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RESONANCES FOR AXIOM A FLOWS

D. RUELLE

Abstract

Given an Axiom A flow on M and smooth functions B,C: M •-> Λ, we

show that the time correlation function ρBC for a Gibbs state p has a Fourier

transform pBC meromorphic in a strip. This complements a result by

Pollicott [7]. The residues of the poles of ρBC are investigated. In the simplest

case, they have the form σ~(B)σ+(C) where σ~, σ+ are Gibbs distributions,

i.e., (Schwartz) distributions on M further specified in the paper. This is a

companion to an earlier paper [9] where similar results have been obtained

for Axiom A diffeomorphism.

0. Introduction

In an earlier paper [9] we have studied the time correlation functions for
Axiom A diffeomorphisms. These correlation functions have Fourier trans-
forms which are meromorphic in a strip, and we have identified the residues of
the poles in that strip in terms of Gibbs distributions. In the present paper we
obtain a similar result for Axiom A flows.

Let (/') be a C 1 + ε Axiom A flow on a compact manifold M (which we may
take as C00). We assume that p is a Gibbs measure on a nontrivial1 basic set Λ
(see Bowen and Ruelle [4]) and let B, C be smooth real functions on M. Define
the correlation function

PBC(0 = / p(Λ)B(/'x)C(x) - [/ p(Λc)B(x)] [/ 9(dx)C(x)

and its Fourier transform

P B C ( « ) = Γ eiω'

Received December 30,1985 and, in revised form, April 4,1986.
1 The basic set Λ is nontrivial if it is not a fixed point or a periodic orbit.
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(called the power spectrum if B = C). Completing an argument of Pollicott [7]

we shall show that the function p B C is meromorphic in a strip |Imω| < 8* (see

Theorem 4.1). The poles of p B C are called resonances, and we shall study their

residues. For simplicity we shall consider only simple poles and make a further

nondegeneracy assumption which is genetically satisfied. Under these condi-

tions, the residues are of the form σ~(2?)σ + (C), where σ~ and σ + are Gibbs

distributions (see Theorem 4.2). The Gibbs distributions are distributions in the

sense of Schwartz on M, which will be further specified below.

We refer the reader to Smale [10] and Bowen [1] for a general discussion of

Axiom A flows and their basic sets. For the purposes of the present paper we

shall essentially use the existence of symbolic dynamics as proved by Bowen [2].

Roughly speaking, symbolic dynamics is obtained by placing in the manifold

M a certain number of pieces of hypersurfaces Σ y transversal to the flow; a

point x of a basic set Λ c M is then specified by the sequence of intersections

of its orbit (/ '*) with the Σ y .

In the next sections we describe the formal structure of symbolic dynamics

(insofar as is needed). This structure is given by the construction of a space

Ω # , with a flow (τ@), and a map ω: Ω # -> M such that ωΩ # is a basic set Λ

for the flow (/ ') and ωτ£ = / 'ω.

1. Symbolic dynamics: the shift r

Let J be a nonempty finite set, and (tiJ) SL square matrix indexed by / X /,

with elements 0 or 1. (The elements j of / correspond to the indices of the

pieces of hypersurfaces Σ y mentioned in the introduction; ttj = 1 if an orbit

(f'x) may successively cross Σi and Σ y .) We define Ω to be the space of

sequences (jk)k(=z °f elements of J such that tjjk+ι = 1 for all k. The space Ω

is compact with respect to the topology of pointwise convergence. The shift

T : Ω •-> Ω is defined by ( T ^ ) ^ = ξk+1\ τ is a homeomorphism. The pair (Ω, T)

is called a subshift of finite type. We assume that all matrix elements of tN

are > 0 for sufficiently large N. (This means that T is topologically mixing on

Ω, which can always be achieved in the present situation.)

Given I c Z and ξ e Ω, we let πxξ = (ξj)J(=x be the sequence obtained by

restriction of the index set Z to X. We also write πxΏ, = Ω^.

If A e #(Ω,C) we define

P||00 { μ ( € ) | ί } ,

var,,Λ = sup{\A(ξ)-A(ξ')\:ξk = i'k for \k\ < n}9

\\A\\Θ = sup θ-n\2LΐnA, where0 < θ < 1,

IMIII = MIL + U\\β.
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We let #0 be the Banach space of those A for which ]imn^o0θ~n varw^4 = 0,
with the norm ||| \\\θ. Note that % is a Banach algebra (i.e.

