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THE REGULAR FOCAL LOCUS

JAMES J. HEBDA

1. This paper examines Riemannian manifolds containing a submanifold
whose first focal locus consists entirely of focal points having the same
multiplicity. It is shown that a compact manifold admitting such a submani-
fold, provided the homomorphism on the fundamental groups induced by the
inclusion map is surjective, is expressible as the topological union of two disk
bundles, whose cores are the submanifold and its cut locus, which, in this case,
is also a submanifold. Under more stringent conditions, simple-connectivity
and the transversality condition defined below, it is proved that the ambient
manifold, the submanifold, and its cut locus all have integral cohomology rings
of compact rank-one symmetric spaces. In some sense, this work generalizes
that of F. W. Warner in [12] and [13].

Throughout, W denotes a complete Riemannian manifold of dimension
m + r, and /: M -» W a smooth submanifold of W of dimension m. M may be
considered to be a subset of W, and, in this case, the inclusion map / will be
suppressed. Recall,/is proper if the inverse image under /of every compact set
is compact. N(M) will denote the total space of the normal bundle of M in W.
exp: N(M) -> PΓwill denote the exponential map obtained by restricting the
exponential map of W to N( M). A focal point is a critical point of exp, and its
multiplicity is the dimension of the kernel of the differential exp* at that point.
An M-geodesic is a geodesic of W initially perpendicular to M. An M-Jacobi
field is a Jacobi field along an M-geodesic which is the transverse vector field
to a variation of M-geodesics. Observe that a focal point occurs where a
nontrivial M-Jacobi field vanishes. For a proper submanifold, a cut point
along an M-geodesic is the point after which the M-geodesic no longer
minimizes the distance to the submanifold. The cut locus of M in N(M)
consists of those points which correspond to cut points along M-geodesics
under exp. [2] is a good reference on M-Jacobi fields and cut loci (there called
minimum loci) of submanifolds.
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2. A ray in the vector bundle N(M) is the set of positive multiples of a

nonzero vector.

Definition. A focal point Z in N(M) is a regular focal point if there exists a

neighborhood V of Z in N(M) such that for every ray r meeting V, there is at

most one focal point in r Π V.

The following two theorems are generalizations of Theorems 3.1 and 3.2 in

[12]. The proofs go through with obvious modifications to the focal point

situation.

Theorem 2.1. The set of regular focal points is an open and dense subset of

the set of all focal points of M in N(M). Furthermore it can be given the structure

of a submanifold of N(M), which has codimension 1 and is transverse to every

ray meeting it.

Theorem 2.2. At regular focal points having multiplicity at least two, the

kernel o/exp* is contained in the tangent space to the focal locus.

3. Definition. M has a very regular first focal locus if the multiplicity of the

first focal point along every Af-geodesic is constant and, in case the multiplicity

is one, ke^exp*) is contained in the tangent space to the focal locus at every

first focal point.

Remark. By Gauss's lemma, this condition is satisfied if both the multiplic-

ity of the first focal point and the distance to the first focal point along every

M-geodesic are constant.

Theorem 3.1. Suppose W is a connected compact Riemannian manifold, and

M is a connected compact submanifold having a very regular first focal locus such

that / # : πλ(M) -> πλ(W) is onto. If s — 1 is the multiplicity of the first focal

points of M, then the cut locus K of M in W is a submanifold of W with

codimension s, and W may be expressed as a topological union DM Uφ Dκ, where

DM and Dκ are disk bundles over M and K respectively, and φ: dDM -* dDκ is a

diffeomorphism.

Proof. Let F denote the first focal locus of M in N(M). The cut locus of M

in N(M) coincides with F. (The proof of this fact is analogous to Theorem 5.11

in [3] where we use the Morse theory of the space of paths with initial point in

M and fixed terminal point. Observe that the surjectivity of /„, replaces the

simple-connectivity condition. For the multiplicity-one case, see [5].) Hence F

is compact by the compactness of M and W9 and the cut locus K oί M in W

inherits a submanifold structure from the submersion exp: F -> K having

codimension s in W.

Since the rays in N{M) are transverse to F, and the kernel of exp* is

contained in the tangent space to F, it follows that an M-geodesic when it first

meets K is not tangent to K. Thus by compactness we can find an ε0 > 0 such

that no M-geodesic prior to meeting K is tangent to the ε-tube about K for any
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0 < ε < ε0. (The ε-tube is the set of points of W SL distance ε from K.) It
follows that every M-geodesic meets the εo-tube exactly once before meeting K\
otherwise it would be tangent to some ε-tube with 0 < ε < ε0. Set

DM = (Z GN(M): exp(ίZ) does not meet the εo-tube for t e [0,1).},

and let Dκ be the set of points of W whose distance to K is at most ε0. Then
DM and Dκ are diffeomorphic to the normal disk bundle over M and K
respectively. Define a diffeomorphism φ: dDM -» dDκ by letting φ(Z) be the
intersection of the εo-tube with the M-geodesic determined by Z before it meets
K, namely φ(Z) = exp(Z). Clearly Wis the topological union of DM and Dκ.
q.e.d.

