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1. Introduction

In the papers [7], [8], [9], Patodi and the author studied certain expansions
associated to compact group actions on compact differentiable manifolds.
More specifically, let /: I ^ I b e an isometry of a compact differentiable
manifold X of dimension m. The fixed point set Ω of /is the disjoint union of
closed connected submanifolds N of dimension n. If Δ denotes the Laplace
operator of X for functions with eigenvalues λ, then / induces linear maps / λ

#

on the eigenspaces of Δ, and there exists an asymptotic expansion as /|0:

λ
Tr(/λ>-λ~ Σ (4π/Γ/2 Σ '* fbk(f,a)dvolN(a).

The bk(f, a) have a simple description using invariant theory.
These expansions are closely related to the Atiyah-Singer-Lefschetz for-

mulas for compact group actions. In fact, one easily generalizes to obtain
expansions for the Laplacians of all the classical elliptic complexes. By taking
an alternating sum, a local integral formula for the Lefschetz number is
found. Invariant theory [1], [2], [3] may be applied to identify this integrand
with the Atiyah-Singer integrand. The main result of [8] is a new proof of the
G-Signature theorem of Atiyah-Singer via this method.

In this paper we study similar expansions associated to clean intersections
in the sense of [6]. Let Nl9 N2 C M be two submanifolds of the compact
Riemannian manifold M having clean intersection Ω, the disjoint union of
compact connected submanifolds N. Denote by n, nl9 n2, and d respectively
the dimensions of N, Nx, N2, and M, and by K(ί, u, v) the fundamental
solution of the heat equation on M for the Laplacian of functions. Then by
evaluating the solution of the heat equation with distribution N2 as initial
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conditions on the distribution Nx, one obtains an asymptotic expansion:

Kt[Nx X N2] = ί K(t, u, v)dvolNί(u)dvolN2(v)
J JNlXN2 ' 2

~ Σ (4vt)i-d+H* + '*-")/2Σ ' ' f RMdvolN{u).
N(ΞΩ 1 = 0 JN

If Nx, N2 are totally geodesic submanifolds of Λf, then their intersection Ω

is necessarily clean. If N is any component of Ω, then there are certain tensors

C, D associated with straightening the angle between Nx and N2 at N. We

denote by β the collection of tensors consisting of C, Z), the curvature tensor

R of M, and the covariant derivatives of R. If a E N, then we may

decompose TaM = TaNf ® TaN θ TaNf θ TaNx\. Here TaNf is the
space of vectors in TaNx which are orthogonal to TaN; TaN^ is the space of

vectors in TaM which are orthogonal to both TaNx and TaN2; and TaN2

± is

the space of vectors in TaM which is orthogonal to TaN{ θ TaNλ\. To

simplify notation we assume now that nx + n2 = d. Then there is a natural

action of O(nx — n) X O(n) X O(«2 — ή) X O(«) on β, corresponding to the

decomposition TaM = Γ^f 1 θ ΓfliV θ 7 ; ^ θ ^Λ^^. In the totally geo-

desic case, the terms Rt(u) in the expansion derived above are O(nx — ri) X

O(n) X O(Λ 2 — ή) X O(«) invariant polynomial maps from to functions on

N.

In the special case where M = X X X is a product manifold, JVj is the

graph of an isometry /, and 7V2 is the diagonal in X X X, recovers the

expansion of [7].

It is more interesting to study the corresponding expansions for the

Laplacian on forms; these expansions are related to intersection theory. In §4,

we consider the special case where M is an even dimensional compact

oriented manifold, and Nx = N2 = N is an oriented totally geodesic submani-

fold with half the dimension of M. If Kn(t, x, y) is the fundamental solution

of the heat equation for n-forms on Λf, then denote K(t, JC)[*ΛΓ] the solution

to the heat equation with initial data given by the distribution * [ # ] , where *

is the Hodge star operator of M. Denote i: N -> M the inclusion. Then for

x E: N one has the asymptotic expansion:

i*K(t, x)[*N] ~ (4τrί)-n/2 f tiΊj{x).

The Ύj(x) are O(n) X SO(n) invariant polynomial maps (corresponding to the

decomposition TM = TN θ 77V x ) from metrics on M to rt-forms on N.
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It is easily verified that for all /,

f i*K(t,x)[*N]=[N]n[N],

where [TV] n [N] denotes the self-intersection number of N in M. Conse-
quently

In Theorem 4.3, we give a corresponding local result

γ/jc) = 0, j < Λ/2,

where χx(Ω) is the Euler form of the normal bundle to TV in M. If one takes
M = X X X to be a product manifold, and N to be the diagonal in M, then
Theorem 4.3 reduces to Patodi's theorem [11].

More generally we obtain a similar local vanishing theorem for two totally
geodesic oriented submanifolds Nv N2 c M when nx + n2 = d. If one takes
M = X X X to be a product manifold, Nj to be the graph of an isometry /,
and N2 to be the diagonal in X X X, then the local Lefschetz theorem for the
Euler complex [9] is recovered.

The author thanks Professor Bott for suggesting these problems and for
several helpful conversations during the development of this work.

2. Asymptotic expansion

Let Nl9 N2 c M be two submanifolds of the compact Riemannian mani-
fold M. One says that Nλ and N2 have clean intersection [6] if the following
conditions are satisfied: (i) The intersection Ω = Nx Π N2 is the disjoint
union of compact connected submanifolds N, and (ii). For each iV e Ω and
αGiV one has TaN = TaNι n TaN2, where TaN denotes the tangent space
of N. The dimensions of N, Nv N2, and M will be denoted by n, nv nv and d
respectively.