%(X) = {A e V(QX9C):Aoπχ^ %}.

This is a Banach space with respect to the induced norm A >-> |||Λ ° πJHfl. We

denote by «/, « , (*)* the duals of Vθ, %(X). For σ e «/ or %(X)* it will

be convenient to write

a(A) = ( o(dt)A(x)

as if σ were a measure.

The pressure of Λ e ^(Ω, R) is

P(A) = max{Λ(σ) + σ(>4):σisa τ-invariant probability measure},

where h(σ) is the entropy of σ ( = Kolmogorov-Sinai invariant). If A e ζ€B,
the maximum is reached for a unique measure p called the Gibbs state for ^4.
The theory of Gibbs states is discussed in Bowen [3] and Ruelle [8]. In [9] an
extension to Gibbs distributions is given (these are elements of %*, not
necessarily measures). We shall quote results from the above references as
needed. Here we reproduce some definitions of [9] with slightly different
notation.2

If A# e #02, we may introduce an interaction Φ such that

(1.1) A#(ξ)=Aφ(t)=-*o(ξo)- Σ Φ2»U-B. ,U,
n = l

where |Φ 2 n | < const θ2" (we write Φk = 0 if k is odd). We then define

^ € ^ ( ( - 0 0 , O])by

(1.2) Λ' (€') = - Σ Φk(ξ'_k,...,ξ'o).

Finally we let J£?φ be the operator on ̂ ( ( - o o , 0]) such that

(1.3) (jSf»)(€O = Σ ^[expΛ'φte' V η)]φ(τ{' V η),

where τξ r V η = ( , ξ'_l9 ξ'o, η) e Ω ^ ^ 0] when ^ o η = 1 (otherwise τξ' V η
is undefined). The adjoint «J^* acts on ̂ ( ( - o o , 0])*.

The spectrum of J^φ and «J^* is contained in the disk { z : | z | <
expP(Re^[ # )}, and the part in {z: |z| > 0expP(ReΛ#)} is discrete, consisting
of eigenvalues of finite multiplicity.

• In particular, it is convenient to write A# instead of A for purpose of later reference.
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If A# is real, expP(v4#) is a simple eigenvalue of ££φ and ϋ?φ*, and there is

no other eigenvalue with the same modulus. Let S' and σ' be the eigenvectors

of J^φ and J^φ* corresponding to expP(A#). Then S'σ' is (up to normaliza-

tion) the image by π ^ ^ 0] of the Gibbs state p.

For A# not necessarily real, let λ, μ be any eigenvalues of JSfφ and <&£*

with modulus > 0expP(Reyl#), and let S{, o'μ be in the corresponding

generalized eigenspaces of i?φ, i ^ * . Then the Gibbs distributions on Ω have

images by 77^^ 0] of the form S^σχ or linear combinations of such products (a

precise description is given in [9]).

Let us write

(1.4)

d(zeA*) = exp — Σ

Then this series converges when \z\θexpP(ReA#) < 1, with θ < 1 as in [9]. In

this region, the zeros of z ^ d ( z ^ # ) coincide with the inverses λ"1 of the

eigenvalues of J^φ, and have the same multiplicity.

2. Symbolic dynamics: the flow (τ@)

Consider the compact set Ω X [0,1] and identify (£, 1) with (τ£, 0); we

obtain a compact space Ω # . Let {£, w) •-> Λ(£, w) be a continuous function

Ω # ^ C such that A(-, u) e ^ and w -> yl( , w) is continuous from [0,1] to

Ήβ. We call # / the Banach space of such functions with norm

(2.1) HUM? = max||U( ,W)IL.
u

We denote by * / * the dual of this space.

Let Θ be a real continuous and strictly positive function on Ω # . The

suspended flow with speed function Θ" 1 is the flow (τ@) defined on Ω # by

with appropriate identifications when u(t) = 0 or 1. This flow is mixing if

there is no A e # C ( Ω # ) satisfying ^ ° T^ = ^/αί4 with A Φ 0, α > 0, and (r^)

is nonmixing if and only if it is isomorphic to a flow with constant speed
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function.3 The correspondence between Ω and Ω* extends to invariant (proba-

bility) measures, and to functions, as follows:

Ω # θ(τ<0 σ # σx A

ΩO T σ A#

(see formulas (2.2), (2.3), and (2.6) which follow).

