accumulation points such
that for all p €2, ), m>q, and § € R\ D, the complex in (3.11) is
Fredholm.

Theorem 3.1 follows from Proposition 4.1 and 4.2 of the next section.

For gauge theories, the omnipresent elliptic complex is the anti-self-dual part
of the DeRham complex:

d P_d
(3.19) 0 - CP(M) > CP(T*M) > CP(P_A, T*) - 0.
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Here d = exterior derivative, and P_:A,T* — A,T* is the anti-self-dual
projection from the metric; P_= }(1 — *), where * = metric Hodge “star.”
The associated complex on Y has cohomology

(3.20) dimH® =1, dimH'=5b,(Y), dimH?= by (Y).

Here b, = first Betti-number, and b; = 4 (second Betti-number minus signa-
ture (Y)).

Lemma 3.2.  For the anti-self-dual DeRham complex over Y, the conditions of
Theorem 3.1 are equivalent to the assertion that the Euler-characteristic of
Y = signature of Y and that the map [ylU :H)x(Y) > HjR(Y) has 1-
dimensional kernel (= A[y], A € R).

Proof of Lemma 3.2. The index of the anti-self-dual DeRham complex on
Y is

1 —b,(Y) + by (Y) = -4 (Euler-characteristic( Y )-signature(Y)).

Theorem 3.1 demands that this number vanish. The map o,(y) sends f €
C*(Y) to yf in C®(T*Y). Since [y]# 0 in H}g(Y), the map 7,(y) is
automatically injective. For w € C*(T*Y), one has o,(y)w = P_(y A w).
Suppose that dw =0 and that [P_(y A w)]=0 € P_H3x(Y). Then
P _(y A w)= P_da for some a € C®(T*Y) which means that y A w = da.
That is, [y] U [w] = 0 € H3x(Y). Conversely, if [y]U [w] =0, then y A w =
daand P _(y A w)= P_da.

4. Fredholm theory

The study of end-periodic operators on M requires, eventually, the study of
periodic operators on Y. This is an excision property of elliptic complexes.
Periodic operators on Y are obtained as follows: Let {E,,}N, be vector
bundles over Y and let {3,,,,:C®(E,y) — C°"~(Ei+1_y)} define a periodic,
elliptic complex over Y. The pull-backs {E, = 7*E,,} and {90,,, =
7*3,,1y: C&(E,) > CP(E,, )} define a periodic elliptic complex over Y.

With the time function p, on ¥, define the weighted Sobolev spaces
(Ll s(E)} for p>2, k>0, and 8 € R. Each 9,,, extends to a bounded
operator from Lf 4(E,) to Lk—m,+l,8(Ei+1) if k> m,,, = degree(d,,,). The
relevance of this structure on ¥ is tied to

Proposition 4.1. Let M be an end-periodic manifold, let {E,} be end-
periodic vector bundles over M, and let {9,,,: C{°(E;) = C(E,,,)} define an
end-periodic elliptic complex over M. For a given 8§ € R, the complex in (3.11) is
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Fredholm if and only if the following complex over Y is Fredholm:
~ 9 a)v ~
(4.1) 0= LE,5(Eg) = -+ = L{s(Ey) 0.

Proposition 4.1 is an excision assertion which extends to end-periodic
manifolds an equivalent assertion for manifolds with product ends in [21, §4].
The proof here translates with little modification from [21]. The details are
straightforward, tedious, and omitted.

As the operators in (4.1) are periodic, the study of (4.1) reduces to studying
structure on the compact manifold Y. The result is Proposition 4.2, below.
Together, Propositions 4.2 and 4.3 yield Theorem 3.1.

Proposition 4.2.  Assume that the conditions of Theorem 3.1 are met for the
elliptic complex in (3.12) over Y. Then there exists a discrete set D C R with no
accumulation points such that the complex in (4.1) is Fredholm for all § € R\ D.

In studying translation invariant operators on a cylinder, (n — 1)-manifold
X R [21], use the Fourier-Laplace transform. In the situation here, only the
discrete group Z acts. To exploit this action, one should use the Fourier-Laplace
series. Proposition 4.2 is proved using this tool. The remainder of this section
contains the arguments.

Proof of Proposition 42. Let E > Y be a periodic vector bundle. For
Y € C®(E) and z € C*, define the “Fourier-Laplace transform” of ¢ by

[ee]

(4.2) g.()= X 2(T)(),

n=-00

where, T: E — E covers the deck transformation T: ¥ — ¥ (see (3.4), (3.5)).
For fixed z € C, { obeys the periodicity condition

(4.3) (T9.)(-) = 274.().

By restriction to W,, ¢, defines a smooth section over Y = Y/Z of the
vector bundle

Ey(z) =[E®g C/Z],

where Z acts on E( via the action sending 1 € Z and (p,A\) € E®x C to
(Tp. z)).

One may think of the collection
(4.4) Ey={Ey(z):z € C*}
as defining a smooth vector bundle over Y X C*.

The Fourier-Laplace inversion formula is as follows: Let # be any section of
E, over Y X C*, holomorphic in C*. Then, if s € (0, c0), the formula

(43) (T = g [ 2m(n() S

iJyz)=
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for x € W, and =(x) € Y defines a section of E over Y. By Cauchy’s integral
formula, the left-hand side of (4.5) is independent of s. Cauchy’s formula
implies that (4.2) and (4.5) are inverses of each other.

If E, F are periodic vector bundles over ¥, and if 3: C*(E) > C®(F)is a
periodic differential operator, then 3 commutes with a Fourier-Laplace trans-
form in the sense that (4.2) extends the differential operator d,: C*(E,) —
C®(Fy) to 3y: C®(Ey(z)) » C®(Fy(z)) via the formula

(4.6) 80,9, = (39)..

For each z € C*, the bundle E,(z) — Y is isomorphic to E,(z) = E(1).
Indeed, if \,b is a section over Y of E,(z), then z’J;z is a complex-valued
section over Y of E,. Here ¢: W, — [0,1] is the time function of §3. (Fix a
branch of In z to define z' = e'I"%)

Via the preceding isomorphism, the family of operators {3,: C*(E(z)) —
C*®(Fy(z))} is mapped into the holomorphic family

(4.7) {0,(2) =03y + z’[ay,z"]:C‘”(EY;C) - C*(Fy;C)}.

It is convenient to use both descriptions of this holomorphic family of
operators.

The fundamental lemma to relate the analysis on Y to that on ¥ is

Lemma 43. Forp € [2, ), kK > 0, and 6 € R*, let (4.1) define a periodic
elliptic complex over Y. Equation (4.1) defines a Fredholm complex if and only if
for all z € C* with |z| = e%?, the cohomology vanishes for the complex
{0,51.7(2): C¥(E, y) = CQO(E,'+1,1/)}11‘v=_01 over Y.

Lemma 4.3 has reduced the proof of Proposition 4.2 to the study of the
complex F(z) = {0, y(2):C¥(E;y) > C*(E;,,y)} forall ze C=({w e
C*:|w| =5 = e%?).

Since 9, y(z) — 9,y is a compact operator for all j, the index of the
complex F(z) and that of F(1) agree. Thus, for the cohomology of F(z) to
vanish, the index of F(z) = index(F(1)) = 0. This is the first condition asserted
by Theorem 3.1—it is a necessary condition.

To understand the second condition of Theorem 3.1, observe that its
immediate implication is to

Lemma 4.4. Under the conditions of Theorem 3.1, the cohomology of F(z)
vanishes for all z in an annulus, A, = {w € C*:0 < |w ~ 1| < &} for some
e > 0.

Lemma 4.4 asserts that the conditions of Theorem 3.1 imply that the
cohomology of F(z) vanishes for all z in an open domain in C*. The fact that
each 0, ,(z) depends holomorphically can be used to obtain
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Lemma4.5. For z in a domain @ C C, let

9,(2) 9,(2)
0->B,— -+ — By—0

be a Fredholm complex, where, forj € {1,..., N}, aj(z) is a bounded, linear
operator from the Hilbert space B;_, to the Hilbert space B;. Assume that
9,,1(2)9;(2) =0 for all j and z € Q. Also, assume that each d,(z) depends
holomorphically on z € X, and that for all z, 2" € Q, 9,(z) — 9,(2") is a compact
operator. If the cohomology of {B,0(z)} vanishes at z =z, € Q, then it
vanishes for all z € Q\ D, where D is a discrete set with no accumulation points
in Int Q.

Together, Lemmas 4.3-4.5 imply Proposition 4.2 as follows: By Lemma 4.3,
one need only study the cohomology of a C*’s worth of elliptic complexes over
the compact manifold Y; precisely, for z € C¥*,

0- Llf+q(E0 Y)alii S aN“Y"( )LP(EN y) = 0.

From Lemmas 4.4 and 4.5 there exists a discrete set D € R* with no
accumulation points such that for all § € R\ D, the cohomology of the above
vanishes for all z € C* such that |z| = %/

Proof of Lemma 4.3. 1f the cohomology H*(E,,d,(z)) vanishes, then for
each j € {0,---, N — 1},

(4.8) aj+l.Y(Z):L}](Ej.Y)/Imaj,Y(Z) - kerd;,, y(z) C L-p(Ej+l,Y)
is an isomorphism. Let
(4.9) Rj+1,Y(Z):keraj+2,Y(Z) - L'P(Ej,Y)/Imaj.Y(Z)

be the inverse to 9., y(z) in (4.8). By assumption, R, y(z) is a bounded
operator, defined for all z € C = {w € C*:|w| = €%/?}.
For fixed ¢ € kerd,,, C C0°°(E"j+1) and for z € C,

(4.10) R, (z)(z%.) € LY(E, y)/Im3, ,(z).

Let b, () € C*(E; y)be a section which projects to R, ; y(z)(zxfz ). There is
no obstruction to requiring that {b (¥):z € C} defines a continuous section
of E; y over Y X C. The lift bz(x[J) is unique up to

(4.11) b.(y) - b(¥)+3,,(2)n(z2)

with 4)(z) a continuous section of E;_; y over ¥ X C whichis C* in Y.
Let b(Y) € C2(E ') be defined by the Fourier-Laplace inversion formula

L[ (b (4)(n(2)).

2ai z

(4.12) (T"b(¥))(x) =
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Notice that
aj+1b(‘l’) =q.

The ambiguity in the lift ((4.11)) means that b(y) is unique up to b(y) —
b(¢) + 9, where n is obtained from z7'd;,(z)n(z) by Fourier-Laplace
inversion as in (4.12). As in [21], [19], [22], (4.12) extends as a bounded
operator,

(4.13) 8,;11 :(ker8,+2) NLF (Ej+1) - Lfs(Ej)/Imaj,

which inverts 9, ;. The existence of the inverses imnplies that the complex in
(4.1) is Fredholm.

Conversely, suppose that for some z € C, H/(E(z),dy) # 0. Let J/z IS
C""(Ej(z))~ represent a nonzero element. Via (4.3), {, ~defines an element
¥, € C*(E)). Foreachq € (1,2, --- }, define y , € C5°(E;) by

(4.14) Yo(x) = By.(x)/q'7,

where B, € C *(Y;[0,1]) obeys
B,(x)=1 if xe W, for |k| < g,

(4.15) B,(x)=0 if x € W for |k| > g+ 1,
sup|v{8,| < B forall / <2 (degreed,,,) + k.

Observe that [{,],,, is bounded away from zero, independent of ¢; but it is
also bounded, independent of g. Also, since

aj+1’1bq = [aj+1’ :Bq] \I/z/ql/p’
has support in W, .y, only,
(4.16) Jim 189, =0,
which implies that the complex in (4.1) cannot be Fredholm. Indeed, if so, then
for each g, there exists b, € kerd,,; such that
(4.17) Jim 1 = b, =0
(the closed range). Furthermore, {[b,]} converges in LPs(E )/Im3; (finite-

dimensional cohomology). Thus, for a subsequence, there exists b € ker 6j +1
and {n,} € L”; (E,_,) such that

(4.18) Iy, = b=8mn,l.., —o0.
Now use (4.2) to observe that

(4.19) Jim |9, = @777, i,

LP(Ej(2) — 0.
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But Ranged;, C LP(E(z)) is c}osed, so ), = 3, yp, for some p, €
LP(E;_,(z)). This contradicts that y, is nontrivial in H/(E(z),dy).

Proof of Lemma 4.4. Assume to the contrary that a sequence of
points {1 + w,}% , € C* exists with |w,| — 0 such that for each n,
H/(E,,04(1 + w,)) # 0. Then, for each n, there exists ¢, € C*(E; y) such
that

¥l 2 =1,
(420) aj+1¢n + wnoj+1(7)¢n + wanj+1,n\bn = O’

where, R, ,:C*(E;y) > C®(E;,,y) has degree 2 less than degree 01
Further,
{Rj+1,n3Lf+l(Ej,Y) - Llf(EjH,Y)},,H
is uniformly bounded when p € [2, 00), / = degree 9, ;, and k > 0.
Let 0*: C*(E,, y) = C*(E,y) denote the formal L?-adjoint of d;. Like-
wise denote ¢*(y) and R7,. Then it is no loss of generality to assume of {4y, }
that

(421) aj,Y(l + Wn)*¢n = 8]'*'451 + Wnc‘j"t(.}l)‘l/n + Wn2R7+1.n‘[’rx =0.

(4.20) and (4.21) imply, via standard arguments, that {{,,} has a subse-
quence which converges in the C*®-topology to some 0 # ¢ € H/(Ey,dy).
Relabel this subsequence as {{,}. Thus, one must have H/(E,,dy) # 0. Let
{m,} be an L%orthonormal basis for H/*!(Ey,d,), the finite dimensional
vector space in (3.14). Let {¢,} be a similar basis for H/"'(Ey,d). From
(4.20) and (4.21),

<"Ik»°j+x(7)4’>L2 = <lea°j+1(Y)(1P =¥, )2 + O0(Iw,)),
W,0(Y) b2 = (¥ — ¥, °j(Y)¢1>L2 + 0(w,)).

As the right-hand side above tends to zero as n — oo, one sees that
¥ € ker(o,,1(v): H/(Ey.8y) > H/*Y(Ey,dy)),
¥ & Im(o;(v): H/"Y(Ey,dy) = H/(Ey,dy)).

(4.22)

These two facts contradict the conditions of Theorem 3.1. Hence, Lemma 4.4 is
true.

Proof of Lemma 4.5. For each j€ (1,---,N}, B;=kerd;(z,)®
Imd;(z,). Thus, a partial inverse aj‘l(zo) : B, > B;_, exists such that

37'(20)9,(20) =1 on (keraj(zo))lc B,_,,

(4.23) B
aj 1(Zo) | (Imd(zo)* — 0.
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As a function of z € @, consider first the operator Q,(z): B, — B, given by

0,(2) = 37'(29)9,(2).