Theorem 2.1. Let Nl9 N2c M be two submanifolds with clean intersection

Ω, and let Kt(x, y) = K(t, x, y) be the fundamental solution of the heat equaton

for functions on M. Then there exists an asymptotic expansion:

Kt[Nx X N2] = j ^ ^ K(t,x,y)dvolNι(x)dvolN2(y)

%(x)dvolN(x), 40,
/ = 0 JN
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where dvolN, i = 1,2, denotes the measure induced by the Riemannian metric of

Nt as a submanifold of M, and the %(x) are local invariants depending only on

the germs of the submanifolds Nv N2 and the Riemannian metric of M near

x G N.

Proof, Let UN. be a tubular neighborhood of N in N., 1 = 1, 2. UN may be

identified with a neighborhood of the zero section of the normal bundle to N

in Ni9 i = 1, 2. π,: UN_ —> TV is the natural projection corresponding to the

exponential map along N in Nr

One has

Kt[Nλ X N2] = f f K(t, ul9 u2)dυolNχ(ux)dυolN2(u2)

f ( K{t,uvu2)dυolN{uλ)dυolN{u2).

We proceed with a detailed analysis of each term in the above sum. Fix any

component N of Ω and denote

/ = ί ί K(ty ul9 u2)dυolN(ux)dυolN(u2).
JuNχ

JuN2

If a, b are points of N, then by letting x,y be normal coordinates on Ίτ\\a\

π2

ι(b) respectively we have

/ = f if K(t9 3c, yHx(x)*2(y) dx dy)dvolN(a)dvolN(b)9

where ψf , / = 1,2, are defined by

dvolNi(x) = ψx(x) dxτr*(dvolN(a)),

Denote by UD a sufficiently small neighborhood of the diagonal in N X N.

Then

By means of the well-known asymptotic expansion of Minakshisundaram

[5]:

K(t,x,y)~
exP(-r 2/4Q

\/=o /
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where r2 is the square of the distance from x toy, we thus have

i~(4frt)-"2( '[( f CXP[^)Σ t'u^y)
JUD\Jπϊ\a)Jττϊ\b) V 4 ί /,_0

•Ψi(*)Ψ2(.v) dxdy\dυolN(a)dυolN(b).

It is a consequence of the classical Morse lemma [10, p. 6] that there exists
a change of coordinates x = x(x, y),y = y(x, y) so that

expl

Then

( —

At

0 0 - \
• Σ t%{x, y) dx dy \dvolN(a)dvolN(b),

ι=0 /

where t,(x,y) = M,(X, J O Ψ I ( ^ ) Ψ 2 ( X ) A ^ 9> x,y) One denotes by J(x,y, x,y)
the Jacobian determinant of the above change of variables.

By appeal to the Taylor series expansion of the E,(x, y) one may deduce

If f dx

where the sum is over multi-indices a of length nx — n and multi-indices β of

length n2 — n.
We now make the change of variables w = x/Vt , z = y/Vt . Then

r I -Σw2\
" f w 2 αexρ \dw

JRnι-n

 F \ 4 /

J
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Moreover,
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- + - ^ 2 - f exp{-r\a'
JuD \ 4t

Applying the classical formula [12, p. 426]

ΛΪ i\ f is ( -x2 \ j 1 3 5(2.2) j R x* exp^ — j dx

dzL

- 1)
1

dvolN(a)dvolN(b).

thus yields

" 1 ^ 7 2 - ! t'f
,=o JuD

Now let

9 2

(

Then

For each a E iV, let ί/α be a sufficiently small normal coordinate neighbor-

hood of a, and denote by υi9 1 < / < /i, a normal coordinate system on ί/α.

Then

e x p ( d M
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We deduce from the Taylor expansion of tk{υ) that

dυolN{a\

where a is a multi-index of length n.
One now makes the change of variables u = v/Vt . Then

N a (2α)!

- ^ ) du)jdvolN{a\

which simplifies, in consequence of the classical formula (2.2) above, to
become:

Now let Ov = Σ θ V9^2-

Finally by denoting

% = i ^
y = 0 J

we obtain

This completes the proof of Theorem 2.1.
Let X b e a compact connected Riemannian manifold. If Δ is the Laplace

operator of X acting on functions, then we may decompose L2(X) =
Σ λ L^(X) where L^(X) are the eigenspaces of Δ corresponding to the eigen-
values λ. The various eigenspaces are orthogonal with respect to the measure
induced by the Riemannian metric of X. We denote by Pλ: L2{X) —> L%(X)
the corresponding orthogonal projections.

Now suppose /: X -^ X is a differentiable map. Then / induces maps / λ

#:
Ll -* L\ defined by /λ

#(Φ) = Pλ(Φ ° /) for φ G L2. In Theorem 2.1 we may
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take M to be the product manifold X X X, Nx to be the graph Gf of/, and N2

to be the diagonal Φ in X X X. Then one recovers the asymptotic expansion
of [7]:

Corollary 23. Let f: X ^> X be a diffeomorphism which preserves the

measure induced by the Riemannian metric of X. Suppose that the fixed point set

Ω of f satisfies the following conditions: (ί) Ω is the disjoint union of compact

connected submanifolds N of dimension n, and (if) for each N E Ω and a G N

one has det(7 — /') φ 0 where / ' : TaN ^ —> TaN ^ is the induced map on the

normal bundle of N. Denote Tr(/ λ

#) the trace of fλ: Lχ —> Lχ with respect to the

inner product on Lχ induced by the Riemannian metric of X. Then there exists

an asymptotic expansion as / |0:

(2.3) Σ Tr(/*)e-' λ~ Σ (4*fΓ / 2 Σ *' f b,(f, a)dvoίN(a),

where the b{(f, a) are local invariants depending only on the germ of f and the

Riemannian metric of X near a.

