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CONVEX MANIFOLDS OF NONNEGATΊVE
CURVATURE

STEPHEN KRONWITH

During the past decade, exciting breakthroughs have occurred in the study
of complete open (i.e., noncompact) manifolds of nonnegative curvature.
Cheeger and Gromoll [3] have shown that such a manifold M contains a
compact totally geodesic submanifold S, the soul of M, whose normal bundle
is diffeomorphic to M itself. The soul also has the property of being convex in
the sense of definition 1.1. In fact, the existence of large convex sets with
boundary is of basic importance in the construction of the soul. It is mainly
because of this that we undertake to better understand their structure, though
most questions relating to convexity seem to be important also in their own
right.

We first study compact convex sets in the abstract, what we call convex
manifolds. We show that such a manifold of nonnegative curvature has a
complete metric of nonnegative curvature on its interior. This is used to
answer the fundamental question: Can a compact convex manifold of non-
negative curvature be isometrically imbedded into a complete open manifold
of nonnegative curvature?-a converse to the procedure of Cheeger and
Gromoll. For the most part, but not always, we find the answer to be yes, the
most general results being obtained in the case of surfaces.

This paper is, in a large part, taken from the author's doctoral dissertation
at the State University of New York at Stony Brook. The author would like to
thank Detlef Gromoll for the many helpful discussions we had which gave the
author deeper insight into the delicate aspects of convexity.

1. Convex manifolds

Given a Riemannian manifold N (without boundary) and a set C c N, C

is said to be convex if, for any point p e C, there is a number e(p) with

0 < e(p) < r(p) such that C Π Be(P)(P) n a s t n e property that between any
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two points there is a unique minimal geodesic in N, completely contained in
C Π Be(p)(p\ which joins these points. The set C Π B^^p) is said to be
strongly convex.

Here, and hereafter, r(p) denotes the convexity radius of N at /?, C is the
closure of C in N, and Bδ(p) denotes the open ball of radius δ about p in N.
For other basic facts and notations which will be used without comment, we
refer the reader to [2] and [4].

Using this definition, it can be shown that a closed convex set C c N is an
imbedded topological manifold with smooth totally geodesic interior int(C),
and possibly nonsmooth boundary 8C (which may be empty) [3]. If dC is
smooth, then C is a smooth submanifold with boundary. Accordingly, a
smooth compact convex subset C (Z N will be called a convex submanifold
of TV.

Let us give a somewhat more intrinsic definition.
Definition 1.1. A compact Riemannian manifold Mn of dimension n with

smooth boundary dM φ 0 is said to be convex if there are a Riemannian
manifold Wn without boundary and isometric imbedding /: M —> W such
that i(M) is a convex subset of W.

It is straightforward to see that any compact convex submanifold C c N is
a convex manifold in the above sense. Just exponentiate the outward unit
normal field of dC in C into N to obtain a submanifold W of N with dW = 0
and dim W = dim C.

Two important facts about convex manifolds are standard [1]:
l.a. If C c N is convex and smooth with p G dC and v E (dC)p, where

Xp denotes the tangent space of X at/?, then the geodesic α: (-δ, 8)-^> M with
α(0) = p, ά(0) = t>, locally stays to the outside of int(C). That is, for suffi-
ciently small ε, a(t) & int(C) for all t G (-ε, ε).

l.b. A compact Riemannian manifold M with boundary ΘΛf is convex if
and only if the second fundamental form of the outward pointing unit normal
field along ΘM is positive semidefinite. We call a point p E 9(Λ/) where the
form is positive definite, a point of strict convexity.

The main result of this section is the following.
Theorem 1.2. Let M be a convex manifold with metric < , ) and distance

function p. Assume that the curvature K of M is nonnegative (respectively
positive). Then for any ε > 0 sufficiently small, there exists a complete metric of
nonnegative (respectively positive) curvature on int(M) such that this new metric
agrees with the old one off the one-sided ε-tubular neighborhood of the
boundary.

Proof. Let /: int(Af) —» R be the function f(x) = ρ(x9 dM). It is known
that/ i s continuously convex [3]. But since dM is smooth, there is a one-sided
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tubular neighborhood of the boundary which will exclude any points of the
cut locus of ΘM and on which / will be smoothly convex, in that the hessian
form hf of/will be negative semidefinite. Call this neighborhood Bε(dM), that
is, Bε(dM) = {* E int(M)|p(;c, ΘM) < ε}.

