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EXPANSIONS ASSOCIATED TO CLEAN
INTERSECTIONS

HAROLD DONNELLY

1. Introduction

In the papers [7], [8], [9], Patodi and the author studied certain expansions
associated to compact group actions on compact differentiable manifolds.
More specifically, let f: X — X be an isometry of a compact differentiable
manifold X of dimension m. The fixed point set  of f is the disjoint union of
closed connected submanifolds N of dimension n. If A denotes the Laplace
operator of X for functions with eigenvalues A, then f induces linear maps f,*
on the eigenspaces of A, and there exists an asymptotic expansion as ¢}0:

S Tr(fF)e* ~ 3 (4m)™? i lkfbk(f, a)dvoly(a).
A negQ k N

=0

The b,(f, a) have a simple description using invariant theory.

These expansions are closely related to the Atiyah-Singer-Lefschetz for-
mulas for compact group actions. In fact, one easily generalizes to obtain
expansions for the Laplacians of all the classical elliptic complexes. By taking
an alternating sum, a local integral formula for the Lefschetz number is
found. Invariant theory [1], [2], [3] may be applied to identify this integrand
with the Atiyah-Singer integrand. The main result of [8] is a new proof of the
G-Signature theorem of Atiyah-Singer via this method.

In this paper we study similar expansions associated to clean intersections
in the sense of [6]. Let N, N, C M be two submanifolds of the compact
Riemannian manifold M having clean intersection §2, the disjoint union of
compact connected submanifolds N. Denote by n, n,, n,, and d respectively
the dimensions of N, N,, N,, and M, and by K(¢, 4, v) the fundamental
solution of the heat equation on M for the Laplacian of functions. Then by
evaluating the solution of the heat equation with distribution N, as initial
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conditions on the distribution N,, one obtains an asymptotic expansion:

K[N, X N,] = fN . K(2, u, v)dvoly (u)dvoly (v)
1 2

0
~ 3 @m)Citmrnmm/2 3 t’f R/(u)dvoly(u).
NeQ =0 N

If N, N, are totally geodesic submanifolds of M, then their intersection
is necessarily clean. If N is any component of £, then there are certain tensors
C, D associated with straightening the angle between N, and N, at N. We
denote by C the collection of tensors consisting of C, D, the curvature tensor
R of M, and the covariant derivatives of R. If a € N, then we may
decompose T,M = T,N;* ® T,N ® T,N;* ® T,N;;. Here T,N;* is the
space of vectors in T, N, which are orthogonal to T,N; T,N; is the space of
vectors in T, M which are orthogonal to both T,N, and T,N,; and T,N;" is
the space of vectors in 7T,M which is orthogonal to T,N,® T,N;;. To
simplify notation we assume now that n, + n, = 4. Then there is a natural
action of O(n; — n) X O(n) X O(n, — n) X O(n) on €, corresponding to the
decomposition T,M = T,N* ® T,N ® T,N,;* ® T,N;. In the totally geo-
desic case, the terms R,(u) in the expansion derived above are O(n, — n) X
O(n) X O(ny, — n) X O(n) invariant polynomial maps from to functions on
N.

In the special case where M = X X X is a product manifold, N, is the
graph of an isometry f, and N, is the diagonal in X X X, recovers the
expansion of [7].

It is more interesting to study the corresponding expansions for "the
Laplacian on forms; these expansions are related to intersection theory. In §4,
we consider the special case where M is an even dimensional compact
oriented manifold, and N, = N, = N is an oriented totally geodesic submani-
fold with half the dimension of M. If K"(¢, x, y) is the fundamental solution
of the heat equation for n-forms on M, then denote K(¢, x)[*N] the solution
to the heat equation with initial data given by the distribution *[N], where *
is the Hodge star operator of M. Denote i: N — M the inclusion. Then for
x € N one has the asymptotic expansion:

i*K(t, x)[*N] ~ (4mt) ™2 i ty;(x).
j=0

The v;(x) are O(n) X SO(n) invariant polynomial maps (corresponding to the
decomposition TM = TN @ TN *) from metrics on M to n-forms on N.
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It is easily verified that for all ¢,
*K(t, *N] =[N N,

where [N] N [N] denotes the self-intersection number of N in M. Conse-
quently
n
(x)=0, j+#=,
fN (%) J#*>
n
(x)=[N N, j#+.
J ) =[N AN, i #5
In Theorem 4.3, we give a corresponding local result
v(x) =0, Jj<n/2,
v(x) =x"(Q), j=n/2
where x () is the Euler form of the normal bundle to N in M. If one takes
M = X X X to be a product manifold, and N to be the diagonal in M, then
Theorem 4.3 reduces to Patodi’s theorem [11].

