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CURVATURE CHARACTERIZATION
OF COMPACT HERMITIAN SYMMETRIC

SPACES

NGAIMING MOK & JIA-QING ZHONG

In the study of complex manifolds the following conjecture is a well-known
and natural analogue of the elliptic case of the uniformization theorem.

Conjecture I. Suppose X is a compact Kahler manifold of nonnegative
holomorphic bisectional curvature and positive Ricci curvature. Then X is
biholomorphic to a compact Hermitian symmetric space.

The special case, when X is of positive bisectional curvature and conjectured
to be Pw, is the Frankel conjecture, resolved simultaneously and independently
by Mori [19] and Siu & Yau [22] in 1979 using very different methods. The
general case of Conjecture I is at present still open. A related conjecture in case
X is assumed to be Kahler-Einstein is the following.

Conjecture II. Suppose X is a compact Kahler-Einstein manifold of non-
negative holomorphic bisectional curvature and positive Ricci curvature. Then
X is isometric to a compact Hermitian symmetric space.

The first efforts to resolve Conjecture II were due to Berger [3], who showed
in 1966 that a compact Kahler-Einstein manifold of positive sectional curva-
ture is isometric to P" and equipped with the Fubini-Study metric (up to a
scalar factor). This was reformulated by Goldberg and Kobayashi to the case
of positive holomorphic bisectional curvature. Later, Gray [8] proved Conjec-
ture II in 1973 under the stronger assumption of nonnegative Riemannian
sectional curvature. He introduced on the unit sphere bundle of l a (degener-
ate) elliptic operator D and developed a Bochner-Kodaira formula for DR, R
denoting the curvature tensor, to prove the vanishing of vR on X. The last
property is the simplest characterization of locally symmetric spaces in terms
of the curvature tensor. Apparently, there are serious difficulties in modifying
Gray's argument to the general case of nonnegative holomorphic bisectional
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curvature since D will in general not be (degenerate) elliptic. This has left
Conjecture II open for a long time. It was one of the open questions in Kahler
geometry raised by Siu [21] in his address in 1983 to the International Congress
of Mathematics at Warsaw.

One connection between Conjectures I and II is inspired by the work of
Hamilton [10] on deforming Riemannian metrics of positive curvature on a
compact 3-manifold to an Einstein metric. It is hoped that such an approach
can be applied to compact Kahler manifolds of nonnegative holomorphic
bisectional curvature. In this connection we refer the reader to a recent article
of Bando [2], who used the evolution equation of Hamilton [10] and results of
Siu [20] on characterizing hyperquadrics to obtain an affirmative answer to
Conjecture I in the case of dimension 3. (The cases of dimensions 1 and 2 are
well known.)

In this article we resolve Conjecture II in the affirmative. Our starting point
is the method of Berger [3] on characterizing P" with the Fubini-Study metric.
He did this by showing that the Kahler manifold X under consideration has
constant holomorphic sectional curvature. To do this, he considered a point x0

on X and a unit tangent vector a of type (1,0) at JC0, where the global
maximum of holomorphic sectional curvatures is attained, and applied the
maximum principle to ΔΛα δ α δ(x0). For Conjecture II, we used the characteri-
zation of Hermitian symmetric spaces by the vanishing of vi£, a property not
verifiable by a direct application of Berger's method. In a similar setting as
above, assuming X Kahler-Einstein of nonnegative bisectional curvature at
a e T^°(X\ one can show that relative to the Hermitian bilinear form
#«(£> £') = ^a«£|(xo)> T*%0(X) decomposes into the orthogonal direct sum of
eigenspaces C α θ J ζ θ JΓa, where RaSii(x0) = 2#««««(*o) f o r £ G -&a> = °
for ξ G JΓa and moreover bR^^Xo) = 0.

Our idea is to prove first of all the invariance of Radiaa under parallel
transport of a along certain curves emanating from x0. To start with we prove,
using the maximum principle, that the global maximum of holomorphic
sectional curvatures is attained at every point x G X. Let γ be an integral
curve of any vector field of "maximal directions" α(x); we prove the stronger
fact that the curvature tensor R is invariant under parallel transport along the
curve γ. Using an orthonormal basis {ex;} at x G γ consisting of eigenvectors
of the Hermitian form Ha(ξ, ξ') = RaSξξ>(x), a = a(x), we shall actually
prove the vanishing of all terms vβΛ, ;Λ/(jc). The proof of the vanishing of such
covariant derivatives will occupy the bulk of the present article.

Our original aim was to prove that Vη'Λαδαδ(Jc) = 0 at a global maximal
direction a for all real tangent vectors η at x and all positive integers /. Since
the Kahler-Einstein metric is real-analytic, this would allow us to conclude the
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invariance of Raάaά under parallel transport along geodesies. Although this

scheme is too involved for higher order radial derivatives, it will be enough to

show VηΛ α 5 α δ (x) = 0 for 1 < i < 7, which is sufficient to imply the invari-

ance of R under parallel transport along integral curves of maximal directions.

The point of departure is the observation that Berger's formula implies

ΔRaaaa(x) = ° a n d h e n c e ^ηRactaa(x) = 0 for 1 < / < 3 in view of the global

maximality of Radίaδί. It follows that V*Λ α δ α δ (x) > 0. Define a (2k)th order

elliptic operator S(2k) on smooth tensors T by taking, at each point y where T

is defined, S{2k)T to be the average, suitably normalized, of V2kT over all

η e Ty(X) of unit length. Clearly, S{4)Raάaά(x) < 0. On the other hand, we

show that Δ2/ία δ α δ(jc) > 0. For the Euclidean case, S(4) agrees with Δ2.

However, for Kahler manifolds in general 5 ( 4 ) differs from Δ2 by some

zero-order terms. Such zero-order terms are obtained by a number of commu-

tations. At x we have sufficient knowledge of zero-order terms to conclude

that S(4)Raάadί(x) = Δ 2 i ί α 5 α 5 (x), implying both are zero and that V,JΛα a β a(*)

= 0 for 1 < i < 5.

To proceed further one can consider similarly S^2k)Ra^aU(x) and

S{2k-2)ARaάa^(x). In general the difference between S(2k) and S ( 2 Λ " 2 ) Δ is a

differential operator of order (2k - 4). We are able to prove in a way similar

to the above that S ( 6 ) # α 5 α 5 ( x ) = S^Raάa^(x) = 0, implying V ^ α 5 α 5 ( x )

for 1 < i < 7. This involves proving the vanishing of commutation terms

which are second order covariant derivatives of terms of the type Λα 5 α£ or

Raakk These are obtained from variation equalities or Taylor series expansions

of curvature functions along geodesies issuing from x.

In order to prove the vanishing of VaRjjkj(x) we make full use of gradient

terms arising in formulas Δ 2 # α 5 α 5 ( x ) and S(4)ΔRaάaϊi(x). To prove V α # / 7 ^ ( * )

= 0 it will actually be necessary also to show Δ3Raάadί(x) = 0 and to make use

of gradient terms arising from Δ3Λα 5 α δ. One surprising thing in this scheme of

proof is that, under our special choice of basis at x, a e T}n0(X) a fixed

maximal direction, we show that there are only a few types of nonvanishing

curvature terms. Such information is also used in the proof of vaRijkι(x) = 0.

At each x e X let Vx be the real linear subspace of T^°(X) generated by

the nonempty set of maximal directions a e TX(X). We can use the invariance

of R under parallel transport along integral curves of vector fields of maximal

directions to show that at some point JC, the vector subspaces ReF v c TV(X)

for adjacent points y constitute an integrable distribution. The integral sub-

manifolds are moreover complex, totally geodesic and locally symmetric. Then,

we use the theorem of Bonnet-Myers to show that these integral submanifolds

extend to complex submanifolds of X for a suitable choice of x, and that they

are mutually nonintersecting. We use this to show that the curvature tensor is
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reducible at each point, that the vector subspaces Vχ9 x e X, constitute a
differentiable vector bundle invariant under parallel transport and that the
foliation of X by integral submanifolds of the distribution x •-> Re Vx actually
corresponds to a global decomposition of I up to a finite covering. This
allows us to prove Conjecture II inductively.

We believe that our analysis of the curvature tensor should also be useful in
other problems in Kahler geometry related to locally symmetric Hermitian
manifolds.

The main results of the present article, together with a sketch of the methods
of proof, has appeared in Mok & Zhong [18].

We would like to thank Professor Siu and Professor Yau for their interest in
the research project. The research was carried out while the second author was
a visiting member at the Institute for Advanced Study. He would like to thank
the Institute for its support and hospitality.
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0. Statement of results

Our main theorem in this article is the following confirmation of Conjecture
II (in the introduction).

Main Theorem. Let X be a compact Kάhler-Einstein manifold of nonnegatiυe
holomorphic bisectional curvature and positive Ricci curvature. Then X is isomet-
ric to a compact Hermitian symmetric space.

We remark that the nonnegativity of holomorphic bisectional curvatures is
strictly weaker than the nonnegativity of Riemannian sectional curvatures and
that the former concept is more natural in the context of complex differential
geometry. For a compact Kahler manifold, holomorphic bisectional curvatures
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are nonnegative if and only if the unit ball bundle of the dual tangent bundle is
weakly pseudocόnvex.

Our method of proof yields the following generalizations of the Main
Theorem:

Corollary 1. Let X be a compact Kάhler manifold of nonnegative holomorphic
bisectional curvature and constant scalar curvature. Then X is isometric to a
compact Hermitian locally symmetric space.

Corollary 2. Let X be a complete Kάhler manifold of nonnegative holomor-
phic bisectional curvature such that the Ricci tensor is parallel. Then X is
isometric to a complete Hermitian locally symmetric space.

From the proof given for the Main Theorem, it is immediate to generalize to
the case when X is assumed to be of nonnegative holomorphic bisectional
curvature and the Ricci tensor is parallel and positive. The proofs of the
corollaries involve essentially a splitting of the flat directions of the Ricci
tensor. Corollary 1 follows from Corollary 2 and results of Bishop & Goldberg
[4]-[6] which assert that under the hypothesis of Corollary 1, the Ricci tensor is
automatically parallel.

1. Background material

(1.1) The curvature tensor on Kahler manifolds and commutation formulas.
Let X be a Kahler manifold. Denote by R = R{ , , , ) the Riemannian
curvature tensor on the underlying Riemannian manifold. By complexification,
R acts on (CT(X))4, CT(X) denoting the complexified tangent bundle. On X
we have a decomposition of CT(X) into the orthogonal direction sum Γ 1 0 (X)
Θ T°"\X). If we choose a system of holomorphic coordinates (zl9- —,zn) at
J C G I , then {d/dzl9- ,3/3zM} and {d/dzv- ,3/3zM) constitute bases of
Tχ*°(X) and Tx°*

ι(X) respectively. In terms of the corresponding decomposi-
tion of tensors into (/?, g)-types on a Kahler manifold, R is of type (2,2). In
terms of the basis {3/3z1? ,3/3zrt; 3/3zx, ,3/3zM} of CTXQ(X) and
writing R^ = R(d/dzi9d/dzJ9d/dzk9d/dzι)9 etc., the only possible nonzero
terms of R**** (indices with or without bars) are given by Rijk] and accompa-
nying terms obtained by permutation of indices. We write Rtj for the Ricci
curvature tensor in terms of coordinates. Our convention on R is such that
^ I Ϊ I Ϊ

 > 0 for the Riemann sphere with the standard Hermitian metric of
constant positive curvature.

We say that X is of nonnegative holomorphic bisectional curvature if
Λ(£,l; £,?) > 0 for all x e S and ξ9ξ e TX

(1>O)(X). In terms of indices this
means that ΣRijkiaiajbkbι> 0 for all ^-tuples (av-—,an)9 (bl9 —,bn) of
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complex numbers. Every Hermitian (globally) symmetric space carries on

invariant Kahler-Einstein metric of nonnegative holomorphic bisectional

curvature. In terms of the curvature tensor we have the following characteriza-

tion of locally symmetric Riemannian manifolds.

Proposition (cf. Kobayashi & Nomizu [12]). A Riemannian manifold X is

locally symmetric at x e X if and only if in a neighborhood of x, VR = 0 for the

Riemannian curvature tensor R.

The curvature tensor measures analytically the commutation of covariant

differentiations. For example, for a covariant tensor of the type Tijkh we have,

denoting vpsTi]kl = Ti]k]st etc.,

r M i r m i r m i r m T

λijkhst = Iijkϊ,ts> 1ijk'lXt ~ Iijkΐjs>

All three equations follow from the definition of R in terms of commutation

of covariant differentiations. The first two are consequences of the fact that R

is of type (2,2).

In general, for any covariant tensor field Γ**...**, commutation for

second-order covariant differentiation occurs only if we commute two indices

of opposite type (one barred, one unbarred), in which case there are as many

commutation terms as there are indices in Γ, the sign attached to a commuta-

tion term in Γ** ... **tJ/- — I*** ... %is is positive if it corresponds to a substitution

of an unbarred index in Γ**...**, and negative otherwise. This is simply

because -Rμjsi = Rjμsi.

Finally we recall that the Bianchi identity implies the equality Rijk^m =

Rjjmj k in the case of Kahler manifolds.

(1.2) Computation of ΔRaΈίaϊjι. At x e X fixed let (zv , zn) be a system of

local holomorphic coordinates. For any smooth tensor T we shall denote by

ΔΓ the operator Σ^yg'^V/V Γ + V V^Γ), where gij is the contravariant

metric tensor. (See (1.3) for the meaning of ΔΓ and other averaging differential

operators.) We recall here the computation of t^Ra-a- in Berger [3] for any

tangent vector a of type (1,0).