If σ is a τ-invariant measure on Ω, a (τ@)-invariant measure σ # on Ω* is

defined by

(2.2) σ*{dξdu) = σ{dξ)θ(ξ,u)du,

where du denotes Lebesgue measure. If σ is a τ-invariant probability measure,

then a (τ@)-invariant probability measure σ x is given by

(2.3) ( / ) \

where we have written

(2.4)

The map σ •-> σ x is a bijection of the τ-invariant probability measures on Ω to

the (^-invariant probability measures on Ω#. The entropy /zΘ(σx) with

respect to (τ@) is given by Abramov's formula:

(

The pressure of A e ^ ( Ω # , R) is defined by

P # ( Λ ) = max{/zθ(σx) 4- σ x ( i4) :σ x is a (τ@)-invariant

probability measure}.

Write

(2.6) Λ#(ί)= Γ ^ ( | , W ) Θ ( | , W ) ^ .

Then A# e ^(Ω,R). (Note that 1 # = r by (2.4).) If A G «/, there is a

unique measure p x realizing the maximum in (2.5). This is called the Gibbs

state for A. In fact p x corresponds by (2.2), (2.3) to the τ-invariant probability

measure p on Ω which is the Gibbs state for A# — P#(A)r. Furthermore

P(A# — P#(A)r) = 0 and this equation determines P#(A) (see Bowen and

Ruelle [4]).

? For a precise statement see [1].
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Let us return to the original Axiom A flow (/') on the manifold M. The

connection between the flow (τ@) on Ω # and (/ ') restricted to a basic set Λ of

M is by a map ω: Ω # •-> Λ (see Bowen [2]). The map ω sends (£, 0) to a point

x^ of the hyper surf ace Σ ^ such that its orbit successively intersects all Σ ^ in

the order given by the components ξk of £. The point (£, u) = τ@(ξ, 0) goes to

/ ' * £ . Using ω one can send functions on Λ to functions on Ω # and measures

on Ω # to measures on Λ. In this manner, the study of correlation functions for

the Axiom A flow (/') translates into the study of correlation functions for the

suspended flow (τ@). This approach, called symbolic dynamics, has the disad-

vantage of a certain arbitrariness (the choice of Ω#, (τ@), ω is nonunique) but

we shall not further consider the question. (For Axiom A diffeomorphisms, the

problem has been discussed in [9], and one could repeat the same remarks here,

mutatis mutandis.)

Note that the positive function r on Ω defined by (2.4) expresses the time

between crossing Σ ^ and the next hypersurface Σ ^ in terms of the symbol

sequence. By suitably choosing the hypersurfaces Σz (they should be unions of

unstable manifolds) one can assume that r(ξ) depends only on the components

ξk of £ with k < 1.

We thus have

( 2 7 ) r ° τ ~ l = f0^(-oo,o]>

where f is a function on Ω ^ Q] and π^^ Q]: Ω -> Ω(_OOi0]
 π a s been defined in

§1. From the general theory of Axiom A flows (see Bowen [2], Bowen and

Ruelle [4]), it follows that the time between crossings of the hypersurfaces Σ, is

a Holder continuous function and, as a consequence, that f belongs to

^ ( ( - o o , 0]) for suitable θ. Similarly, if A is a smooth function on the

manifold M, and we define A = A° ω and A# by (2.6) we find A# ^ %i for

suitable θ (for technical reasons we want θ2 here rather than θ).

From now on we shall work with the symbolic dynamics, remembering from

the differentiable setup only that A, Θ e <g$, so that

follow from (2.4), (2.6).

Remember that an interaction Φ has been associated with A# by (1.1). It is

convenient to introduce also an interaction Ψ, associated with the function r

defined by (2.7), such that

(2.8) r(€') = -Ϋo(&) - f %(ξLk,'"ΛΌ)

and 1^1 < const θk. Note that with the notation of (1.1) we have f = A'ψ.
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For real A e <gfi9 a zeta function is defined by
-1

n-\

(2.9) = exp Σ \ Σ exp ± U#(rkt) ~ 3τ(τ*€)l
n = l £ : τ " £ = £ A: = 0

= [d(exp(A# - sr))Y\

where the product is over the periodic orbits γ for the flow, xγ e γ, and /(γ) is
the prime period of γ (Ruelle [8]); the functional d is defined by (1.4). The
expressions (2.9) converge, and ζA(s) is analytic for Res > P#(A).