More generally we obtain a similar local vanishing theorem for two totally
geodesic oriented submanifolds N,, N, C M when n, + n, = d. If one takes
M = X X X to be a product manifold, N, to be the graph of an isometry f,
and N, to be the diagonal in X X X, then the local Lefschetz theorem for the
Euler complex [9] is recovered.

The author thanks Professor Bott for suggesting these problems and for
several helpful conversations during the development of this work.

2. Asymptotic expansion

Let N;, N, C M be two submanifolds of the compact Riemannian mani-
fold M. One says that N, and N, have clean intersection [6] if the following
conditions are satisfied: (i) The intersection £ = N, N N, is the disjoint
union of compact connected submanifolds N, and (ii). For each N € £ and
a € N one has T,N = T,N, n T,N,, where T,N denotes the tangent space
of N. The dimensions of N, N,, N,, and M will be denoted by n, n,, n,, and d
respectively.

Theorem 2.1. Let N, N, C M be two submanifolds with clean intersection
Q, and let K(x,y) = K(1, x, y) be the fundamental solution of the heat equaton
for functions on M. Then there exists an asymptotic expansion:

K[N, X N, ] = fN . K(t, x, y)dvoly (x)dvoly ()

2

1 X

~ 3 @@ S [ Gy(x)dvoly(x), 110,
=0 N

NEeQ
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where dvoly, i = 1, 2, denotes the measure induced by the Riemannian metric of
N; as a submanifold of M, and the R,(x) are local invariants depending only on
the germs of the submanifolds N,, N, and the Riemannian metric of M near
x €N.

Proof. Let Uy, be a tubular neighborhood of Nin N, 1 = 1, 2. Uy, may be
identified with a neighborhood of the zero section of the normal bundle to N
in N, i =1, 2. w2 Uy — N is the natural projection corresponding to the
exponential map along N in N,.

One has

K[ N, X N,] =fN fN K(t, uy, uy)dvoly (u,)dvoly (u,)
2

~NEEQ fu fU K(t, uy, uy)dvoly (u;)dvoly (u,).
N Ny

We proceed with a detailed analysis of each term in the above sum. Fix any
component N of £ and denote

I =f f K(t, u,, uy)dvoly (u,)dvoly (u,).
Un,? Uy, 1 2

If a, b are points of N, then by letting X, y be normal coordinates on 7;'(a),
7, '(b) respectively we have

1= ( [ K(1, %, 7)), (¥)9(F) dx d)7)dvolN(a)doolN(b),
N x N\ #7l(a)n3'(b)

where {;, i = 1, 2, are defined by
dvoly (X) = y,(X) dxn}(dvoly(a)),
dv"l)vz(f) = Y,(7) dyrm3(dvoly(b)).

Denote by U, a sufficiently small neighborhood of the diagonal in N X N.
Then

~f ([

T

. i o, K E I dF d)7)doolN(a)dvolN(b).

By means of the well-known asymptotic expansion of Minakshisundaram

[5]:

_ ., exp(-r*/an (& ., _ _
K(’? x’y) ~ W(igo t ui(x’ y))’
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where 7 is the square of the distance from X to y, we thus have

i~ f ([ [ eo( ) S i

Y (x)(y) dfdy‘)duol,,,(a)duol,,(b).

It is a consequence of the classical Morse lemma [10, p. 6] that there exists
a change of coordinates x = x(x, y), y = y(x, ) so that

Y = exof @)\ o T2 oo “22%
exP(4t)— P 4t P\ ™ P\ 72 )
Then

-r*(a, b) -3 x? -2 y,%
I~ @4m)* [ ex (_r(a_) ex ( 2 Jex ( )
( 77) fUD p 4t ‘[m"(a)x'lrf‘(b) p 4t p 4t

. § 1'8(x, y) dx dy)dvolN(a)dvolN(b),

i=0

where fi,.(x,y) = (X, Y)Y, (Y7 (X, y, x, y). One denotes by J(X, y, x, y)
the Jacobian determinant of the above change of variables.
By appeal to the Taylor series expansion of the £,(x, y) one may deduce