Proposition (1.2). Let (zx,- , zn) be a system of local holomorphic coordi-

nates at x e X such that g/y (x) = δ/7 for the Kahler metric tensor (g, 7 ). Then,

denoting by p the Einstein constant, i.e. Ricci form = p( Kahler form), we have
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Proof. Obviously the right-hand side is independent of the choice of
holomorphic coordinates at x as long as they are unitary at x, and it suffices
to prove the proposition for ea of unit length. We may therefore choose
(z1?- —,zn) so that 3/3z1 = a. Then, from

aaaa,ii aoiaaji Zw aμii^μaaa Z^^μaii άμaa

μ μ

we have, using LfR^n = pδαμ,

Z-rf aaaaji £J aάaάji r* aaaa r aaaa L^ aaaaji'

Hence

ιAR ._

ι—j aaia,ia L^ άμai μaia Δ^ μaai aμίa.

L* iμai aaμa 1—4 μaai aaiμ

by the Bianchi identity.
Since the metric on X is Kahler-Einstein, we have

proving the proposition.

(1.3) Averaging operators of radial derivatives. Let T be a covariant smooth

tensor of order m defined on an open subset U of X. At x e U let η be a real
tangent vector of unit length. Let γ be a geodesic passing through JC and within
the cut locus of x with η tangent to γ at x. Let vx,- , υk be complexified
tangent vectors at x and denote by the same symbols the vector fields defined
on γ obtained by parallel transport. Then

V T(DU • -,vm)(x) = {V;T)(VI,- " , O W

since VηVj = 0 for 1 < j < k along γ. Letting k be a positive integer, we define
the operator S(2k)T by setting

at each x where T is defined, where the integration is over the unit sphere of
the real tangent space at x, endowed with the unique rotation-invariant metric
of unit mass, and where c2k is a constant to be determined. In case k = 1 we
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have

Let (z1?- , zn) be a local holomorphic coordinate system unitary at x. Then
η = ξ + I for some £ e ^ ( J f ) of length 1/ ^2 . Write ξ = Σ, αf-(i|)3/3zf.,

•S 7"** ...**(*) = ^ J (VΣ.α.

2Rec2J Σfl/ίη)^

Denote

Consider on T**°(X) « Cw the transformation

(al9 -,eiθ'ai9- -,eiθJaj9- -, an)9

where the left-hand side stands for Σaβ/dz^ This induces an orthogonal
transformation η -> V on TX(X) = {£ + | : | e 7;(1'0)(X)}. It follows that

Choosing fl/5 6̂  suitably we see that btj = 0 for all /, j and that b{- = 0 unless
/ =7. By symmetry, clearly b^ = = few^. These constants can be com-
puted by taking Γ to be the function ΣJzJ2 and comparing coefficients. In any
case bγt > 0 and we choose c2^iϊ = 1> giving

i.e., 5 ( 2 )Γ = Σ ίV/V/ + V/Vy)̂ . We use ΔΓ to denote S(2)Γ. There are two
related 4th order averaging differential operators, namely Δ2 and S(4). We have

A 11 JJ ± ιιjj'
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By the same argument as above we have

S * = C42^Dnii[T (,•/ + //)(// + //) + i jiϊi + •* ,ι7//

Here we are adopting the convention

= T - - 4- T -- -U T - - -I- T -
jj) 2 Jijj ^ λ Jijj ^ 2 Mjj ̂  L ,ϋ

etc. The equality above is obtained by noting that the only nonzero terms in
ft**** must come from 2 pairs of conjugates, e.g. b{-φ ft-y , etc., which follows
from using the transformation

Obviously bnjj remains unchanged when indices are permuted, but the corre-
sponding covariant differentiation may differ because of the curvature. We
write the expansion for 5 ( 4 )Γ in a more uniform manner. Denote by S4 the
permutation group of 4 elements. For any σG,S4 and any 4th order covariant
differentiation Tσ

aβγS (indices with or without bars), we denote by Tσ

aβyδ the
4th order covariant derivative obtained by formally permuting the four indices
using σ G 54. In this notation we can write

,////+ c4Lbiijj L TMjj-

Note that in the original expression that there are 6 terms attached to biUi and
24 terms attached to b^, i < j . This accounts for the factor of 1/4 in the first
term of the new expression. Our main result in this section is the following:

Proposition (1.3). For a suitable choice of positive constant c2, we have the

expansion

Similarly, for any positive integer k

(2*)»
2*
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Proof. We will only prove the special case k = 2 since the proof of the

general case is exactly the same. Recall that b^β is defined by

Obviously biUi = bvj,vj, for all / and /', 1 < i, /' < n, and b jj = bvj,yj, for i Φ j

and /' Φ j f . It follows that 5 ( 4 ) Γ must be of the form

(*) s^τ=cΣ Σ rM + c'Σ Σ τ°Mjj.
i σe5 4 iΦj σ^S4

We claim that in the Euclidean case S(4)T agrees with Δ2Γ for a suitable choice

of c2k. We denote the operators S(4) and Δ2 in the Euclidean case by S0

(4) and

Δ2

0 respectively. Then, the symbol of the fourth-order operator S^4) with

constant coefficients is a fourth-order polynomial on C" (with coordinates ξ)

in ξl9 - - , ξn; ξv , ξn invariant under rotations, so that it must be a (positive)

multiple of (Σ/|£, | 2 ) 2 , the symbol of Δ2

0, hence proving the claim. From now on

we will choose the constant c2k > 0 such that S$4) = Δ2

0. Now from (*) we

have

i σ e 5 4 /Φj aeS4 /,j

in the Euclidean case. But in this case Tσ

 aβyS = T aβyδ. By comparing

coefficients this yields that c' = c, so that in general

s<*τ = cΣ Σ τyIJ}.
i,j σ e S 4

The constant c can be obtained by setting the right-hand side equal to

Δ2

0Γ = 4Σfi9jT jijj in the Euclidean case, yielding the special case of k = 2

and in an analogous manner the general case of Proposition (1.3).

(1.4) Conversion of radial derivatives to mixed covariant derivatives. In the

argument of showing that certain components of covariant derivatives of the

curvature tensor vanish at a given point x, it will be a typical situation first to

show radial derivatives of certain orders along geodesies γ through the point x

vanishing and then to show similar vanishing phenomena for mixed covariant

derivatives. Suppose for some fixed positive integer k we have v^Rijk](x) = 0

for all real tangent vectors η at x. In the Euclidean case this would mean that

for Rijkι all covariant derivatives of degree k at x, symbolically vkRijkl(x),

would vanish at x. However, for a general Kahler manifold this is not the case.

We have the following proposition in the general case of Riemannian mani-

folds.
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Proposition (1.4). Let M be an m-dimensional Riemannian manifold and let

X G M such that for the given smooth tensor T, the coυariant of order /,

V^7^/2 ...//(-x) = 0 for some specific indices iv- , is and for all real tangent

vectors η at x. For any σ e Sk, we denote by (V^V* 2 * V^w)σT) i ...,(Λ;)

the components of covariant derivatives obtained by permuting the order of the

k = kx + +/cw derivatives using σ. Then we have

for any set of nonnegative integers kl9 , km such that kλ + +km = k.

Proof. Let xv- -,xm be real normal geodesic coordinates at the point

X G M . The point x is then the origin in this coordinate system. For any real

tangent vector η = afi/'dxι + +amd/dxm of unit length we have

Writing tη = (xv x2, , xm) we have

'\'2 ••• i,\Xl'> X2'>' ' ' > Xm)

= Σ Σ Σ ( v f v ? ••• v ; - ) X 2 . . . , , ( 0 ) * ^ ? ••• x m-,

where Ss is the group of formal permutations of the s indices involved in the

covariant differentiation. The proposition follows immediately by setting equal

to zero all the coefficients of A:th order monomials JC^JC^2 x^w, kx + k2

+ *' * +^m = £> which must be the case when vη*7)if 2... ^(0) = 0 for all real

tangent vectors η at x.

Remarks. In the complex case we can rewrite the formula in Proposition

(1.4) by allowing the differentiations to be against barred or unbarred indices.

(1.5) Second variation inequalities associated to the curvature tensor. Let X

be a Kahler manifold and x e X be a point where holomorphic bisectional

curvatures are nonnegative. There are two important and well-known inequali-

ties associated to R^^x). They are respectively related to maximal directions

of holomorphic sectional curvatures and flat (zero) directions of holomorphic

bisectional curvatures. We formulate them in the form of two lemmata.

Lemma (1.5.1). Let X be a Kahler manifold and x e X be a point where

holomorphic bisectional curvatures are nonnegative. Suppose a e ΓX

1 O(Z) of

unit length is the direction attaining the maximum of all holomorphic sectional

curvatures at x. Then, for any ξ £ T^°(X) of unit length which is perpendicular

to α, we have

0 < 2 | I
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Proof. We shall henceforth call a a maximal direction of holomorphic

sectional curvatures at x or simply a maximal direction at x. We have, for any

ε > 0 and any real 0,

R(a + eeiΘζ, a + εeiθξ a + εei9ξ, a + εeiθξ) < (1 + ε 2 ) 2 # α 5 α 5 .

Since £ is orthogonal to α, | |α| | = | | | | | = 1 and a is a maximal direction at x.

Here and henceforth in the article we will sometimes drop the reference to the

point x when there is no danger of confusion. Comparing the coefficients of ε

immediately yields Λ α 5 α | = 0. Comparing the coefficients of ε2 then yields

2 ' X | α | ) < 2Ra
a-aa-a.

2i9We can always choose the angle θ so that 2 Re(e2i9Raξaξ) > 0, yielding

the desired inequality.

Lemma (1.5.2). Let X be a Kάhler manifold and x e X be a point where

holomorphic bisectional curvatures are nonnegatiυe. Suppose α,jδG T^°(X) are

such that Raaββ(x) = 0. Let ξ,ζ ΪΞ T™(X) be arbitrary. Then

I I 2 I I 2

\Raξβξ\ +\Rafiβ\ <RaatfRβm'

Proof. Since holomoφhic bisectional curvatures are nonnegative at x, we

have for all δ, ε > 0 and θ, φ real

R(a + δeiβξ9 a + 8eiθζ )8 + εe'+ξ, β + εe ίφξ ) > 0.

Expanding in terms of δ, z and writing out the coefficients of δ, ε we obtain

Raaβξ = Rββaξ = °

From the second-order terms we obtain

) ( t f ) 0

for δ, ε sufficiently small and hence for all δ, ε > 0. By making the transforma-

tions ξ -> eiθ°ξ and ζ -> e/φof so that Λ α ^ is changed to e~i(θ°+Φo)Raξβξ and

Raβζξ is changed to el(ίθ°~<t>o)Raβtξ we may without loss of generality assume

that to start with both R^^ and Raβtf are real. Then by choosing θ = φ = 0,

we obtain from the discriminant

I R aξβξ + Λ afiξξ I < Λ «ati

By choosing φ = π/2, θ = — 7r/2, we obtain on the other hand

I R aξβξ ~ R aβξξ I < R aaURββξξ'
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Summing up the two inequalities and dividing by 2, we obtain the desired
inequality

2 2

\Raξβξ\ +\R«m\ <RaaΠR

2. Zero-order information on curvature terms associated
with a global maximal direction

(2.1) By using the computation of (1.2) and Lemma (1.5.1), Berger [3]
obtained, in the case of positive sectional curvature, that for a unit vector
a e T}'0(X) attaining the global maximum of all holomorphic sectional curva-
tures, Raά^ = ^Raciaa f o r anY £ G T}'°(X) of unit length and orthogonal to
a. In the case of nonnegative holomorphic bisectional curvature, his computa-
tion yields immediately

Proposition (2.1). T}'°(X) splits into the orthogonal direct sum Ca θ JίfΘ
J/*, where JP consists of all ξ e T^°(X) such that Radί^ = 0 and Jί consists of
all ξ e T™(X) such that Λβa^ = 0.

Proof. Since Λα δ α δ is a global maximum of all holomorphic sectional
curvatures, we have

= const/ VΪR(a(y),ά(y),a(y),ά(y))(x) < 0
v

as in (1.3), where η ranges over all real tangent vectors of unit length, a(y)
denotes on a neighborhood of x the vector field obtained from a(x) = α by
parallel transport along geodesies from x and the integration is with respect to
the rotation-symmetric measure of the unit sphere of TX(X). On the other
hand, from (1.2) we have

^^Raάaa = Σ l^α/α/l + Σ (Rocaaά ~ ^Raaiϊ)Raciii
Δ iΦl iΦl

or jΦ\

for an orthonormal basis {*?,} of T^°(X) such that ex = a and RaSij = 0 for

i Φ j . From Lemma (1.5.1) we have RaSil < i # α δ α δ yielding

ΔR

aaaa > 0.

Equality holds if and only if RaSi = \Raaaa or 0 for / > 1 and that Raia- = 0
for all /, j except / = j = 1. In particular we have the orthogonal decomposi-
tion of T*'°(X) into eigenspaces of the Hermitian bilinear form Ha(ξ,ξ) =
Raaξξ
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From now on we shall fix an a and call JPa=Jf the half-space and

JΓa = JΓ the null-space associated to a.

Also from here on we shall fix an α G Γ 1 0 (A r ) of unit length such that
Raaaa = suP*eτ**<;o,ιι*ιι-i Λtftf> w h e r e a G T™(X) shall be termed a global

maximal direction (of holomoφhic sectional curvatures). We shall also fix an

orthonormal basis of T**°(X), according to the orthogonal decomposition

T^°(X) = C α Θ JίTe JΓ, consisting of {el9- , en] such that eλ = α, ep G tf

for 2 < /? ^ m and eq G ̂  for m + 1 < # < n. Write i/ = {2, -,m} and

J V = { m + l,•••,>!}. For α e Tχ*°{X) fixed, we shall typically use the indices

given by the above choice of bases. Since the choice of {ep: p e H) and [eq\

q e N } is arbitrary within J f and JΓ as long as they form orthonormal bases

of JtF and JΓ respectively, we shall also use the notations ep and eq for

general elements of J f and JΓ of unit length. Any orthonormal basis {eλ} U

{έy /? e H) U {e^: q ̂  N} associated to a e T™(X) will be called a

privileged orthonormal basis associated to α.