Proof. The components of the intersection of Nl9 the graph of/, and the
diagonal N2 may be identified with the components of the fixed point set of/.
Moreover, the assumption that det(7 — /') φ 0 implies that for each compo-
nent TV of the fixed point set one has T(N) = T(Nλ) n T(N2). Thus the
hypotheses of Theorem 2.1 are satisfied, and we have

~ Σ (V2 y(4πtyn/2 Σ t' f %(x)dυolN(x),

where dvolN(x) is the volume form of N considered as a submanifold of X,
and Kt is the heat kernel o f l x l .

Now we may write

* - , ( * „ x 2 , x v x 4 ) = Σ e - ' ^ j
ij

where φ, are the eigenfunctions of the Laplacian on X. Then

X N 2 ] =] = Σ *-*-'* f ΦXx^Φj
ij N\

' J
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since / i s volume-preserving. Therefore

jqΛT, X N2] = 2"/2Σ e~2*f φi(xι)φi(f(xi))dvolx(xι)

or
00

) 0"/ 2 Σ ''[ %{x)dvolN(x),
λ JV<=Ω /=0 JN

which gives the corollary with

Remark. One may derive the expansion (2.3), using the method of [7], for

a differentiable map /: X —> X which is not necessarily measure-preserving. It

is only necessary to assume Conditions (i) and (ii) of Corollary 2.3. Unfor-

tunately the more general case does not seem to be a corollary of Theorem

2.1.

3. The totally geodesic case

Let Nl9 N2 C M be two totally geodesic submanifolds. Then each compo-

nent TV of the intersection Ω of Nλ and N2 is a totally geodesic submanifold N.

Furthermore the intersection is necessarily clean. Thus one has the asymp-

totic expansion of Theorem 2.1. In the totally geodesic case, the terms SI, will

be more readily computable than in general. We restrict our attention to a

single component N of Ω and define basic tensors, denoted C and Z>,

associated with straightening the angle between Nx and N2 at N.

Let xl9 , xd be normal coordinates on M, centered at a E N9 such that

xl9 - - , xn are normal coordinates on Nλ9 and •*„,_„+1> ,-*„, are normal

coordinates on N. Similarly, let yl9 ,yd be normal coordinates on M,

centered at a e N, such thaty Π i _ r t + 1 , >yΛχ are normal coordinates on N,

and ynι-n+v ,ynχ9 yΛι + l9 ,yHί+n2-n a r e normal coordinates on N2.

We may assume that the y coordinates coincide with the x coordinates for

points on N.

We define C to be the transition matrix from the y to the x coordinate

system:

d

* = Σ Clmym, KKd;
m=\

C is an orthogonal matrix.



572 HAROLD DONNELLY

The canonical form of the matrix C is independent of the chosen point

a E N. To see this, first observe that C is completely determined by the

differentials dxh dym at a. Now if av a2 E N, we may choose a curve γ in N

and parallel translate dxt{ax\ dym(ax) along to covectors at a2. Since Nx, N2

are totally geodesic, the parallel translates of dxt(a^, dym(β\) will be the

differentials of suitably normalized coordinates centered at a2, in the sense

specified above.

For the remainder of this section, we adopt the Einstein summation

convention of summing over repeated indices. Unless otherwise indicated, we

will allow the following ranges for our indices:

1 < i,j, k < nx — n, nx + 1 < i,j, k < nx + n2 — n,

nλ — n + 1 < α, β, γ < nλ, d — n + 1 < ά, β, γ < d.

To make the notation less cumbersome, we will assume that d = nλ + n2. The

more general case offers no new difficulties.

If x E Nx and y E 7V2, we denote by d(x, y) the Riemannian distance from

x toy. 77,: Nt -» N, i = 1,2, will be the projections, defined on neighborhoods

of N in Ni9 associated to the exponential maps along N. The first term in the

Taylor expansion of d\x,y) — d\πx(x), π2(y)) defines a quadratic form, and

we would like to find a linear change of variables which diagonalizes this

quadratic form. Now

d\x,y) - d\mλ{x), m2{y)) = J1{xi - Ct]yjf + Σ(CjjyTΫ + 0((x,y)4).

If we define

(3.1) w, = x. - Cjjyj, zj = Cjffh

then

d\x,y) - d2(Vl(x), *2(y)) = Σ *ϊ + Σ ή + θ((w, z)4).

The matrix Cβ is necessarily invertible, and we denote its inverse matrix by

Dm> CjiDϊ* = 8Jm- O n e d e f i n e s Dii = CyDβ. Then

(3.2) x. = w,. + Da-zhyj = Djpj.

If a E TV, then we decompose ΓαM = 7 ; ^ ^ Θ TaN Θ 7;^ 2

X θ TaNx\.

Here ^N^ is the space of vectors in Γα7V1 which are orthogonal to TaN,

TaNχ-^ is the space of vectors in TaM which are orthogonal to both TaNx and

TaN2, and T^^ is the space of vectors in TaM which is orthogonal to

TaNx θ TaNx\.

Let β be the collection of tensors consisting of C, D, and the curvature

tensor R of M and its covariant derivatives. There is a natural action of the
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product of orthogonal groups O(nι - ή) X O(n) X O(n2 - n) X O(n) on β,
corresponding to the decomposition TM = TNf θ 77V θ ΓΛ^ θ ΓA^.

Define p to be the Ricci tensor of M, and p1, p2 to be the partial Ricci
tensors obtained by taking the trace over an orthonormal basis for the normal
bundles to N in N{, N2, respectively. One has

P(*, Y) = Σ R(X, dxJ9 Y, dxj),
7 = 1

ri\ — n

P0)(X, Y) = Σ R(X> dxr Y, dxj),
7=1

/ii + Λ2 — n

P(2)(X, Y ) = Σ

τ = Σ
i - l

where r is the scalar curvature of M. Clearly the components of p ( 2 ) with
respect to the x coordinate system are given by contractions in the compo-
nents of C, R.