This operator is bounded, Fredholm, and it depends holomorphically on z €
(in the sense of Chapter VII of [18]). Because d(z) is Fredholm, the zero
eigenvalue (if present) has finite multiplicity and it is isolated. Thus, by a
theorem in [18, Supplementary notes to Chapter VII], the resolvent of Q,(z),
R,(X,z) = (Q(z) —\)7!, has the property that R,(0O, z) does not exist for
any z € £; or else R,(0, z) is meromorphic in z € Q. Since R,(0, zy) =1,
R,(0, z) is meromorphic in z € Q. Thus, kerd,(z) # @ only for z € D,
where D, C § is discrete with no accumulation points in Int. Thus, the
lemma is true for H°({ B,3(z)}). Now suppose for k > 0, a discrete set
D, _; € Q without accumulation points in Int Q exists such that the cohomol-
ogy { H/({ B, 9(z)})}; <« = 9. The previous argument shows that

Q) = ak(zo)-lak(z): (Imak—l(zo))l - (Imd,_,(z,))
is an isomorphism for all z € @\ D’ with D’ C Q discrete and having no
accumulation points in Int Q. For z € @, consider ¢ € B, with 9,(z))¢ = 0.
By assumption, if z € @\ D, there exists n € B, _, such that ¢ =¢ +
9,_,(z)n € (Imad,_,(z,))*; for such z one can solve for n € (Imd, _,(z,))*
obeying

1

3:11(20)8,_1(2)m + 3;11(20) ¥ = 0.
Thus set D, = D’ U D, _,. This set is discrete with no accumulation points in
IntQ and if z & D,. then H*({ B,3(z)}) = @. Lemma 4.5 follows by induc-
tion.

5. Index calculations
If M is an end-periodic 4-manifold which is admissible in the sense of
Definition 1.3, then the anti-self-dual DeRham complex

d P_d
(5.1) 0 - CP(M) > CP(T*M) - CE(P_ A, T*M ) - 0

satisfies the conditions of Theorem 3.1 (cf. Lemma 3.2). Thus, for p > 2,
k > 0, and all but a discrete set of 8 € R, the complex {L"’_‘S ;(d, P_d)}:

d P_d
(52) 0= LLoys(M) > LL5(T*M) = L 5(P_ A, T*M) =0

is Fredholm. The latter half of this paper requires information about the
cohomology groups of the complex in (5.2) for 8 near zero. These are
computed in the following proposition.
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Proposition 5.1. Let M be an admissible, end-periodic 4-manifold. Then
there exists 8, > 0 such that for all § € (0,8,), p > 2, and k > 0, the complex
in (5.2) is Fredholm with the following cohomology:

dimH®=0, dimH'=5b,(K), dimH?>=b;(K),

where b(K) = dim H\(K,R) and b5 (K) = 3(dim H,(K, R) — 7(K)). The
number 1( K') is the signature of the intersection pairing on H,(K, R).

We remark that the admissibility assumption implies that the intersection
pairing on H,(K, R) is nondegenerate (see Lemma 5.7).

The remainder of this section contains the proof of Proposition 5.1.

Proof of Proposition 5.1. Theorem 3.1 and Lemma 3.2 assert that the
anti-self-dual DeRham complex, { L?, e (d, P_d)},1s Fredholm for 6 € (0, §,)
with §, > 0. It remains to compute its cohomology. For simplicity, only the
case p = 2 will be considered. The cases p > 2 follow from the p = 2 case
using standard elliptic regularity plus some obvious function space inclusions.

For § > 0, the constants are not in Lfm. Thus, for § > 0,

ker(d:L2,,5(M) = L}, 5(T*M)) = @, H°(L?,.(d.P_d))=0.

This is true for & > 0 (and, obviously, it is false for § < 0). For § > 0, one
obtains in addition the useful Sobolev inequalities below:
Lemma5.2. Let 8§ > 0 andlet f € C*(M) obey

(5.3) 1717 = [ e™ldfi? < oo.
M
Then f € R exists such that
(5.4) [oemi =12 < zifie,
M
12

(5.5) (/ emlf—fl“) < ZIIfI1%,

M
with Z = Z(8) < oo, independent of f. Further, forp € (2, 4),

) (4-p)/4
(5.6) [f e437/(4—p)|f_f|4p/(4—p)] < Zf eBT|df|”,
M M

whenever the right-hand side is finite. Here, Z = Z( p,8) is independent of f.
Finally, if p > 4, and if

[ eridf1r < oo,
M

then {e"‘s/"( f(T"()) — f)} € C*®(W,) converges to O in the C -topology.
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This lemma will be proved at the end of §5.
Now consider H' for the complex (L? 5; (d, P_d)). Suppose

weker(P_d:L},, §(T*M) - L} 5(P_ A, T*M)).

As 8 > 0, one can use integration by parts (valid for § = 0, too) to conclude
that

- 2 _1 2
(5.7) 0 fM |P_dw| 2fM |dw|?.

Since dw = 0 and since H'(W, R) = 0 (due to the admissability of M), one
can write

(5.8) Wlgna = df»

with f € C*(End M). By fixing a smooth, nonnegative bump function f,
which is 1 on Wy;\ N_ and 0 on K\ N, one has an almost canonical way of
constructing a closed 1-form r(w) € C°(T*K ) from w € ker(P _d), viz:

(5.9) r(w) =w—d(Bf),

which becomes canonical when one uses (5.4): There is a unique f(w) €
C*(End M) which obeys (5.8) plus

(5.10) fEndM e™|f(w)]? < 0.

Notice that (5.8)—(5.10) imply that Bf(w) € L2, 2.6(M). For this reason, the
map r induces an isomorphism

(5.11) r:HY(L?4;(d, P_d)) = H} pr (K),

where Hr (K ') denotes DeRham cohomology on K with compact supports.
As K has only one end, Hjpr(K)— Hpr(K) is injective, and because
H'(N; R) = 0, H}pr(K) = Hpg(K). By DeRham’s theorem, this is
H(K; R) = H,(K; R) (simplicial cohomology and homology, respectively).

Now, consider the cohomology H?(L?g;(d, P_d)). A class [w] is repre-
sented by a C* 2-form on M, w, which obeys

(512) w= —*w, e—‘rad(e‘r&w) =0, / e18|w|2 =1.
M

Lemma 5.3. If M is an admissible, end-periodic 4-manifold, then there exists
8y > 0 such that for all § € (0,8,), a 2-form w obeying (5.12) satisfies

f|e’8w|2 < .
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Lemma 5.3 will be proved shortly; for now, assume it to be true.
Forn={0,1,---},set K, = KU y Wy U, --- U, W,. A homomorphism

(5.13) r, H* (L2 (d, P_d)) - Hpr(K,)

is defined as follows: Let 8, € C*(M;[0,1]) be identically 1 on K,\ W,,
identically zero on M\ K, _,, and satisfy |dB,| < B, independent of n. Thus,
supp|dB,| € i_(N) C W,. Because H*(N;R) = 0, one can write

(5.14) e®w|=da, onW,Ni_(N).
A careful analysis of DeRham’s theorem shows that one may assume, with no

loss of generality, that a, € C®(T*(W, N i_(N))) obeys a priori estimates
which depend on those of e™w : For m > 0,

(5.15) lleellcm < S(k)||‘-’ﬂ\;w||c'"*‘(w",1 Uy W)
Define

e™w on K,\ W,,
(5.16) r,(w)=1<{d(B,a,) oni_(N)nWw,
0 on M\ K, ;.

Concerning r,(w), one has

Lemma 5.4. There exists n < oo such that for m > n, r,, of (5.13) is an
injection.

The proof of Lemma 5.4 requires the following technical lemma:

Lemma 5.5. Given ¢ > 0, there exists n(e) < oo such that each w €
L2 s (P_A, T*) obeying (5.12) satisfies

(5.17) ’fM r,(w) Ar,(w)+ /M le™w)|?

for m > n(e).

Lemma 5.5 will also be proved shortly. Given Lemma 5.5, Lemma 5.4 is
proved as follows: Suppose [r,,(w)] = 0 € H pr(K,,). Then r,(w) = dv,, with
v,, € C(T*K,,). But, this implies (via integration by parts)

<eg

(5.18) | ra(w) Ara(w) =0,
M

since

5.19 ePw|2> [ ePwl? = 1.

(5.19) [ e > [ el

(5.17) and (5.18) are contradictory for m > n(e) of Lemma 5.5 so for such m,
kerr, = &.
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Proof of Lemma 5.5. Due to (5.12) and Lemma 5.4, the 2-form e™w obeys
uniform estimates: Given & > 0, there exists n’(¢) < oo such that if m > n'(e),

(5.20) le™wlicrw, , < &

(5.15) and (5.16) and Lemma 5.3 give (5.17). (Remember, the unit sphere in
H?*(L?;(d, P_d)) is compact.)

Using the homomorphism r,, the dimension of H*(L?;(d, P_d)) can be
computed from H{pg(K): The assignment of 2-forms v, u € CF*(A,T*K,,)
to the number

(5.21) 0(v,u) =fK VAU

defines a symmetric quadratic form on H{pgr(K,,):Indeed, if du = 0 and if
b € C*(T*K,,), then

fK db A u=0.

m

Choose a basis for Hjpg(K,,), {e;} € C&(P_ A,T*K,), in which Q is
diagonal. Let ¢ = g(m) be the number of negative eigenvalues of Q and let
{e;}/_1 be the eigenvectors with negative eigenvalues.

Lemma 5.6. For n as in Lemma 5.4 and for m > n, one has

dim H*(L?4;(d, P_d)) = q(m).

Proof of Lemma 5.6. Lemmas 54 and 5.5 assert that r, identifies
H*(L?s;(d, P_d)) with a linear subspace of H{pr(K,,) on which Q is
negative. Thus, ¢(m) > dim H*(L?,; (d, P_d)). Conversely, let u €
span{e;}4_;; thus du = 0 and Q(u,u) < 0. As {L?4;(d, P_d)) is Fredholm,
a € L?; (T *M) exists such that

s(u)=P (u+da)e L*s(P_A,T*M)
obeys de™s(u) = 0. Also,

(5.22) st(u)/\s(u)=fM(u+da)/\(u+da)
—f P (u+da) AP, (u+da)
M

</ (u+ da) AN(u+da)=Q(u) <0.
M

Therefore, s induces a homomorphism
s:span{e;} 7 | - H*(L?4;(d,P_d))
which is injective, due to (5.22). Hence, g(m) < dim H*(L? 4; (d, P_d)), too.
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Lemma 5.6 implies that g(m) is independent of m for m > n. To compute
q(m), one must understand how the topology of M is built up from the K and
the segments of End M.

Lemma 5.7. Let M be an end-periodic 4-manifold such that H,(N;R) =
H,(N;R) = 0. Let K_, = K. The inclusion homomorphisms, chomp( K,;Z)—
H*(K,;Z) foralln > 1 and chomp(K :Z) > H*(M;Z) are injections. Thus,
the intersection pairings on H,(K,;R) for n > -1 and H,(M;R) are nondegen-
erate. Foralln > -1,

q(n) = [dim H,(K,; R) - 7(K,)] = b2 (K).

Proof of Lemma 5.7. Consider the inclusion homomorphism over R,
[:HZ,..(K,;R) > H*(K,; R). By Poincaré duality, Comp(K R) = H,(K,;R)
and the kernel of / is the radical of the intersection pairing on H,(K,; R).
Also, by DeRham’s theorem, Hcomp(Kn, R) = HO pr(K,) and via this isomor-
phism, the intersection pairing on H, and the bilinear form, Q, on H{py
agree. Let [w] € COmp(K R). Suppose that /[w]= 0. Represent w by a
closed 2-form, w, with compact support on K,. Thus, w = da with « a 1-form
on K,. Let B € C{(K,) be identically 1 on suppw U (K, \ i.(N)). Here,
i, :N — W, defines the end of K,. The 2-form w’ = w — d(Ba) is cohomolo-
gous to w in Comp(K R). However, [w'] € Comp(z +(N); R). By Poincaré
duality Comp(N R) = H,(N;R) = 0. Thus, w" = dy with y a 1-form with
compact support in i (N). Thus w = d(Ba + v) and Ba + y has support in
K,. Hence [w] = 0 in Hcomp(K,,, R). This proves that over R, the homomor-
phism / is injective. The nondegeneracy of the intersection pairing and of Q is
a direct corollary.

The injectivity over R, of / means that over Z, ker(/) is contained in the
torsion subgroup of COmp(K Z). Let [w] € ker(/). Then a compact set
V c K, exists such that [w]€ H*(K,,K,\ V). No generality is lost by
requiring that K, \ V' C N and that N N V' is connected. Consider the exact
sequence

r 8 /
- Hl(Kn) - Hl(Kn\ V) - Hz(Kn’ Kn\ V) - HZ(Kn) - .
Since K, \ V C N, the map r factors through r': H'(N;Z) > H'(K,\ V;Z).
However, H'(N;Z) is the free group, Hom(H,(N; Z); Z), and thus H'(N;Z)
=0 if HY(N;R)=0. This is the case, by assumption, as H(N;R)=
Hom( H,(N; R), R). Therefore, the following sequence is exact:

0> H(K,\ V) > H(K,, K,\V) > HK,) > .
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If /-w=0, then w=8a with @ € H'(K,\ V). The preceding sequence
asserts that § is injective, so, since H'(K,\ V; Z) is free, w = 0 if w is torsion.
The injectivity of chomp(Kn; Z) - H*(K,; Z) now follows, and the injectivity
of HZ,...(M;Z) - H*(M;Z) follows by taking direct limits.

To complete the proof of Lemma 5.7, it is sufficient to prove that

(5.23) 1(rank Q — signature Q)
Hg pr(K,)

is equal to its value on Hg pgr(K). To see that such is the case, observe first
that the previous arguments also establish that the inclusion K C K, induces a
monomorphism

H()z,DR(K) - HOZ,DR(Km)'

Pull-back by i induces a homomorphism
i*:Hipr(K,,) > Hig (K).
From i*, a homomorphism,

]'3H02,DR(Km) - Hgpr(K)
is constructed as follows: Let [w] € H{pr(K,,) be represented by a closed
w € CL(A,T*K,,). Since H*(N;R) = 0, w| y = da for some a € C*(T*N).
Let 8 € C®(M;[0,1]) with 8 =10on K\ N and B = 0on w,\ i_(N) and the
rest of End M. Set

¢( ) = w on K\ N,

W= d(Ba) on N.
Thus, j(w)€ CP(A,T*K), and one can check that j{w]= [j(w)] €
H¢ pr(K) is independent of the choice of @ € C*(T *N ) and representative w
for [w]. Using Poincaré duality plus the vanishing of H?(N; R), one finds

Let w € C°(A, T *K,,) represents a class [w] € H&DR(K,,,) with Q(w,w) <
0. Suppose that Q(jw, jw) > 0. Let

R w on End M\(K N End M),
V=W — igjw =
d(1-pB)a on NN End M.
Since Q(v, iy fw) = 0, it follows that Q(v,v) < 0. Now v is compactly sup-
ported on

(5.24) WoUn Wi Uy s UnW,
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and one can check that the assumptions concerning Y imply that the intersec-
tion pairing on (5.24) is positive definite. This gives a contradiction unless
(5.25) Q(jw, jw) <0 whenever Q(w,w) <0,
which implies that the number in (5.23) is independent of M, as claimed.

The completed proof of Proposition 5.1 requires still the proof of Lemmas
5.2 and 5.3.