To systematize once and for all the choice of notations, we use, as has been

the case, ξ, ξ to denote the complexified tangent vectors of type (1,0) and η to

denote the general real tangent vectors. The new indices arising from substitu-

tion in commutation formulas will be denoted by μ, v.

(2.2) Equations satisfied by curvature terms associated to a global maximal

direction. We collect here the necessary information on R^fi associated to a

global maximal direction of holomoφhic sectional curvatures a = ex e

T*'°(X). Some of these equations are already contained in Proposition (2.1)

and its proof.

Proposition (2.2.1). Let a e T*f(X) of unit length be a global maximal

direction of holomorphic sectional curvatures and let {ex} U {ep: p G H) U {eq\

q G N) be a privileged orthonormal basis of T^°(X) associated to a. In terms

of this basis, we have

(a) Λ I Ϊ ^ = iΛii i ϊ > 0 forp e H.
(b) Rιhj = 0foriΦl orj Φ 1.

(c) R\qi] = 0 for qtΞ N and I *ζ /, j < n. (In particular Rιlqq = Rιlpq = 0

forp G H andq G N.)

ξq a ^ q for ξ G tf andq G N.
Rppp'qq' = (2/Rinϊ)Σre H

Before proving Proposition (2.2.1) we give a few remarks on our formulation

of the equations. Since the equations are stated for arbitrary choices of

privileged orthonormal basis associated to α, the equations are satisfied for ep

an arbitrary unit vector of the half-space Jίf and eq an arbitrary unit vector of

the null-space JΓ. For example, the equation Rx\qq = 0 implies by polarization
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Rΰqq' = 0 for q, qf e N, and the equation RχPpP = 0 for p e H implies by
polarization R\pp>p» = 0 for /?, p\ p" e i/. Equation (e) implies by polariza-
tion the following representation of curvature terms Rpp>qq> in terms of Rι}rk.

Proof of Proposition (2.2.1). (a), (b) and the special case of (c) in parenthe-
ses are included either in the statement or the proof of Proposition (2.1). We
first prove (d) by a third-order variation equality at α = ev Consider the
function F(ε) in the real variable ε defined by

1

z
εep> eι + εep

Proposition (2.2) implies the vanishing of both the first and the second
variation of F(ε) at ε = 0. In fact

since Rιlιp = Rlpl-p = 0.
Since R\\pp = i^πi ϊ w e obtain

— (Λ l T l I +2ε2Rlϊn +4ε3ReRlppp +ε4Rp-pp-p).
(1 + 2ε2 + e4)

Since F(0) = ΛJΪU, by comparing coefficients of Taylor expansions of the
denominator and the numerator, we have immediately dF(0)/dε = d2F(0)/dε2

= 0. Since F(ε) < Run the third-order variation equality yields

Since the same equality holds with ep replaced by eiθep9 we conclude the
equation (c)

= 0 forall/7Gi/.

(Recall that ep e Jίf, | | ^ | | = 1, is arbitrary so that by polarization R\pp>p» = 0
for p,p'9p"eH.)

To finish the proof of Proposition (2.2.1) we shall need the following
analysis at the zero directions Rnqq(xo) of holomorphic bisectional curvatures.

Proposition (2.2.2). Let q e N and a = ex e T*f(X) be a global maximal
direction of holomorphic sectional curvatures. Then, ΔRU^XQ) = 0. Hence
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Proof. First, we compute ΔR^. It is immediate that Λ ^ , . - = Rnggji by

a commutation formula. Hence

~ϊRΰqq = ΣRιiqq,Γi (summations over i with unspecified

ranges will henceforth mean 1 < i < n)

lϊiqjq + Σ,\Rlμq~iRμϊiq ~Rμlq'iR\μiq
i i,μ

~*~ Riμq'iRlϊμq ~ RμqqiRUiμ)'

Since

ΣRUiq,'iq = ΣRlϊiϊ,qq = Rlϊ,qq = 0»
/ i

we obtain at JC0

~2^R\\qq = Σ\Rlμqi\ + Rllqq ~ Σ\Rlqiμ\ ~ ΣR\\iμRμiqq'
i,μ i,μ i,μ

From #iϊ<^ = 0 and first variation equalities, noting that bisectional curva-

tures on X are nonnegative, we obtain immediately

Riiq-q = Rnqi = 0 for 1 < / < Λ, ^ G ̂ , | | e j | = 1 arbitrary.

This yields at x0

Δ ^ Σ l^^^rl - Σ l ^ l ^ / l - Σ R\\ppRppqq'

We claim that from the second-variation inequality Lemma (1.5.2)

Since X carries nonnegative holomorphic bisectional curvatures

yielding Proposition (2.2.2). To prove the inequality ^R\iqq{xo) < 0 we give

two different approaches. First, we recall the following lemma in linear

algebra.

Lemma (2.2.3). Let S(z\ z') be a complex symmetric bilinear form on a

complex vector space Cn represented by the matrix S with respect to the canonical

coordinates of Cn. Then there exists a unitary transformation U of Cn (relative

to the Euclidean Hermitian structure) such that U'SU is a diagonal matrix.

Using Lemma (2.2.3), we diagonalize the complex symmetric bilinear form

S(ξ; £) = Rιξqξ on $f yielding RιPqP> = 0 for p Φ p for some choice of
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orthonormal basis { ep} of Jίf. In this coordinate system we have

jΔRllqq** Σ \Rlpqp\ ~~ Σ\R\qi]\ " Σ RUppRppqq'
p(=H i,j p^H

Note that Σ« e ^|Λi^^| 2 is invariant under the unitary transformations on 3tf
since triU'SSU) = triU'SSU) = tr(SS). From the second-variation inequality
(1.5.2) we have

This yields

This yields a proof of Proposition (2.2.2) and with it also the equation (d)
Riqi] = 0 for all i, y, 1 < /, 7 < Λ.

Since Lemma (2.2.3) is proved entirely by algebraic means, it would be
desirable to give a geometric proof of

(#) Σ\Rlpqr\2< ΣRnppRppqq
P<r P

in our situation without a special choice of coordinates. We claim that for any
^ G J f and any orthonormal basis { er} of J?\

(*) Σ | * W | 2 + Σ | * l ^ Γ < \RύllRΰqq'

Then, integrating (*) over ξ e ^f of unit length using a rotation-symmetric
metric on the unit sphere yields immediately ( # ) and hence another proof of
Proposition (2.2.2).

To prove (*) observe first of all that Lemma (1.5.2) yields only

l^l^rl ^ ΊRlϊlϊRtξqq'

We shall now prove (*) by making a better use of the argument of the
second-variation used in Lemma (1.5.2). Consider the Taylor expansion of

eξ, eq + ε £ Crer, eq + εΣ
re// re//

We then have

r<=H
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Since X carries nonnegative holomorphic bisectional curvatures, 92G(0)/3ε2 is
always nonnegative for any choice of complex numbers Cr. It follows that the
quadratic form Q in (z l5 z2, , zm), defined by

Q((z1,";zm);(zι,-,zm))-\zι\
2RH,,+ Σ Uλ'^ψ

is positive semidefinite. Now take zr to be of the form xre
ιθ% xn θr real, for

2 < r < m and take zγ = xx real and positive. Choose θr and replace eq by
e"*^ for an appropriate real a so that e~ierR^q-r is real and > 0 while
e'9rRiqξr is < 0. By computing the determinant of the symmetric matrix
representing the real symmetric bilinear form Qθ given by

we conclude immediately that

Σ

By a similar argument we have

V \R I + l # 112 < R χ m

I~ι \Γ^\ξqr\~T \^\qίf\\ ^ 2 '

Adding the two equations and dividing by 2, we obtain immediately the
statement (*).

End of proof of Proposition (2.2.1). The second proof of Proposition (2.2.2)
yields immediately from the equality ^Rxiq^(x0) = 0 the equality

(e) L I * * , ! 2 - * 1 1 " "

(e)' is obtained easily from (e) by polarization. To see this define a tensor
Ψ of type (2,2) for p,p' e H and q,q' G N by

= V1 p p
»,τ,_ ^ "lp'qr*plrq'

Clearly Tim = Rilζl for ξ e Jf and ξ e ^Γ It suffices therefore to show that
from Sψξ = Tm -R#χ = 0, one can prove Spp.qψ = 0, proving Tpp.qψ =
R

Pp'qq"> i e (e) B u t n o w f°Γ ε ' * real and 0, φ real angles

( + εeiφe'p9 ep + e^1^; ^ + δ ^ ^ ; , ^ + β ^ ) s 0
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giving by computing the coefficient of εδ

for all real θ and φ. This implies Rprqq. = Rp>pqq> = 0.

3. Structure of the space of maximal directions on Tλ'°(X)

(3.1) Everywhere existence of global maxima of holomorphic sectional curva-

ture. From now on X will stand for a compact Kahler-Einstein manifold of

nonnegative holomorphic bisectional curvatures. We denote by SX'°(X) the

unit sphere of the hermitian vector space TX*°(X) of complexified tangent

vectors of type (1,0). Slt0(X) will denote the sphere bundle thus obtained.

Define the function / on X by f(x) = supξeSiΛx)Rm. If a e S^°(X) and

Raaaά = f(χ) w e shall call a a maximal direction (of holomorphic sectional

curvature at x). Clearly / is a continuous function. Our main result here is the

following proposition:

Proposition (3.1). The function f is constant on X. In other words, the global

maximum sup^ e ^ . o ^ R^ξ of all holomorphic sectional curvatures is attained at

every single point of X.

Proof. We prove the proposition by using the maximum principle. It

suffices to show that / is subharmonic in the generalized sense. The starting

point is the following consequence of Berger's computation.

, v Let a e SX*°(X) be a maximal direction of holomorphic

^ sectional curvatures at x. Then ΔRaάaii(x) > 0.

The proof was given in Proposition (2.2.1). There, for the verification

ΔRa<xaά(χ) > 0, it suffices to assume that # α « α 5 (x) = sup^Sho(X)R^^. We

note that since ΔΛ α 5 α 5 is the Laplacian of the tensor Raδίaά evaluated at

(a,a; a,a) we cannot apply the maximum principle directly. Instead we

claim that at each x e X, and for any a e SX'°(X) such that Raάaά = / ( * ) ,

(**) Δ/(* ) > ΔRa-aa-a(x) > 0

in the generalized sense. To prove (**) we construct local barrier functions for

/, denoted by gx, as follows. Fix x e X and a e S™(X) with Radίaά = f(x)

= sup^^i.o^) Rξξξξ- In an open neighborhood Ux of x within the cut-locus of

x we shall denote by a(y) the complexified tangent vector at y of type (1,0)

obtained by parallel transport of a = a(x) along the unique geodesic joining x

to y within the cut-locus of x. Define gx(y) = R(a(y), a(y), a(y), a(y))
for y G Ux. From the discussion in (1.3) of averaging operators of radial



34 NGAIMING MOK & JIA-QING ZHONG

derivatives we know that

We know that on Ux, gx^f and that gx(x) = f(x). For the Laplacian of

continuous functions, we have the generalized definition (following Oka)

Δ/(*) = c2n hm — η T - f(x)

With this definition / is subharmonic on X if and only if Δ/(x) > 0 at each

point x e X. Obviously Δ/(JC) ^ Δgx(x) since gx(x) = f(x) and gx < / on

B(x; r). It follows that

) > ΔRaaa-a(x) > 0

in the generalized sense. Thus, / is subharmonic and hence constant on X.

(3.2) Structure of the bundle of "maximal subspaces". On the unit sphere

S™(X) of T™(X), we shall denote by Jίx the set of all a e S^°(X)

attaining the global maximum of holomorphic sectional curvatures. By (3.1)

Jίx is nonempty for any x e X. We denote by Vx the complex linear span of

J(x and call it the "maximal subspace" at x. We call V = ΌX^XVX c Tlβ(X)

the bundle of maximal subspaces. Note that we do not know at this point that

V is a differentiable vector subbundle of Th0(X). Denoting by IT: Tlfi(X) -> X

the canonical projection, we shall write V\υ = V Π π~ι(U) for the restriction

of V to the open set U. We claim that

Proposition (3.2). There exists a point x ^ X such that in some open

neighborhood Ux of JC, V\v is a differentiable complex vector subbundle of

Th0(Ux).

Proof. Denote by Jt = Ux e x J(^ the bundle of maximal direction Jί c

51 0(A r), Jί is defined by the real-analytic equation # α 5 α 5 = s u p ^ ^ i o ^ ^ ^ i ,

so that it is a real-analytic subvariety of the compact real-analytic manifold

S1*°(X). Let Jί = Jίx U UJί{ be the decomposition of Jί into irreduci-

ble components. Since the global maximum of holomorphic sectional curva-

tures is attained at each x e X, we have Uι<i<ιπ(Jifi) = X. We arrange the

Jί i such that IT is a submersion at some regular point of Jί{ if and only if

1 < i < ft, and denote by Jί' the union U 1 < / < Λ ^ # Z . Denote by U the

nonempty open set X - π(U, > *. Jί^ Then for each JCG [/, Jίχ <zjί'. Let E

be the union of singular points of Jί' and regular points of Jί' at which TΓ:

R e g ( ^ ' ) -> X fails to be a submersion. We claim:

Lemma. E is a real-analytic subvariety of Jί'.
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Proof. The problem being local, it suffices to prove the following

Let W be an irreducible real-analytic subvariety of some open

subset G of R^ such that the projection PW(JC1 ? -,xN) =

/ x (χi>" ' >XN) o n t o th e ^ r s t n coordinates is of rank n at some

point of W. Let S be the union of the singular points of W

and the regular points of W at which p fails to be a

submersion. Then S is a real-analytic subvariety of W.