Theorem 3.3. Let Nx, N2 C M be two totally geodesic submanifolds with

intersection Ω, the disjoint union of compact connected totally geodesic submani-

folds N. Then one has the asymptotic expansion of Theorem 2.1:

K,[NλxN2]~ Σ ( W + M l + ' I 2 ~ " ) / 2 Σ t'f %(x)dvolN(x)
NeΏ 1 = 0 JN

as t\,0. Moreover, if d = n, + n2, we may write

where 51/ is an O(nx — ή) X O(n) X O(n2 — n) X O(n) invariant polynomial

map from the collection G of tensors to functions on N. In particular, we have

-fpθ) _ i

The components of the curvature tensor R refer to an x coordinate system.

Proof. It is clear that the coefficients "31, are invariantly defined. The main
point is to check that the <3l/ depend polynomially on the collection of
tensors β. This is illustrated by the explicit computation of ^ and &,.
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We will use the notation of the proof of Theorem 2.1. The subscripts for
the curvature tensor R and its covariant derivatives will refer to the x
coordinate system. Some necessary geometric information is contained in the
series expansions of [7, Section (2)].

One has

= J(x,y, w, z)J(w, z, x,y)

where w, z are the variables defined earlier in this section. This implies that
% = |det(Z>^)|, the desired formula.

More work is required to compute (3lx.

(3.4) < & i = D Λ + £ i

First we will compute the term tλ = (Q, + Dy)£o + tλ:

(3.5) lλ{a) = W l ^ 2 / ( x , y , x,y) = |det(Z>fe)|(τ/6),

where r is the scalar curvature of M. This computation uses the well-known
fact [4, p. 922] that uλ(ά) = τ/6. We turn our attention to

fa ,y, x,y))
χ,y)J{w, z, χ,y)).

The Jacobian J(w, z, x9 y) arises from the change of variables required to
represent d\x,y) - d\πλ(x), τr2(>0) as a sum of squares in x, y. It is a
consequence of formula (2.2) of [7] that

~ 3RFkihXh*hCrjyjCisys +

where the three dots indicate terms which will make zero contribution
to our computation of (£]x + Πy)£o

Now, according to the formulas (3.1), (3.2), we may write

= Σ Wf + Σ Zf -ϊRrklhWkWhDrJ

-\RrkϊhWkDhmzmDrjzjZΐ ~ 1 RrkfhWkDhmZmZrZί

~ \RrklhDkmDlmzmznzfzJ ~ \RFkΓhwkwhzrzl+ ' '
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W e m a y c h o o s e

*, = * > , . + •••,

yj = ZΊ -lRrkshWk™hDrJZJDsί - J RrkIh^kWhDrJZJ ~ \Rrklh™kDhmZmDrj ZJ

-\Rrklh*kDhmZmZ-r -\R?kΊhDkmDhnZmZήZr " ϊRrkϊhWkWhZF + ' * *

Then

J(W, Z, X,y) = 1 + \RrkshXkXhDrϊDsϊ +

Formula (2.6) of [7] gives the expansion

Therefore

aMyjym -^ψx.D^y- +

Formula (2.6) of [7] also implies that

ψ2(*,J>) = 1 -

Finally from [4, p. 923] we recall the formula:

Kθ(*>jO = ! + +

Thus

Moreover,

-2RlamaDιm - \p%DB-Dj - \pft - \
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Combining the above two equations gives

(3-6)
+ ϊ R D D + R D D IR^DjDβ ~ RIαiα

+ ?P»)

Finally one must compute the term

Recall that the ϋ, are the normal coordinates on N of π2(y) for a coordinate
system centered at πλ(x). To compute Πc(w(/(w» z ' ^»^)) w e m a y u s e formula
(2.2) of [7] to write

d2(*>y) ~ d\7Γλ{x\ 7Γ2(γ)) = Σ W? + Σ Z/2 ~ \Rαkβh^h^αυβ + * * * '

where the three dots indicate terms which will make zero contribution
to our computation. Then

^"^ 3 V Λ 9 1 2

-\RakβhDkmDhiZϊZmVa

υβ + ' ' '

One has

Moreover, from the well-known formula [4, p. 923] for u0 we have

1
uo(x,y) = 1 + —Pa βvavβ + .

Finally

\J' *) VI—It) HO/Va) I u e ι V u i j )IV 6 "αα + 3 Pαo ^ 3 ^akahUkmUhm)'

The required formula for

% = D Λ
 + £i

follows by adding (3.5), (3.6) and (3.7).
To obtain the invariant theory characterization for the terms fJl, one needs

only to observe that

/ i

' ~ y - o f
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where

It follows from the expansion in [7, Section (2)] that each of the terms «,, ψ,,
ψ2» J(w,z,x,γ) has an expansion in x, y9 v whose coefficients depend
polynomially on the tensors in β. This gives the invariant theory characteriza-
tion of the terms %.

4. A generalization of Patodi's theorem

In this section we will assume that M is a compact oriented even dimen-
sional Riemannian manifold of dimension d = 2/t. Let TV be a totally geo-
desic oriented submanifold with dimension n, half the dimension of Λf. We
orient the normal bundle TNX of N in M to be compatible with the
decomposition TM = TN θ TN1-.