Proof of Lemma 5.2. Before beginning in earnest, consider the unique
v € C*(Y) which is the harmonic 1-form on Y,

(5.26) dv =20, d*v =0,

cohomologous to the push forward of dr|g,qp to Y. Back on End M,
7*y = ds with s € C*(End M). The function s obeys

(5.27) Sly, =S|y, +n

Extend s smoothly to all of M. No generality is lost by assuming that s > 0.

Let = C W, be the inverse image of a regular value, r, of s such that X is an
embedded 3-manifold on which the restriction

(5.28) *xds | 5
is a positive 3-form. Now consider u € C§°(M) and observe that integration
by parts gives

2
s81,,12 - _ 581,12 _ =z 58
f e*®|u|*ds N xds fEe |u|**ds 8];>re udu A xds,

s>r

where (5.26) and (5.27) have been used. Holder’s inequality plus (5.28) yield
1
(529 5 j

s>r

2
e*®|u|®ds A xds +f e*%|u|?+ds < _2_[ e%|dul?.
P 8 Js>r

Now, let H denote the completion of C§°(M) with respect to the norm || - ||.
Since

Z—I 8 76 2 58 2 ( 78 2
@) e P <[ e®f1P<z8) [ emifr
(5.29) implies for u € H that

30 78),,12 T8 2.
(5.30) [ et < 2(8) [ ejaul

Now, consider f € C*(M) with ||f||*> < o. A standard argument provides
a unique u € H with
(5.31) e "d*™d(f—u)=0.
(Minimize the functional on H which sends v to

s(v) = %fM e™(|dv|? + 2(dv, df ))
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and use (5.30) to prove convergence.) Let g = (f— u). (5.4) follows by
proving that g = constant. Now,

(5.32) f e™|dg|?* < o0,
M
s0, since T | w, € [n, n + 1], one can conclude that

(5.33) fw |dg|* < e~ "2

n

with {¢,} a Cauchy sequence with limit zero. (5.31) and (5.33) with standard a
priori estimates (on compact domains) show that on W,

(5.34) dg| < Z(8)e "%, Osc(g) < Z(8)e "%,

where Osc(f) = max(f) — min(f). Let ¢ € [0,1] be a regular value of the
function ¢ on Y. Let 2, = 77}(qg + n) € W,. This =, is a smooth, embedded
3-manifold. Set

(5.35) K,=1[0,q9 + n]) C K,.
This manifold is compact with 3K, = =,. Let

o (L)

(5.31) and an integration by parts imply that

n°

(5:37) J. ePidsi® < [ g = glidgle " < 2(8)e).
Since K, € K,,, C --- = M, (5.37) implies that g = constant, which estab-
lishes (5.4).

The proof of (5.5) uses the dimension 4 and the local Sobolev inequality (cf.
[1]) L3(Ball) > L*(Ball) together with the end-periodicity of M. Equation (5.6)
is proved with a similar argument using the local embedding L{(Ball) —
L*/@=p)(Ball) (p € (2,4)). The final assertion of Lemma 5.2 uses the local
Sobolev embedding, Lf(Ball) » C°(Ball) (p > 4).

Proof of Lemma 5.3. The proof will be seen to follow from the following
result.

Lemma 5.8. Let M be an admissible 4-manifold. There exists { > 0 and

8, >0 such that on Y= --- UW_ U, WoU W, U, -, if §€][0,8,),
then
2 -
¢(8) = int] [ e{(P)"emw[sw e Liy(P AT [ e =1
v v

obeys §(8) > ¢.
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Proof of Lemma 5.3, given Lemma 5.8. Let (1 — B) € C*(M;|0,1]) equal
0 on K\ N and equal 1 on Wy\ N_ and W, U, W, U ---. For each
ne {1,2,---},set

y ={(I—B)e’8w if r <n,
"o\ ifr >,
This w, € L2 ,(P_ A,T*Y) and it obeys
-dB Aw, ifr<l,
0 ifl <7<n,

éd'r/\w" if 7> n.

2

Observe that

5
(5.38) f? Jdw, |2 < glfw W2+ G [ P

T>n
with {,, {, constants independent of n. Lemma 5.8 implies via (5.38) that there
exists 8, > 0 such that if § € (0,8,), then {w,}7_, is uniformly bounded in
L2,(P_ A, T*Y). Since {w,} converges in L, to e"w, one concludes that
e™w € L} (P_ A,T*Y), as required.
Proof of Lemma 5.8. If the lemma were false at § = 0, then a sequence
(w1721 C CP(P_ A, T *Y) would exist with the property that

(5.39) lim f? ldw)> =0 but /?ijp =1 forall j.

To see that such a sequence cannot exist, return to Y and consider the
cohomology of the complex

d, P_d.
0> C*(Y) > C*(T*Y) > C*(P_ A, T*Y) -0,
where z € C obeys |z| = 1 and

(5.40) d.f=df +z'dz " A f

(see (4.14)).
Lemma 5.9. Under the assumptions of Lemma 5.8, Coker(P_d,) C
C®(P_ A, T*Y) for the complex in (5.40) is empty for all z € C with |z| = 1.
Assuming Lemma 5.9 for the moment, the proof of the 8§ = 0 case of
Lemma 5.8 is completed by observing that because Y and S' = {(z € C:|z| =
1} are compact, there exists { > 0 such that

(5.41) [Iay vl >f
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for all y € C®(P_ A,T*Y) and for all z € S'. Here, (P_d,)* is the formal
L*adjoint of P_d._,

(P_d,)*y =+(dy +z'dz7" A ).

(5.41) plus the Fourier-Laplace inversion formulas, (4.10), (4.12), and (4.13),
implies that no sequence obeying (5.39) can exist.

Proof of Lemma 5.9. The admissibility assumption asserts that
Coker(P_d,) = @ at z = 1. It further asserts that for all z, the index of the
complex in (5.40) is zero. Thus dim Coker(P _d,) = h® — h!, where (h°, h') are
the dimensions of Ker(d,) in C*(Y) and of ker(P_d_,(d,)*) in C*(T*Y).
For h°, if d,f = 0, then d(z"'f) = 0. Thus, z~'f = constant and f = constant
-z Thusforz # 1, f & C®(Y)unless f = 0. So, h° = 0. For h',if P_d_.a = 0,
then P_d(z 'a) = 0, and this implies that

(5.42) d(z7'a) = 0.

(Integrate by parts in [y |P_d(z ‘a)|%.) Since H'(W,R) = 0, one concludes
that

(5.43) za=df
for f € C*(W,; C). Also,
(5.44) d*df = 0.

Since a is a 1-form on Y, i*a = a, where i: N, — N_ is the identification of
Definition 1.2. Thus,

(5.45) i*f=zf+¢
with ¢ € C, a constant.

Choose a smoothly embedded submanifold = € N, C W, which separates
the two ends of N, (so HY(Y\ Z;R)=0). Let W be the manifold with
boundary that is obtained by cutting Y along = : W embeds in W, dW = 2 U
(-2).

By integrating over W and using (5.45) with Stoke’s theorem, one finds that

(5.46) (z - 1)/2 xdf = 0.

Next, multiply (5.44) by f and integrate over W. Stoke’s theorem plus (5.45)
yield

(5.47) cL sdf + /W|df|2 = 0.

Together, (5.46) and (5.47) imply that #' = 0 unless z = 1. This completes the
proof of Lemma 5.9.
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For the cases 8 > 0 in Lemma 58, set o = ¢®?w for w e
L} §(P_ A,T*Y). Then

f e—-rﬁ
Y

2

(P_d)*e"swlz = f? I(P_d)*o + -g- s(d7 A o)

(5.48) : -
— * — 2 2
> 2fy|(P_d) of -5 f?)dﬂ lo]2.

Since |dr| is bounded and o € L*(Y), the existence of 8, > 0 and the
assertion of Lemma 5.8 for 8§ € (0, §,) follow from (5.48) and the 8 = 0 case.

6. Perturbations of end-periodic structures

It is convenient to weaken the strict end-periodicity requirement for the
metric on TM. The reason is that eventually certain Banach space genericity
results are needed which require some latitude in the choice of metric. As in
[21, Chapter 3], introduce the parameter space C/(GL(TM)) of C' (I > 2),
oriented, automorphisms of TM. Let g, be a fixed, end-periodic metric on
TM. Define

%= {¢ e C!(GL(TM)):
(6.1)

lim
n— o0

sup

5 fo (s~ 1o (70| 0]

where V is the Levi-Civita connection given by g,. The space € is a Banach
space.

For ¢ € ¥, ¢*g, defines a new metric on TM which approaches g,
asymptotically on End M. A metric on TM of the form ¢*g,, ¢ € €, will be
called asymptotically periodic. The asymptotically periodic metrics on TM
provide a convenient class of metrics to use.

Let P_(g); A\,T*M —» A,T*M denote the anti-self-dual projection as
defined by a metric g on TM. If g = ¢*g, for ¢ € ¥, then

(62) P_(g)=¢*P _(g0)(¢7")".

Each ¢ € ¥ defines an elliptic complex,

d (%)
(6.3) 0> CP(M) > C(T*M) > CP(P_ A, T*M) - 0.
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Here, for convenience of notation,

(6.4) 3(¢) =P (¢7')"d
and P_= P_(g,). Note, d(¢) always maps into the fixed space of section of
P_ A, T*M.

As ¢ varies over € the complex in (6.4) changes. For /| — 2> k>0, p > 2,
6 € R, and ¢ € %, the complex in (6.4) extends as a bounded elliptic complex
(65) 0= LPuys(M)SLp, o(T*M) S Lp (. A,T*M) -0,

(These spaces are defined as in (3.10) using the fixed, end-periodic metric g).

Proposition 6.1. Let M be an admissible, end-periodic 4-manifold. Let g, be
an end-periodic metric on TM. Fix | > 2. Let §,> 0 be as in Proposition 5.1.
For 6 € (0,68,), allp€[2,0), ] — 2>k >0, and for all $ € €, the complex
in (6.6) is Fredholm with cohomology:

dimH°=0, dimH'=b,(K), dimH?=b;(K).

Proof of Proposition 6.1. 1In[21, §6], Lockhard and McOwen prove a similar
result for complexes on manifolds with product ends. One can readily adapt
their argument to the end-periodic case to show that (6.6) is Fredholm for
¢ € € whenever it is Fredholm for ¢ = 1. To compute the cohomology of
(6.6), one can argue as follows: As ¢ varies through €, the operator d(¢)
varies continuously in the Banach space of bounded operators between
L, s(T*M)and Lfs(P_ A,T*M). It follows that the index of the complex
in (6.5) is independent of ¢. The arguments in §5 compute dim H® = 0 and
dim H' = b,(K); then dim H? follows by subtraction.

7. Gauge theory on M

Let G be a compact Lie group. Suppose that M is an end-periodic
4-manifold and that P — M is an end-periodic principal G-bundle. Here, it
will be assumed that

7
(1.1) Plpyy = 7*(Y X G).

If G is simple and simply connected, then all such P are globally trivial,

(7.2) P=MXG.

For G simple, but with m(G) nontrivial, such P are classified by an element of
H?(M; m(G)) which lies in the image of the homomorphism HZ, (K\ N) —
H?*(M). For G = SO(n), this element is the second Stieffel-Whitney class of
the associated R"-bundle E = P X ; R".
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The concern of gauge theory is the space of connections on such end-
periodic principal bundles. To restrict attention to end-periodic connections is
too drastic and to study all connections is too ambitious. Let /(P) = the
space of all smooth connections on P. Consider

(7.3) o= {A cut(P): [ | < oo}.

Topologize « as follows: The space «/(P) is an affine space, since fixing
A, € & (P) identifies. #(P)= C*(AdP ® T*M). (AdP=PQ®;®; & =
Lie alg(G). The set of sections C*(Ad P ® T *M) is topologized as a Fréchet
space by the set of pseudonorms

(14) (et = sup [50](x)]
x€K,

k,n=0

Here, K,= KU y WoU --- U yW,. Thus, &/(P) has the structure of an
affine Fréchet manifold. Topologize . via the inclusion of % into &7 (P).

Let ¥ = %(P) denote the set of smooth automorphisms of P. This group
has a Fréchet space structure which makes it into a Fréchet Lie group. The
tangent space to 1 € ¢ is isomorphic to I'(Ad P) as a Fréchet space topolo-
gized via the pseudonorms in (7.4).

One can check readily that ¢ acts smoothly on &/(P), and ¥ acts as a
topological transformation group on .2/

(7.5) B=5/9,

and topologize with the quotient topology.

Connections in & are not necessarily end-periodic, but in a weak sense, they
are asymptotically so, and asymptotically flat. Here, asymptotically flat means
asymptotic to a flat, periodic connection on Y. If Y is not simply connected,
there may be nontrivial, flat connections to be asymptotic to. Let

' = Hom(7,(Y),G)/AdG.

This set parametrizes the set of G-equivariance classes of flat connections on
Y xG.

Since P is end-periodic, P admits end-periodic connections which are
isomorphic (via ¢ of (7.1)) over End M to the product connection on End M
X @G. Using these connections, a simple grafting argument (cf. [28] or [30])
produces connections in &/ which are asymptotic (over End M) to any chosen
flat connection on ¥ X G.
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The present interest is with connections on P which are asymptotic to a
trivial, flat connection on Y X G. To define this notion, introduce the set

Eo/(P) = {End-periodic connections on P which are isomorphic
over End M to the product connection on End M X G}.

Lemma 7.1. Foreach A € E&/(P),

(16) P4 =5 [ w(EAE)

is an integer, where t1(-) is the trace on the adjoint representation of G.

The proof of this lemma and of the assertions below will be deferred to the
end of the section.

With the grafting procedure in [30, §4] one observes that Im( p, : E&/(P) —
Z) is unbounded in both directions.

For the present purposes, the set of connections E2/(P) is too small. It is
useful to enlarge Ex/(P) by introducing Banach spaces of connections with
controlled decay.

For each k € Im(p,:E&/(P) - Z), fix A, € E&/(P) with p,(4,) = k.
Fix 6 > 0, and let

&, (8) = {AO +a:ae L}, (AdP® T*M),
(7.7) , ,
f e’B{IVAOVAGa{ +|va| + |a|2} < oo}.
M

The affine space &/, has a natural Banach manifold structure from the norm
2 2
(7.8) W% = [ e¥{Ival +Iv.al +1al?)
M

with A = A,. The dependence on § is to be understood implicitly.
With the given 4, € E«/N p7'(k), define the “small” gauge group,

(7.9) G, = {he L}, (AutP):||Vh|l, < o0}.

3;loc
Topologize ¥, as follows: Use the trivialization of (7.1) to identify
COAut P | goq p) With C%(End M; G). Since L3, C C°, each h € ¥, defines
a continuous map, h:End M — G. An application of Lemma 5.2 and Kato’s
inequality shows that for x € W,

r(h) = lim A(T"(x))€G
n— o
exists for all A € 4,; further, r(h) is independent of x € W,. (Kato’s inequal-

ity asserts that for any 4 € &/(P) and for any vector bundle E — M,
associated to P, and for any ¢ € L3, (E), |V, ¥Kx)> |[dly[x)| for ae.
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x € M.) A neighborhood base for the topology of ¢, at h € ¢, is given by
sets of the form

{8 € G5 [Wa(h = )| + disto(r(h), r(2)) < ¢},

where dist;(-,- ) is the geodesic distance on G as measured by a bi-invariant
metric.