To prove (*) assume O e ί f and let / l 9 ,/Λ be generators of the reduced

ideal sheaf ^ " ^ Π G' for some open neighborhood G' of 0, G' <ε G. We can

regard R^ as the real part of C^ and extend (cf. Gunning & Rossi [9])

fl9 , fk to holomorphic functions Fl9 , Fk on a Stein neighborhood D of 0

in CN such that D Π R ^ G'. Then the common zero set of Fl9' ,Fk is a

complex-analtyic subvariety C of D such that C Π G' = W (Ί G'. We can

assume, by shrinking D if necessary, that C is an irreducible complex-analytic

variety such that the complex dimension of C equals the real dimension of W.

Moreover, C is smooth at smooth points of W Π G'. Now pw: W -> Rw is a

submersion at JC G W if and only if the real n form ρ*w(dxλ A Adxn)

vanishes at x. Consider the projection p c : C -> Cw defined by pc(zv , z^)

= (z1 ?- , z^) extending pw\wnG
r- Then clearly p^ί^X! Λ Λdxn) = 0 if

and only if Pcί^Z! Λ Λ dzn){x) = 0. Let H be the union of the singular set

of C and regular points of C at which p c fails to be a submersion. Then,

S n G ' = ( i / n G ' ) U Sing(W Π G') which clearly yields (*) if we know that

H is a complex-analytic subvariety of C.

To show that H is a complex-analytic subvariety of C, We resort to the

Coherence Theorem of Oka and Theorem A of Cartan-Oka (cf. Gunning &

Rossi [9]). Consider the sheaf mapping φ: Og -» Θ£9 ΘC denoting the reduced

structure sheaf of C, defined by

where the pairing between 1-forms and vector fields is defined by

Clearly φ is a morphism between coherent sheaves. Denote the kernel by J*\ !F

can be regarded as a coherent sheaf of restrictions of local holomorphic vector

fields on D to C which are tangent to regular points of C. Since J*" is a
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coherent subsheaf of θ£ we can define the coherent subsheaf Kn^ of A"&c-

At a regular point z of C, p c : C -> Cw fails to be a submersion if and only if,

under the natural pairing of H-forms and ^-vector fields, we have

(dzλA ••• Adzn9uxA ••• Aυn){z) = 0

for all holomoφhic tangent vectors υl9— -,υn of C at z. By Theorem A of

Cartan-Oka, (A"^)2 is generated by T(DyK
n&r) since D is Stein. It follows

that H is the set of common zeros on C of (dz1 dzn, A), where A runs

over all holomoφhic sections of Λ w ^ on D. Hence, H is a complex analytic

subvariety of C. This finishes the proof of the lemma.

Continuation of proof of Proposition (3.2). Recall that U is an open subset of

X, π~ι(U) CλJί = J(f = U 1 < / < A : ^ , 7r|^ is a submersion at some regular

point, and E is the union of singular points of Jίf and regular points of Jt'

at which m fails to be a submersion. By the preceding lemma, E is a

real-analytic subvariety which obviously does not contain any component of

Jt'. Recall also that the bundle V = UxeXVx is obtained by taking Vx = C-

linear span of Jt x. We assert

ίάt\ There exists a nonempty open subset U' of U and a finite

^ ^ number of subsets S^ -,Smof Jf' n π~\U') such that

(i) each S, is a locally closed real-analytic submanifold (possibly discon-

nected) of 77 " H ^ ' X

(ii) 7r 15 is everywhere a submersion,

(iii) uίT'Ό τ r - 1 ( ^ / ) = -Si U ••• US m .

We now set forth to prove ( # ) . Let E = Uι<i<ιEi be a decomposition of £

into irreducible components and assume E' = Uι<i<kEi is the union of

irreducible components containing the branches of E n Reg(<^") BY Sard's

Theorem *r|£. nRegion ^s n o t a submersion at any point. Hence 77(2?,) is a

closed semianalytic subset (in the sense of Lojasiewicz [17]) of U of measure

zero. Define Ux = U — ir(E'). Then ^|Reg(^')n7r-1(t/1)
 ι s everywhere a submer-

sion. We shall choose some U{ c Ux,to be determined later, and define Sλ by

Sx = R e g ( ^ r ) n v-\U'). On £7^ let S i n g ( ^ r ) Π ̂ - H ^ i ) = U 1 < / < / ? 7 ; be a

decomposition of S ing(^ ' ) Π ττ"1(ί71) into irreducible components. For each

Tt either 7r(7] ) is a closed semianalytic subset of Uλ or TΓ is a submersion at

some regular point of 7). We arrange 7] such that TΓ is a submersion at some

regular point of Tt if and only if 1 < i: < q. Now let 1 < < q. π\τ\ 7) -> ί/x is

not necessarily surjective. Let 7/ be the union of the singular set of 7) and

regular points of Tt at which TΓ^ fails to be a submersion. *r(7] ) is a closed

semianalytic subset of Ux (because of properness) and π(7] - 7)') is an open

subset of Uλ dense in ττ(η). Define f) = τr(7;) - τr(7; - T/). Then, on each
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connected component Ω of Uι-Fi, either π\TjΠπ-ι(Ω) maps ^ Π π

properly and surjectively onto Ω or T,: Π 7r- 1(Ω) = 0 . Applying Sard's Theo-

rem to the mapping π | R e g ( Γ ) : Reg(7]) -> Ux we obtain then a closed subset Ft

of measure zero of Uι - Ft such that wlReg^nw-^-F,-/;.) *S everywhere a

submersion. Since the boundary of each Ω in Uλ is contained in Ft, clearly

Fi U Ftis a closed subset (of measure zero) of Uv We now define U2 = Uλ —

U i < / < < 7 ( ^ U ^ ) - U ^ , ^ τr(7;.). For t/' c U2 to be determined we define

S2 = R e g ^ ) Ππ~ι(U'), etc. It is now clear that one can go on by removing

step-by-step the singular set of irreducible components of the preceding

singular set in order to obtain open sets U9Ul9U29-—,US all derived from the

preceding set by removing a closed (semianalytic) subset of measure zero until

we obtain the last open set U' = Us and the closed real-analytic submanifolds

5, , 1 < / < w, of ττ~\U') on which π\s is everywhere a submersion. Obvi-

ously ΛΓ Π ir-\U') = Sx U US m .

Propositions (3.2) will now be proved by picking some point x e £/' and

some open neighborhood l/x of x contained in U'. Let x G t/' be a point such

that Vx is of maximum dimension among points on U'. Suppose { vx, , υs} is

a basis of Vs with υ^JC^ Each υt is contained in one of the pieces Sp

1 < j < w. Since T7|s: S -> ί/' is a submersion it follows that there exist

vector fields vt(y) defined for y sufficiently close to x such that υi(x) = υi9

1 < / < s. For y sufficiently close to x, say y G UX, {v^y),- -,^(7)} are

linearly independent. But since d i m c ^ < dimF x it follows that V\Uχ is an

5-dimensional complex vector bundle generated at each point by

4. The maximum principle for fourth-order radial derivatives

(4.1) The equality Δ2Λα 5 α 5 > 0 at maximal directions a. The main objective

of §4 is to prove the vanishing of fourth-order radial derivatives V η ^ α 5 α 5 for

any maximal direction a of holomorphic sectional curvatures and any real

tangent vector η at x = π(a). As was explained in the introduction, we know

VyRaaaa f o Γ 1 < *' < 3. We will first prove Δ 2 # α 5 α 5 > 0 and then compute the

difference between Δ 2 i ϊ α 5 α 5 and S(4)Raάa^ the averaging operator of

fourth-order radial derivatives introduced in §1, (1.3). Then we will conclude

S(4)Ra^ > 0, implying Vη

4Λα5αδ = 0.

Proposition (4.1). Let a be a maximal direction of holomorphic sectional

curvatures, π(ά) = x. Then Δ 2Λα 5 α 5(x) > 0.

Proof. (I) Without loss of generality we may assume that α is a unit vector.

Let {ev- -,en} be a privileged basis of T^°(X\ x = π{ά), associated to the
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unit maximal direction a. From §1, Proposition (1.2), we have

where p is the Einstein constant and the equality holds in a neighborhood

of x when Rijkl(y), for y sufficiently close to x, is interpreted as

R\ei(y)>ej(y)>ek(y)>eι(y)) w ^ ei(y) obtained from ei = et(x) by paral-

lel transport along geodesies emanating from x. Letting η be a real tangent

vector at x, we have, at x

2
ij p&H /,./

Here we have used the equalities of §2, Proposition (2.2.1), at x and the fact

that Rnn,ηη(x) = 0. It follows that at x,

Δ* Σ RR Σ | ^ J

- _ ^ l ϊ i ϊ Y p _ _ V I P - I 2

~ 9 Li nllpp,-ηη Z^l^ll/^ηl

Since X is Kahler-Einstein, we have Σ, RιiiiiVη = 0, giving

2 R η = ~^lϊlϊ,ηη ~ 2^ ^llqq,η-η = ~ L~ι ^llqq,ηη ^X X.

Hence, we obtain the inequality

(*)θ τ^Rΰqq^ > -f1 Σ Rnqq,ηη ~ Σ | Rύij,η \

(II) We claim that the only possible nonzero terms in the summation

jj\Rιiij,η\
2 are of the type l^n^^l 2 . In other words, we have

Lemma. For any real tangent vector η at x, we have

(0 * π i ; ι l I = 0/or 1 <j<n,

Proof of Lemma. To prove (i) and (ii) we consider the Taylor series

expansion of R^ii along geodesies issuing from x. Let γ(ί), ~8 < t < δ, be a

geodesic parametrized by arc length such that γ(0) = x, γ(0) = η. We know

that

* i ϊ i ϊ ( γ ( 0 ) = Rinϊ(x) + -fiRnn«m(x)t4 + '" with i W , η w ? < 0
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by the maximality of i? i n ί (x). Recall that v ^ n n ( j c ) = 0 for 1 < / < 3.
Consider the expansion

R(ex + εej9 ex + εβj ex + εej9 eλ + εέ?y)(γ(f))

Now choose ε = t2 and change e} to Λ y for some real θ so that Rιnj,η(x) is
real and > 0. We have

r j ( i + εej9 eλ + βέ?y

(1 4- ε)

^ 2

From the fact that S ^ Ϊ ) = supje^io^ji?^!! and comparing the Taylor
expansions of the denominator and the numerator, we obtain immediately

*m; . , (*) = 0 toτj>l (i).

To prove (iii), Rιχpp,η = 0, we also use (*). Choosing j = p e H in the
expansion (*) and setting ε = / for ΐ > 0 we define

F(t) = R(e, + t°ep,eλ + t°ep\ ex + fep, e, + taep)(y(t))

t1"

+RP-PPP(y(')) <4a-

We have * n V , , ( x ) = 0 and Rlpιp(x) = RlppP(x) = 0 (Proposition (2.2.1)), so
that

Now choose σ = 0.9. We get

F{t) = RιW(x)(l + 2i 1 8 ) +(4Rllpp^(x) + 2ReΛ 1 W f l I(jc))/ 2 8 + O(/2 9 ) .

By comparing the Taylor expansion of (1 + ε2)2, ε = r° 9, and that of x(ί), we

obtain from F(t)/(1 + tlΛ)2 < ^im(^) the inequality

Without loss of generality we may assume R e Λ W i η ( * ) > 0 (by some change
θ

ep *-* eiθep) so that
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Since the same inequality applies to the geodesic γ with orientation reversed

we have also RnpP-η(x) < 0, giving

Finally,

J W η ( * ) = 0 (ϋi)

follows immediately from Rnqq(x) = 0 and the fact that X carries nonnega-

tive holomorphic bisectional curvature, so that R\iqq{x) is a minimum Rξξξ>ξ',

£,£' e Th0(X).

(Ill) The equations RιϊlU(x) = 0, (i) Λ l ϊ i ;,η(x) = 0 for j > 1, (ii)

Rllpp η(x) = 0 and (iii) i ? l ΐ # η ( x ) = 0 can now be used to yield the estimate

from(*)0

1 R - - i

Δ* > ψ Σ Rnq-q,ηη- Σ |Λii^,η| at x.

In order to finish the proof of Proposition (4.1) it suffices to prove the

inequality, for each q e N,

(#) ^Riϊqq,ηη> Σ \RιlPqJ atx.

In fact, from the discussion of §1, (1.3), Δ2

JRlϊlχ(jc) is the average of Δ / £ l M η η

over the unit sphere S^ϊ0( JΓ) of T^°(X\ up to a multiplicative constant.

(IV) To prove ( # ) we apply the Schwarz inequality. Let y(ί), —δ<t<8,

denote the same geodesic as above. Then

On the other hand, for any p e H

By the Schwarz inequality applied to the semidefinite Hermitian form H,(ξ, ζ)

at γ(/)

yielding

B u t Rnpϊ(x) = 0 and Rιϊp!j(y(t)) = Rllplli1)(x)t + , so that by comparing
the Taylor expansion we have immediately

(#)o \ 2 R
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(V) At first glance ( # ) 0 is not strong enough to yield ( # ) unless Jί*= 3^a is
at most 2-dimensional. However, the estimate ( # ) 0 , for eq e Jίa fixed,
\\eq\\ = 1, is true for any ^ e tfa of unit length. This means that, if we fix one
privileged orthonormal basis of T^°(X) associated to «, ( # ) 0 can be applied
t o Σpξ=Hapep in place of ep for any (al9 - ,ap) such t h a t ΣpeH\ap\

2 = 1. I n
general,

Σ apR \a

In particular, if we choose ap = RnPq%η, then

Σ |Λ
p^H

yielding

Σ |Λn,,.,(*)Γ<

an equality even sharper than the required inequality (#) , proving Proposition
(4.1).