The heat equation for «-forms on M has a fundamental solution Kn(t, x,y)
which is a smooth double form on M X M. Since TV is oriented we may
integrate Kn(ί, x,y) over TV in the y variable to obtain an asymptotic
expansion similar to that of Theorem 2.1. It will be more interesting to
consider instead the expansion associated to *yKn(t, x,y), where *y is the
Hodge star operator of M applied to the second variable^. We denote

Kt»(x)[*N] =f *yKt

n(x,y),

where Kt

n(x,y) = Kn(ί, x,y), the fundamental solution of the heat equation
for rt-forms.

Theorem 4.1. Suppose M is a compact oriented Riemannian manifold of

even dimension d = 2n and that N is a totally geodesic oriented submanifold of

dimension n, half the dimension of M. Then for x £ N one has

Kt

n(x)[*N] = O(e-*χV')9

where c(x) > 0 is a constant depending on x. If x e N, then there exists an

asymptotic expansion

The n-forms T^x) are local invariants of the Riemannian metric of M near x.

Denote i: N —> M the inclusion map and γ ; = /*Γ/? the pull-backs of the ΓΛ

Then the γ7 are O(n) X SO(n) invariant polynomial maps (corresponding to the
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decomposition TM = TN θ TN x ) from the curvature tensor R of M and its

covariant derivatives to n-forms on N.

Proof The proof is similar to that of Theorems 2.1 and 3.3. The γ7(Λ:) are

clearly SO(n) X SO(ή) invariant. The only interesting point is to check that

they are actually O{ri) X SO(n) invariant. To see this, one needs only to

observe that if one reverses the orientation of N while fixing the orientation

of the normal bundle to N, then Kt

n[*N] is invariant.

One has

Lemma 4.2.

c n

JNΎ,(X) = 0, IΦΊ,

[ y,(x) =[N] n[N], 1 = 1

where [N] n [N] is the self-intersection number of N.

Proof Let Eχ be an eigenspace of the Laplacian on Λ-forms correspond-

ing to an eigenvalue λ φ 0. It is a consequence of Hodge theory that there

exists an orthogonal decomposition

where d is the exterior derivative, and d* is the adjoint of d.

Now let {Φi(x)} be an orthonormal basis for the eigenforms of the Lapla-

cian on rt-forms, where </>,(.*) corresponds to the eigenvalue \ . We may

suppose, as observed in the above paragraph, that if \ φ 0, then <i>f(x) is

either exact or coexact. It is well-known [5] that

so that

f *yK»(t, x,y) = 2 e-4 f φ,(*)][ f φ,(y)
JNxN i [JN \[JN

Since if \ ^ 0 then </>,(.*) is either exact or coexact. However, for \ = 0, the

harmonic forms Φ,(Λ:) represent a basis for Hn(M, R), while *φ/(j0 represent

a dual basis. Thus

Γ *yKn(t,x,y)=[N] n[N].
NXN
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However, by Theorem 4.1 we may write

ί *yK"(t, x,y) = ί Kt»(x)[*N] ~ (4^)"" / 2 f ' ' [ γ,(jc).
JNXN JN / = 0 JN

The left-hand side was just computed above, and is equal to [N] n [N],
independent of /. Thus the lemma follows.

It is well-known [6, p. 196] that

where χ±(Ώ) is the Euler form of the normal bundle to the totally geodesic
submanifold N. Thus one is led to conjecture that the singular terms in the
expansion

/ = 0

vanish, and that the constant term is equal to χ^Ω). In fact, one has
Theorem 4.3. Suppose M is a compact oriented manifold of even dimension

d — In, and that N is a totally geodesic oriented submanifold of dimension n,

half the dimension of M. Then in the expansion

i*(Kt»(x)[*N])~(4πtΓ/2Σ t'yι(x)
/ = 0

one has

γ7 = 0, / < Az/2,

γ, = χ^Ω), / = n/2.

Proof An invariant polynomial map P, from the curvature tensor of M
and its covariant derivatives to n-forms on N, is said to have weight k if
under a scaling g -^ c2g of the metric g on M one has P -*ckP. It is well
known [8, Theorem 5.1] that an invariant polynomial map P of weight k
vanishes identically if k > 0. If k = 0, then P is a polynomial in (1) the
Pontriagin forms of N, (2) the Euler form of the normal bundle to N, and (3)
the Pontriagin forms of the normal bundle to N.

It is easy to see how the H-forms yι transform under a scaling g -> c2g of the

metric on M. In fact, if g -> c2g then

Moreover, since d = 2n, the Hodge star operator is invariant under scaling of
the metric on M. Thus when g —> c2g, one has γ, —> cn~2lyh and therefore
γ, = 0 for / < n/2 by Theorem 5.1 of [8].
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Now suppose n is even and that / = n/2. By Theorem 5.1 of [8] one knows

that Ύ/ is a polynomial in (1) the Pontriagin forms of N, (2) the Pontriagin

forms of the normal bundle to N, and (3) the Euler form of the normal

bundle to N. However, if one reverses the orientation of M, or equivalently of

the normal bundle to N, while fixing the orientation of N, then γ, -* -γ7.

Consequently γ, must be a multiple of χ±(Ω). However

So γ, = x^Ω).
Let I be a compact oriented Riemannian manifold of dimension n. The

diagonal ^ is a totally geodesic submanifold of the product X X X. This

follows since fy is the fixed point set of the isometry (xv x^ -> (x2, xx). By

applying Theorem 4.3 in the special case i V = 6 } , M = I X I , one recovers

a well-known result of Patodi [11].

Corollary 4.4 {Patodi). Let X be a compact oriented Riemannian manifold.

Denote ep{t, x,y) the fundamental solution of the heat equation for p-forms on

X. Then

Σ (-If Tr(^(/, x, χ))*l = χ(0) + O(t),

where * is the Hodge star operator of X, and χ(Ω) is the Euler form of X.