Conversely, there is the following.

Theorem 3.2. Suppose W is a compact manifold expressible as DM UφDκ,

where DM and Dκ are disk bundles over compact submanifolds M and K

respectively, and φ: dDM -» dDκ is a diffeomorphism. Assume the codimension s

of K in W is at least two. Then (1) /*: π,(M) -> irx(W) is onto, and (2) there

exists a Riemannian metric on W such that M has a very regular first focal locus,

and K is the cut locus of M.

Proof. Statement (1) follows from a general position argument since the
codimension of K is at least two, and M is a deformation retract of W — K.

In [9, pp. 236-238] Omori constructs a Riemannian metric on W having the
properties that K is the cut locus of M, and the distance from M to the cut
locus is constant. From the first variation formula it therefore follows that
every geodesic meeting M perpendicularly meets K perpendicularly and vice
versa, so that every M-geodesic can be reparametrized to be a ̂ -geodesic and
vice versa. Moreover, M-Jacobi fields are precisely if-Jacobi fields. The num-
ber of linearly independent ^Γ-Jacobi fields vanishing at points of K is s — 1.
Thus using the M-Jacobi field characterization of focal points we see that M
has a regular focal locus which occurs at a constant distance. Therefore M has
a very regular first focal locus. (See the remark before Theorem 3.1.)

4. For a manifold which is decomposable as the union of two disk bundles,
there are two long exact cohomology sequences relating the cohomology
groups of the manifold to those of the cores of the two disk bundles. With the
notation of Theorem 3.1 and letting r = codim(M) and s = codim(^Γ), ob-
serve that H\DM) = H\M) via a deformation retraction, and H\W, DM) =
H\DK, dDκ) = Hι~s{K) via exclusion and the Thorn isomorphism. (Here we
take the coefficients of the cohomology groups to be the integers modulo 2, or
the integers in case Dκ in an oriented bundle over K.) Starting from the long
exact cohomology sequence of the pair (W, DM) and using the above isomor-
phisms, one obtains the exact cohomology sequence
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(4.1a) <- H\M) f^

Similarly, interchanging the roles of M and K, there is the exact sequence

(4.1b) «- Hi(K)tHi(W) «- #<-r(M) ^H'-^K) «- .

Furthermore, the homomorphisms in these sequences are homomorphisms of

F*(W)-modules. (H*(M) and # * ( # ) are ^*(^)-modules under the ring

homomorphisms/* and g* induced by the inclusion maps. See [4, p. 321].)

An easy application of these sequences is the following.

Theorem 4.1. Let W and M satisfy the hypothesis of Theorem 3.1. (1) //

m<\ά\m(W) and s>{ά\m(W\ then m + s = dim(W). (2) If m + \

< \ ά\m(W) and s > \ dim(JF), then M and its cut locus K have isomorphic

Z/(2Z) cohomology rings and W has the Z/(2Z) cohomology ring of a sphere

bundle over M.

Proof. Theorem 3.1 applies. Let k — ά\m(K) and recall r — codim(M).

We want to show r = s.

Conditions (1) are equivalent to r > m and s > k. Suppose r < s. Then

m> k, and thus Hm(W) = 0 by exactness of (4.1b). On the other hand,

m - s + 1 < 0 since m < r < s9 and thus Hm(W) = Hm(M) Φ 0 by exactness

of (4.1a). We obtain a similar contradiction assuming r > s. Thus r — s.

If (2) holds, then m — k and r — s by (1). If i < m, then i — s + \<m — r

+ 1 < 0. Thus, by (4.1a),/* is an isomorphism if i < m. Similarly, g* in (4.1b)

is an isomorphism for i < k = m. Since these isomorphisms are induced by the

inclusion maps, they preserve the ring structure. Therefore M and K have

isomorphic rings.

From the exactness of (4.1b), when / > m, it follows that H^'iM) -* H\W)

is an isomorphism. Since this isomorphism is a H*(W^-module homomor-

phism, it follows that

wU : W'XW) -> H\W)

is an isomorphism for m < i < dim(W) and u G Hr(W) the generator. Thus

PΓhas the Z/(2Z) cohomology of an r-dimensional sphere bundle over M.

Remark. One can use integral cohomology in Theorem 4.1 if W, M, and K

are orientable.

A topological union DMUφDκ of disk bundles is said to satisfy the

transversality condition if the image under φ of every fiber of the sphere bundle

dDM over M is transverse to every fiber of the sphere bundle dDκ over K.