(4.2) Comparing S^RaSaS and A2RaSaS. Recall that from §1, (1.3),
S(Λ)Ra»aS(x) was defined by

where c4 is a positive constant, η a real tangent vector of unit length, and the
integral is over the unit tangent sphere with the canonical metric.

Recall that from Proposition (1.3) we have the formula

(*)o 6S<4>RαδΛa = Σ Σ R l S a S , ι W >
i,j σeS 4

where S4 denotes the symmetry group of order 4, and Rσ

aaaa,iϊjj *s the
fourth-order covariant derivative of Raάaii obtained by formally permuting the
last four elements using σ. Our main result in this section is the following
proposition.

Proposition (4.2). Let a be a maximal direction of holomorphic sectional
curvatures, *r(α) = x. Then S^R^x) = Δ 2 £ α 5 α δ (x) = 0. Hence
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Proof. (I) To prove Proposition (4.2) it suffices to show that

In fact, since Vη-Rαδαa(*), 1 < * < 3, and is a global maximal direction of

holomorphic sectional curvatures, we have

vη

4/W*) < o.
Integrating over η of unit length, we have

s(4)RaSaS(χ) < o.

From Proposition (4.1) the equality S(4)RaSaa(x) = Δ2RaSaS(x) would imply

S(4)R

a««a(x) = 0 and hence ^RaSaS(x) = 0 for 1 < i < 5 and for all η e

(II) From the equality (*) we have

V*) "O ^aaaa ~

To see this, there are 24 terms on the right-hand side of (*)0 of the form

/ * * * 9 / * * * ? j * * * or j * * * in the order of differentiation. By interchang-

ing the roles of / and j in the same terms of the expansion of (*)0, we obtain

the expansion (*). Furthermore we have the equalities

R -- = R -- R - - = R
aaaa,ijij aaaajjji^ aaaajijj aaaajjij'

Recall that by our definition of Δ2 we have

Δ2R = V R
a a a a L^ *^ aaaa,iijj + iijj + iijj + iijj'

Our approach of computing S(4)Raάaά — Δ 2Λα 5 α 5 at x is by converting all

terms to Σ / y - R α 5 α 5 / 7y. To start with we fix at x a privileged system of

orthonormal basis of T**°(X) associated to the maximal direction a. Then,

at JC,

Summing up over j we immediately have, using the Einstein condition,

j

In particular, we have
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where the second equation is obtained from the first by conjugation. Further-
more,

Riuΐjijj

μ jj

= Rnii jijj + 2( Σ^μϊiΛμ,;) ~ i ΣRiμnR

μϊΰ)
V μ > j) V μ

Summing up over /', we have, using the Einstein condition,

In particular, combined with equalities above

so that

(Hence the last term is real.)

(Ill) From the expansion (*) for S ( 4 )Λα δ Λ δ = S(4)RιϊιΪ9 we now have

ιijijj + 2Re Σ ^ I Ϊ I Ϊ , ^ + R e Σ^IΪIΪ,/;^

Now we convert the last two terms to Σ, 7 Rnnjjjf
Rinljjij = I RlϊUMj + 2ΣΛμϊlϊ,ιΛlμy7 ~ 2ΣΛlμlϊ,iΛμIy7 + ΣΛlϊlϊ,μΛι/iy7 I

^ μ μ P

ϊ Jϊjj
μ

μ μ

Summing up over /, j , and applying the Bianchi identity and the Einstein

condition, we obtain

lϊ,/y/7 = ΣRlUΪJijj + 2 L, RμUljjRlμj'i

- 2 Σ RlμU,ijRμljί + Δ ^l ϊ l ϊ
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From previous information we know the first term is real and equal to
\Δ2RιlιT, so that at x

2Re ΣRιnϊ,iβj = iΣRniϊMjj + 4Re Σ Rμiiϊ jjRiμji

- 4 Re Σ RijaίjjRfiβ'

Regrouping the terms we have, at x,

2Re Σ^iϊiϊ,//// = ^ΣRιnϊMjj + 2 Σ {R

μln,ij ~ Rμlnji)Riμβ

+ 2 Σ (Riμnji - RiμΰjjjRμϊji-

We compute the commutation terms inside the parentheses to obtain

RμϊUjj ~ Rμϊlϊji = ΣRΛnRμϊ>ij ~ Ί<ΣR μv\\R v\i j + ΣR μ\v\R\v
V V V

The other commutation can be computed by conjugation, yielding at x

2Re Σ*iϊiϊ;y;; = ^ Σ ^ I Ϊ I Ϊ ^ + 4Re £ Λ l M |Λμ l 7-Γ

-8Re Σ * i ϊ J# μ L 7 Γ + 4Re

Here we have used equation (b) of Proposition (2.2.1), i.e., RlUj = 0 unless
i' =j = 1. We can furthermore regroup the commutation terms according to
whether μ = 1, μ £ H or μ G N, yielding

2 Re

= Σ Σ (4Λ1m-8/i1^)|Λ,I/;|
2 + 4Rιm

Since ^ n ^ = i^iϊiϊ and Λ^- = 0 for all /, j , 1 < /, j < w, we have obtained

2 Re 2
i

(IV) Similarly, we compute

Re

by commutation at JC,

μ

1*, Rlvllll,μyJ
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Summing over z, j and using the Einstein condition we have

2Re LjRiiiijjji - ΊΣR\\IIM]J = 4 Re Σ R

μm,ijRiμji

-4 Re Σ V u 'W

The same computation as in (III) yields the equality

From this and equalities in (II) we obtain at x

proving Proposition (4.2).

5. The maximum principle for sixth-order radial derivatives

and computation of Δ3Λα δ α δ

(5.1) The major objective of this section is to extract further zero-order
information on the curvature tensor with respect to a privileged orthonormal
basis relative to any maximal direction a at any point x e X. (Results of this
section will be used in §6 to prove the crucial fact VaR = 0 for most a e Jί.)
In order to do this it will be necessary to make use of gradient terms arising in
the expressions of S(4)ΔΛαgαδ(.x) and Δ3i^α5α5(x). Since the computation of
these two quantities resemble the computation of S(4)Λαδαδ(Jc) and Δ2Λαδαg(jc),
which were carried out in the last section, we will be contented with sketching
the steps of such computation, and indicating only the necessary modifications
and new methods of applying the computation.

Keeping notations as before, we will fix some x e X, some maximal
direction a at x and use a fixed privileged orthonormal basis of T}tΌ(X)
adapted to α. Recall that T^°(x) = C α θ J f α θ jVa\ the index set of the basis
for Jf = 3Pa is denoted by H and that Jf=JΓa is denoted by N. The indices
will be denoted respectively by /?, p\ and q,q\ . For the sake of
simplicity we shall say that a curvature from RιPp>P", for example, is of type
Rippp, etc., meaning that the indices /?, q appearing in terms of type #****
can take arbitrary values in H and N respectively. We can therefore group the
curvature terms into those of types JR^Π, Rnip, R\\Pp>'' *> e t c We shall say
that a curvature term R^j is of type /£**** up to conjugation and permu-
tation of Rjjkj can be obtained from /£**** by conjugation, the allowable
permutations of indices due to symmetry and by substituting any p and q
indices by arbitrary indices in H and N respectively. Our major objective here
is the following result on the structure of R.
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Proposition (5.1). With x e X and a e Jtx fixed as above, the only possible

nonυanishing terms of R^^ are those of the following types up to conjugation and

permutation:

R\\\\> R\ϊpp> Rppqq> Rpppp> Rqqqq aYtdR\pqp'

Proposition (5.1) says that almost all nonvanishing curvature terms are of

bisectional type Rk\ιb kj=l, p, q, with the possible exception of R\pqp, are

in actual fact nonzero in many cases. It contains, in addition to results of

Proposition (2.2.1) the fact that all curvature terms of types Rpppφ
 R

Pqqq a n d

RpqPq are zero. It is somewhat surprising that the vanishing of such terms can

be derived from computations related to Rx\\\ since all the information in

Proposition (2.2.1) obtained from variational inequalities are on terms associ-

ated to the maximal direction ex = a. For the derivation of Proposition (5.1)

we need the following lemma.

Lemma. Suppose second order coυariant derivatives of R\\pq vanish at x.

Then, all curvature terms of types Rpppψ RpΆq-q andRp-qpΆ vanish.

Proof. By polarization it suffices to prove the vanishing of the given terms,

i.e., the indices p and q can be assumed to carry the same meaning. Under the

hypothesis of the lemma, we have, at JC,

V1) R\\pq,pp ~Rlϊpq,pp = 0,

(ϋ) Rlϊpq,qq ~ Rlϊpq,qq = 0»

:

We compute these differences by commutation separately,

(i)
Rllpq,pp ~~RUpq,pp = ΣRμ\pqR\μpp ~ ΣRlμPq

RμϊPp
μ μ

From Proposition (2.2.1), statements (c) and (d), we have the vanishing of

curvature terms of types R^ and R\ppp, so that

0 = Rlϊpq,pp ~RUpq,pp = ~R\lppRpppq'

Since Rnpp = 2^1111 φ 0, we obtain immediately Rpppq = 0. Similarly we
have

(||) R ~ Rl\pq,qq = ~R\\ppR

Pqqψ

q ~Rlϊpq,qp = ~RUppRpqpq'

It follows therefore, under the hypothesis of the lemma,

RPPPq = Rpqqq = R pqpq = ®'
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Our next step is therefore to prove the vanishing of second order covariant

derivatives of R\ipψ Recall that from the computation of S^R^n = Δ 2Λ l ϊ l T

= 0 we obtain at the same time the vanishing of RnPq^ for any real tangent

vector η at x. The term RnPq,η appears in the expression

-2ΣK,;.J -2Rep 1 I / ; Λ 1 I / y W

Similarly

Here we have already used the facts Riaj^ = Rιiij,η = 0 derived together with

the vanishing of Δ J R l ϊ l I ητ?. It is plausible from the preceding expression that

the vanishing of ^Rnnηηηη can be used to derive the vanishing of second

order radial derivatives of Rι\pψ This is in fact the case. For this purpose we

are going to compute the sixth order term S^AR^^ in the same spirit as in §4

for S f ( 2 )Δ JR l ί lj = Δ2R1ΪH. Notice that the equation ί ^ ^ ^ = 0 does not imply

the vanishing of second order covariant derivatives. However, if instead we

compute the expression

then the gradient terms attached to R^ will be of the form

\Rιϊijaβ\2> e t c Therefore we will further compute the commutation from

< 4 > 3 <2>2

We will now collect the computational results into the following two

propositions.

Proposition (5.2). At an arbitrary x e X and for any a e Jtx, we have, in

terms of notations used before, S' ( 4 )ΔΛ l ϊ l I = S{6)Rim = 0, so that V ^ π π = 0

for 1 < / < 7.

Proposition (5.3). At an arbitrary x e X and for any a e Jlx, in terms of

notations used before,

Δ3Λiin = S<4>ΔΛ lM = 0.

This implies in particular that for any real tangent vector η at x
Rlϊpq,aβ = Rlϊpq,aβ = Rl\pq,aβ = Rllpq,aβ = 0

for p G H, q e N and 1 < a, β < n.
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(5.2) Sketch of the proof of Proposition (5.2)—S ( 4 ) Ai* i m = Siβ)Rιm = 0.
By the same argument as step (I) of Proposition (4.2) the equality S^R^i = 0
will imply V ^ n n = 0 for 1 < i < 7. The proof of Proposition (5.2) therefore
reduces to the following two statements.

Proposition (5.2), Part I. Notations as above, for any real tangent vector η
at x we have ΔΛ l ϊ l ϊ ι 1 ί η i ϊ l ϊ > 0 so that in particular S^ΔRmϊ > 0.

Proposition (5.2), Part II. Notations as above, we have at x
S ( 4 ) Δ # l T l ϊ > 0.

For the derivation of the first inequality we need the following lemma for
which we include a proof.

Lemma. At JC, for any i, j , 1 < /, j < n, for any p e H, q G N and η any
real tangent vector at JC, we have

0) Rlhj\η = Rίϊilη = 0»

(U) *lϊl,\η, = 0,

= 0
= Ripip,ηη = 0.

Proof. From the proof of Proposition (4.1) (see formula (*), step (III)
where we dropped the first term and obtained an inequality) we have

( # ) ή Δ S l ί l ί ) r | η = τ Σ | Λ l ι Ί / \ J + ~^~" Σ Rlϊqq,ηη~ Σ \RUpq,ηη\ '
ij N

From the last formula of step (V) we have at x

From these we derive

1 ~ 1

ij

Recalling formulas (i), (ii), (iii) of step (II) of Proposition (4.1), we have
= ° for 1 < /, j < /ι.

Since Δ J R ^ ^ ηη = 0 by Proposition (4.2), we thus obtain
Rlilj,η = Rlϊij,η = ^ '

proving (i) of the lemma.

To prove (ii) we need only to consider the case j > 1. Let γ(/), - δ < ί < δ,
be a geodesic parametrized by arc length such that γ(0) = x and γ(0) = η.
Since V^R^n = 0 at * for 1 < / < 5, we have

) = * l i n ( x ) + ^ V % m ( x ) ί 6 + = Rnn(x) + O(t6).
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On the other hand, we have

R(eι + εej, ex + eey ex + εejy

j

2eReΛ1 I i ;(γ(/))

Substituting ε = t3 and changing ej to etθej for some real θ so that Rinj ηη(x)
is real and > 0 (recall that Rιnj%η = 0 at x for y > 1), we have, for j > 1,

(1 + ε2)
j> eι

But since the holomorphic sectional curvature of (eλ + εey)/ vl 4- ε2 at
is smaller than Rnn(x), we see immediately that Rιiιj%ηη(x) = 0.