2.1. Theorem, (a) (Pollicott [6]) ζA extends to a meromorphic function in

{ s : R e s > P*(A) - δ) , where δ is determined by P*'(A # - (P#(A) - δ)r) =

log θ~ι. The poles of ζA(s) are located at the points s such that 1 is an eigenvalue

(b) (Ruelle [8]) ζA has a simple pole at s = P#(A).
(c) (Parry and Pollicott [5]) If (τ@) is mixing, ξA has no pole on the line

{S'.KQS = P#(A)} apart from the pole at s = P#(A).
By analogy with the proof of the prime number theorem one can, in view of

(c), apply the Wiener-Ikehara Tauberian theorem to ξo(s) to study the distri-
bution of the periods /(γ) (Parry and Pollicott [5]).

It may be convenient to consider a functional defined with respect to the
flow (τ{) with unit speed. For A e #(Ω # , C), write

where Ax = /J A(ξ, u) du, and lx(y) is the (integer) period of γ with respect to
(T/). With this definition, ξA(s) = [2{(A - s)Θ)]~\ The function A->
S)(A)~ι is holomoφhic on ^(Ω#,C) when P(KtAλ) < 0; the function A ->

is holomoφhic on « $ when P(ReAx + log^) < 0.

3. Gibbs distributions for the flow (τ@)

The concept of Gibbs distributions for a lattice system introduced in [9] was
shown to be a natural extension of the concept of Gibbs state. If we want to
study Axiom A flows rather than diffeomoφhisms, we need another concept.
The definition presented here is somewhat ad hoc, but appropriate for the
discussion of correlation functions as we shall see later. It is in fact a natural
continuous time version of the concept introduced earlier for discrete systems,
but restricted to the simplest case (see Remark below).
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For discrete systems, a space &λμ of Gibbs distributions on Ω is defined as

the span of elements of the form

In this formula, σ', σ" belong to the generalized eigenspaces to the eigenvalues

λ, μ of operators «^*, J^φ"* acting on «/((-oo, 0]) and %*([!, oo))

respectively. The operator J?φ* is the dual of J?φ defined by (1.3), and J?φ*

is defined analogously. We have written

(3-D F φ ( r v r ) = Σ Σ φ/+«(*v ,&,iίv >ί»)
/=0 m = l

Thus, all the ingredients of @λμ are defined with respect to an interaction Φ, or

equivalently a function Aφ (see (1.1)). (Note that Aφ ° τ~k is, up to sign, the

contribution to the energy of the lattice site k for the standard interpretation of

the formalism we are describing.)

Our first step towards a definition of Gibbs distributions for continuous

time systems will be to replace Aφ © τ~k by different functions for k < 0 and

k > 1. More precisely, we replace Aφ by 4 A# - υr ° T " 1 for /: < 0 and

A# — wr o T " 1 for A: > 1. (We start from real Θ, A e ^ ¥ , with Θ > 0, and r,

Λ # are defined by (2.4), (2.6). The complex numbers υ, w will be specified in a

minute.) Using the interactions Φ, Ψ defined by (1.1), (2.8) and the defintions

(1.2), (1.3) we see that the operator 3?' associated with A# - O P T ' 1 is

« ^ Φ _ ^ such that

') = Σ /fo,

There is an analogous definition for J ^ ' , ^ . In the function Vφ defined by

(3.1) we replace Φ by Φ - wΨ (not Φ - υΨ, the reason for this asymmetric

choice is that the difference between A# - υr © τ~ι and A# — wr © T" 1 , viz.

-(v — w)r o T " 1 , depends only on arguments ξk with A: G (-OO, 0]).

The numbers v, w are specified by the condition that 1 be an eigenvalue of

J ^ Φ _ ^ and ^φ_wΨ, and that

(3.2) P*(A) - 8 < Rev, Rew,

where 8 is determined by Theorem 2.1(a). (We have also automatically Re υ,

Re w < P*(A).)

4 Equivalently, we might use (A# - vr)°τ ι for k < 0 and (A# - wτ-)oT"1 for k > 1; the

final definitions would not change.
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Let Fυ'* and FJ'* be the eigenspaces to the eigenvalue 1 of Jδfφ* υΨ and
^Φ-WΨ (Note: the strict, not the generalized eigenspaces.) We let J^w be the
finite dimensional subspace of %* generated by the elements

(3.3) σ#(rf{' V di") = olΌ){di')ϋ^{dr)e'y^^^"\

where σ{v) e Fυ'*9 σ('^ e Fw"*. (It is not hard to see that Fυ'* ® FJ'* -> ̂ w is
bijective.)