Proof Suppose {φiJf} is an orthonormal basis, for the space of square

integrable p -forms on X, consisting of eigenforms of the Laplacian with

eigenvalues {\}. Then {*&#} is an orthonormal basis for the space of square

integrable (n - /?)-forms on X, since * is an isometry which commutes with

the Laplacian. It is well-known [5] that we may write

ep{t, χ,y)-Σ *"Ή,,(*) ® <*>,>).

eq{t, x,y) = Σ e-'^φjx) ® φ,,(y)
i

for/? + q = n.

The eigenforms of the Laplace operator of M = X X X acting on Az-forms

are spanned by wedge products ψ θ , , x2) = Φiφ(xx) Λ Φy,̂ (̂ 2)» P + a = n-

Therefore the heat kernel for n -forms o n l X X is

*•"(/, (*„ x2), (yvy2)) = Σ e"(U xvyj Λ e'(t, x2,y2).
+
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Moreover

*yK"(t,(xι,x2),(y1,y2))

= Σ (-i

*y

= Σ (-i
p+q=n

Σ (-1

By integrating over N = ty one obtains

and thus

K?(x,x)[*N] = Σ (-l)*Tr(^(/,*,x)) l.

Consequently, by Theorem 4.3,

where χx(Ω) is the Euler form of the normal bundle to the diagonal N = D̂
in M = X X X. Furthermore, the map (t>, v) -»(ϋ, -t?) is a connection pre-
serving isomorphism of the tangent bundle and normal bundle to the diago-
nal. Therefore χ±(&) = χ(Ω), the Euler form of X, and Patodi's theorem
follows.

Remark. If X is not necessarily orientable, one still has Patodi's theorem:

This follows from Corollary 4.4 by considering the oriented double cover of

X.

5. Invariant theory

It requires some preparation to develop further generalizations of Patodi's
theorem. This section is devoted to some preliminary work which is mainly
algebraic in nature. The methods used here are rather standard [1], [2], [3], [8].

Let M be a compact oriented Riemannian manifold of dimension d, and
Nv N2 c M be two totally geodesic oriented submanifolds of dimensions nl9
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n2 respectively, and let nx + n2 = d. We suppose that the intersection Ω of Nx

and N2 is the disjoint union of oriented submanifolds, and focus our attention
on a particular component N c Ω, N of dimension n. We may use the
notation of §3.

Consider the collection β of tensors, defined in §3, consisting of C, D and
the curvature tensor R of M and its covariant derivatives. There is a natural
action of O(nx - ri) X O(/i) X O{n2 - ή) X SO(n) on β, corresponding to
the decomposition TM = TNf θ 77V θ 7W2

X θ 7 7 ^ and a chosen orien-
tation of TN£. TO specify this action, we define a coordinate system
cj, , xd centered at a E N to be normalized if (1) dxx, , tffo,,,-,, lie in
Ή V ; ^ Λ i _ Λ + 1 , , Λcni lie in TN; dxΛί + v , <&,_„ lie in Γ ^ ; and
dxd_n+1, * * , ^ lie in TN^9 and (2) Λc^ , dxd are orthonormal at α. A
function γ of the tensors β will be called an invariant polynomial map to
n-forms on N if, with respect to any normalized coordinate system centered
at a e N, γ is an O(«! - n) X O(AZ) X O(Λ2 - Λ) X SΌ(/ι) invariant poly-
nomial map from β to /z-forms on N.

One may denote by det the determinant map from tensors to functions on
N:

det: ®TNX\^K\N)

corresponding to the orientation of TN^.
Well-known results [3, p. 287], [13] from classical invariant theory imply

that an invariant polynomial map γ to «-forms on iV is a linear sum of
elementary monomial invariants:

mon(Λ, C, D) = £ RFχ RFCGχ CGDHχ DHβ,

where Fl9 , Fp are multi-indices containing indices which may refer to
any of TNf, TN, TNf, or TNX\\ G,, , Gq, Hv ,HS are pairs of
indices corresponding to TN^ and 77V2

± only. It is understood that n of the
indices, necessarily among the F/s, corresponding to TN must be alternated.
Moreover, det may be applied to ^-tuples of indices corresponding to 7W^.
The remaining indices must be contracted in pairs.

An invariant polynomial map γ is said to be of weight k if under a scaling
g-> c2g of the metric on M one has γ—>c*γ. Our first goal will be to
characterize the elementary monomial invariants of nonnegative weight.

Lemma 5.1. The weight of an elementary monomial invariant
mon(Λ, C, D) is 2p + n — Σfj where ft is the total number of indices in Fr

Proof Each RF, CGj, and DHk has weight two. If (con) is the total number
of contractions and (det) is the total number of times det is applied, then

, C, D) has weight 2p + 2q + 2s - 2(con) - n(det). On the other
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hand, n + 2(con) + w(det) = Σ / + 2# + 2s. Thus mon(Λ, C, D) has weight

2p + Λ - Σ / .

Denote by εΛ the total number of covariant derivatives in all the RFs. Then

/ 4/> + εΛ. Thus one obtains the formula n = weight (mon(/ί, C, D)) +

2/7 + εΛ.

Now we recall the classical identities satisfied by the curvature tensor R.

Lemma 5.2. The Riemann curvature tensor R satisfies the identities:

( 5 . 2 . 1 ) ^ = 0, RiMr = 0,

(5.2.2) Rijkl = -Rjikh Rijkl = -Riβk

and consequently

(5.2.3) Rijkl = Rklip

(5.2.4) Ri[jky =2^il[jkγ

where the bow w denotes alternation over three indices, and the bracket [ ]

denotes alternation over two indices.

The following lemma is a consequence of the curvature identities:

Lemma 53. Let mon(Λ, C, D) be an elementary monomial invariant of

weight k.