Let ¢, denote the closed subgroup { g € ¢,;r(g) = 1}.

Lemma 7.2. Let 8 > 0. The spaces 9,, 9, are Banach Lie groups. The Lie
algebra of 9, is

@k = {0 € Lg,loc(P ><Ad @) ”VAOHA < 00}

The norm on ¥, sends o to ||Vl 4+ |r(o)|. The Lie algebra of ¥; is
&, = {06 € &,;r(c)=0}. The Lie group ¥, acts smoothly on £,. The set
{g € L} (AutP):g -, =} is 9. The quotient 9,/9; = G.

As is the case when M is compact, one has the following “slice theorem”:

Lemma 7.3. Let § >0, and let k € Im(p,: E&Z(P) = Z). The quotient
space B, =, /Y, is a C*-Banach manifold and the projection m:24, — %,
defines a principal 9;-bundle. Let /¥ C &/, denote the subset of irreducible
connections. The quotient space B, = & ¥/9, is a C*-Banach manifold such
that the quotient 7:4* — B, defines a principal 9, /center 9,-bundle. The
tangent space to [ A] € %, is isomorphic to

{ae L3, (AdP® T*M):|jall, < oo and e "d}e™a = 0}.

The tangent space to [ A] € &, is isomorphic to

{a € L3, (AdP ® T*M):|ja||, < oo,
(7.10)
f e®(d,0,a) =0 forallo € @ik>.
M

The manifold %, is the orbit space of asymptotically periodic connections
which will be used in this article.

Although a choice of 4, € p7'(k) N E&Z(P) was required to defined %,,
this space does not depend on the particular choice. The following lemma
describes the situation.

Lemma 74. Let k € Im(p,:Ex/(P)—> 1) and let Ay, A, € E&Z(P)N
pi(k). Define the spaces oo, and 9,,, 9,y with A, and A,, respectively.
There exists g € & such that

(1)g-A, = Ayon End M.

() g A =Aso

(3) Ad g G, = %,

(4) The quotient spaces B}, B,, are isomorphic as Banach manifolds to %,
Bo-
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Due to Lemma 7.4, no generality is lost by henceforth referring to one space
%, (or %B,), independent of the defining connection in E«Z(P) N p;i(k).

For the proofs of Lemmas 7.1-7.4, it is necessary to have the following
estimates on gauge invariant norms:

Lemma 7.5. Let P > M be an end-periodic principal G-bundle over the
end-periodic 4-manifold M. Let E — M be a vector bundle over M associated to
P. Let A, A, € o, for some k € Im(p,: Ex/(P)— Z). There exists { < oo
with the following property. For all @ € C*(E) with ||wl|| ; < o0,

Slogll < llolls < el
For all w € C*(E) with ||V 40l 4 < 00,
§||VA1‘*’”A, <|IVqell,4 < g‘_l”vAl“)”Al'

The remainder of this section contains the proofs of Lemmas 7.1-7.5.

Proof of Lemma 7.1. Choose a smoothly embedded, oriented submanifold
2 C W,, which separates N_ from N,. Let W, denote the component of
W, \ 2 which contains N,. Compactify K U , (W,\ W,) by gluing it to
—(K U 5 (Wy\ W,)) across . Call this compact 4-manifold Q. Let I' denote
the product connection on W, X G. Let 4 € E&Z(P). Then, by assumption,
there exists g(4) € Iso(W, X G; P|, ) such

(7.11) g(A)*4=T.

Note. g(A) is unique up to g — h-g with h € Auy(W, X G)
(= C*=(W,; G)) a constant gauge transformation. Using g( 4), one constructs a
bundle P(A) — Q by defining

P(A)IKUN(WO\W+)= P,
P(A)|_(ku,v(w0\w+)) = _(KU N (Wo\ W+)) X G,

with g(A) identifying the two halves over =. Notice that 4 automatically
extends to a connection on P(A) which is trivial over —(K U 5 (W, \ W.)).
Then, by Chern-Weil [23],

(7.12) pl(A)’_—pl(P(A)XAdG@)’
where, on the right-hand side, p,(-) is the first Pontrjagin number, an integer.
It is convenient to consider Lemma 7.5 next.
Proof of Lemma 7.5. Use Lemma 5.2, Kato’s inequality, and Holder’s
inequality.
Proof of Lemma 7.2. Armed with Lemmas 5.2 and 7.5, the proofs here are
trivial translations of the arguments in [12, Chapter 3]. The key estimate is the
following: Given & > 0, there exists { > 0, such that for all 4 € &/, and
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o€,
(7.13) f e?|v 0)? > ff e®lo —r(o)|%
M M

This uses Kato’s inequality plus Lemma 5.2. The only item which does not
translate from [12] is the assertion: 9, = {g € L3, (Aut P):g*o/, = &, }.
For this, suppose g € L., .(Aut P) and that

g*o =4, + 87V, 8 €.

Then Holder’s inequality plus Kato’s inequality plus Lemma 5.2 puts g € ¥,.

Proof of Lemma 7.3. Again, with Lemma 5.2 and Lemma 7.5, it is a
straightforward adaptation from [12, Chapter 3] and from [24] to prove the
assertion about %,. The key is to use (7.13). There is a residual G =
G /center(G) action’ on %, which is free on A¥/9; C %,. The quotient, Z,,
will be a manifold provided that local slices of the G-action exist. To construct
them, note that for all € > 0, sufficiently small, a neighborhood of [4] € %, is
diffeomorphic to

(714) 2= {aeL}

2 1oc(AdP ® T*M):|lal|, < eand e "d}e™a = 0}.
For small & < 0, there exists for each a € 2 and each o € &, a unique

q(a; o) obeying
(7.15) e d*™d,, q(a;6)=0 and r(q(a;0))=o0.

To construct ¢, minimize over the closed submanifold r~!(o) € ®, the
bilinear functional 7 - [,,e™(d 1, d . m). Use (7.13) plus elliptic regularity
to prove that a unique minimum exists.

Using Lemmas 5.2 and 7.5, it is easy to prove that the assignment of
(a,0) €D X G to g(a;0) € ®, defines a smooth map from Z2X & to &,
which is linear in ® for fixed a € 2. By construction,

d,..q(a;0) €D for|o| <.

Define a map §:2 — &* by sending a € 2 to the linear functional

(7.16) o= (4(a).0) = [ e”(dy..4(a0).a).

The claim is that §~1(0) C 2 is a smooth submanifold, which, for & sufficiently
small, is a slice of the G-action.

Since A is irreducible, 4 + a is also irreducible for a € 2 and for e
sufficiently small. Thus, d,_,q(a; 6) = 0 if and only if ¢ = 0. This means that
the differential of § at a € ¢'(0) is surjective and so §~!(0) is a smooth
submanifold of 2.
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The tangent space to the G-orbit through a € ¢~%(0) is precisely the
(7.17) Span{d,, q(a;0);0 € G}.
This subspace of T 9|, plus T§%(0)|,, spans T2,. To show that § }(0)C 2 is

a slice of the G-action, one must show that any time a € §7}(0), » € G, and
h - a € §71(0), then h = 1. For e-sufficiently small, any time 4 - a € §7(0),
(7.18) h=1+ q(a;0) + O0(]o|?),

with 0 € & and |o| < &. The O(|o]?) term is O(e?) in the norm of (7.9).
Equations (7.16) and (7.18) imply that 6 = 0O and & = 1.

Proof of Lemma 7.4. The last three assertions of the lemma follow im-
mediately from the first assertion. To prove the first assertion, consider
Ay, A, € E&Z(P). On End M, one assumes that A,=g-A;, for g€
Aut(P | gpg ) (= C*(End M;G)) Let a= A, — A, € C*°(AdP ® T*M) re-
stricted to End M,

(7.19) a=gv,g8.
Since both 4, and 4, are trivial over W, Chern-Simon’s theory [8] gives
(7.20) 0=p,(4,) - pi(4y) = a(G)(g*(y), [2]>’

where a(G) # 0 is a group-theoretic constant, y € H3(G) (= Z) is the genera-
tor, and [Z] is the fundamental class of the 3-manifold =. Since dim X = 3,
(7.15) implies that g |2 is homotopic to the constant map 1:3 — 1. Affecting
such a null homotopy in a tubular half-neighborhood of Z, (-¢0) X = C
Wy\ W, gives an extension of g to AutP|,,. Such a g is unique up to
composition with ¢, and ¥;,. Its existence proves Lemma 7.4.

8. Moduli spaces: Internal structure

Let P — M be an end-periodic, principal G-bundle over M obeying (7.1).
The constructions in the previous sections provide the necessary technical
machinery with which to study, as in [12], the moduli spaces of self-dual
connections on P. The basic lesson in the next few sections is the following:
For those 8 € (0, o0) where the complex in (5.2) is Fredholm, the constructions
on compact 4-manifolds will succeed on the admissible, end-periodic M (cf.
(301, [9D).

Fix an end-periodic metric, g,, on T*M. Let k € Im(p,: E&(P) - Z).
Define a ¢,-equivariant map from &/, X € into L}, . .(AdP ® P_ A,T*) by
sending (4, ¢) to

(8.1) P(A,6)=P_(g,)(¢7)"F,.
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Let
(8.2) #%= {w € L1, (AdP ® T*): fM e’6(|vA0w|2 + |w|2) < oo}.

This linear space is a Banach space with the obvious norm. The image of &
lies in #2.
As in [12, §3], one has the parametrized spaces

(8.3) M, =20)/%9, and M,=PN0)/Y, =MH,/G.

As in [12, Theorem 3.16], one has the following structure theorem.

Proposition 8.1. Let M be an admissible, end-periodic 4-manifold and let
P — M be an end-periodic principal SU(2) or SO(3)-bundle which obeys (7.1).
Let k € Im( p,: EsZ/(P) — Z). There exists 8, > 0, such that for all § € (0,4,),
MO (ALE)G, X €) and M, (O (B, X €) are smooth Banach manifolds.

The projection to € from &/, X € induces projections

(8.4) 7M, > € and 7T M, > F.

K. Uhlenbeck’s generic metric theorem [12, Theorem 3.17] translates in the
present case to

Proposition 8.2. Make the same assumptions as in Proposition 8.1. There
exists 8, > 0 such that for all § € (0,8,), the following holds: A Baire set of
¢ € € exists for which the moduli spaces M| (¢)=7"""(¢) and M ($)=
7 Y(¢) are such that M ($p) N (LF/9;) and M ($) N B, are smooth mani-
folds of dimensions 2k — 3(b, (K) — by(K)) and 2k — 3(1 + b; (K) — by(K))
respectively.

The manifold #(¢) admits an SO(3)-action which is free on the orbit of
an irreducible connection. Thus, the projections #;(¢) — A, (¢) N B, de-
fine a principal SO(3) bundle.

At the orbit of a reducible connection in 4, (¢), the SO(3)-action will not
be free. by perturbing .#,(¢) as in [8], one can assume that a neighborhood of
the reducible orbits in #,(¢) have a standard form. For compact M, the
result is described in [12, Theorem 4.11].

Proposition 8.3. Make the same assumptions as in Proposition 8.1, and
assume that b,(K) = 0. There exists 8, > 0, such that for all § € (0,985), the
following is true: If the intersection pairing on H,(K,Z) is indefinite, then for a
Baire set of ¢ € €, M, ($) contains no orbits of reducible connections; it is a
smooth manifold of dimension 2k — 3(1 + b;(K) — b (K)). If H,(K;Z) is
definite, then the orbits of reducible connections in M ,(¢) are isolated. There is
a perturbation of M () which is compactly supported in a neighborhood of each
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such orbit so that locally about such an orbit, # ,($) is homeomorphic to an open
cone on CP', with | = k — 2. The identification is a diffeomorphism off the
vertex.

The strategy for proving Propositions 8.1-8.3 will be to set up a formalism
that allows the arguments in [12, Chapters 3, 4] to translate directly to the
end-periodic case. The key to the formalism is in understanding the operator
P d,.C*(AdP®T*)—> C*(AdP® P_ A, T*) when A € &/,. The prin-
ciple result required is Lemma 8.4, below. To state the lemma, introduce the
Banach space %, defined as follows: Pick 4 € &/, and set

(8.5) %A, ={ae C*(AdP ® T*):|ja|, < 0},
with norm || - ||, (see (7.8)). Due to Lemma 8.4, the choice of 4 €. &, is
immaterial to % ,.

Lemma 8.4. There exists 8, > O such that under the assumptions of Proposi-
tion 8.1: If 8 € (0,8,) and if (A,¢) € PZ10) N (A, X €), then

dy  P_(g0)¢7)*
(8.6) 05 @5 A, —" " 4250
is Fredholm with index 8k — 3(b, (K) — by(K)). Further, kerd, C & is

empty.

Assume for the moment that this lemma holds.

Proof of Proposition 8.1. The map 2 from &/, X € to %} is readily seen to
be smooth. One identifies 7%/, |4 = ¥,. The differential d2 at (4,¢) €
271(0) splits as a direct sum d2, + d?, corresponding to T(, X €)=
T/, ® T¥. Observe that

dgll(A,q;) = P—(go)(ﬁb-l)*dm

Since (8.6) is Fredholm, Cokerd# C Cokerd#, is finite dimensional. By
using the L2-inner product of the metric ¢*g, on TM, one can represent
w € CokerdP,| 44 by w€& C*(AdP ® P_(¢*g,)A, T*M) N L* obeying
d 4w = 0. The proof is finished by copying the proof of Theorem 3.16 of [12].

Proof of Proposition 8.2. The projection 7" :M; N (A¥/G; X €) > € isa
smooth, Fredholm map of index 2k — 3(b; (K) — b;(K)). The index calcula-
tion is Lemma 8.4. The Smale-Sard theorem [27] establishes the assertion of
Proposition 8.2 for #; N (*/9;). The group 9,/9, = SU(2) (or SO(3))
acts on A, N (L }/9/); the stabilizer of a point is +1 ¢ SU(2) and 1 C
SO(3). Thus, in both cases there is a free action of SO(3). The quotient,
M ($) N B, is a manifold provided that local slices of the SO(3)-action exist.
Let (A4,¢) € A (¢) N (LF¥/9/). A neighborhood of (A4, ¢) is diffeomorphic
to

N={aeU, e d,x,e®a=0,P (¢*g)d,a=0and ||al|, < e}
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for sufficiently small e. Here, *, is the Hodge star for the metric $*g,. In the
remainder of the proof, all inner products, volume forms, and anti-self-dual
projections are with respect to ¢*g,. This will be implicit.

Given a € A4 and o € su(2) (= so(3)), construct g(a; o) € &, asin (7.15),
but use the metric ¢*g,. The construction is the same at the expense of a
smaller ¢ > 0 in (8.6). Since 4 + a is self-dual,

(8.7) d,..q(a;e) e N foro € su(2)and |o| < e.

Using the metric ¢*g,, construct the map q:A4"— su(2)* as in (7.16). The
argument in §7 can now be directly appropriated to show that ¢~ }(0) € A" is a
slice of the SO(3)-action.

Proof of Proposition 8.3. The proof of Theorem 4.11 in [12] translates
directly to the case here. See also the proof of Corollary 3.21 in [12]. The reader
is also referred to [11].