Let x = 1//. x is C°° on Bε(dM) and l i m ^ ^ χ( c) = oo. For/> E Bε(dM),
we have hχ(vp, vp) = hι/f(v, v) = <VOV(1//), t>> = (2v(f))2/f3 -
l//2(fy0>> v)) > 0 where vp E Mp9 V is the Levi-Civita connection on Λf, and
V(l//) is the gradient of 1//.

Now define g: R -» R by

f f e - ^ - ^ Λ , />l/e,
g(t) = j Λ/ε

10, else.
g is C 0 0 with dng/dt([/ε = 0 for all AZ.

Let x: int(M) -^ R be defined by

(x), else,
where γ is any C 0 0 extension of x outside of Bε(dM).

Finally, let Γ = g ° χ; int(M) -H> R. We have that lim x^ a M T(x) = oo, Γ is
C°°, and in BεφM), hΓ(v, v) = (gf o χ)Λ~(t>, υ) + (g" ° χ)(υ(χ))2.

In Bε(dM), hχ is nonnegative, and AΓ(υ, t>) > 0 since g' and g" are also
nonnegative. If p E M - £ε(9M), then g' = g" = 0, so hτ = 0. Thus by
continuity, hΓ(v, v) > 0 for all/? E M - Bε(μM). So Γ is (nonstrictly) con-
cave.

Next we define H: int(M) X R -» R by 7/(x, /) = Γ(JC) - /. H is a regular
map, and by the implicit function theorem H~ι(Q) = M = graph of Γ is a
Riemannian submanifold of int(M) X R, with the metric induced from the
product metric on int(M) X R; by the nature of the behavior of Γ at the
boundary and the compactness of Af, the metric is complete. Then by the
Gauss equations, we see that the graph has nonnegative (positive) curvature.

Finally, let G: int(Λf) -* M be defined by G(x) = (JC, Γ(Λ:)). If we give
int(Λf) the induced metric from M, it is readily seen that G is an isometry. So
int(M) is given a complete metric of nonnegative (respectively positive)
curvature which agrees with the original metric off Bε(dM).

The last theorem implies, of course, that any compact convex submanifold
of int(M) is isometrically contained in a complete manifold of nonnegative
(respectively positive) curvature. In particular, we have

Corollary 13. Let M a convex manifold of nonnegative (respectively, posi-
tive) curvature. Then the convex manifolds Mε = {x E M\ρ(x, dM) > ε] can
be isometrically imbedded in a complete manifold of nonnegative (respectively,
positive) curvature of the same dimension for arbitrarily small ε > 0.
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We do not know if Corollary 1.3 is always true also for ε = 0, i.e., for
M° = M itself. But we easily obtain a positive answer in general for the
following case.

Corollary 1.4. Let M be a strictly convex manifold of positive curvature.

Then M can be isometrically imbedded in a complete open manifold of positive

curvature and same dimension.

Proof. By definition, Mn c Wn. Since K(M) > 0 and the second funda-
mental form of the boundary is positive definite, by continuity, W contains a
convex manifold M' of positive curvature such that int(M') D M. Then by
applying Theorem 1.2 to M' we get our result.

(With a little extra work we can prove Theorem 1.2 if 3M is merely
continuous, for a discussion of the procedure, see [5]).

2. Convex surfaces

In this section we take up the imbedding problem for convex surfaces.
After possibly passing to an orientable double cover, we may assume all
surfaces are orientable. According to [3] we can also restrict attention to the
case where ΘM is connected. Otherwise, M is isometrically a product of a
circle and an interval, and our imbedding problem has a trivial solution. So
M will have to be a disc topologically.

Choose an orientation of the surface M such that γ(γ = 9M) and the
global outward pointing unit normal field TV along γ form an oriented base
along γ. We assume γ to be parametrized by arc length, and then define the
geodesic curvature of γ by k = <V^γ, TV). By Remark l.b we see that k < 0.

It is well known that we can choose a global Fermi-coordinate system
(JC, y) in a strip about our compact boundary such that ds2 = dy2 + gdx2 and
the y -coordinate curves are arc-length geodesies perpendicular to γ. Simple
computations show that in these coordinates, K = -(1/V^g )92VΓg /dy2 and
the geodesic curvature of any ̂ -coordinate curve is given by ~(\/2g)dg/dy.

Lemma 2.1. Let M be a strictly convex surface of nonnegative curvature

which can be Cr (r > 2) imbedded in some surface without boundary of

nonnegative curvature. Then M can be Cr imbedded in a complete open surface

and also in a compact surface {without boundary), both of nonnegative curva-

ture.