(i) Ifk>0, then mon(R, C, D) = 0.

(ii) If k = 0 and mon(Λ, C, D) ¥= 0, then n is necessarily even. Moreover, in

the above notation, n = 2p and εR = 0. We may assume that precisely the last

two indices are alternated in each RF.

Proof. The identities (5.2.1), (5.2.2), and (5.2.3) imply that for the terms

RF we may alternate over at most two of the first five indices, else

mon(/?, C, D) = 0. Thus as n is the total number of alternations in the /Γs,

one has n < 2p + εR with strict equality if εR > 0. However, 2p + εR = n-

weight (mon(Λ, C, D)) as shown above. Thus, if weight (mon(Λ, C, D)) > 0

and (mon(Λ, C, D)) ^ 0, we must have εR = weight (mon(Λ, C, D)) = 0.

Consequently, n = 2p. In particular, n is even.

Since n = 2/?, we must alternate exactly two indices in each R. By (5.2.3),

(5.2.4) we may suppose that the last two indices in each R are alternated.

The Euler form of TNX\, x ^ Ω ) has the property that χ±(Ω)-* - χ x ( Ω )

when the orientation on TNl2 is reversed. In fact, χ x ( Ω ) is essentially the only

such invariant of weight zero.

Lemma 5.4. Let γ be an invariant polynomial map, to n-forms on N, of

weight zero. Suppose that γ —• - γ when the orientation on TN^ is reversed.

Then γ is a multiple ofχ^(Sl).

Proof. Since γ is always a sum of elementary monomial invariants, it

suffices to treat the special case where γ = mon(Λ, C, D) is an elementary

monomial invariant.
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By Lemma 5.3 one has εR = 0, n = 2p. Thus Σ ^ = 4/?, and half of these
indices are alternated. We may assume that the last two indices are alternated
in each RF.

Moreover, γ —> -γ under reversal of the orientation on TN£- Therefore the
basic invariant map det must be applied to some indices in mon(R, C, D).
However, C, D do not contain indices corresponding to TN^. Thus det must
be applied; to the n = 2p indices consisting of the first two indices in each
RF, and we may write

mon(R, C, D) = χ±(Ω)(mon(C, D)\

where mon(C, D) is an elementary invariant monomial map from the tensors
C, D to functions on N. However, as observed in §3, the normal form of C, D
is independent of the point of reference a E N. Thus mon(C, D) = b. a
constant, and mon(Λ, C, D) = bχ±(Ώ).

6. A generalization of the local Lefschetz formula

Let M be a compact oriented Riemannian manifold of dimension d, and
Nv N2 c Λf be totally geodesic oriented submanifolds of dimension nx, n2

respectively, and let nx + n2 = d. Suppose that the intersection Ω of Nx and
N2 is the disjoint union of totally geodesic oriented submanifolds N of
dimension n. Moreover, assume that the chosen orientations are compatible
with the vector bundle isomorphisms:

TNX « TN θ TNf,

TN2 = TN θ ΓJVy-,

TM s TNf θ TN ® TN^ θ TNX\.

Denoting by K"ι(t, x,y) the fundamental solution of the heat equation for
nx-ΐoττns on Af, one defines

f
JN

The right-hand side is an nrform whose asymptotic behavior as ίJ,0 is local in
nature. In particular,

Kt

n*[*N2] = 0{e~c^% x & N x n N29

where c(x) > 0 is a constant depending on x.
Now suppose that a lies in some component N of Nx n N2. Denote UN a

tubular neighborhood of N in Nx; UNλ may be identified with a neighborhood
of N in its normal bundle, via the exponential map along N, considered as a
submanifold of Nx. It is interesting to integrate Kt

nι(x)[*N2] over the fiber Fa

of UN . In fact, one has
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Theorem 6.1. Suppose that M is a compact oriented Riemannian manifold of

dimension d, and that Nv N2 are two totally geodesic oriented submanifolds of

dimensions nl9 h2 respectively, and nλ + n2 = d. Let N, of dimension n, be any

oriented component of the intersection Nλ π N2. If a Ei N, then there exists an

asymptotic expansion:

f
JF

where the n-forms Γ7(tf) are local invariants of the Riemannian metric of M near

a.

Denote i: N —» M the inclusion and γ7(α) = /*Γ7(α), the pull-backs of the

Tjia). Then the y^a) are O(nλ - ή) X 0(ή) X O(n2 - ή) X SO(n) invariant

polynomial maps from the collection Q of tensors (described in Theorem 3.3) to

n-forms on N.

Proof. Similar to the proofs of Theorems 2.1, 3.3, and 4.1.

One may also generalize Lemma 4.2 to obtain

Lemma 6.2.

Σ [ Ύi+n/2(a) = 0, / Φ 0,

Σ f

where yι are the invariants of Theorem 6.1, and [Nx] n [N2] is the intersection

number of Nx and N2.

Proof. Similar to the proof of Lemma 4.2.

Now it is well-known [6, p. 196] that

where χ ± (Ω) is the Euler form of TNl2. This leads one to the following local

version of Lemma 6.2.

Theorem 6.3. Let Nl9 N2 c M be totally geodesic oriented compact sub-

manifolds of the compact oriented manifold M. Suppose N, of dimension n, is

some oriented component of the intersection Nλ Π N 2 . Then for the expansion

i* f Kt

nix)[*N2]~(4<rrtyn/2Σ ^(a),
JFa 1 = 0

one has

γ,(α) = 0, / < n/2,

γ/(α)=χ^(Ω), l=n/2,
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where χ±(Ώ) is the Euler form of the normal bundle TNλ\.
Proof. If we scale the metric on M: g -> c2g, then *yKnχ(t, *,>>)->

*yKn*(c-2t, x,y). Therefore Ίι(a) -H> cn-2lyt{a).
From Lemma 5.3 it follows that γ7 = 0 for / < n/2. Now observe that if we

reverse the orientation on TNλ\, then

i*f Kp(x)[*N2]^-i f Kt"ix)[*N2].