The restriction of -SPφ* ϋΨ to F/* is the identity operator; similarly for the
restriction of &£'*„* to Fw"*. Using (3.3), it is now readily checked that

so that, for all σ# G J ^ W ,

(3.4) τσ# = exp[(t; - w)r o T" 1 ] σ#,

or equivalently

τ - 1σ# = exp[-(ϋ - w)r] σ#.

Define now σ # e «/* by

where r = t(ξ, u) is the inverse of the function / -> u{t) such that dw/Λ =
θ(€, M)-1 and iι(0) = 0, i.e., ί(ξ, w) = tfdaθ(ξ,a). (Note that /(ξ,l) = r(ξ)
and that |||/|||f ^ |||Θ|||? in view of (2.1).) We define the space JF* of Gibbs
distributions to consist of the σ # constructed above.

Writing (τ^σ*)(A) = σ*(A o τ£) we find that

for σ # G ^ * , hence

= σ #

Returning to the space J^w, we note that the projection π ^ ^ o j J ^ is
readily characterized. We have indeed, from (3.3)

(3.6) (τr (_^O ]σ#)(^') = S(w)(ξ')σ(0)(dt')9

where

$('»,)(€') = / ^ ( ^ ' r v
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It is known (see [9]) that the functions S[w) of this form (with σ(^} e i^"*)
constitute precisely the eigenspace F^ to the eigenvalue 1 of the operator
J ^ φ _ w ψ acting on <^(-oo, 0]. Thus 9r (_O O f 0]^w is spanned by F^FV'*. Note
that we also have

^(-00,0]τσ# = exp[(ϋ - w)/-*] 9r(_OOf0]σ#.

Example. Since P(^4# - />#(^4)r) = 0 (§2), the operator «^φ_p#(i4)ψ has 1
as simple eigenvalue (see §1). Writing P#(A) = P, we see that 3FPP is
one-dimensional spanned by the Gibbs state σ # on Ω for A# — P#(A)r. The
space ^p% is thus spanned by the Gibbs state p x on Ω# for A, and p x is
therefore also a Gibbs distribution.

Remark. To avoid technical problems we have adopted a definition of Gibbs
distributions which uses the strict eigenspaces of «2̂ '*, «S '̂*. (This is no
restriction as long as we consider simple eigenvalues.) The parallel study in [9]
was based on a more comprehensive definition, using generalized eigenspaces.
As a consequence we could identify in [9] all the coefficients of the poles of the
Fourier transform of correlation functions. Here we identify the residues in
terms of Gibbs distributions for the important case of simple poles. A more
general analysis would of course be desirable.

Example. Let r be a constant function, say r = T. Then i f φ . ^ = e~υT££φ,
•ίfφ^ψ = e~wTJ?£. The eigenvalues and eigenvectors are thus readily de-
termined. In particular, 1 is an eigenvalue of <$fφ-vψ if λ £ e~vT = 1, where λ
is an eigenvalue of «^.

This gives

where the multivaluedness of the log has been made explicit. Writing similarly

w = y(logμ + Ik'mi)

we may identify σ # e,fϋ)v with an element of the space @λμ of Gibbs
distributions defined in [9]. The corresponding σ # e J^* is given by

σ*(dξdu) = σ#(J£)exp[-(logλ _ l o g μ + 2(k - k')vi)j\ dt

and we have

τ > # = σ#exp(logλ - logμ + 2(k - k')πi)j.

Notice that &fw = &Ό* when υ' - υ = w' - w = I 2πi/T, I an integer.
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4. Correlation functions for the flow (τ@)

We consider the suspended flow for a fixed speed function Θ"1 e ^ t , and
let p x be the Gibbs state corresponding to the real function A e ^β. If
£, C e <€£ we define

and its Fourier transform

Aici") = Γ e""ώp*c(t)
•'-oo

which has to be understood as a tempered distribution. We may express p x in
terms of the Gibbs state p for A# on Ω (see (2.2), (2.3)). We write

(4.1) ,-i = I p ( # ) j θ(€, II) Λ* =

and

C = C - p x ( C ) .