Proof of Lemma 8.4. (7.13) implies that d,: ®; — A, has no kernel and it
has closed range. It follows that (8.6) is Fredholm if the two-step complex

P—(80)(¢_1)*d/1 ( 42 )
8.8 6(A4,¢9) = ) I
( ) ( ¢) e"’sdj‘eTS k &,

is Fredholm. Here,
(8.9) G, = {o € L}, (Aut P): fM e”(|v 0% + |0]?) < oo}.

Pick 4, € E&ZN o/, and consider the operator
Ay
(8.10) 8(Ag. )%, — | 2X ).
8,
This operator, on End M, is isomorphic via (7.1) to
~1x
3(0.) = (8NN 13 (oar) ()
e-fsd*eﬂs
L} 5(P_ A, T*M)
Li (M)

(8.11)
X su(2).

The complex in (8.11) is Fredholm, by Proposition 6.1. Arguing as in §6 of
[21], one proves that 8(A,, ) is also Fredholm. Then, Lemmas 5.2 and 7.5
plus Kato’s inequality show that

)

a
8(A4y,9) —8(A4,¢): %, > (@ )

k
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is a compact operator. Thus, §(4, ¢) is Fredholm. Further, Index(8(4, ¢)) =
Index(8(A4,,¢)). Since 8(A,,¢) is isomorphic to 6(0,¢) over End M, the
excision property of the index [4] asserts that the difference, Index(8( A4, ¢))
— Index(8(0, ¢)) depends only on K. By embedding K in the compact
4-manifold Q from the proof of Lemma 7.1, one can use the index theorem on
compact manifolds to compute this difference. The answer is Lemma 8.4 (see

(2D

9. Moduli spaces: Existence

Fix an asymptotically periodic metric, ¢*g,, on T*M (as defined in §6). A
connection on a principal G-bundle P over the end-periodic, admissible
4-manifold M is self-dual if P_F, = 0, with P_= P_(¢*g,). (In this section,
all norms, inner products, and operator adjoints are taken using ¢*g,. This will
be implicit.) The purpose of this section is to prove that the moduli spaces of
self-dual connections, .# ,(¢), can be nonempty.

Rather than discuss the existence question for admissible, end-periodic
manifolds in the generality of [30], attention will be restricted to the case where
b,(K) = b,(K) = 0 (see Proposition 6.1).

Consider first the existence of reducible self-dual connections on principal
SU(2) and SO(3) bundles P - M which obey (7.1). To construct such a
connection, pick a class e € H,(M,Z). Through Poincaré duality, e is dual to
a class e € HZ,, (M,Z), and via the injection (Lemma 5.7) HZ,,, = H?, the
class e defines a line bundle,

(9.1) L(e) > M.

Via DeRham’s theorem, e defines a closed two-form, w(e) € Hipr(M).
This two-form is Y=1 X the curvature of a connection A, on L. By repre-
senting e by an embedded, closed two-dimensional surface R C M, one can
arrange that A, is trivial away from a tubular neighborhood of R in M.

Following [11], construct from L(e) the R*-bundle
(9.2) E=L(e)®gé,
where & = M X R is the trivial, real-line bundle. Put an end-periodic metric on
E. Define P = P(e) to be the bundle of orthonormal oriented frames on £—a
principal SO(3) bundle over M. Note, if the mod 2 reduction of e, e,, is in the
image HZ, (K\N;Z,) — H*(M;Z,), then P(e) obeys (7.1). Indeed, its
Stieffel-Whitney class will then vanish in H2(End M; Z,), since w,(E) = e,.
Assume that such is now the case.

The connection 4, is in &, (P(e)) (by Lemma 7.4) for any § > 0 and for
(9.3) k=e-e.
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Thus, #,.,,(P(e)) has reducible connections. Note, if e, = 0, then P(e) lifts
to the SU(2) bundle M X SU(2). Thus, &/, (M X SU(2)) has reducible con-
nections whenever k = e - e for e € Hy(M,Z) withe, = 0 € HX(M,Z,).

For self-dual reducible connections, one has

Proposition 9.1. Let M be an end-periodic, admissible 4-manifold with
bi(K)=b;(K)=0. Let 8, > 0 be as given in Proposition 6.1. Fix § € (0, 8,).
Let P — M be a principal G = SU(2) or SO(3) bundle which obeys (1.1). The
orbits of reducible connections in M (P) are in 1-1 correspondence with the set
of pairs {+te € Hy(M,Z):e-e=kande, = w,(P ®,4 &)}.

Proof of Proposition 9.1. Given e € H,(M,Z) as above, Proposition 6.1
finds a self-dual connection 4 on L(e)suchthata =i(4 — 4,) € Lg‘s(T*M )
obeys

e "d*e™q = 0.
It follows from Proposition 6.1 that A is unique. This connection defines a
reducible self-dual connection in &, (P) (since P is isomorphic to P(e) and
k = e - e; see Lemmas 7.1 and 7.2). Thus, each pair
{te€ Hy(M,Z);e-e=kand e, = wy(P X4 ®)}

determines a reducible orbit in . ,(P). It follows from Proposition 5.1 (by
mimicking the arguments in [11] or [12, Chapter 10]) that any such reducible
orbit in #,(P) comes from a pair {+te€ H,(M,Z):e-e=k, e,=
wy(P X 5q ®)}. .

To construct irreducible self-dual connections on M X SU(2), one adapts
the construction in [28], [30]. For an end-periodic, admissible 4-manifold with
positive definite intersection form on H,(K;Z), the construction yields non-
empty A ,, for I € {1,2,---} (see Proposition 9.2, below). (When the inter-
section form on H,(K,Z) is indefinite, then ., is nonempty for all />
I(b5 (K)).) For the proof of Theorem 1.4, only the case b, (K)=0and / =1
is required. The general situation should be an exercise for the reader who is
familiar with [30].

Definition 4.2 of [30] assigns to each (x,A\) € M X (0,1) a point T(x,A) €
%, such that the induced map

T:M x(0,1) > %,
is a smooth embedding. The point T(x, A) has the following properties: Let
[A] = T(x, ). For § € [0,0) and p € [1, 0],

1/p
(f e’slP_FAl”) < ze™X/PN2/P
(9.4) 1
(] e‘rSIFAlp) < Ze‘r(x)ﬁ/px—2+4/p,
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and if y € M obeys dist(y, x) > 4\, then
(9.5) |E4(y) = 0.

Also, A is irreducible.
To find self-dual connections in %,, one searches for such of the form
[A(x,\)], where

(9.6) A(x,A) = A(x,A) +a(x, ),

with [A(x,A)] = T(x,\) and a(x,A\)€ C*(AdP ® T*M) is small in a
suitable way.

Proposition 9.2. Let M be as in Proposition 9.1. There exists 8, > 0 such
that if 8 € (0,8,), then M 4+ @. In fact, \; > 0 and §{ < oo exist with the
following properties: Let § € (0,8,), (x,\) € M X (0, ), and [A] = T(x, \).

(1) There exists [A(x,\)] € M , N B, such that:

(2) If y € M obeys d = dist(y, x) > 8Y\, then

|F(y) < SN2(1 +d72).

(3) The assignment of (x,A) € M X (0,A;) to [A(x,\)] € B, defines a
smooth map of M X (0, \,) into B, which is smoothly homotopic to the map T.

The remainder of this section contains the proof of Proposition 9.2. The
argument here is almost identical to the argument in [28] and [30] for compact
M. Familiarity with [28], [30] (see also [12, Chapters 6, 7]) will be assumed.

Proof of Proposition 9.2. As in §§2 and 3 of [30], the strategy is to first find
a(x,A) in (9.6), given appropriately chosen data (8,, A;, {). A priori estimates
from the existence proof yield assertions (2) and (3) of the lemma.

Consider first the existence question. One writes a = *d w for w €
C™*YAdP ® P_ A,T*).If A + *d w is to be self-dual, then w must satisfy

(9.7 P_d(P.d)*w+(P_d)*wA(P_d)*w+ P _F,=0.

(9.7) is solved by a successive approximation scheme; one sets

(9.8) w=3 w,
j=0
with
(9.9) P d(P_d,)*w,= -P_F,,

and for j > 0,

(9.10) P_d(P_d,)*w;=-0,.
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Here,

j=2
(011) Q=X P_(nAv_1+v_ An)+P (v, Av,_y),
k=0

where v, = (P_d )*w.

To succeed here, the following eigenvalue estimate is crucial.

Lemma 9.3. There exists 8, > 0, A, > 0, and { > 0 such that if § € [0, 8,)
and X € (0, \,), then the following is true: Let A = A(x,\) and let #2 denote
the Banach space of 6 € L}, (AdP ® P_ A,T*) such that

/M e’s{lvAo|2 + |o|2} < 00.

Then

8 ,-78 * 76 12
ele™(P_d,) e
{A = inf fM | ( A) Ul

0ok [yelo)?

> ¢

Given Lemma 9.3 and the Sobolev estimates of Lemma 5.2 (and Kato’s
inequality), the existence proof now proceeds, virtually word for word, as a
copy of the arguments in [28, §§4, 5] and [30, §§2,3]. The details are left to the
reader. (Remember, the end-periodicity of M implies that M has “bounded
geometry.”) The end result is that one finds A; > 0 such that if (x,\) € M X
(0, \,), then there exists a unique w € 4 such that 4 + *d ,w is self-dual and

2
(9.12) fM E}O v Pwl? < §(A).

To put A + *d ,w € &,, one must exploit (9.7). First of all, elliptic regular-
ity plus (9.12) implies that w € C"*}(AdP ® P_ A\, T*).
To obtain the L?s-estimates on *d 4 the first step is to obtain the following
L>-estimate on w.
Lemma 94. Let M be as in Proposition 9.1. There exists ; > 0 and { < oo
such that if X € (0, Ay),[A] = T(x, ), w obeys (9.7) and (9.12), then
sup |w(x)| < {2
xeM
Proof of Lemma 9.4. The Weitzenbock formula for P_d ,(P_d ,)* (see[12,
Appendix C]) implies that

(9.13) d*d|w| - rlo| < z(|*d w|* + |P_E,)).
Here, r > 0 is uniformly bounded due to (9.4) and the fact that M has

bounded geometry. Because M has bounded geometry, the injectivity radius of
M is bounded away from zero by p > 0. For x € M, let B,(-) € C{°(M) be
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identically 1 if dist(x, y) < %p and zero if dist(x, y) > 3p. Assume that 8, > 0
and that |dB,| < 20p7!. Then

(014) [ dvol(y)- B(y)(eis(x. ) e ol(5) < EN.

Use (9.12) and Lemma A.3 of [29] to prove this. From (9.4) and Holder’s
inequality:

(9.15) [, @ vol(y)B.(»)(dist(x = 7)) 1P_Fif < X2

(9.12) with Lemma 5.2 and Holder’s inequality establishes that

(616) [ dvol(n)B()isx - ) el < £ N

Now, multiply both sides of (9.13) by B,(- )(dist(x, -))~* and integrate over M.
Use the fact that (dist(x, -))~2 is (up to a constant) the Green’s function for
d*d on M to order dist(x, -)~!. Then integration by parts and (9.14)—(9.16)
give Lemma 9.4.

Now, one can get L2 ;-estimates as follows: Let

né

70 :
917 = {e if r<n,
( ) 1 e fr>n

Contract both sides of (9.7) with ¢,w, and integrate over M. After integration
by parts, one has

(018) [ qldeol’ <3f glolidwl+ [ glelldel + [ glollP_F.

By Lemma 9.4, and (9.4), (9.5), there exists A; > 0 such that if A € (0, A,),
then

(9.19) [ addaw> <8 [ glof? + - Keres.

M M
With Lemma 9.3, it follows that §, > 0 exists such that if § € [0, §,),
(9.20) [ adol <[ g,ld 0l

(9.19) and (9.20) imply that A;,8, > 0 exist such that if & €[0,8,] and
A € (0,A,), then

f qn|d,4‘0|2 < {AZe‘r(x)S
M
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with { independent of A and n. Taking n — oo, above, shows that for § and A
as above,

(9.21) fM e™d |2 < (AT,

The L3, estimate for v,(xd,w) now follows by using the Weitzenboch
formula with Lemmas 5.2 and 7.5 on the equation

0= f e®|\P_F,+ P dpd,w+ P_(+d,w A +d )|
The details are straightforward and one finds that
(922) f e‘rslvA(*dAw)lZ <¢- }\Ze‘r(x)s,
M

with {, again, independent of (x,A) € M X (0, A,). The derivation of (9.22) is
left to the reader (see [28, §§4, 5)).

Assertion (2) of Proposition 9.2 is obtained by exploiting the fact that A is
flat and trivial on M, = M\ {y € M :dist(x,A) > 2\/X} : Assertion (1) im-
plies that a = *d ,w obeys the (elliptic) system

P da+P ara=0 and d*a=0
on M,. Meanwhile, (9.21) and (9.22) give uniform estimates on the L?

1;loc
norms of a on M,. Since M has bounded geometry, the standard bootstrap
arguments give assertion (2). Here, one may have to adjust the numbers
8,2 > 0.

The final assertion of Proposition 9.2 is proved as in §3 of [30]. The
formalism there translates word for word over here.

Thus, Proposition 9.2, at its heart, comes down to the

Proof of Lemma 9.3. The proof of Proposition 8.8 in [28] translates almost
directly to the situation at hand. To use said proof, one must study the
operator

923) K,,=P_de™(P_d,)%™®) onLi;(AdP® P_A,T*M).
A8 A s

Via Weitzenboch formulae and integration by parts, it is easy to show that
K, s is a closed, essentially self-adjoint, nonnegative operator on L} s with
dense domain L} ;. The key fact is

Lemma 9.5. Let M be an end-periodic, admissible 4-manifold and let § €
[0,8,) with &, > O given in Lemma 5.8. Let P — M be a principal G-bundle
obeying (1.1). Let k € Im(p,: Ex/(P) — Z) and let A € o/,. Then K, 5 has
pure point spectra with finite multiplicities in the interval [0, §(8)), with {(8) as
defined in Lemma 5.8.
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To prove Lemma 9.3 from Lemma 9.5, note that the only case of interest is
when {, < {(8), whence Lemma 9.5 implies that {, is an eigenvalue of K, ;.
This fact, plus Lemma 5.8, allows one to carry the proof of Proposition 8.8 in
[28] to the case at hand, essentially verbatim. This is left to the reader.

Proof of Lemma 9.5. Suppose that K , ; has been shown to have pure point
spectra in an interval [0, »] C [0, {(8)). Let V' denote the closed, linear subspace
of L§ s which is spanned by the eigenvectors with eigenvalues in [0, »]. Let
V+ic 4 denote the L2 s-orthogonal complement to V. Define a bounded
quadratic functional on V' * by sending o to

(9.24) J(o)=f e?le=™(P_d )*e |,
M

Let

(9.25) vy = inf _i(j;)_z .
ozocv | f[ie™|o]

Let {0,} C V* be a sequence which obeys
(9.26) f e®lo)?=1 and J(o,) > »,.
M

This last condition implies via a Weitzenboch formula that

) 2 N
[/M e’ (|VA°:'| + loy )}

is bounded uniformly in i. Then using (9.26) and the fact that », is an
infimum, one obtains the strong convergence of a subsequence of {o,} (de-
noted {o;}) in L}, (AdP ® P_ A,T*). This subsequence also converges
weakly in the Banach space ¥+ to some o € V*. (L sorthogonally is
preserved by weak limits.)