Proof. Choosing Fermi-coordinates as above, we see that by hypothesis
and continuity of k, we can extend g in an outsided strip dM X [0, ε], of ΘM
to a C °° functon g where g and g agree up to rth order on dM(y = 0) and k
remains nonnegative as does K. Now in the strip dM X [0, y0], y0 < ε, define
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g by g(x,y) = g(x, P{y)) where P is a C 0 0 extension of f(y) = y whose
maximum value occurs before y = y0 and has properties that P(0) = 0,
P'(O) = 1, PJ(0) = 0 for j > 1 and i"(>>0) = 0 for 7 = 1, 2, , r. Then it
can be easily checked that g and g agree up to rth order, the curvature in the
new metric ds2 = dy2 + gί/x2 remains nonnegative, and the geodesic curva-
ture of the y = y0 curve is zero. Therefore, if T = ΘΛ/ X [0, yo]9 the first
conclusion of the lemma now follows from applying Theorem 1.2 to M u Γ,
and the second conclusion from taking the double of M u T9 which, by the
vanishing of the first r partials of g with respect to >>, will be a Cr compact
manifold of nonnegative curvature, q.e.d.

It remains to show that the hypothesis "r > 2" can be satisfied easily
enough for r — 2.

Lemma 2.2. Let M be a strictly convex surface with K > 0. Then M can be

C2 imbedded in a surface of nonnegative curvature.

Let us note first that a C 2 imbedding is, in general, the best we can hope
for. For if p E 3Λ/ and K{p) = 0 with dK/dy\p < 0, we cannot extend our
metric with C 3 agreement along the boundary since dK/dy is basically
determined by d3g/dy3, and having the third derivative continuous would
force K negative in any extension.

Proof. Just define g on any small enough strip by g(x, y) = g(jc, 0) +
(3g/3y)(x, 0)y + (d2g/dy2)(x, 0)(//2).

Combining our lemmas we get
Theorem 2.3. Let M be a strictly convex surface of nonnegative curvature.

Then M can be C2 imbedded in a complete open surface and also in a compact

surface {without boundary), both of nonnegative curvature.

If we drop the hypothesis of strict convexity, we run into trouble; for, using
our techniques, a convex extension of M cannot be guaranteed, and at times
does not exist as we will show in the next section. However, if we examine the
calculations in Lemma 2.1, we come up with the following.

Corollary 2.4. If M is a convex surface of nonnegative curvature with
κ\dM = °> t h e n al1 ίhe results of Theorem 2.3 hold.

3. //-Convex extensions

In this section we provide a more geometric approach to our imbedding

problem. Recall first that with M compact and convex there exists an r0 > 0

such that each ball BrQ(p) is strongly convex for each/? G M.

A convex surface is said to be H- convex if its boundary consists of a

piecewise smooth geodesic.
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Lemma 3.1. Let M be a convex surface. If K > 0 {respectively, > 0) and

there exists a point p0 E ΘM such that k(p0) < 0, then M can be imbedded

{respectively, C2 imbedded) in an H-convex surface of positive (respectively,

nonnegative) curvature. This imbedding is not proper, i.e., M need not lie in the

interior of our H-convex surface.

Proof. Let M c W. As constructed in the last section, our imbedding is
C°° for K > 0 and C 2 for K > 0. Since M is compact, there is a compact
V c W with M c V. Let d be the elementary length of V, and let u be the
smallest parameter value such that any geodesic tangent to M at/?0 lies to the
outside of Bro(po) for all parameter values less than u. Now let 8 =
min(w, r0, d). Choose a parametrization χ: [0, 1] -» 9M by arc length.

About p0 choose the ball Bδ/2(p0) and assume that χ(0) = p0. Let v = χ(0).
By convexity, the minimal geodesic a, with α(0) = p0 and ά(0) = v, lies to the
outside of M for all t E [0, δ/2]. Let α(δ/2) = q E 3^/2(/?0), and let tx be
the point such that tx > 0 and x ^ ) n Bδ/2(p0) ψ 0 . Put χ ^ ) = s, and
choose points t0 E [0, tx] and ^ G M a s follows.

(a) Point of type 1. If the interval [/0, ί j is such that k^t t^ = 0 and
&|[/0-e,/,] ̂  0 for all ε > 0, then let rj = χ(t0) be called of type 1.

(b) Point of type 2. If kφ(tχ) < 0, let rx = s = ψ(^) be called of type 2.
Let /? be the unique minimal geodesic from q to rx. By the triangle

inequality β exists and lies in Bδ(p0).