(Recall two submanifolds are transverse if the span of their tangent spaces at

points of intersection is the whole tangent space of the ambient manifold.)
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Remark. If either M or K is a point, the transversality condition is

automatically satisfied.

Example. Consider two copies of the solid torus Sι X D2 as disk bundles

over Sι via projection on the first factor. Consider the identity map / of

Sι X Sι and the twist map T: Sι X Sι -> Sι X Sι defined by T(x, y) = (y, x).

ThenS 1 X D 2 U ^ 1 X Z>2 does not satisfy the transversality condition, whereas

Sι X D2 UτS
ι X Z>2does.

Theorem 4.2. Suppose W is a simply-connected compact connected Rieman-

nian manifold, and that M is a compact connected submanifold of W having a

very regular first focal locus. Let K be the cut locus of M. If the transversality

condition holds for the decomposition of Theorem 3.1, then one of the following

holds'.

(\)W is homeomorphic to a sphere, and M and K are either both points or both

diffeomorphic to spheres.

(2) W, M, and K have the same homotopy type as complex projective spaces.

(3) W, M, and K have integral cohomology rings of quaternionic projective

spaces.

(4) W has the integral cohomology ring of the Cayley plane, and one of M and

K is a point, the other being homeomorphic to Ss.

Proof. In the notation of Theorem 3.1, identify dDM = dDκ with a sub-

manifold X of W. Let k = dim(^), and recall s — codim(A^) and r —

codim(M). X is a sphere bundle over M with fiber Sr~ι and also a sphere

bundle over K with fiber Ss~ \ Denote the projection maps of these bundles by

pM and pκ respectively, and let j M and j κ denote the inclusion maps of the

respective fibers S"""1 and Ss~ι into X.

Consider the map p: X -» M X K defined by the two projections pM and pκ.

The transversality condition implies that p is a submersion. Hence the image is

open. It is also closed since X is compact. Thus p is a submersion of X onto

M X K. (The only time M X K is disconnected is when r — 1. However/? still

meets both components.) Therefore/? is a fibration of X over M X K with fiber

F —JM(Srl) ^JFciS51)- Similarly the compositions pM <> j κ : Ss~ι -> M and

PK ° JM: Sr~ι -> K are fibrations with the same fiber F. We want to show Fis

connected.

The simple connectivity of W, a general position argument, and a deforma-

tion retraction of W — K onto M shows that M is simply-connected if s > 3.

Furthermore, iί s > 3, the exact homotopy sequence for the fibration/?^ shows

that pκ*: πx(X) -> πx(K) is an isomorphism. Also X is connected if r ^ 2.

Therefore consideration of the exact homotopy sequence for the fibration/?,

P K)^ τro(F) - πo(X),
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shows that F is connected if s > 3 and r > 2. Similarly, i*1 is connected if r > 3

and s > 2.

If r = 2 and s = 2, F is either 0- or 1-dimensional. If 1-dimensional, F is the

entire fiber of the fibration pκ © j M and hence is connected. If 0-dimensional,

let n be the number of points in F. First of all, the fibrations pM © j κ and

PK ° JM a r e Λ-fold covers of M and # by S1. X is an orientable S1-bundle over

M, since M being 1-dimensional is an orientable submanifold of the simply-

connected space W and hence has an oriented normal bundle. Thus X = M X

Sι as bundles over M. (M is just Sι.) A computation using the Van Kampen's

theorem applied to the decomposition of W by DM and Z>̂  with X = DM Π D^

shows πλ(W) = Z/(nZ). Thus, since W is simply-connected, « = 1 and F is

connected.

If r = 1 and Fis disconnected, the fibration/?^ ° yM is a fibration of S° over

A\ Thus Â  consists of one point, and F consists of two. Thus pM is a double

cover of M, and hence W is not simply-connected. Therefore if r — 1, F is

connected.

We have also shown that the normal bundles of M and K are orientable.

This is so because M and K are themselves always orientable being either

simply-connected or 1-dimensional, and an orientable submanifold of an

orientable manifold has an orientable normal bundle. Hence we will use

integer coefficients in the exact sequences (4.1a) and (4.1b).

Now pM o j κ and pκ © j M are fibrations of spheres over compact manifolds

M and K respectively with a compact connected fiber F. The only ways that a

sphere can be fibered over a non-contractible space with a compact connected

fiber F are if F is a point, a homotopy 1-sphere, a homotopy 3-sphere, or a

homotopy 7-sphere [11]. Now Kor M fail to be noncontractible, when they are

points. If one of M or K is a point, we are in the situation examined by Warner

in [13]. His classification applies and fits into our scheme.

Assume neither M nor K is a point. We examine the possibilities for F.

Suppose F is a point. Then /?, pM ° j κ and pκ ° j M are diffeomorphisms.