_r 2laj+2| 8|
1~ amy [ e =5 Za)E ‘z (20:)'(2/3)'(a B)(“’ K

dx2egy?s

_3 x2
. f f x2ay28 exp( 2% ) exp( 2 ) dx dy |dvoly(a)dvoly(b),
7i'(a) 3! (®) 4t 4t

where the sum is over multi-indices a of length n, — n and multi-indices g of
length n, — n.
We now make the change of variablesw = x/ V7 ,z = y/Vt . Then

2la|+2| 8| _
[ (4m)-d/2f ex p( —r(a, b)) S A o (2‘3)‘ (8 )(a, b)

i=0 a,B axhayZB

-3 w?
w2 exp( 3 L )dw

2
2 % ) dz}dvolN(a)dvolN(b).

.[t|a|+lﬁl+((n1+nz)/2)-nf

R
f 2?8 exp( —
Rm—n
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568
Moreover,
- - —r¥(a, b)
I ~ (4t d/2+(n+ny)/2—n r (a,
o0 f, ool Dle2
§ > 1 9 2lal+28] E)( 5
. N(a,
o « (2(!)' (ZB)' ax2aay2B i
n—n wz
.,Ial+|B|[(47,)"—("1+"2)/2 11 f w2% exp( )dw
j=1"R
n,—n _zz
. kHl fR P exp(T) dz, |dvoly(a)dvol,(b).
Applying the classical formula [12, p. 426]
2 . . o o o —
(2.2) fR x exp( ) dx =133 2_3_1(2S D (V7)
thus yields
o . 2 b)
I~ (4 t—d/2+(n,+nz)/2—n ¢ ex ( r (a, )
(4mr) S f ew| =
1 [ a2al+28I - "
. 2 a’_ﬂ' aTayzlgBi (a, b)t|“ mdDOIN(d)dDOIN(b).
a, B . . x
Now let
82 82
Dx = U] = DU
21 ax? B w2
ko1 -
Lu(a,b) = > (@, + 0,)C_,(a, b).
j=0J:
Then

exp —_rz_(a_,Q £.(a, b)
oo~ e

-dvol,(a)dvoly(b).

I~(4Wt)—d/2+(n|+n2)/2—n § tkf
k=0 Up

For each a € N, let U, be a sufficiently small normal coordinate neighbor-

hood of a, and denote by v,, 1 <i < n, a normal coordinate system on U,.

Then

o0
I~ (4Trt)—d/2+(nl+n2)/2~n 2 tk f
k=0 N

G ORI
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We deduce from the Taylor expansion of £, (v) that

- ny+n n 1 a B
I~ (4mty @2+ (uxmd/2- 2 f 3 Ga)l e @

2

lf exp( 2o )02"‘ dv
U, 4

where a is a multi-index of length n.
One now makes the change of variables u = v/ V7 . Then

— n n n 1 82 B
1~(4'”t) d/2+( /2 /2 2 f 2 (2(1)' a 2a ( )tlal

(ﬁ f u exp( )du)dvolN(a)

i=1 YR

dvoly(a),

which simplifies, in consequence of the classical formula (2.2) above, to
become:

I~(4wt)—d/2+(n|+n2)/2—n/2 § tkf
k=0 N

1 aZaEk o
(; L 5 |)dvolN(a).

a!

Now let [], = = 9?/3v?. Then

) k
I~ (4mey /2 (e m/2mn/2 % fN 2 ji.(DéBk-,-)(a)dvoIN(a).
n= Jj= M

Finally by denoting
k

%= 3 (L% )a)

Jj=0

we obtain
0
I ~ (4mp) /3 (mrrd/2=n/2 5 t"f R, (a)dvoly(a).
k=0 N

This completes the proof of Theorem 2.1.

Let X be a compact connected Riemannian manifold. If A is the Laplace
operator of X acting on functions, then we may decompose L*(X) =
3, LX) where L}(X) are the eigenspaces of A corresponding to the eigen-
values A. The various eigenspaces are orthogonal with respect to the measure
induced by the Riemannian metric of X. We denote by P,: LA(X) — L}(X)
the corresponding orthogonal projections.