The following manipulations then yield a correct result in the sense of
distributions

<»)= Γ eiu'Λp*{{BΌτ£)C')
J-O0

= vf^ e'-'dtj p(dt)f™ Λ'2?'(τέ+''(€,0))C'(τέ'(€,0))

(4.2) =

00 r J ij~l

Σ I dtexpiωl ^ r(τkξ) +
= -oo ° \A: = 0

7 - 1

y = -oo k = 0
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where

(4.3) Z
= / duβ(ξ9u)B'(ξ9u)expiωt(ξ9u)9

(4.4) t(ξ,u)= Γdaθ(ξ9a).
Jo

The definition of C is similar.
Note that, for each n > 0, \d"B/dω% \dnC/dωn\ are bounded uniformly

with respect to ω and ξ. Using furthermore the fact that min r > 0, we see that
the right-hand side of (4.2) converges in Schwartz' space S?'(R) of temperate
distributions (with respect to ω) and thus also in the space !3'(M) of all
distributions. We shall next represent B, C as series which converge uniformly
on compacts, as well as their derivatives:

, λ B = Xo + Xλe
iωr + X,e / ω ( r + r° τ ) + ' * + ^ i ω ( r + "" +r°τM"1) + ,

(4.5)
C = Yo + y l έ?-/ ω r + y ^ - M ' +' T) + . . . + y^-M/-+ - +roT" > +

We define successively Bo = 5, Xo, Bv Xv - as follows:
(a) Treating ω as a parameter, which we now allow to be complex, we

extract Xm as the part of Bm depending only on £_m, , ξm. This extraction is
not unique, but can be achieved linearly, so that

(4.6) var w + 1 * m = 0, | | * J β < II^JL, \\Bm - Xm\\» < varm + τBm.

(b) We define

(4.7) Bm+ι = (Bm-Xm)e-^^m

We may assume that

( 4 g ) vzrkB^Kθ,

var^r < Lθk for k ^ 1.

(K depends on ω, but is uniformly bounded on compacts; from (4.3) and (4.4)

we see that we may take K = | | |Θ|||*|| |£ill* expflω||||θ|||?). We also'have

£ = IIΓIU<IIIΘIH*-) Note that by construction we have

(4.9) var,(£m - Xm) < var,5m ϊoτk>m.

In view of (4.6), (4.7), (4.8), (4.9), we obtain

varkBm < Kmθk loτk^m

provided the Km satisfy Ko^ K and
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with

We take

Thus

I exp(Imω max A*) for Imω > 0,

\ exp(Imω min r) for Im ω < 0.

L\ω\θ2k+ι).

for k>m,

\\Bm ~ XJL < KEmβm+\ || JfJU < H^IL < KEmβM.

Similar estimates hold for the derivatives of the Xm with respect to ω.

Therefore for ω real, and thus E = 1, the series (4.5) for B, and the differenti-

ated series converge exponentially fast on compact sets. In the sense of

convergence in ^ ' ( R ) we therefore have

p(dξ) r(τkξ)

m,n j = -oo

oo

Σ
m,n 7 = -

j + m-l

k = n

r(τ*{)

m — n — 1

Σ
= - o <

00

_Σ
00

Σ
= - α

exp - iω Σ r{τ-kξ)\B"(r-'ξ,ω)C"(ξ,-ω)

r(τ*{)

/-o
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where

(4.10) " - ;

c(ί,-ω)= Σ yΛ(
w = 0

We may write p = ^ . ^ p , and

so that

!

oo / /-I

/=0 \ k=0
oo / /-I

+ Σ exp/ω Σ
/=0 \ A: = 0

We have (see (3.6))

p(dξ') = S ( ' , ,(i ')<,

where P = P#(^4) and 5('P) and σ('P) are the eigenvectors corresponding to the
eigenvalue 1 of the operators J?φ_~Pφ, JS?φ*PΫ acting on %(-oo, 0],
^ # ( - o o , 0]. (These eigenvectors are unique up to normalization.) Thus

/=o

/=0

(4.12) = v[(
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Note that the two terms in the right-hand side are permuted by the interchange

of B and C, and the replacement of ω by -ω.

4.1. Theorem. If B, C e # / , the function pBC extends to a meromorphic

function in the strip

(4.13) |Imω| < δ ,

where

2 max r — min r '

If we also have |Imω| < δ, we may write

PBC(<*) = d ί <A _BίC

p#<A\ +

(4.14)

j(exp(^#-(P*(^)-/ω)r))'

wλere 7VβC w holomorphic in (4.13) ύwd d is as in (1.4).