Now we have the triangle (p0, q, rλ). If /? is already tangent to χ, denote by
Δ/?o the triangle and its interior. If not, depending upon the orientation, either
χ(/,) or -χ(/j) is interior to (p0, q, rx). Denote that interior vector v. By the
parametrization of χ, v is of unit length. Let y(t) = expΓ tv, t E [0, w]. This
geodesic will have to leave the triangle sooner or later. It cannot leave by
crossing χ, since x is not a geodesic by choice of p0 and in our neighborhood
convexity forces γ away from χ« If γ leaves by crossing β, we would have a
conjugate point on the minimal geodesic β with respect to rx, contradicting
our choice of δ.

So γ leaves the triangle by crossing a and making a convex angle at the
point of intersection. Denote by Δ/7Q this triangle (which is contained in
Bδ(Po)) and its interior. If rx is of type 1, we continue along ψ until we find a
point px where kfι < 0 and start again. If there is no such point we are done
with this part of the construction.

If rx is of type 2, we start the process over again at rx, choosing another ball
and continuing as before. By the compactness of dM, we can continue around
ψ coming up with M = M U / e / A/?/? / a finite set. M is an //-convex
extension of M. q.e.d.

Next we wish to make the extension in Lemma 3.1 a proper one. Let us



CONVEX MANIFOLDS 627

look at three successive geodesies of ΘM, al9 α2, and α3. Denote by θi the
convex angle where α, meets α/ + 1. Then pick outward unit vectors Xt at 0/s
vertexPi such that $(Xi9 - ά ^ ) ) = * ( * „ άi+ι(Pi)) = (2π - Θ,.)/2, i = 1, 2.
If pλ and/?2 are not conjugate to each other, there exists a Jacobi field J along
α2 with J(pj) = Xr J ¥" 0 along α2 as long as there are no conjugate points at
all along α2. If all the geodesic segments of our //-convex H are minimal,
then there is no problem with conjugate points. Certainly, all those geodesies
added on to M are minimal by construction. However, as in the case of
points of type 1, they may hook up with a geodesic which is part of the
original boundary of M. If the sum of the lengths of these geodesies is too
long, conjugate points may occur. So we must make sure that any geodesic
segment of dM has, first, no conjugate points to begin with, and secondly,
when hooked up with added segments of geodesies of the construction, no
conjugate points will occur. It is clear that having no conjugate points on our
original boundary is sufficient by that boundary being compact.

This nonvanishing Jacobi field J generates a variation through geodesies,
so, by going outward a parameter of one, for instance, we get the geodesic α2.
We continue this process at all corners to get a proper //-extension with
convex corners which we can easily smooth out keeping convexity.

So we get as final product a smooth convex Mf properly containing M
where the extension is C°° if K > 0 and C 2 if K > 0. We have thus proved

Theorem 3.2. Let M be a convex surface of positive {respectively, nonnega-

tive) curvature with a point p such that kp < 0. // there are no conjugate points

along 3Af, then M can be properly C°° (respectively, C2) imbedded in a convex

surface of positive (respectively, nonnegative) curvature.

Corollary 3.3. Let M be a convex surface of nonnegative curvature. If there

is a point p E 9A/ such that kp < 0, and there are no conjugate points on dM,

then M can be C2 imbedded in a complete open surface, and also in a compact

surface (without boundary), both of nonnegative curvature.

Corollary 3.4. Let M be as above. If there exist conjugate points on dM,

there does not exist any proper convex extension of M arbitrarily close to M.

Proof. The existence of conjugate points implies that locally, geodesies
intersect.

Of course, Corollary 3.4 is not true for sufficiently large proper, or
sufficiently small nonproper extensions, as is the necessity of the conjugate
point hypothesis in Corollary 3.3 not true in general. Examples are convex
sets in a paraboloid of revolution whose boundary contains a sufficiently
large piece of a meridian.

So one question still remains: If M is a convex surface of nonnegative
curvature with conjugate points on its boundary, what, if any, are the
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conditions guaranteeing the imbedding of M in a complete open surface of
nonnegative curvature?

By the Gauss-Bonnet theorem we have that if M is convex, fM K dM <
2π. So if K > 0, and dM is a geodesic, then it is impossible to imbed M in
any larger convex M' of nonnegative curvature. In fact, it may not even be
imbeddible in something complete even if K > 0 unless K\dM = 0. In the case
of the hemisphere we see that we would have to add on a flat cylinder to the
boundary, and by the curvature difference, this imbedding would not even be
C2. However, in this maximal case, M can always be C 2 imbedded in the
compact surface homeomorphic to S2 obtained by taking the double of M.

Further questions in higher dimensions will be taken up in a future paper.
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