Now suppose f: X — X is a differentiable map. Then f induces maps f,*:
L? — L} defined by f,¥(¢) = Py(¢ > f) for ¢ € L}. In Theorem 2.1 we may
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take M to be the product manifold X X X, N, to be the graph G; of f, and N,
to be the diagonal %D in X X X. Then one recovers the asymptotic expansion
of [7]:

Corollary 23. Let f: X > X be a diffeomorphism which preserves the
measure induced by the Riemannian metric of X. Suppose that the fixed point set
Q of f satisfies the following conditions: (i) Q is the disjoint union of compact
connected submanifolds N of dimension n, and (ii) for each N € Q and a € N
one has det(I — f’) # 0 where f': T,N* — T,N* is the induced map on the
normal bundle of N. Denote Tr(£,*) the trace of f,: L} — L} with respect to the
inner product on L} induced by the Riemannian metric of X. Then there exists
an asymptotic expansion as t)0: )

(2.3) > Tr(fF)e™ ~ 3 (4m)"'/2§ t’f b,(f, a)dvoly(a),
A 1=0 N

NeQ

where the b/ f, a) are local invariants depending only on the germ of f and the
Riemannian metric of X near a.

Proof. The components of the intersection of N,, the graph of f, and the
diagonal N, may be identified with the components of the fixed point set of f.
“Moreover, the assumption that det(/ — f’) # O implies that for each compo-
nent N of the fixed point set one has T(N) = T(N,) N T(N,). Thus the
hypotheses of Theorem 2.1 are satisfied, and we have

KN X Ny]~ S (VI)@m) ™S ' [ 8 x)dvoly (),
=0 N

NeQ

where dvoly(x) is the volume form of N considered as a submanifold of X,
and K, is the heat kernel of X X X.
Now we may write

K (x), X3 X3, x,) = > e_o\'_‘)"‘I’i(x1)4’,'()‘2)‘1’.'(3‘3)%("4),

iJj

where ¢, are the eigenfunctions of the Laplacian on X. Then

K[N X N,] =3 e™™™ fN ¢,(x)o,(f(x,))dvoly, (x,)
: fN i(%;),(x3)dooly, (x3)
= 2423 oAty fx &(x);(f(x,)) dvoly(x,)

-J. @) ) dvoly (x5,
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since f is volume-preserving. Therefore
Kr[Nl X NZ] = 2d/22 e—ZINj;’ &:(x)d:(f(x,))dvoly(x,)

= 2d/2 2 Tr(f)\#)e——Zl}\’
A

or

S TH(R)e ™ ~ S 2070 2am)? S, o[ G (x)dvoly(x),
A N

NeQ 1=0
which gives the corollary with

by =271,

Remark. One may derive the expansion (2.3), using the method of [7], for
a differentiable map f: X — X which is not necessarily measure-preserving,. It
is only necessary to assume Conditions (i) and (ii) of Corollary 2.3. Unfor-
tunately the more general case does not seem to be a corollary of Theorem
2.1

3. The totally geodesic case

Let N, N, C M be two totally geodesic submanifolds. Then each compo-
nent N of the intersection @ of N, and N, is a totally geodesic submanifold N.
Furthermore the intersection is necessarily clean. Thus one has the asymp-
totic expansion of Theorem 2.1. In the totally geodesic case, the terms R, will
be more readily computable than in general. We restrict our attention to a
single component N of Q and define basic tensors, denoted C and D,
associated with straightening the angle between N, and N, at N.

Let X,, - - -, X, be normal coordinates on M, centered at a € N, such that
X, - - -, X, are normal coordinates on Ny, and x, _,,}, " * * , X, are normal
coordinates on N. Similarly, let y,, - - - , 7, be normal coordinates on M,
centered at a € N, such thaty, _,.,,- - - ,, are normal coordinates on N,
and 7, _,+15° * " s Pns Vma1> " > Vn+n,—n ar€ normal coordinates on N,.
We may assume that the y coordinates coincide with the X coordinates for
pointson N.

We define C to be the transition matrix from the y to the X coordinate
system:

d
5= C.l<I<d

m=1

C is an orthogonal matrix.
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The canonical form of the matrix C is independent of the chosen point
a € N. To see this, first observe that C is completely determined by the
differentials dx,, dy,, at a. Now if a,, a, € N, we may choose a curve y in N
and parallel translate dx,(a,), dv,(a,) along to covectors at a,. Since N, N,
are totally geodesic, the parallel translates of dx,(a,), @,(a,) will be the
differentials of suitably normalized coordinates centered at a,, in the sense
specified above.