Note that, in view of (2.9), we may rewrite (4.14) as

PBC(^) = NBC(ω)ξ(P*(A) + /«) + NCB(-ω)ζ(P*(A) - iω).

The position of the poles of pBC is thus simply related to that of the poles of ξ.

(They are of the form ±i(P*(A) - s), where s is such that 1 is an eigenvalue

A partial proof of the above proposition has been obtained earlier by

Pollicott [7].

Let θ < θ* < 1; then ω •-> Bω is holomorphic with values in ^ * ( - o o , 0] in

the region defined by θ*~ιEΘ < 1, i.e.,

211 0*1 < / ' l θ g ί l " I m ω " m a x r ,
| O g ' \ | log0 |- lmω minr i f I m ω < 0 .

On the other hand, (1 - S$JP£_(p_iω)S{P))~ι is meromoφhic as an operator

on^*(-oo, 0] provided

-(P*(A) - iω)r)) < 1

i.e.,

lmω)r) < |log(9*|.
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Since P(A# — P#(A)r) = 0, this condition is implied by

(4.15) -Imω maxr < |log0*|.

Therefore ω -> (1 - S(ϊ]&£_(p_iω)*S{P))-ιBω is meromoφhic if

[logfll ^ |logfl|
2 max r — min r max r

and co -> ρ[C_ω(l - ^ ^ - ( z * ^ ) * ^ ) ) " 1 ^ ] i s a l s o meromorphic. Inter-
changing B and C, we obtain from (4.12) the meromorphy of pf c in (4.13).

If |Imωj < δ, we may also write

—

# -(P#(A) - iω)r)) '

where the numerator is holomorphic in (4.15) (see [9, Proposition 3.3]); from
this (4.14) follows readily.

4.2. Theorem. Suppose that 1 is a simple eigenvalue of J?φ_sψ. There is thus
a simple eigenvalue λ(z) of «S^_Z* depending analytically on z for z close
to s. Assume that the derivative λ'(s) Φ 0. Then p£c has simple poles at
±i(P#(A) — s). Their residues are

j;σ*(B)o*(C) and - ^ σ * ( C ) σ * ( S )

respectively, with σjfs e J<>*, σ5* e ^sfy and Ka constant.
(The normalization of σ^, σs*, and the value of K are discussed in the

Remark to follow).
The two poles come from the two terms in the right-hand side of (4.12). It

suffices to discuss the first term, which we rewrite

vo('P)[Bω({l - ^ _ ( / . + , ω ) Ψ ) " 1 - ί)s ( ' , )C- t t ] .

Up to a contribution regular at i{P*{A) - s) this is

or, again up to a regular contribution,

(4-16)

^{XWis - P*{A) - iω))-1

λ'(s)(s - P*(A) -
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where we have used (3.6), (4.11), and σ^ e ^Ps9 σsP e &sP. We have, using
successively (4.10), (3.4), (4.5), (4.3), and (3.5),

OPS(B»( J(P*(A)-S)))

(4.17) = £ (r-σΛ)[xm{;i(P*(A)-s))]

Σ
m = 0

-(P*(A)-s)
m - 1

k = 0

= oPs[B{ ,i(P*{A) - s))} = o*(B') = σ*(5)

with σ^ e J^,*. Similarly

(4.18) O i / , ( C " ( . , - / ( P * ( ^ ) - *))) = σ*(C)

with σ*P e J^*. Inserting (4.17) and (4.18) in (4.16), we obtain

ivXisγ'o^BWΛCtω - i(P*(A) - s)γl

which is the form of the residue announced in the theorem, with K = v~ιX{s).
Remark. The product σPs(B)σs%(C) is unambiguously normalized in view

of the formulas

o*{dtdu) = σΛ(#)exp[-(P " s)t] dt,

o*{dζdu) = σsP(dξ) exp[(P - s)t] dt,

The constant K is given by

(4.19) K=v-'X(s)

where σPP is the Gibbs state p e ^PP and σ55 G J ^ J ? with

') = S{P)(ξ')σ(P)(dξ'),

We obtained (4.19) from (4.1), and formula (3.2) of [9]. Note that K Φ 0 by
one of the assumptions of Theorem 4.2.
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