Equation (iii), i ? ^ ^ ^ = 0 for all q e ΛΓ, has already been proved in
Proposition (2.2.2). To prove (iv) we use the same expansion (*) above. We
choose j = p e // and set ε = ίσ for t > 0. By taking σ = 1.5 and comparing
expansions in terms of t we obtain

By replacing ^ by e1*^ for a suitable real θ we may assume that

Since Rιni,ηη(x) = * I I < 7 ^ ^ ( J C ) = 0 for all q ^ N, from the Einstein condition

we obtain Σp€ΞH

 RΰpP,ηη(
χ) = 0^ S i v ing

and completing the proof of the lemma.
Using the lemma one obtains immediately from the formula of Berger

^^ U ^ l + ^ L \ R \

(##)

-3Σ

By the same application of the Schwarz inequality as in Proposition (4.2) we
can show that the term inside the bracket is always nonnegative, proving
τΔRimηηηη > 0 and hence the integrated form S^Rmi > 0, proving Part I
of Proposition (5.2).



50 NGAIMING MOK & JIA-QING ZHONG

To prove Part II we need only to show S(6)Rιm > S ( 4 ) A# i n i . This is done
by the same commutation technique as in Proposition (4.2). Since covariant
derivatives with both barred and unbarred indices are involved, we will need a
conversion of our knowledge of radical derivatives into that of general co-
variant derivatives. We shall only indicate the procedure by an example. It will
be necessary, for example, to use the fact that all second order covariant
derivatives of RnpP, p ^ H, vanish. By the preceding lemma we know that all
second-order radial derivatives of R\ipp, p e H, vanish at z, i.e., Rupp,ηη = 0
for all η e TX(X). By polarization (Proposition (1.4)) we obtain, for 1 < a,β

,aβ +

To prove V 2Rnpp = 0 it suffices therefore to show Rλϊpp,aβ - Rnpp^a = 0,
which can be obtained by the formula for commutation and our knowledge of
zero order information on the curvature tensor.

The rest of the proof of S(6)Rmi > Sί(4)ΔJR1Ilϊ > 0 follows the same line of
thought as in Proposition (4.2) and will be omitted.

(5.3) Sketch of proof of Proposition (5 .3 )—A 3 # m l = S ( 4 )ΔΛ1 I l T = 0. From

Proposition (5.2) one can derive the vanishing of a number of second-order
radial derivatives of the curvature tensor. In addition to the list given in the
lemma, we obtain from the actual expression ( # # ) of Ai£ l M ηηηη (recall
Δ ^ i ϊ i ϊ , η w , > 0 for η e TX(X)) the vanishing of R^j^ and Rrlp^ηη for
1 < /, y < Λ, p ^ H and q e N. Recall that for the derivation we needed the
vanishing of V 2 ^ ^ . For this purpose we need Proposition (5.3). First we
write down the following simplified formula of Δ 3 /?^ using our knowledge of
certain vanishing covariant derivatives as indicated at the end of (5.2):

(##) ' \tiRnn = 2Rιm Σ Δ 2 / ^ - Σ Σ (|*n,,.*/f+|*il,,.i,|2)
<ΞN kj p<ΞH

The derivation of this formula is very much the same as the formula for
Δ^iϊiϊ,ηηηη in (5.2). Here the covariant derivatives associated to Rιhj are
discarded because one can derive the equality V 2R\i\] = 0 from Riϊij ηη

 = 0
for all η e TX(X), by the argument of the last paragraph of (5.2). To prove
Proposition (5.3) it suffices therefore to show A3^lTlj = 0 and Δ2Rxιq- < 0.
The derivation of Δ3ΛlϊlT = 0 follows the same pattern as the derivation of the
inequality S(6)Rmi > S(4)ΔΛlTlI > 0. Namely, we compare Δ 3 # i n ϊ =
S(2WRλlιl against S^bR^n by the formula for commutation. (See the proof
of Proposition (4.2).) In the present situation we actually obtain A 3 u l M =
S^ΔRfiΰ = 0 directly. The derivation of Δ2Λ1I<7̂  < 0 is more involved con-
ceptionally. It suffices to show ΔRlϊq^ηrι < 0 for all η e TX(X). We derive
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from Proposition (2.2.2) (which gives ΔRxιqq = 0) the expression

ΛD _ v \R I2 _ ^ i l ϋ V j?
a*llqq,ηη L, \*lppf\,ηη y L, "ppqq.ηη

H H

Note that the term inside the bracket in the integrand vanishes at x by formula
(e) of Proposition (2.2.1). Call this expression 8q(ξ) in a neighborhood of x.
(As usual the vectors eq and £ in a neighborhood of x are understood to be
obtained by parallel transport from x of eq{x) and ξ(x) along geodesies.)
Recall that in Proposiiton (2.2.2) 8q(ξ)(x) was interpreted as the discriminant
of some quadratic polynomial associated with Rnqq. In fact, we defined at x

εξ, eq + Σ C,er,

and Sq(ξ) is the discriminant of the coefficient of ε2 in the Taylor expansion of
G(ε) in ε, regarded as a quadratic polynomial in the variables Cr, r e H. This
quadratic polynomial is positive definite (since Rι\qq = 0 and G(ε) > 0 be-
cause X carried semipositive bisectional curvature). The vanishing of the
discriminant then implies the existence of a nonzero set of coefficients ( C r ) r e H

such that the coefficient of ε2 in G(ε) vanishes. In fact, this is given by the
formula Cr = — (Rιξq-r/Rΰr-r)(x) Fix a geodesic γ(/) passing through x with
γ(0) = x and γ(0) = η and define now Cr(t) = -(Rιξqr/Rnr-r)(y(t)) obtained
by parallel transport. Consider the function for t > 0

Fa
(t) = R(e + t°ξ, 7^Γrξ,eg+ ΣCr(t)er,eq

V re//

+ t°ΣCr(t)e\(y(t))>0.
re// *

Writing RιξgHt) for R^qr(y(t)) etc, the coefficient of t2σ in the expansion of
Fσ(t) in / is given by

\R I2

We note that K(0) = -4/Rim(0), 8q(ξ) (0) = 0 and that K"(0) =
(-4//Jm i(O))V^(fXO). To finish the proof of A2Rllqq(x) < 0 it suffices to
show /Γ r/(0) > 0. The proof of this follows the same line of argument as in the
lemma of (5.2). Namely, by choosing appropriate σ, we conclude successively
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the vanishing of certain coefficients of powers of t. The starting point of this
algorithm is the estimate Rxιqq{t) = O(t6). To see this from the expansion
( # # ) of ΔΛ l ϊ l ϊ η η η η and its vanishing at x we have V ^ U ^ ( J C ) = 0 for
0 < / < 4, yielding immediately Rnqq(t) = O(ί6) since Rχ\qq{x) = 0 is a
minimum of bisectional curvatures. The rest of the argument is routine and
will be omitted.

The vanishing of Δ 3 Λ 1 Ϊ 1 Ϊ and &R\iqq < 0 imply the vanishing of V 2R\ipq

by the expansion ( # # ) ' of Δ3Λ l ΐ l ΐ, which in turn implies the main result
Proposition (5.1) of this section, as was indicated in (5.1).

6. Invariance of R along integral curves of vector fields

of maximal directions

(6.1) We will make use of our preceding knowledge of the curvature tensor
and first-order covariant derivatives to show that there is a nonempty open set
U such that for any x e U and any a ^Jίx, VaR(x) = 0. It follows im-
mediately that if y(t) is a curve in U, y(t) is a multiple of some a e JίΊ{tγ

then the curvature tensor is invariant under parallel transport along γ. In order
to prove vaR(x) = 0 we first collect all information about first-order co-
variant derivatives at x. As usual we will fix x e Xy a e Jίx and use a
privileged orthonormalbasis {eλ,- , en} of T}'°(X) adapted to a = ev

Lemma 1. At x, VRιhJ = V^ l L ; = V«i? /; = VRlppP = 0 for all p e H,
q ^ N and for 1 < i, j < n.

Proof. The only thing that was not already contained in Lemma 3 of the
Appendix, Step VII, is the equation vRιppP = 0. To prove this consider the
expansion along any geodesic y(t\ —S<t<8, passing through x with
γ(0) = x and γ(0) = η. Writing #im(γ(0) = * I Ϊ I Ϊ ( 0 »

 e t c

 ?

 w e define for
σ > 0, 0 < / < δ

Fσ(t) = R(eλ + t°ep9 eλ + tσep, ex + tσep, eλ + tσep)(y(t))

= ΛiiiϊίO + 4t°ReRιϊιp(t) + t2σ{4Rιlpp(t) +

Recall that from Proposition (5.2) and Lemma 3 of the Appendidx we have

* i ϊ i i ( 0 = * I M ( 0 ) + O(ί 8 ), Rιϊιp(t) = O(/3),

Rιpιp(t) = O(t3), Rιlp-p{t) = R

From the maximality of i^nn(O) we have
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Take any σ > 0 and comparing the coefficients on both sides of the inequality,

we have
1 + O(t*) + O(ίσ+3) + 2t2σ + O ( r 2 σ + 3 ) + 4t3σ+1RlppPη + 0{tAσ)

< 1 + 2t2σ + ί4σ,

noting that RιPpP = 0 by Proposition (2.2.2). Substituting σ = 0.5 we im-

mediately obtain RιPpP^ < 0. Applying the inequality to the geodesic y~(t) =

γ( - 1 ) we obtain - RιPpP^ < 0 and hence RιPpP,η = 0, proving the lemma.

The main result of §6 is the following proposition:

Proposition (6.1). In the notation of Lemma 1, there exists a nonemty dense

open set Usuch that we have, at any point x Ξ U and for any ex = a G Jί x,

^iRijki for 1 < U 7, Λ, / < Λ.
Proof. By means of polarization it suffices to prove VιRijki for /, j \ kj=\,

p or q, where p and q represent typical elements of H and Λf respectively. We

will first prove this for all types with one exception by using Lemma 1 and the

Bianchi identity. First, we can classify curvature terms into groups of types up

to conjugation and permutation of indices:

(i) Rιij7c for 1 < i, j , k < «;

(μ)RpPpP for peH',
(m) RqW for q^N;
(iv) Rppqiί for peH, qeN;

( v i i ) R p - q p - q for p e H 9 q e N.

Since this division is up to conjugation (and permutation of indices), it is

necessary to prove Rijk]tι = ̂ ,;A:/,Ϊ = 0 f°Γ a ^ terms given in the list. We have

( 0 RϊijkΛ = RlϊΓkj = 0, Riiflcj. = Rlljk,i = 0>

( u ) RppppΛ = RPPPPΛ =

RqqqqΛ = Rqqqqϊ =
qqqq

Rppqqj = Rppqq\

RpppqΛ = Rlqpp,p = 0> RpppqΛ =

RpqqqΛ = Rlqpq,q = 0 ' Rpqqqϊ =

RpqpU = Rlqpq,p = 0> Rpqpqϊ = ?«

Everything is proved except for RpΆpΆ^ because the only possible applica-

tion of Bianchi identity Rpqpq^ = Rp\pΆ^ does not yield a curvature term for

which one can apply Lemma 1. To complete the proof of Proposition (6.1) it

suffices therefore to prove

Lemma 2. There exists a dense open set U of X such that for any a^Jίx

and for any η e Tx( X), we have, in terms of a privileged basis at x adapted to α,
Rpqpq,V = 0
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Proof of Lemma 2. In Proposition (5.1) we used the vanishing of V2

to conclude that Rpqpq = Rpppq^ = Rpqqq = 0 at x. By the same argument it
would be possible to deduce vRpgP^ = 0, etc., at x if we know V 3RnPg — 0.
But this would necessitate the computation of Δ4Λ l M. Instead we will show
that our knowledge of the structure of the curvature tensor (Proposition (5.1))
and additional knowledge on covariant derivatives is sufficient for proving
VRpqpq = 0 at x wherever a^Jί', where Jίf as defined in (3.1) is the union
of components Jt{, 1 < i < /, such that τr|^. is a submersion at some smooth
point. This contains in particular Lemma 2. To do this it suffices by continuity
to prove vRpqpq = 0 at x for a G R e g ^ , — {a G Jί{ where π fails to be a
submersion at α} for 1 < / < k. For any such a G ^ # x there exists a smooth
vector field ά(j>) defined on a neighborhood Wof x such that ά(x) = a and
ά( j>) G ̂ v for each y ^ W. At y ^ W we have the orthogonal decomposi-
tion

Since the dimension of Jί?&iv) and ^ ( v ) are both independent of y9 as a
consequence of the Einstein condition or simply of the fact that the Ricci
tensor is continuous, the splitting given above for each y e W actually yields
an orthogonal splitting of the smooth vector bundle Tl'°(W) as

where by definition s/(W) = DvGWCά(y), etc. Fix a geodesic γ(ί), -8 < t
< δ, γ(0) = x through c lying in W and denote by a(y) e T^°(X) obtained
by parallel transport of a(x) = a along γ. Denote by η the tangent vector
γ'(0) at x. Fix some eq e JTa, \\eq\\ = 1, and denote by eq(y) e T^°(X)9

y e γ, the corresponding vector similarly obtained by parallel transport. We
write a(t) for a(y\ etc. for j = y(ί). We have the orthogonal decomposition

a(t) = a(t)ά(t) + ξ(t) + f ( 0 , with ξ(t) G jT a ( 0, ?(ί) G ^ ς ω ,

Here obviously £(0) = f(0) = ί'(0) = ft(0)ά(0) = 0. We assert that

(*) A(0 = ^ ( ^ 2 )
The estimate (*) will be used to study the behavior of Rpqpq(t) for p G //and
q ^ Nin order to conclude Rpqpqη(0) = 0. To prove (*) recall that we have

which means that
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Substituting the decompositions of a(t) and eq(t) into the preceding equation
and using the fact that

Λ(α(ί), &(t) , &(t), ξ'(t) + Γ ( 0 ) (type Λ l ϊ i ; for j > l)

= 0,

as could be read off from Proposition (2.2.1) on the structure of #!***, we see
immediately that

Since R(ά(t), ά(t), ά(ΐ\ ά(t)) = Raάaά > 0 for all ί, - δ < / < δ, we have
established the estimate (*).