Therefore γ7 -» -γ7 if the orientation on TNX\ is reversed. By Lemma 5.4 we
conclude that if n is even and / = n/2, then γ7 is a multiple of x^ίΩ).
However, j N γ, = fN χ±(Ώ). So γ, = χ±(Ώ) if / = Λ/2, n even.

Let/: I ^ X b e an isometry of the compact oriented Riemannian mani-
fold X of dimension m. The fixed point set Ω of / is the disjoint union of
compact totally geodesic submanifolds N of dimension n. Suppose that the
components N of SI are oriented. Consider the product manifold M = X X
X. The submanifolds Nι = Gf, the graph of /, and N2 = ^ , the diagonal in
X X X, are totally geodesic. The components N of the intersection Nx Π N2

may be identified with the components of the fixed point set Ω of/.

Now let ep(t, x,y) be the heat kernel for /7-forms on X. Then, as is
well-known [8],

L{f) = f

where * is the Hodge star operator. L(f) is the Lefschetz number of /, the
alternating sum of the traces of the maps induced by / on each of the
cohomology groups HP(M, R).

If UN is a tubular neighborhood of N, we may identify UN with a
neighborhood of the zero section of the normal bundle to TV in X. This
identification is obtained via the exponential map along iV in X. For a e N,
denote Fa the fiber over a of UN —> N. It is apparent that

f
= Σ /

where c > 0 is a constant. The integral inside brackets, on the right, denotes
integration over the fiber.

As a corollary of Theorem 6.3 we may rederive the local form of the
Lefschetz theorem which was given in [9]:

Corollary 6.4. Let f: X —> X be an isometry of the compact oriented
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Riemannian manifold X. If N is an oriented component of the fixed point set,
then one has the local Lefschetz formula:

Σ ( - 1 / Tr(f*ep(t, xj(x)))*\ = χ(Ω) + O(t)

for a E N, where the integration on the left is integration over the fiber, and
χ(Ω) is the Euler form of N.

Proof. The heat kernel on m-forms for the product manifold X X X is
given by

Km(t9 (xl9 x2), (yl9y2)) = Σ «"('> *i>>Ί) Λ eq{t, x2,y2).
p + q — m

Moreover, as in the proof of Corollary 4.4 we may write

*yκ
m(t,(xj(x)),(y,y))

so that

Vm( ΛΓ if γ\\ϊ * M 1 — "V ( 1 ^ V /,-2'\pA ( v\ Λ * ^ ί fί v\A / yX>J\x))[ ^2} — 2J \~V) Zrf e PΨiφ\X) Λ Ψiφ\J\X)
p+q=n i

Thus

by Theorem 6.3, where χx(Ω) is the Euler form of the normal bundle TNι2,
consisting of all vectors in TM\N which are normal to both TN^N and
TN2\N. However, TN^ is isomorphic to TN via the isomorphism (υ, v) ->
(v, -v). Consequently χx(Ω) = χ(Ω), the Euler form of N.

Thus

ί Σ (-I)" Tτ(f*ep(t, x,Ax)))*l = χ(Ω)(α) + O{t).

Remark. If x, N are not necessarily orientable, then one may still derive a
local Lefschetz formula

[ Σ (-1/ Tr(/V', x,f(x)))Φ)dvolFa(x) = *χ(Ω)(α) + 0(0,
Fa

where dυolF (x) is the measure induced on Fa by the Riemannian metric of M,
and ψθ) is defined by dvolM(x) = \p(x)[π*dvolN(x)]dvolFa(x).

This follows from Corollary 6.4 by observing that the statement is local in
nature, and that the manifolds N, X are always locally orientable.



588 HAROLD DONNELLY

References

[1] A. A. Abramov, On the topological invariants of Riemannian spaces obtained by the
integration of pseudo-tensor fields, Dokl. Akad. Nauk SSSR 81 (1951) 325-328.

[2] , On the topological invariants of Riemannian spaces obtained by the integration of
tensor fields, Dokl. Akad. Nauk SSSR 81 (1951) 125-128.

[3] M. F. Atiyah, R. Bott & V. K. Patodi, On the heat equation and index theorem, Invent.
Math. 19(1973)279-330.

[4] M. Berger, Le spectre des varietes Riemanniennes, Rev. Roumaine Math. Pures Appl. 13
(1968)915-931.

[5] M. Berger, P. Gauduchon & E. Mazet, Le spectre d*une variete Riemannienne, Lecture
Notes in Math. Vol. 194, Springer, Berin, 1971.

[6] R. Bott, On the intersection of closed geodesies and the Sturm intersection theory, Comm.
Pure Appl. Math. 9 (1956) 171-206.

[7] H. Donnelly, Spectrum and the fixed point sets of isometries. I, Math. Ann. 224 (1976)
161-170.

[8] , Spectrum and the fixed point sets of isometries. Ill, Preprint.
[9] H. Donnelly and & V. K. Patodi, Spectrum and the fixed point sets of isometries. II,

Topology 16(1977) 1-11.
[10] J. Milnor, Morse theory, Annals of Math. Studies, No. 51, Princeton University Press,

Princeton, 1963.
[11] V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry

5(1971)233-249.
[12] S. Selby, Editor, Standard math, tables, Chemical Rubber Company, Cleveland, 1968.
[13] H. Weyl, The classical groups, Princeton University Press, Princeton, 1946.

PURDUE UNIVERSITY