Given ¢ > 0, choose n = n(¢) such that

(9.27) / e”lo|? < &%
™=n
Then i(€) < oo exists such that for all j > i(e),

(9.28) '[w e"sloj|2 < €2

n

Let B = B(n) € C*(17}(n, 0);[0,1]) be such that 8 = 1 on 77}((n + 1, o0))
with B =0on i _(N)C W,. Make ||dB||,, independent of n. Write

o, = Bo,+(1 - B)o,,
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and observe, using (9.27) and (9.28), that
(9.29) (1 + ze)J(o,) > J(Bo,) +J((1 — B)o,) — ze,
with z independent of { ¢;} and of 4. (Just use Holder’s inequality.)
Write 4 = A, + a with A, € E&/(P) N/, and with |la||, < co. Then,
using Kato’s inequality plus Lemma 5.2 one finds n = n( A4, £€) < oo such that

(9.30) J(,Bo,-)>f~ e?le (P _d)*e™Bo)> — ze foralli> i(e).
v
Then, (9.29), (9.30), and Lemma 5.8 imply that
(931)  J(o)=n[ ePlBof*+§(8)[ &Pl(1 - B)o) - ze.
M M

Since & > 0 was arbitrary, (9.26) and (9.31) imply the following: If », < {(8),
then given ¢ > 0, there exists n(g) < oo such that for all i > i(e)

(9.32) f e?o)? <,

T™>=n
which insures that {;} converges strongly in L} ;(Ad P ® P_ A, T*). Stan-
dard arguments now show that ¢ is an eigenvector of K, 5 with eigenvalue »,.
Since 6 € V', one has »; > ». This proves that K, ; has discrete spectrum in
(0, $(8)).

The same argument proves that the eigenvalues in [0, {(8)) have finite
multiplicity. Indeed, the argument shows that any sequence of normalized
eigenvectors with a fixed eigenvalue in [0, {(8)] has a convergent subsequence.
This can happen only if the eigenspaces are finite dimensional.

10. Moduli spaces: Boundary

In the case where M is a compact, 4-manifold with definite intersection
form, the moduli space used in [8] is diffeomorphic, outside a compact set, to
M X (0,1). The compact analogues of (9.6) and Proposition 9.3 provide a map
which induces the diffeomorphism. This is the “Collar Theorem” [12, Theorem
9.1]. Fintushel-Stern’s argument [11] on compact M requires a compact moduli
space. In both cases, the “boundary” of the moduli-space is the crucial issue.

For the end-periodic analogue, one has

Proposition 10.1. Let M be an end-periodic, admissible 4-manifold with
positive definite intersection form on H,(K;Z). Assume that w (W) has no
nontrivial representations in SU(2). There exists 8, > O such that for all § €
(0,8,), the following is true: Let ¢ € €.

(1) Let P = M be a principal SO(3) bundle obeying (7.1). Let k = 2,3. Then
M ($) is compact.
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(2) Let P =M X SU(2). Then there is an open set X' C M ,($) with the
property that for some X\ > 0, X is diffeomorphic to M X (0, A|) and isotopic in
B, to the image of T:M X (0,\)) = %B, of Proposition 9.3. If {[A]}
C M ,($)\X has no convergent subsequence, then for all n < oo,

Tim [sup{|FA'(x)| X € 7‘1([0,n])}] =0.
i—o0
The rest of this section contains the proof. To begin, normalize the inner
product on Ad P so that

1
(101) |6|2= —@tr@(o-a).
This choice has the property that for [4] € #,(¢), one has
(10.2) JAEP =1k
M

if one uses the asymptotically periodic metric ¢*g, to measure norms on TM
and volumes on M. Henceforth, this will always be done, and with no explicit
notation.

In general, for k > 0, consider {[4]} € # ,(¢), a sequence of orbits of
self-dual connections. Suppose that

(10.3) lim [sup |, |(x)] = 0.

J7®o L xeM ’
Theorem 8.31 of [12] is valid even on noncompact M as it is an essentially
local theorem on M. From Theorem 8.3 of [12], (10.3) is true only if

(10.4) k= |E, ’>a.
M 7

Suppose that {[4,]} € # () is a sequence such that (10.3) is nor true.
Either

(10.5) lim {lim f I, |2} -0

n—o0 |\ j—o o0
or not.

Lemma 10.2. Ler M be an end-periodic, admissible 4-manifold with no
nontrivial representations of m,(W) in SU(2). There exists 8§, > 0 such that for
8 € (0,8,), the following is true: Let ¢ € €. Let P = M be a principal SO(3)
or SU(2) bundle which obeys (7.1). Suppose that {[A;]} € M () (for k > 0)}.
There exists (1) a self-dual connection A on P with [,,|F,|* < k; (2) a finite set
of points {x,} € M; (3) a sequence {h;} € C*(Aut P| ., ); and (4) a
subsequence {A;} (now relabeled) such that {h;A;} converges on compact
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domains in M\ {x,} to A in the C"-topology (if ¢ is C™). Suppose that (10.5)
holds. Now, the sequence {h;} can be chosen so that [A] € M# (¢) for some
1 € [0, k). In this case, n < oo exists such that

lim eﬂWNAA—m4ﬁ+WAA“%%W

Jj— o Yrl((n, )
2
+|(a=na)[}=o0.

When (10.5) holds, | = k if and only if {x,} = @, whence [h;A;] converges to
[A] in M ($).

Lemma 10.2 is the extension of the combination of Theorem 8.8 and
Theorem 8.31 of [12] to the end-periodic case. (See also [29, Proposition 4.4].)

Lemma 10.2 describes the situation if (10.5) is satisfied. When it is not, one
has

Lemma 10.3. Make the same assumptions as in Lemma 10.2 concerning M,
P, and 8. If {[A;]} € M (¢) does not obey (10.5), then

2
>4

Lemmas 10.2 and 10.3 will be proved shortly; assume them for the moment.

Proof of Assertion (1) of Proposition 10.1. Since k = 2,3, this is now
immediate from (10.2-4) and Lemmas 10.2, 10.3.

Proof of Assertion (2) of Proposition 10.1. Let A, be as in Proposition 9.2.
For some A € (0,A,], one can define, as in Chapter 8 of [12], the set of
self-dual orbits with scale size < A. This is .# , ,. With the techniques in §9, it
is straightforward to reprove the Collar Theorem of [8] (Theorem 9.1 of [12]) in
the present circumstance. The reader is encouraged to trace the argument
through. The result is some A € (0, A,) such that ., is diffeomorphic to
M X (0,)) and isotopic in %, to the image of the map T. Set X'= .4 ,,. If
{41} € A ,\ X has no convergent subsequence, then neither of (10.3) or
(10.5) can hold. Then, Lemma 10.3 and (10.2) imply that for any n > 0,

(10.6) nm{nmf |F,
Y(n, )

n—>ow | joo0

2
10.7 li F = 0.
(107) jinc}o ff-'ao,nn I Af'

By Theorem 8.8 of [12], the sequence { 4} is gauge equivalent to one which
converges in C™ of compact domains to a flat connection on M. This implies
the final part of assertion (2).

Proof of Lemma 10.2. 1If (10.5) is satisfied, then a subsequence {[4,]}
exists with the following property: Given € > 0, there exists n = n(g) < o0
such that for all j, Theorem 8.8 of [12] plus (10.6) implies that the following
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data exists: An integer n < oo, a subsequence {[4,]}, and a sequence {q,} €
C*(Aut P| -1, »)) such that {g;4;} converges strongly in the C™-
topology on compact domains in 77!((n, 00)). Further, the limiting connection
A’ is self-dual. Theorems 8.8 and 8.31 applied to 7!([0,n + 1]) € M imply
that one has the following additional data: A smaller subsequence {[4]}, a
finite set of points {x,} € 77([0, n + 1)), and a sequence {u;}
C*(Aut P| 10, n+1)\(x,}) Such that {u A4} converges strongly in the C"-
topology on compact domains in 7 }([0,n + 1))\ {x,}. The limit 4" is a
self-dual connection on 771([0, n + 1)). (This uses the removable singularity
theorem [31].) There exists A € C™(Aut P| -1, ,+1y) such that

h-A"=A ont'((n,n+1)).

Since the Stieffel-Whitney classes of P are preserved under the limits [26], the
data (A", A’; h) defines a self-dual connection 4 on P, and from the data
{u;,q;}, one can construct { p; € C*(Aut P |, ) such that { p;4;} con-
verges to A in C” of compact domains in M \ {x,}. (Argue by Theorem 8.8 of
[12].) The connection A is self-dual, and weak-lower semicontinuity implies
that

JVEP <k

To prove the remaining assertions of Lemma 10.2, one must use (10.5) to
find a gauge for each A4; which gives uniform decay in the weighted spaces.
This is a multistep bootstrapping process. The first step is the next lemma. This
lemma is also crucial for the proof of Lemma 10.3.

Lemma 104. Let U be an oriented open noncompact, C™-Riemannian
4-manifold (m > 2). Let Q C U be a smooth submanifold with compact closure,
Q C U. Let P > U be a principal G-bundle. There exists ¢ <0 and { <
which depend on U, Q, P, and a C™ neighborhood of the Riemannian metric on
U with the following significance: Let A be a self-dual connection on P with
JulEq? < e Then h € C™"*Y(Q; G) exists such that

m 2
swp X [vttiea - 1)) <2 1E
o /=0 v

where T is a flat connection on P | ,.

Proof of Lemma 10.4. This is essentially Theorem 8.8 of [12], but one must
keep track of the norms involved. To begin fix a locally finite, open cover of U
by geodesic balls { B} such that the balls of 1,/2 the radius, { B, }, cover U. By
[32], there exists { h, € L3(Iso(B, X G, P| 4 ))} such that

a,=h*A - T,e L}(T*B, x ®)



GAUGE THEORY 413

obeys dffa, = 0 and i*(xa,) = 0. Here, i: 9B, — B, is the inclusion and T}, is
the product connection on B, X G. Further, if B, N Q # @, then

[ {lonadl +la} <[ 1ET

Since T, + a, is self-dual, a, satisfies uniform C™-estimates in the ball of
radius 3 /4 (radius ( B,)). These C™-estimates are bounded by

(10.8) Gf IR
BC(
In B, N By,
(10.9) g = hogaghyh+ hogdhy)

with h,, € C"*(B, N By G). Due to (10.9), dh,s obeys uniform C”-
estimates in (B, N Bg) N Q; these with bound, (10.8). The data { B,, h 4, a,}
defines a pair: principal G-bundle, P’ — Q; connection on P’. A priori, P’ is
isomorphic to P (see [12, Theorem 8.8])

Arguing as in the proof of Proposition 3.2 and Corollary 3.3 of [32], one
constructs p, € C"*(B,; G) for those B, which intersect such that (1) p,
obeys C™*l-estimates in B, with bound by (10.8), (2) in (B, N By) N Q,
P hapPs' = 2,5 is constant. If B, N Q= 9, set p,=1. The data {B, N
Q. 2,5} defines a flat connection on a bundle P”|, isomorphic to P’|,. Call
this connection T. The data { B N Q, 2,4, p,a,p," + p,dp,'} defines a connec-
tion 4 on P” which obeys

swp | 3 [9(A-D)f| <tof 15T
0o \/=0 ©0

this follows as all the relevant p, and a, estimates are bounded by (10.8). The
pair (P”, A) is isomorphic (as bundle, connection) to (P|g, A). Pulling back
via such an isomorphism gives Lemma 10.4.

To apply Lemma 10.4, take

(10.10) U=W, UyW,Uy W, and Q= W,.

Use the periodic metric, g,, for TU. Let ¢ > 0 be as given in Lemma 10.4 for
P = U X G, G a compact Lie group.

Now choose k < oo according to the following criteria: If n > k, then the
asymptotically periodic metric ¢*g, on U, = W, _ U\ W, U\ W, is C"-

close enough to g, for Lemma 10.4 toapply for U= U,, 0 = W,, P = U, X G,
and the given &, above.
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Lemma 10.5. Let M be an end-periodic 4-manifold such that = (W) has only
the trivial representation into G. Let €, k be as defined in the previous para-
graphs. There exists p < oo and & > 0, with the following significance: Let A be
a self-dual connection on End M X G. Suppose that n > k exists such that

[ B <e.
T>=n
Then h € C™*Y(r7}([n + 1, ©)); G) exists such that forj > n + 1,
n 2
(10.11) sup { Y | vim(h*4 - T)] } <p- / |E, [,
W; =0 Guy,

J
where T is the product connection on 7-}([n + 1, 0)) X G.

Proof of Lemma 10.5. By Lemma 10.4, there exists &, € C™*'(W;; G) for
each j > n + 1, such that (10.11) is obeyed with n; replacing h. The assump-
tion on 7 (W) insures that the flat connections on W X G are trivial. On W,
set a,=htA — T, On W, W, ,, define h; ;,, € C"(W; N W;,;;G) by the
cocycle condition

(10.12) aj=hj'j,rlajﬂhjf‘lj+1 -I-hj,jﬂdh;}ju.
(10.11) and (10.12) provide bounded C™*'-estimates for each A j.j+1 with
bound

2

(10.13) ngUU |E, |
J J+1

J

For ¢ > 0, and small, the argument which proved Lemma 10.4 can be
repeated with the data {4, ;,,} to produce p, € C™*"'(W}; G) obeying C™*'-
estimates bounded by (10.13) such that ph; ;. 101, = z; 4y in W, U W, ;.
Again z; ., = constant. Now, change p; to

D = -1 cee g1
B = Pjzj j+1 Znt1,ne

Then dp; obeys C™-estimates bounded by (10.13), and p;h; ; +15f11 =1. On
W,,set h = ph,. Check that h does as required.

An important remark to make here is that the assumption on (W) is
critical in the preceding argument.

To obtain the rest of Lemma 10.2, it is necessary to fine tune the gauge
transformation 4 of Lemma 10.5 in order to obtain nniform weighted esti-
mates. Let A, h be as in that lemma and set a = h*4 — TI'. Since 7: W, -
[n,n + 1], (10.11) proves thatif j > n + 1, then

10.14 £ o 2}\ &
( ) ffzjﬂe {E()\W al <§j;>je

whenever the right-hand side, above, is finite.

2

>

E,
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Lemma 10.6. Make the same assumptions on M as in Lemma 10.5. There
exists k < oo and 8, >0, and for § € (0,6,), there exists €(8)> 0 and
2(8) < oo with the following significance: Let A be a self-dual connection on
EndM X G such that for some n > k,

[ B <e(8) and [ e?|F? < .
=>n T=n

T

Then s € C™*(v7Y([n + 1, )); G) exists such that a = s*A — T € L} ; and
it obeys

(10.15) f la]> + sup |a|2<zf |F, 12,
T>n+2 T>n

T>n+2

and on T([n + 2, 00)),
(10.16) e "d#e™a = 0.

Proof of Lemma 10.6. The proof is simplified under the assumption that
b,(K) = 0. Since the question here is on End M, one can always arrange by
surgery in K\ N that H;(K;R) = 0. This will maintain the admissibility of
the manifold.