To make use of (*), let ep be a fixed unit vector in Jf? and consider the
decomposition

ep{t) = c(t)ά(t) + ζ"{t) + f " ( 0 , with {"(/) e JT a ( 0, Γ ' ( 0 e ^" a ( / ).

Clearly, c(0)ά(0) = Γ'(0) = 0. Then,

R(ep(t),7JΪ),ep(t),7JFj)

Γ(0, Γ(0. €"(/), ΠO)

Γ(O, Mθδ(o + *'(O, n o , no)
From Proposition (5.1) on the structure of the curvature tensor we obtain

Λ ( Γ ( 0 , Γ(0. €"(0, n o ) (type RPw

= Λ(a(0,nό,Γ(0,Π0)

= R{r(t), n o , €"(o, no)

= Λ(€"(0, Tϊi), ξ'V), n
= 0

so that

R(ep(t),7fij,ep(t),7Ji))

"(t), W), no. no) + o(t2).
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Notice that curvature terms of type Rp\Pg may be nonzero. However, by (*) we
have b(t)= O(t2), yielding

hence RpqPq η(0) = 0, proving Lemma 2 and thus establishing Proposition

(6.1).

7. Totally geodesic Hermitian symmetric integral submanifolds

and isometric decomposition of X

(7.1) Recall that by Proposition (3.2) there exists a nonempty open subset U
of X such that the bundle of maximal subspaces V =\Jx€ΞXVx, Vx = C-linear
span of Jί x, is a differentiable vector bundle on U. By Proposition (6.1), by
shrinking U if necessary, we can assume that for any a e Jίx, x e U, we have
^aRi)kl = 0 for 1 < /, y, A:, / < n, so that V ^ ^ / for all ξ e Vx. On U we now
consider the distribution R e F | ί / = {£ + f: ξ e Fl^} of vector subspaces of
the tangent spaces. Our main result in this section is the following

Proposition (7.1). The distribution R e F ^ of vector subspaces of TX(X),
x e t/, is integrable. Moreover, the integral submanifolds are complex, totally
geodesic and locally symmetric.

Proof. By the theorem of Frobenius, to prove R e F ^ is integrable, all we
need to show is that it is closed under taking Lie brackets. Since the metric on
X is Riemannian, for any smooth tangent vector fields 7, Z on any open set,

VyZ-VγZ-[Y,Z] = 0.

It suffices for the proof of the integrability of R e F ^ to show that vητj' takes
values in ReFI^ for any tangent vector fields η, η' on an open subset of U
with values in Re V\u. Fix x e U and let al9 , am be a basis of Vx consisting
of maximal directions. We may further assume, as in Proposition (6.1), that
there exist smooth vector fields ax{y\- , am(y) in a neighborhood of x such
that 0Li(y) e Jty and α,(x) = α, . Let γ = γ(f), - δ < / < δ, γ(0) = JC, be any
integral curve of R e F ^ , i.e. y(t) G ReFγ ( / ) for each /. Then the curvature
tensor is invariant under parallel transport along γ. In particular, if β.(t) is the
parallel transport of ai along γ to γ(/), then

since VjV)R = 0 and Vnt)β(t) = 0. It follows that /?(/) is also a maximal
direction. In particular, β(t) e F γ ( / ). Write

A(')=Efl/,-(')«/0, aj(t) = aJ(y(t)).
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Write η = γ(0). Then, at JC, Vvβi(t) = 0, i.e.

From the definition of /?, it is clear that α/7(0) = δ/y, so that

proving that V^α^O) e F .̂ Since η is real, we obviously have

V,(Reα,)(0)eRe7,.

But this applies to any η = γ(0) with γ an integral curve of ReF|^. It follows
therefore that for any open U'c U and any real tangent vector fields η, TJ' on
Uf such that η( c), η'(x) G ReFx, we have

(•) V^'(x) e ReVx for all JC G U\

proving in particular the integrability of ReFI^. Obviously the integral sub-
manifolds are complex because η G VX implies Jη e VX for the /-operator on
the complex manifold X. Finally (*) implies that V^TJX*) = Vηη'(x) for the
Riemannian connection v ' on Z, from which it follows that Z is totally
geodesic, proving Proposition (7.1).

(7.2) The local foliation on U by locally symmetric complex totally geodesic
submanifolds Zx is a strong indication that X is itself Hermitian symmetric. In
this subsection our contention is that each Zx is contained in a compact
Hermitian symmetric submanifold Zx. To be precise, we have

Proposition (7.2). For each x e U there exists a totally geodesic compact
Hermitian symmetric submanifold Zx containing x such that ZXΠ U = Zx is the
integral submanifold of ReFI^ passing through x.

Proof. We will prove Proposition (7.2) using the theorem of Bonnet-Meyers,
which asserts that every complete Riemannian manifold of Ricci curvature
bounded from below by a positive constant is necessarily compact. Let r > 0
be less than the injectivity radius of X so that for any J G I , the exponential
map at y is a diffeomorphism on the Euclidean ball B(r) = B(0; r) on the
tangent space TAX), equipped with the obvious Euclidean metric. Without
loss of generality we may let U be the open geodesic ball B(x\ r) so that Zx is
nothing other than expx(B(r) Π ReFx). We can step-by-step enlarge the piece
Z = Zx as follows. Define Zo = Z. We will define Z, in general as a locally
closed extendable submanifold of X, in the sense that there exists some locally
closed submanifold Z/ of X such that Zz c c Z/. Suppose Z, is defined. Fix
ε > 0 such that r + ε < injectivity radius. Choose a finite subset S, of Z; such
that for each y0 e Zi there exists y e Z, such that d(y0, y) < ε. This can be
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done because Z, is extendible. Define

Z, + i = U Ai+ι(y),

where

We have chosen Sέ so that Z, c c Z / + 1 . We claim that Zi+ι is a locally closed
extendible submanifold. By definition Z / + 1 is locally closed. To show that
Z/ + 1 is a submanifold locally, it suffices to show that for y,yf e S,, either
Ai+ι(y) Π Λ, +1(j>') = 0 or 4/+1(.y) U Λ, +i(.y') is a locally closed connected
submanifold extending both Ai+ι(y) and Ai+ι(y'). To prove this one has to
rule out the possibility that they intersect each other in a subset of smaller
dimension. If Ai+ι(y) U Ai+1(y') is not smooth, we would have either

(i) Aj+1(y) intersects Ai+ι(y') tangentially at some y'\ or
(ii) there exists y" e Ai+1(y) Π Ai+ι(y') such that Ty,,(Ai+ι(y)) U

Ty,,(Ai+ι(y')) span a real linear subspace of Ty,,(X) of dimension larger than
2 dimcKx = real dimension of Zx.

Possibility (i) cannot happen because both Ai+ι(y) and Ai+ι(y') must be
totally geodesic at y" (by the identity theorem for real analytic functions), so
that they are determined by their tangent planes at y". To rule out possibility
(ii) observe that both Ty,,(Ai+1(y)) and Ty,,(Ai+1(y')) are generated by real
parts of maximal directions at y" (obtained by parallel transport from y and
y' respectively). Then translating them back from y" to the point x along
broken geodesies on ZfU Ai+ι(y) will yield more than dim cF x C-linearly
independent maximal directions at x, contradicting with the definition of Vx.
This establishes our claim that Zi+ι = \JγGSιAi+ι(y) is a locally closed
submanifold. That Z / + 1 is extendible follows easily by taking

z /+i = U expy(B(r + ε) Π Γ^Z,.)) for some ε > 0 sufficiently small.
veS,.

For r + ε < injectivity radius of X, clearly Z/+1 is also a locally closed
submanifold such that Zi+ι c c Z/+1.

We now have a sequence of real-analytic manifolds Z, such that

Z j C C ^ c c c c Zk c c Z λ + 1 c c

where Z^, equipped with the restriction of the Kahler metric on X, is
necessarily locally symmetric by the identity theorem of real-analytic functions.
Moreover, if we define Z to be the union (Jk>1Zk equipped with the induced
metric, Z is necessarily a complete Kahler manifold. In fact, at each z e Zk

there exists some y e Sk, d(y, z) < ε so that Zk+1 contains B(z; r - ε). This
implies that for each z e Z w e have B(z; r — ε ) c c Z , which in turn implies
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the completeness of Z. Recall that at each z e Z, TZ(Z) is generated by the
real parts of maximal directions at z. Because of local symmetry, Z with the
induced metric splits locally into products of Hermitian symmetric spaces and
flat tori. If there is a flat torus as a local factor, it would not be possible for
TZ(Z) to be generated by real parts of maximal directions. Hence Z is a
complete Kahler manifold with positive Ricci curvature bounded from below
by some c > 0. By the theorem of Bonnet-Myers, Z must be compact, proving
Proposition (7.2).

(7.3) Pointwise reducibility of bisectional curvatures. Let JCG(/ . Denote by ξ
a typical element of Tx

fi{Zx) = Vx and by ζ a typical element of Vx

x , the
orthogonal complement of Vx in TX-

O(X). To prove that X is Hermitian
symmetric it suffices to show that

VξRijkl = VξRijkl = 0 for 1 « ΐ , j , k , l ^ n .

What remains to be proved is the vanishing of V^Rg^. In fact, any terms of
the form V^£*** or V^*|** would also be zero because of Proposition (6.1)
and the Bianchi identity. We may assume without loss of generality tht
V\u Φ Tι'°(U). In order to prove VξR^ξ = 0 we will first show that ReV±\υ

is an integrable distribution, where F / denotes the orthogonal complement of
Vx in Tx

h0(X). From this and the arguments of Proposition (7.2) we will be
able to obtain integral submanifolds Z^ of ReV±\u which extend to totally
geodesic compact complex submanifolds Z ± of X. Moreover, in the process of
proof we will also show that Λ ^ = 0 for all ξ £ F , and ξ e Vx , x e U.
This allows us to conclude that each such Z ± is Kahler-Einstein. Moreover,
holomorphic bisectional curvatures are nonnegative on Z 1 (because Z± is
totally geodesic). To prove the Main Theorem, by induction on dimension we
can assume that Z± is isometric to a Hermitian symmetric space, so that
VξRςξξξ = 0 for all ξ e VX

L, proving vR = 0 on X by the identity theorem
for real-analytic functions, thus establishing the Main Theorem.

In order to show that RcV1 \υ is integrable we will first of all show that V\υ

is invariant under parallel transport along all curves on U. For the proof of this
we will need the reducibility of bisectional curvatures as stated above:

P r o p o s i t i o n (7.3) . For each x e ί / and for all £ e Vχ9 ξ e VJ-, we have

Proof. For each x e ί / there exists a totally geodesic compact complex
submanifold Zx of X such that Zx = Zx Π U is an integral submanifold of the
distribution ReFI^. Suppose y e U, y ί Zx\ we assert that Zx Π Zy= 0 . In
fact, the proof of this is exactly as in Proposition (7.2), where it was shown that
the Zx cannot have self-intersections. Since adjacent extended integral sub-
manifolds are mutually nonintersecting, the normal bundle NR of the real
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manifold Zx in X must be trivial as a differentiable vector bundle. As a
differentiate bundle, NR is simply isomorphic to the bundle ReV± |^x, where
obviously we can assume that the open set U contains Zx. Sincce NR is
differentiably trivial, the complex bundle Nc = NR ® R C is a differentiably
trivial complex vector bundle. We have the decomposition

Nc = Nι* Θ N°>1,

where Nx

lfi is the eigenspace of J on NCtX = NRx ΘR C corresponding to the
eigenvalue /, and Nx

Otl is that corresponding to the eigenvalue — i. Note that
this decomposition is possible because VX

L is closed under the /-operator. Let
N be the holomorphic normal bundle on Zx, i.e., N = Th0(X)\z/Th0(Zx).
As a differentiable C-vector bundle, N is isomoφhic to Nh0 = V±\zχ. It is
well known that any Hermitian holomorphic quotient bundle of a Hermitian
holomorphic vector bundle of semipositive curvature remains semipositive, so
that N, with the induced metric, is semipositive on Zx. It follows that the first
Chern class of N is represented by a semiposditive closed (1,1) form. Now,
N c = AT1-0 Θ N0Λ = N θ N as differentiable C-vector bundles, where N is the
antiholomorphic vector bundle obtained by taking conjugates of transition
functions of N. By defining the length of v to be that of υ for υ e Nx, v e Nx,
we see that cx(N) = cx(N). It follows that

cΛNc) = cx(Nι») + c^N0*) = Cι(N) + Cl(N) = 2cx(N)
is represented by a semipositive closed (1,1) form. Hence, the triviality of Λ̂ c

as a differentiable C-vector bundle implies that cλ(N) = 0 and that the
curvature form of N is identically zero on Zx. We assert that the flatness of the
Hermitian holomorphic vector bundle N implies the proposition, i.e., R^ξ = 0
for ξ G Vχi ξ e VX

L and x G U. TO see this we examine the curvature form of
N more closely. Consider the exact sequence

o - v* _> τ^°(xy\ϊ -> r^^zj* ^ o.
The flatness of Λf implies that of the dual bundle N*. By the curvature
decreasing property of Hermitian holomorphic vector subbundles, we have,
denoting by Θ' = Θ^* and Θ = Θ^io^* the curvature forms of N* and
Γ1 0(Λ r)* with the induced metrics respectively,

for ξ ε Tx

lfi(Zx) and ξ* ε N*. Now let {ex, -,«?„} be a basis of Γx

1Λ(Jf)
and {ef, • ,e*} be the dual basis. Then, for ξ* = Σα,ef belonging to TV/,
we have

e,) = -
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Here the next to last inequality follows from the standard relation between
curvatures of dual bundles and the last equality comes from the definition of
θΓi.o(jc), the curvature tensor of Tι-°(X) with the induced Hermitian matrix. It
follows now that Θ'(ξ,|,f *,£*) < 0 and that equality hold for all ξ* G N*
only if Rtfζξ = 0 for all ξ = TΛaiei such that Σatef e N*. But Σatef G iV/ if
and only if (Σf l^XO = 0 for all £ G ^ ( Z J , i.e., if and only if (Σtf^ , £)
= 0, so that

Rtisί = ° f o r a 1 1 f G F / '

proving Proposition (7.3).