Hence we have the following pair of commutative diagrams. (Both of the top

arrows are the diffeomorphismp © ((pM © j K ) ~ l , (pκ © Λ/) ! ) )

r - 1 X ~~ > Sx~λ x Sr~*

PK°JM
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Since the fibers are preserved, we can extend these diffeomorphisms to
homeomorphisms defined on the disk bundles by a mapping cylinder construc-
tion. Hence the following commutative diagrams:

x D
r

Ss~ι K- = — S r ~ ι

Notice that φ: dDM -* dDκ becomes the identity map of Ss~ι X Sr~ι under
these identifications. Therefore there is induced the following homeomor-
phism:

W = DMUφDκ = Ss-χ XDrΌidD
sX Sr~λ ^Sr+S~\

Suppose F is a homotopy (d — l)-sphere where d — 2, 4, or 8. By a standard
Gysin sequence argument [6], since M and K are the base space of a fibering of
a sphere by a homotopy sphere, the integral cohomology rings of M and K are
truncated polynomial rings with a generator in dimension d. Also d divides m,
k, r, s, and dim(W). Let m' = m/d and k' = k/d.

Easy computations involving the long exact sequences (4.1a) and (4.1b) with
knowledge of the cohomology of M and K show that

Z ° ^ ' ^ dim(W) and i = 0 (mod d),
0 otherwise.

In fact, H*(W) has as a free basis the set (1, x, ,xm\ M, UX, ,uxk'},
where x E Hd(W) is a generator, and u E HS(W) is the generator which
comes from restricting the Thorn class in HS(DK, X) =H°(K) to W. (In
proving this one needs to use the fact that the homomorphism Hι~\K) ->
H\W) in (4.1a) is an #*(W)-module homomorphism.)

In order to show that the integral cohomology ring of W is a truncated
polynomial ring, we must show that u — xm+ι. This requires a geometric
construction.

We construct a space M C W by attaching an s-disk to M along the map
PM ° ΛΓ a s follows. Let Ds be a fiber of the disk bundle Z)^ over A\ Set

Ss-\ = Ds n $Dκ Let M = Ds U {all rays in DM meeting Ss~1}. The
cohomology of M has as a free basis the set {1, x \ M, 9(x \ M)m\ u \ M).
u I M E HS(M) is the generator by the definition of the Thorn class. Now M is
a Poincare duality space, in fact, a topological manifold (see appendix). Hence
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the Poincare duality argument on p. 207 of [13] shows that (u \ M) — ±(x \
M)m'+X. Hence u\M= ±xm'+x\M. Therefore w = ±xm'+x since H\W) ->

H\M) is an isomorphism.
We have proved that the integral cohomology rings of W, M and K are

truncated polynomial rings with a generator in dimension d. For d — 2, such
spaces have the homotopy type of complex projective spaces [7, p. 537]. For
d — 4, this is the integral cohomology ring of quaternionic projective spaces.
For d — 8, Adem [1] shows JC3 = 0. This contradicts our expression for H*(W)
assuming neither M nor K is a point. Thus one of M or K is a point, and
Warner's proof shows that the other is a homology 8-sphere. However, as we
say above, it is also simply-connected. Thus it is homeomorphic to Ss.

Remark. In view of Theorem 3.2, one can construct exotic examples of
spaces satisfying the hypothesis of Theorem 4.2. Witness the Kuiper-Eells
quaternionic planes [8].

APPENDIX. We show that the space M constructed in the proof of Theorem
4.2 is a topological manifold and hence satisfies Poincare duality.

M is obtained by pasting a disk Ds onto M via a fiber bundle map p:
dDs -> M with fiber the homotopy sphere Σ^"1, d = 2, 4, or 8. In order to
show that M is a topological manifold, it suffices to show that for every
x E M C M, x has a neighborhood in M which is a manifold. (We certainly do
not have to worry about the points in the interior of the disk.)

Let x E M, and let U be a neighborhood of x in M so that there is a
homeomorphism p~\U) = UX Σd~x. Consider the set {ty: t G (0,1], j G
p-\U)} ^UX Σd~ι X (0,1] which is open in Ds. This projects down to a
neighborhood U of x in M for which there is a homeomorphism U = U X
CΣd'x where CΣd~ι is the cone on Σ^"1. If d = 2 or 8, Σ^" 1 is homeomor-
phic to the sphere Sd~ι. Thus CΣd~ι is homeomorphic to CSd~x which is the
interior of the rf-disk, which is a manifold. (We take open cones CΣd~x —
(Σd-χX(0,\])/(Σd-χX{\}).)

If d = 4, because the double suspension of a homotopy 3-sphere is homeo-
morphic to S5 [10], it follows that R X CΣ3 is a manifold, for this set can be
embedded as an open set of the double suspension of Σ3. Since M is not a
point, dim(ί/) > 1, and so U X CΣ3 is a manifold.

This completes the proof that M is a topological manifold.
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