First, let ¢, k be as in Lemma 10.5, and make sure that £(8) < €. Let h be as
specified in Lemma 10.5. Look for s of the form gh. Let b = h*4 — I'. Then b
obeys (10.15) and a will be given as

a=gbqg' + qdg ont7'([n+2,00)).

(10.16) is now an equation for g. To prove that a solution to (10.15) and
(10.16) exists, the continuity method will be used. Thus, consider a family
{g,:t €[0,1]} € C™"}(M; G) such that

(10.17) b = 1Bq,bg;" + q,drq;’
isin L} s(T*M ® &) and solves
(a) e "%dFe™b, =0,

(b) [ 1042+ suplbP <z [ IF P

™=n

(10.18)

where 8 € C®*(M)is0on 771([0,n + 1]),1 on 77}((n + 2, 0)), and |dB| < 20.
The goal is to find the conditions on §, €,(8), and z = z(8) under which
(10.18) is solvable for all ¢ € [0, 1]. For this purpose, set

A = {t€[0,1]:(10.17) and (10.18) are solvable for g, }.

At t =0, g, =1 solves (10.17) and (10.18), so A # &. Elliptic regularity
readily establishes that A is closed. If A is open, then A = [0,1]. One may
assume that the right-hand side of (10.18) is nonzero. Otherwise, 4 is flat on
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77Y([n, 0)). Then A is the trivial connection on each W, if j > n (due to the
assumption on m,(W)). Then Van-Kampen’s Theorem [18)] implies that A4 is
trivial on 7-!([n, 00)). Or, argue as in the proof of Lemma 10.5.

(10.14) insures that Bb € L3 (T*M ® &). So, by the implicit function
theorem with Lemma 5.2, one can find some ¢, > 0 such that [0,7,] € A. Let
0 <t &€ A. Then the implicit function theorem provides an open interval
(t —v,t + ») such that for all A € (¢t —»,¢ + »), (10.17) and (10.18a) are
solvable for g,, but with b, obeying

(10.19) f 1by)2 + sup |by)? < 2z/ |F,|2.
M M 7 (n.00))
For a better estimate for b,, one must use the self-duality equation which
implies that

(10.20) P _drby=P_(-by A by + gr(tdB A b+ 1B(tB — 1)b A b)gy').

Together, (10.18a) and (10.20) will provide the required estimate. To obtain the
estimate, note that one can solve for w € L3 (P_ A,T*M ® &) N C™*!
which is L3-orthogonal to ker((P _d)* N L3(P_T*M ® &) and satisfies

P_dre ™(P_dr)*e™w
(10.21) = P_(~by A by + q\(tdB A b+ tB(1B — 1)b A b)gi).

This is due to Lemma 9.5. (Here, one must choose § small as determined in
said lemma.)

The right-hand side of (10.21) is quadratic in b,. Thus, w will obey
A-independent estimates. First, contract both sides of (10.21) with « and
integrate over M. Do not use a weight. Integrate by parts and use Lemma 9.5
to obtain (for § sufficiently small)

(10.22) /Mle"‘s(P,dr)*e"sw'Zs§[(4z2+1)(/72”|FA|2)2+/ |FAJZJ,

T>n

where (10.11), (10.14), and (10.19) have been used to estimate b, and b.
Now, bootstrapping in a straightforward fashion (as in the proof of Lemma
9.4) gives, with (10.11), (10.14), (10.19), (10.21), and (10.22), the estimate

f ’«3"8(P_dr)"‘e"sw|2 + sup le"a(P_dr)"‘e"sw|2
M M

(10.23) V2 2
<t{er ([ 1EF) + [ Iaf).
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(10.19a), (10.20), and (10.21) imply that
(10.24) by =e "(P_dr)* e,

which is a consequence of Proposition 6.1 since, b;(K ) = 0 by assumption.

Choose z = 2¢, with { as in (10.23). Then, choose ¢ < 3(4z? + 1)"L. With
these choices, (10.23) and (10.24) verify that A is open in [0,1]. This proves
Lemma 10.6.

Lemma 10.7. Under the assumptions of Lemma 10.6, there exists k < oo and
8, > 0, and for & € (0,8,), there exist e(8) > 0 and z(8) < oo with the follow-
ing significance: Let A be a self-dual connection on End M X G such that for
somen > k,

T™>n
Then for Q > 4,
2

2 z(§
[, eml < 2| ET

>Q+n T>n

|F, |2<£(8) and f e™|F, |2< 0.
T™=n

Proof of Lemma 10.7. Require that k, §,, and &(8) be such that Lemma
10.6 holds. Let a = s*4 — I, and let v = Ba, with B now obeying 8 = 1 if
r>2n+3, B=0if r<n+ 2, and |dB] < 20. This v obeys

(10.25) e "de™ = 8(dB,a), P_drv=P_(dBAa—aAlv).

Due to Proposition 6.1 and Lemma 9.5 there exists {(8) > 0 such that
(10.26) [ e (le el +|P_drol) > 5(8) [ ™o

M M
Together, (10.15), (10.25), and (10.26) imply that

(10.27) ({(8)—f |E, |2)/M e’svzsfe"sf |F, [,

T™>n T>n

Choose e(8) < 1¢(8) so that (10.27) yields the uniform estimate

(10.28) f

e18|al2 < {16’”8".
T>n+3

T2
Now, let B, € C*(M)obey B, =1if r>n+ Q, B,=0if 7 <n+ 30, and
|dBy| < 40Q". Here, take Q > 4. Then v, = B,a obeys (10.25) with (v,, 8,)
replacing (v, 8). In place of (10.28), one obtains

2
|Eal™

§ 2
18] 412 1 ,né
(10.29) £>’I+Qe la)* < Qze j;)n |F, |
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From (10.25) and (10.29), one readily obtains by bootstrapping

2 2 2
10.30 e”|vral < e F,|".
(10.30) L., etvral < e[ IE
The lemma is a direct consequence of (10.29), (10.30), and Lemma 5.2.
Proof of Lemma 10.2, completion. (10.5) plus Lemmas 10.5 and 10.7
provides p < co and for each 4,, some ¢, € C"*}(v7Y([p, ));G) (with
G = SU(2) or SO(3)) such that a, = g*4, — T obeys for Q > 1

“ 2\ z(8)e?? 2
(10.31) e’“(Z vila, )< — F, |,
-/r>p+Q 1=o| | Q? j;}pI A’|
where m > 2 is assumed. It follows from (10.31) (cf. [29]) that a sub-
sequence of {A,} (now relabeled) has the property that {a;} converges on
77! p + 1, )) in the norm

m ,\ /2
f 978(2|V1(‘/)‘|) )
T>p+l =0

Let a denote the limit. Then a = h*4 — T forh € C"*Y(v7Y([p + 1, ©));G).
Set s, = h~'g,. The first part of Lemma 10.2 provides

{u;} c ¢ (7Y([0,p + 2]); G)

such that {u*4, — A} converges outside of the finite set of points {x,} C
7710, p]). By altering each s, by a constant group element, one can arrange
that {s,u;'} converges in C™*}(r7}(p + 1, p + 2])) to 1. Thus, for i suffi-
ciently large, one can deform s, over 7-([p + 1, p + 2]) to equal u; there.
Call the resulting gauge transformation h;. The set {4;} has the required
properties.

Proof of Lemma 10.3. According to Lemma 10.2, there exists a self-dual
connection 4 on M with

(10.32) [ IE, I < o,
M

and with the following additional properties: A subsequence of {4;} (now
relabeled) plus a sequence of gauge transformations, {4}, exist such that
{h}A4;} converges to 4 in C™+1(M \ finite set of points). (This is convergence
on compact subsets of M \ finite set.)

Due to (10.32), given & > 0, there exists n < oo such that

(10.33) [ BT <e
T™=n

Choose n so that the finite set above does not intersect 7~1([n, n + 3]).
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By assumption, P|g4p = End M X G with G = SU(2) or SO(3). If G =
SO(3), lift all connections to the double cover, P = End M X SU(2).
Lemma 10.4 provides h € C™* YW, ; SU(2)) such that

(10.34) sup ( [vO(n*4 - I‘),z) < L.
W1 \ =0
Here, because (W) has no nontrivial representation in SU(2), I is the flat,
product connection on W, ; X SU(2).
For all ; sufficiently large, (10.34) implies that

(10.35) sup ( f |V (h*h24, - T) |2) < e

Wy \I=0
Now, each 4; € &/, and is self-dual. Thus, given ¢ > 0 and j < oo, there
exists Q(j) < oo such that

2
(10.36) f e®|F, | <e.
T>Q+n ’
Lemma 10.4 supplies q; € C'”“(WQ+,,+1; SU(2)) such that
n 2
(10.37) sup ( Y lvé“(q}"Aj - I‘)l ) < (e
WQ+n+1 =0

Again, I' is the trivial connection (by definition of «/,, this time.) Let
B, € C*(M)obeyB,,,=1ifr>n+2,8,=0if r<n+1,and |dB,,,| <
20. For j large, define a connection (and principal SU(2) bundle) on
Bl= W, UNW, Uy - UyW, oUW 00Uy Wg.
by specifying
() A, on 7 Y([n,n +2]),

(10.38) A4, =(4, ont Y [n+2,n+ Q]),

(1 - Bn+Q+1)quj on T_l([n + Qvn + Q + 2])

By construction, 4 ;,=TonW,andon W, ,.,. Now, furl up B/ to obtain the
closed manifold Y/—identify N_ in W, with N in W, in+2 as in Figure 3.

—
’/’:“ ‘--_‘\\ \\
-

v\ -y
identify €

W, “TN

wn+Q+2
N_ N,

FIGURE 3
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The connection, 4 ; descends to Y/. Notice that for j large enough,

(10.39) fwl Pk [ <t

2 2
(10.40) fy |E; [ > /m |E, | - te.
(10.39) and (10.40) imply via the Chern-Weil formula that
2
(10.41) / |F; | <t moda.
Y;J J

(10.40) and (10.41) imply Lemma 10.3.

11. The proof of Theorem 1.4

Let P =M X SU(2) with M an admissible, end-periodic 4-manifold. As-
sume that =;(M) has only the trivial representation in SU(2), and that
by (K') = 0. For a generic, asymptotically periodic metric on TM, 4 , C %, is
nonempty (Proposition 9.2). It is a smooth, 5-dimensional manifold away from
the orbits of reducible connection (Proposition 8.2). By a local perturbation,
one may assume that a neighborhood of each reducible orbit in #, is
diffeomorphic to the cone on CP? (minus the vertex) (see Proposition 8.3).
Proposition 9.1 catalogues which reducible orbits appear in .#,. Finally,
Proposition 10.1 describes the ends of # ,.

Donaldson’s argument in §3 of [9] will be adapted to the end-periodic case
to prove Theorem 1.4. Rather than translating the constructions of §§2, 3 of [9]
to this case, it is simplest to compactify M and the moduli space .#,. Then
Donaldson’s argument can be used directly.

To compactify # ,, consider the following function on .4 ,: send [4A] € 4,
to

(11.1) (4= [ BET,

where 0 < B € C°(M) is identically one on K and zero on End M\ W,. It
follows from Proposition 9.3 that f is nonconstant and that

(11.2) inf f = 0.

The function f is smooth on 4, N %, and continuous on . ,. As the orbits
in #, of reducible connections are isolated (Proposition 9.1), one can find
arbitrary small & > 0, such that (f*(e)NA,)CM,N B,, wWhere it is a
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smooth, 4-dimensional submanifold. Fix such an ¢ and set
(11.3) .//{E={[A]E.//f4:f([A])>€}.

By construction, .#°¢ is a smooth 5-dimensional manifold with boundary.
Note, /¢ is not compact. Lemma 11.1 makes rigorous the intuitive notion
that A4\ #* consists of orbits of connections whose curvatures on K are
pointwise small.
Lemma 11.1. Given ¢ > 0, there exists &, > 0 such that if [A] € f7([0, &))
NA 4, then
sup | F, |(x) <.
xeK
Proof of Lemma 11.1.  This follows from Lemma 10.4.
Let £ c W, be the inverse image of a regular value g € [0,1] of 7. Let
2, = 1"Yq + n) be the translate of Z. It is convenient to compactify M by
first cutting along X, to obtain the compact manifold with boundary,

U,=174[0,q + n]).

Set Q, = U, U 5(-U,). The number n will be determined from & of Lemma
11.1.

The family of orbits of connections .#* defines a like family on Q,. This
new family is constructed as follows: via translation, { L, = M\ U,_,}%., are
all mutually diffeomorphic to L,; the diffeomorphism is 7.

Let T denote the product connection on L, X SU(2) and let

#(Ly) = {a € L35(T*L,) x su(2)}.
Let

9(L)) ={g€< L%;lm(Lo;SU(z))3L e”

J

Fix x € L, and let P, denote the fiber {x} X SU(2). 9(L,) acts on P_ by
(8(+), p) = g(x)p. Set

(11.4) gl(Lo)z (M(LO)XPX)/g(Lo)-

A repetition of the proofs of Lemmas 7.2 and 7.3 shows that #'(L,) is a
smooth Banach manifold. Note that #’(L,) admits a smooth SO(3) action
with fixed point [T', 1], 1 € SU(2).

Now, back on M, let x,= T"(x) € L, and let .#*" denote the inverse
image of #* under the projection (&, X P, )/Y, —> o,/9, (see §7). Away
from the reducible orbits, .#¢" — # ¢ is a principal SO(3) bundle.

3 2
vg®f < w}.
=0
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By restriction to L, and via pull-back by 7", one obtains a smooth, SO(3)
equivariant map
(11.5) Jo M —> B'(Ly).

Lemma 11.2. Given a neighborhood 2 of [I',1) € #'(L,) and ¢ > 0, there
exists m < oo such that for alln > m, j (M) C D.

Proof of Lemma 11.2. This is because each 4 € &/, is asymptotic to the
trivial flat connection on End M. See also Lemma 10.4 and the proof of
Lemma 10.3.

Now, choose 2 to be contractible onto [T',1]. It is possible to make this
retraction SO(3)-equivariant. Indeed, given » > 0, but small, a neighborhood
2(v) of [T, 1] is diffeomorphic to
D={aec L2 (T*L,) X su(2):]|al|;z res < 7,

(116) {a € L3,5(T*Lo) X su(2):lall 3, 7o,

e "d*e™a = 0 and i*(xa) = 0},
where i:Z (= 0L;) — L,. The group SO(3) = SU(2)/{+1} acts on @ by
(h, a) > hah~!. Retract 9 onto [18] by sending (¢,a) € [0,1] X 2 to (1 — t)a
€ 2. This SO(3)-equivariant retraction is used to construct the compactly
supported (on M) moduli space described below:

Lemma 11.3. Given & > 0, there exists a smooth homotopy h:[0,1] X #* —
&,/ 9, and n(€) < oo with the following properties:

1) h(O, -) = identity.

Q) If [Ale A5, there is a lift of h (-,[A)) to a path h (-, A):[0,1] —
&, which is the constant path when restricted to 7-'([0, n — 1}).

(3) h(1, A) is gauge equivalent to the trivial product connection on T~'([n,c0))
X SUQ2).