(7.4) Invariance of V under parallel transport. Recall that M\Ό is invariant
under parallel transport along curves on Zx, which implies in particular that
V\u is invariant under parallel transport along any curves (not necessarily
geodesies) γ(/) such that y(t) G Vy{t). In this subsection we assert the stronger
statement:

Proposition (7.4). The bundle V of maximal subspaces, defined by V =
\JχfEXVx and Vx = C-linear span of Jίx, is invariant under parallel transport
along any smooth curve I on X. In particular, V is a bona fide differentiable
vector bundle on X.

Proof. (I) First we assert that it suffices to prove that V\u is invariant
under parallel transport along geodesies. First of all, we contend that the latter
statement would imply that maximal directions remain maximal directions
when translated by parallel transport along any geodesic passing through U. At
each xf e X there exists a geodesic γ joining xf to some point xGί/.
Adjacent geodesies emanating from c will also intersect U so that maximal
directions at xf remain maximal when translated by parallel transport along
some open cone of geodesies emanating from x' and hence along all geodesies
emanating from x', by the identity theorem for real-analytic functions. It
follows that the bundle V of maximal subspaces is invariant under translation
by parallel transport along any geodesic. In particular, V is a differentiable
vector subbundle of Th0(X). Let l(t\ -δ < t < δ, be any smooth curve.
Suppose x G F/(0) and

is the decomposition of the parallel transport χ(t) G Tfc® according to the
orthogonal decomposition Th0(X)= VΦV1. From the invariance of V
under parallel transport along geodesies it follows readily that \\ζ(t)\\ = O(t2),
|| || denoting the length. To show that χ(/) G Vl(t) it suffices to show that
d\W)\\2/dt = 0. Let ζt(s) and ξt(s) denote the translation of ξ(t) and ζ(t) to
l(s), for s sufficiently close to /, by parallel transport. Obviously, ξt(t) = ξ(t),
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£,(/) = f(ί) and {,(*) + ξ,(s) = χ(ί) . Let ξ,(s) = £,'(*) + ?/(J) and £,(*) =
£"(ί) + ξ"(s) denote the decompositions of ξ, and ξ, according to the
decomposition Tlfi(X) = V Θ F x . Then

£(*) = W + £"(*)•
We have

Just as | | f(0| | = O(t2) we also have U!(s)\\ = O((t - s)2), so that
(y/ds )£!0(t0) = 0. To estimate {V/ds )£,"(*„) w e observe first of all

Lemma. For any t such that —δ<tQ<8 and any μt e Γ/j;°(A
Γ), let

μ,(s) = ξ(s) + ξ(s)

be the decomposition of the translation μ(s) of μ(t) = μ by parallel transport

along I. Then

with a positive constant K independent oft0.
Proof of Lemma. Suppose μ' = c/x, and μ\(s) = ξ'(s) + ξ'(s) is the corre-

sponding decomposition of μ'. Then, obviously ξ'(s) = cζ(s) so that

Now let K be the supremum of all \\{V/ds )ζ(t)\\ obtained from all possible t
with -8 < t < 8 and from all possible μt e T^{X) of unit length. K is
clearly finite by the real-analyticity of μt(s) jointly in μt and s, when μt(s) is
defined on Tλ\X)\-ι X (-2δ,2δ), where / is an extension of / to (-2δ,2δ),
assumed to lie within the cut-locus of x e I The Lemma is obviously valid
with this constant K. Given the Lemma, we can now estimate

= 2

To show that d\\ζ(t)\\2/dt = 0 and hence that V is invariant under parallel
transport along any curve it suffices therefore to show that any real-analytic
function /(*) defined on (-δ,δ) satisfying \df/dt\ < K\f\, /(0) = 0, must
necessarily be identically zero. (Observe that d\\ξ\\2(0)/dt =
(V/dt )f(0)> = 0.) In fact, if / = cjm + O(tm+1), cm Φ 0,

\df/dt\ ^Imcjr"-1 + o ( r ) | = m\cm\r-\
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which clearly dominates K\f\ in a neighborhood of 0 for any constant K,
proving the assertion that Proposition (7.4) can be reduced to the correspond-
ing statement on the open set U for geodesies γ.

(II) The proof of the reduction on (I) implies that to prove Proposition (7.4)
it suffices to show that if a ^Jίx, x e £/, and γ(/), -8 < t < δ, is any
geodesic on U with γ(0) = JC, then, for the decomposition a(t) = ζ(t) + ζ(t) of
the translation a(t) of a = α(0) by parallel transport along γ according to the
decomposition Tι*°(U) = V\υ θ VL \υ, we have

In fact, this would imply that a(t) e Vy(t), so that Vy(0) is translated to Vy(ί)

since F γ ( 0 ) is generated as a C-linear space by the space of maximal directions
xM γ(0) "~ J n x

Suppose now ξ(t) = ctξ(ί) 4- O(t2) with \\ξ(t)\\ = 1, where O(t2) stands for
a vector-valued function of length of order O(ί2). Then,

R ( a ( t ) , a ( t ) , a ( t ) , a ( t ) )

R{ξ(t) +j(t), ξ(t) +£r), ξ(t) + ξ(t), €(0+ f (0)j £
= R{ζ(t), ΪU), ξ(t), ΪUΪ) + 4RcR(ξ(t), Wϊ, €(0. ΊU))

4R(ξ(t), ξ(t) , ξ(t),

By Proposition (7.3) Λ(ί(ί), ί(0» f(0» £(')) = ° W e c l a i m t h a t actually for
any x e ί/, any | e Fx and any f e Vx

x we have

To see this, suppose £ = α e ^ Λ . From Proposition (7.3) we have Λαδίj = 0
for all J e F / , so that £ e JΓa. However, by Proposition (2.2.1) now we have

which yields (*) since Vx is the linear span of Jtx. It follows now from (*) that

R(a(t), a(t) , a(t), a(t) ) = R(ξ(t), ξ(t), ί(0. €(/)) + O(t4).

On the other hand, if ξ(t) = ctξ(t) + O(t2), \\ξ(t)\\ = 1, we have
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so that

R{a(t), ^ΰ), a(t), Ϊ(ΪT) < (1 - cΨ + O(t4))2RaSttS(0) + O(t*)

= (1 - 2cΨ)RaSaS(0) + O(t4).

If c Φ 0 we would have Λβ5βa,,(0) = 0 and Λβaβa>,,(0) < -4c2RaSaS(0) for
η = γ(0). But we have simply, from Berger's formula, RaSaa,w(®) = 0. This
proves c = 0, so that in the decomposition a(t) = £(/) + ξ(t) we have

implying by the reduction method of (I) that V is a differentiate C-vector
bundle invariant under parallel transport along any smooth curve on X,
proving Proposition (7.4).

(7.5) Integral submanifolds of R e F x . Recall that V is a distribution of
tangent vectors of type (1,0) invariant under parallel transport and for each
x e X there is a compact totally geodesic complex submanifold Zx which is
locally symmetric. (Such a Zx exists now for each x e X because one can take
the open set U to be X, since we know now that V =\JxeXVxΊsa. differentia-
ble C-vector bundle.) The Zx are integral submanifolds of Re V. According to
the orthogonal decomposition Th0(X) = F θ Vs- we can divide vectors of
Tι'°(X) into types ξ e V and ξ e V± . In (7.2) we deduced that X is locally
symmetric if V ^ ^ = 0 for all ξ G V1-.

Since K is invariant under parallel transport, the same applies to VL. The
arguments in Proposition (7.1) for V now apply to VL to show that ReF-1 is
an integrable distribution of tangent vectors. For each I G I , let Zx be the
leaf passing through x of the foliation defined by the distribution ReV1. The
arguments of Proposition (7.1) imply that Zx is totally geodesic and complex
analytic. From Proposition (7.3) we know that R^m = 0 whenever ξ e Vx and
f e F / . It follows by the hypothesis of the Main Theorem that Zx can be
regarded as a complete Kahler-Einstein manifold of positive Ricci curvature.
By the theorem of Bonnet-Meyers each Zx is compact. Now it is obvious how
one can prove the Main Theorem by induction on the complex dimension of
X. In fact, Z^ satisfies the hypothesis on X in the Main Theorem. We can
therefore assume as an induction hypothesis that Zx is a Hermitian symmet-
ric manifold unless F = Γ10(AΓ), in which case there is nothing to prove.
Hence, V^R^i = 0 whenever f G K 1 , proving vR = 0 on X for the curva-
ture tensor R, completing the proof of the Main Theorem.

Remarks, (i) By a result of Kobayashi [11], all locally symmetric compact
complex manifolds of positive Ricci curvature must be simply connected.
Hence, the manifold X in the Main Theorem is globally symmetric.
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(ii) It is clear that the proof of the Main Theorem implies immediately the

more general case when the Ricci tensor of X is only assumed to be parallel

and positive. Positivity of the Ricci tensor is only usd in proving compactness

of certain integral submanifolds, using the theorem of Bonnet-Meyers.

8. A Generalization of the Main Theorem

(8.1) Recall Corollaries 1 and 2 of §0 which asserts that the Main Theorem

can be generalized to the case when the Ricci tensor is parallel and the Kahler

manifold X is complete, possibly noncompact. By results of Bishop & Gold-

berg [4]-[6], for a compact Kahler manifold X of nonnegative holomorphic

bisectional curvature, the Ricci tensor of X is parallel if and only if X has

constant scalar curvature. To complete the present article it suffices to prove

Corollary 2, where X is only assumed to be complete and the Ricci tensor of X

is assumed parallel, in place of being Kahler-Einstein of positive Ricci curva-

ture.

The only places where the positivity of the Ricci curvature is used are (7.2)

and (7.5), where we applied the theorem of Bonnet-Meyers. The Kahler-

Einstein condition was only used in obtaining formulas for computing vRijkh

etc. But it is clear that these formulas (obtained by commutation) would still

hold if v(Ric) = 0, i.e. the Ricci tensor is parallel.

Proof of Corollary 2 (and hence Corollary 1). The point of the proof is

simply to split off the directions where the Ricci tensor vanishes. Define

Wx c Tx

h0(X) to be the subspace of all χ e Tx

h0(X) such that Ric(χ, χ ) = 0.

Clearly Wx is a C-vector subspace of Tχ-°(X) since the Ricci form is a

Hermitian symmetric bilinear form on X. Since the Ricci tensor W = Ux e x Wx

is a differentiable vector bundle on X invariant under parallel transport, by

the arguments of Proposition (7.2) Re W as an integral distribution of real

tangent vectors. The leaves Lx of the foliation defined by Re W are flat since

they are totally geodesic, the Ricci tensor on L is everywhere zero and

holomorphic bisectional curvatures of Lx are nonnegative. Let Wx

x be the

orthogonal complement of Wx in Tx

h0(X). Then W=Όx^xWx

jL is invariant

under parallel transport. Denote by Zx a leaf of the foliation defined by

Re W± . Then Zx carries positive Ricci curvature by the definition of WX

L.

Moreover, the Ricci tensor of Zx is parallel since R%ιxx = 0 for all £ e W^

and χ £ Wx. By remark (ii) of (7.5) we conclude that each Zx is a (global)

Hermitian symmetric space, so that V^R^i = 0 for all £ e WL . Since W is

invariant under parallel transport and Rχxxx = 0 for all χ e W, it follows that

= vxRxxxx = ° f o Γ * G W* a n d * G W*' T h e o n l y o t h e r t e r m s o f
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, up to conjugation and permutation of indices, are of the types VμRξxμμ,
where μ e T^°(X) is arbitrary. It suffices therefore to show that

To prove (*) it is equivalent to prove Rχμμμ = 0 for all μ e T^°(X) since
Rχ_μ_ = o for all χ G ^ a n d μ e T™(X). Let μ <E T™( X) and consider the
function

F(ε) = R(χ + ε/z, x + εμ , χ + εμ, χ + εμ)

defined for ε real. Then, from F(ε)> 0 we obtain by variation formulas that
Rxxxϊ = ° a n d 4Rxx>* + 2 R e Λ x ^ > ° B u t s i n c e Rxw = ° a n d w e c a n

always assume ReRχμχμ < 0 if μ is replaced by eιθμ for an appropriate real
angle 0, it follows that Rχμxμ = 0. Computing now the third variation of F
against ε at 0, we obtain Rχμμμ = 0, proving (*), thus showing that V# = 0 on
X and proving Corollary 2 (and hence Corollary 1).

Concluding remarks, (i) By Koszul [13] and Lichnerowicz [16] every compact
homogeneous Kahler manifold X carries a Kahler metric with parallel and
semipositive Ricci tensor. Analogous to the situation of Gray [8] our theorem
shows that such a Kahler metric on X cannot have nonnegative holomorphic
bisectional curvature everywhere unless X is Hermitian symmetric (cf. Lich-
nerowicz [14], [15]).

(ii) As was indicated in Gray [8], every compact homogeneous space X of the
form G/T, where G is a compact Lie group and T is a maximal torus of G,
admits an Einstein and bi-invariant metric of nonnegative sectional (and hence
nonnegative bisectional) curvature. This metric is in general not Kahlerian.

(iii) See Auslander [1] for an example of compact flat Kahler manifolds
which are not homogeneous. Hence, in the formulation of Corollaries 1 and 2,
we can only conclude that X is locally symmetric.
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