(4) For each t €[0,1], h(t, #*)N B, is diffeomorphic to M#* N B. By
implication,

h(e, O (A N\AF)/9s) € (AN\AE) /9, forall 1 € [0,1].

Proof of Lemma 11.3. Choose m < oo, sufficiently large so that j, :./#°" —
9(v) for all n>m and for » small. Let 8, € C(M) obey B,=1 on
77}([0,n — 1]) and B, = 0 on 77((n, o0)). Let + € [0,1] and let [4, ] € A *".
Then a unique g(4,/) € Lg;s(Ln, SU(2)) exists such that g(A4)(x,) = ! and
(11.7) g(A)*4A =T+ a([4]) onL,,
where (T")*a is in 2 of (11.6). Define a connection h(z,(4,1)) on M X SU(2)
by setting

h(t,(A4,1))=4 ont([0,n - 1]),
h(t,(4,1))=T+(1 —t)a+tB,a onlL,
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Now set h(t,[A)) = [h(t,(A4,1))). It is straightforward to check assertions
(1)-(4) of Lemma 11.3; this is left to the reader. The only difficulty comes in
checking that h(t,[A]) is an orbit of a reducible connection if [A4] is. If 4 is
reducible, then ¢ € L3, (M) X su(2) exists satisfying v ,¢ = 0. The converse
also holds. Let ¢ = g(4,1)¢g(A,I)* over L,. Then dy + [a,¢]=0on L,.
Since T"*a € 9, it follows that

(11.8) i*(xdy) = 0,
where i,:3, — L,. Also,
(11.9) e "d*e™dy — +(a A *dy — dy A *xa) = 0.

Equations (11.8) and (11.9), Lemma 5.2, and the maximum principle imply
that each component of ¢ (as a map of L, into su(2)) is constant on L,. Thus,
dy and [a, ¢ ] are both zero on L,. The conclusion is that

y=¢ onr}([0,n—1]), y=¢ onlL,
is covariantly constant for (¢, (A, 1)) for all ¢ € [0,1]. Thus, h(z,[A]) is the
orbit of a reducible connection if and only if [ 4] is.

Given ¢ > 0, let A4 = h(1, #¢) with h as per Lemma 11.3. This is a family
of orbits of compactly supported connections in %,. This family defines a
family of orbits of connections on a principal SU(2) bundle over Q,, if
m > n(e) + 2 with n(e) as given in Lemma 11.3. The construction starts by
constructing, as in the proof of Lemma 7.1, a principal SU(2) bundle P’ — Q,,
with Pontrjagin number 4. (“Instanton” number 1.) Let </(P’), ¢(P’) be the
space of L3-connections and L3-gauge transformations on P’. If &/ *(P’) C
&/ (P') are the irreducible connections, then

B(P') =4*(P')/9(P')
is a smooth Banach manifold [12, Chapter 3]. The space .#°¢ automatically sits

inside /(P")/%(P’). Indeed, let [4] € #°. Then the unique (up to multipli-
cation by a constant & € SU(2)) g(A4) € Lg;B(L,,, SU(2)) exists such that

g(A4)-A=T onlL,,,.

Define a bundle with connection (P}, A’) over Q,, by writing Q,, = K,,,, U
(9., \ K, 1) and then specifying that

(P,«;’A/)K,,+2 = (Kn+2 X SU(2), A)’

(Pi,A) o g, = ((@u\K,.1 X SU(2),T).

The clutching function is g(A4). The isomorphism class of (P}, A") of a bundle
with connection defines a point in &/(P’)/%(P’). This defines a continuous,
1-1 map, ¥ :.#¢ — o/ (P’)/9(P’), which (due to Lemma 11.3) maps orbits of
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reducibles to orbits of reducibles and which is an embedding away from these
orbits.

For future use, it is worth digressing here to indicate which orbits of
reducibles are in .Z°*. According to Proposition 9.1, the orbits of the reducibles
in ¢ are in 1-1 correspondence with the set of pairs { +f € H,(M,Z):f- f
= 1}. Since an orbit in #* restricts to 7-'([n + 1, 0)) as the orbit of the
product connection, only the pairs {+f € H,(K,,;Z):f-f= 1} can corre-
spond to reducible orbits in .#°¢. Here, it is illuminating to remark that
according to Lemma 5.7, the homomorphisms H,(K, Z) - H,(M,Z) for
! > -1 are injective, so there is no ambiguity involved in labeling orbits of
reducibles in .#¢ by classes in H,(K,,Z). Notice that Lemma 5.7 also implies
that for / € [-1, n + 1], the homomorphism H,(K,Z) = H,(Q,.; Z) is also
injective; this verifies that reducible connections on M which are flat on
771((n + 1, 0)) can be extended over Q,,, as reducible connections. Finally,
since m;(M) does not have nontrivial representations in SU(2), it does not
have them in S either. Hence, H;(M;Z) = 0. Thus, the group H*(M;Z) is
free abelian. By Lemma 5.7, the inclusion homomorphisms, chomp(M, Z)—
H*(M;Z), {HZ,(K;Z) > H*(M;Z)},, _, are injections. Hence, H,(M;Z)
and H,(K,Z) are free abelian groups too. Because the intersection pairing on
H,(K,Z) is positive definite, the number of pairs { +f € H,(K,,Z):f- f =1}
is at most rank H,(K,,Z), with equality only if the intersection pairing is
unimodular and diagonalizable over Z.

From °, one now constructs a 5-dimensional manifold with boundary,
M C B(P’). Before starting, note that Proposition 10.1 provides a subset
X'¢C M* such that A\ X° is compact and X'¢ is diffeomorphic to a
domain with smooth boundary in M X (0, 1). Proposition 9.2 provides A, > 0
such that

K x(0,\,) C o,

For A € (0,X,), construct a manifold with boundary, £ C /°, in the
following way: Take the set

(M X (A} nA) U(fH(e) N(MN\NK)) U(fH(e) N M X[N]1))

in /¢ and smooth the corners where f~!(e) intersects M X {A} in X°%
smooth these corners away from K X {A}. The resulting space is a smooth
4-manifold which is denoted B®* (see Figure 4). The interior of B is a space
which is a manifold away from the orbits in .#*° of reducible connections. By
Lemma 11.3 and Proposition 9.1, each such orbit has a neighborhood which is
diffeomorphic off of the reducible’s orbit to the cone on CP? minus the vertex.
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FIGURE 4

By cutting each cone, one obtains the manifold with boundary .# . The
boundary of .#* is the disjoint union of

B LI, CP?,

with / < rank H,(K,,, ; Z).

Lemma 114. For ¢ and & > 0, but small, and for n < oo but sufficiently
large, the manifold M X above, is oriented.

The proof of Lemma 11.4, and the remaining lemmas in this section, will be
deferred to the section’s end.

By construction (see Proposition 9.2 and Lemma 11.3) the image of K X {A}
in #** is homotopic (in fact, isotopic) to the image in %(P’) under the map
T of §9. (Because the connections in the image of T are trivial on End M, T
maps K X (0,1) into Z(P’).) The map T:K X (0,1) = Z(P’) is the obvious
restriction of T: Q, ., X (0,1) = Z(P’) (see [28], [30], [12]).

The topological significance of the map T is described in [9, §3]. In [9],
Donaldson defines a map,

wiH(Q,01,Z) > H(B(P');Z)

with the property that T*op:H,(Q,.;Z) - H*Q,.;Z) is Poincaré
duality. (Here, and henceforth, T is to be restricted to Q,,, X {A}.) To
exploit T and p as did Donaldson, the relationship between the cohomology of
0.4 and that of K needs investigating.

Let a € H,(K,Z). The inclusion i: K - @, induces iya € H,(Q, ., Z).
By Alexander duality, T*pi,a € H*(Q,,,,Z) comes from a class a €

comp(K Z) which is Poincaré dual to « [17].

Let Rk K — 04 and let J: 9.4 — B(P’) denote the obvious inclusions.
Then 7 induces a monomorphlsm (Lemma 5.7),

(K;Z) > H}(B™;Z).

Iy : comp
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Lemma 11.5. For &, A > 0, but small, and for n < oo, but large; one has for
all « € H,(K; Z),

i =J *igo.
Accept for the moment this lemma as fact. Let «, 8 € H,(K;Z). Then
&, B € H2_ (K;Z), their Poincaré duals, can be represented by cocycles which

omp

vanish off of a compact set in K. By Poincaré and Alexander duality,

(11.10) a- B = (ixa UiB, 0,

where { is the generator of H,(B®;Z) and ( -, ) is the usual pairing of
cohomology with homology. By Lemma 11.5, one has

(11.11) a- B = (J*uiya UJTi B, ).
Using the homology of .#*, (11.11) implies that
(11.12) a-B= X nliva) Up(ixB)[CP?].

Here, 2’ means to sum over the set of pairs {+e € H,(K, ,;Z):e-e=1)}
which label the orbits of the reducible connections in . *.
By Lemma 2.27 in [9] (see also §I11(ii) in [9]), (11.12) equals

(11.13) a-B=Y'(£)(a-e)(B-e),
where the sign of each term is analogous (but see [10]).

Since the intersection pairing on H,(K;Z) is nondegenerate, the number of
terms in 2’ must be at least rank H,(K; Z). One has additionally,

Lemma 11.6. Ler A_| C H,(K, . ; Z) denote the free abelian group that is
generated by the set of pairs { +te € H,(K,,,;Z):e - e = 1} which contribute to
2. Then dim A _;, = dim(H,(K;Z)), H,(K;Z)C A_,, and the intersection
pairing on A _, is unimodular and diagonalizable over L.

As a remark, if the intersection pairing on H,(K; Z) is unimodular, then it
follows that H,(K;Z) = A _;.

Proof of Lemma 11.6. Since H,(N;R)= H;(N;R)=0, it follows by
Meyer-Vietoris that

Hy)(K,.;;R) = H,(K;R) ® Hy(Wy Uy, --- Uy W, ;R)
and this splitting is respected by the intersection pairing. Thus
(11.19) A, ® R=H,(K;R).
Since A _, is generated by primitive elements, it follows from (11.14) that
H,(K;Z)c A_,. Of course, from (11.14), H,(K;Z) and A_; have the same
dimensions. Finally, since the intersection pairing on A _; is positive definite,

and A _, is generated by elements with square 1, the intersection form on A _,
must be unimodular and diagonalizable.
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To prove that the intersection form on H,(M;Z) is unimodular and
diagonalizable one need only replace K in the preceding arguments by
Ky, c K, c --- etc. This defines free abelian subgroups A_; C A, C A, C

- C H,(M;Z) with the property that

1_151; An = H2(M; Z)’

and, for all n, the intersection form on A, is unimodular and diagonalizable.
In this sense the intersection form on H,(M; Z) has these same properties.

The proof of Theorem 1.4 is completed now by proving Lemmas 11.4 and
11.5.

Proof of Lemma 11.4. The orientability of .#* is measured by the first
Stieffel-Whitney class of its tangent bundle. Since #** is diffeomorphic to an
open subset of #,, one could show that .#% is oriented by proving that
w (T A ,) = 0. By construction, 7./, is the restriction to .#, of the K-theory
class (in K(4,)) of the index bundle for the #,-parametrized family of elliptic
operators {(P_d e "d%e™):[A] € #,} [3]. One could compute w, for this
K-theory class directly. But, since the computation for such an index class is
available on compact M [9], [12], it is simpler to argue as follows: The
eigenvalue estimates from Lemmas 9.3 and 9.5 with the obstruction analysis in
[30, §83, 4] (see also [9]) when applied to the sort of grafting done here show
that (when »n is large) the class of T.#® in the K-theory of . is the
restriction to £ of the class in K(Z(P’)) of

(11.15) Index(P_d.,d;) +1-(B'(P") @0 R?).
Here, index () is the formal difference of finite-dimensional vector spaces,
ker(P_d,, d}) — Coker(P_d,, d})

as [A] varies in #(P’) (see [3]). The R? bundle in (11.15) is associated to the
canonical principal SO(3) bundle

B'(P) = P'| ; X gpry L *(P')
!
B(P’)

where g € Q,,, is a fixed point. The integer / in (11.11) is b,(Q,.,) —
b,(Q,+1), the number of anti-self-dual harmonic 2-forms on @, ; minus the
number of harmonic 1-forms on Q,, . (b; (Q,,,) grows linearly with n, while
b,(Q,,4,) is independent of n.)

(11.15) implies that

(11.16) w (TA*) = w,(Index(-) | 4o ).
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Now notice that 7,(#(P’)) = (1) [12, Chapter 5] so w;(Index(-))= 0 and
(11.16) implies that .# is orientable.

Proof of Lemma 11.5. Let K, = KU y W, U, W,. Since K, C Q,,,, and
since T *u is Poincaré duality, one has

&l g, = J*pijal Ky
In cohomology, one has the exact sequence (cf. the chapter on Alexander
duality in [17])
(11.17) > H2, (K,) > H*(B*) 5> HY (B - K,) > .

comp

To prove Lemma 11.5, one must show that p(J *uisa) = 0. By Alexander
duality, it is sufficient to check that p(J *pi,a) pairs to zero with all classes in
H,(B* K,). Let V = B™ — (K, \ W,). Thus ¥ N K, = W, and by excision,

H,(B™ K,) = HV,W,).

Thus, a class ¢ € H,(B, K,) can be represented by an embedded 2-manifold
R C V with dR c W,. However, H,(W,Z) = 0 since #;(W) has no nontrivial
representations in SU(2). Hence, one can assume that 0R = J.

To evaluate the pairing (J *uisa, R), go to Donaldson’s definition of u in
[9, 2]: let £ C K be an embedded surface which represents « in H,(K;Z). A
connection on P’ defines, by restriction, a connection on the principal SU(2)-
bundle P’|y = 2 X SU(2). The manifold R parametrizes a family of orbits of
irreducible connections on P’. By perturbing R, one may assume that the
induced family of orbits of connections on P’|s are all irreducible. To each
[A] € R, one associates a Fredholm operator, the Dirac operator on X twisted
by P’|s X gy@ C* The association of [4] € R to this Fredholm operator
defines a continuous map, ¥ : R — BU [3]. Here BU = BU(o0) is li_r)n BU(n).

According to Donaldson,

(J*pixa, Ry = (y*c;, R),
where ¢, € H*(BU, Z) is the universal first Chern class. In [20], U. Koschorke
proves that ({*c;, R) = 0 if the kernel and cokernel of the twisted Dirac
operator on X vanish for each [4] € R. The Dirac operator in question has
index zero, and the kernel and cokernel vanish for the product connection on
2 X SU(2). The kernel and cokernel then vanish for all connections on
3 X SU(2) which are C?-close to the product connection.
Since R N K = &, the number

s\ sp 15410)
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can be made arbitrarily small by choosing A and e small. This follows from
Proposition 9.2 and Lemma 11.1. Since m;( M) does not represent nontrivially
in SU(2), Lemma 10.4 implies the following: Given a C? neighborhood O of
the flat, product connection on = X SU(2) there exists £, A > 0 such that the
orbits of connections parametrized by K restrict to orbits of connections on
2 X SU(2) which intersect 0. Thus, ({*c;, R) = 0 by Koschorke, and Lemma
11.5 follows. The preceding “localization argument” to calculate the cohomol-
ogy of B®* was modeled closely on the arguments of Donaldson in [9].
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