For the remainder of this section, we adopt the Einstein summation
convention of summing over repeated indices. Unless otherwise indicated, we
will allow the following ranges for our indices:

1 <i,j,k<n —n, nl+1<i-,j-,1€<nl+n2—n,
n—n+1<aBy<n, d-n+1<apy<d

To make the notation less cumbersome, we will assume that d = n, + n,. The
more general case offers no new difficulties.

If x € N, and y € N,, we denote by d(X, y) the Riemannian distance from
Xtoy.m: N;— N,i= 1,2, will be the projections, defined on neighborhoods
of N in N,, associated to the exponential maps along N. The first term in the
Taylor expansion of d%(x, y) — d*(m,(x), m,(7)) defines a quadratic form, and
we would like to find a linear change of variables which diagonalizes this
quadratic form. Now

d¥(%,7) — d*(m(3), my(7) = (% — C;7) + S(Cor)” + (%, 7)°).
If we define

3.1 w, = X, — Cn z; = Cop,

then

d¥(x,7) — d¥ (%), 1(7)) = 2 w2 + X 22 +O((w, 2)°).

The matrix Cy is necessarily invertible, and we denote its inverse matrix by
D,‘ﬁ, C}7D1',7 = 6],7. One defines Dii = CifDﬁ' Then

(3.2) X, = w; + Dyzy, y; = Djzj.

If a € N, then we decompose T,M = T,N;* ® T,N & T,N,;* ® T,N;.
Here T,N," is the space of vectors in 7,N, which are orthogonal to T,N,
T,N; is the space of vectors in T, M which are orthogonal to both T, N, and
T,N,, and T,N;" is the space of vectors in 7,M which is orthogonal to
T,N,® T,N.

Let C be the collection of tensors consisting of C, D, and the curvature
tensor R of M and its covariant derivatives. There is a natural action of the
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product of orthogonal groups O(n, — n) X O(n) X O(n, — n) X O(n) on C,
corresponding to the decomposition TM = TN,* @ TN & TN;* & TN 3.

Define p to be the Ricci tensor of M, and p', p? to be the partial Ricci
tensors obtained by taking the trace over an orthonormal basis for the normal
bundles to N in N,, N,, respectively. One has

d
o(X,Y) =3 R(X,dx, Y, dz),
j=1
n—n

p(X,Y) = X R(X,dx,Y,dx),
Jj=1

ny+n,—n

pPX, Y)= X R(X,d7; Y, &),

I=n;+1

d
=2 p(dx, dx),

i=1
where 7 is the scalar curvature of M. Clearly the components of p® with
respect to the x coordinate system are given by contractions in the compo-
nents of C, R.
Theorem 3.3. Let N;, N, C M be two totally geodesic submanifolds with
intersection §, the disjoint union of compact connected totally geodesic submani-
folds N. Then one has the asymptotic expansion of Theorem 2.1:

(o]
K[N X N]~ X (4mp)Carmrmmn2 Y tlf R(x)dvoly(x)
Neg =0 N
as t|0. Moreover, if d = n, + n,, we may write

R, = |det(Dz)[R/,

where R/ is an O(n, — n) X O(n) X O(n, — n) X O(n) invariant polynomial
map from the collection C of tensors to functions on N. In particular, we have

qR’O = |det(D,-,7)|,

R, = |det(Dz)|(1/3 — 1/6pzz) + 30D +5 pfP — 308 — 508
~1p2DD,; — 30 — 302D — Rigiz — 5 Rigju DiiDyi
~2Rpoiia D + 3 R DaiDiin + 5 Ry Das Dy + 3 Ricii Dy D

The components of the curvature tensor R refer to an x coordinate system.

Proof. It is clear that the coefficients %R, are invariantly defined. The main
point is to check that the %}, depend polynomially on the collection of
tensors ©. This is illustrated by the explicit computation of R and },.
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We will use the notation of the proof of Theorem 2.1. The subscripts for
the curvature tensor R and its covariant derivatives will refer to the x
coordinate system. Some necessary geometric information is contained in the
series expansions of [7, Section (2)].

One has

Ro(a) = Lo(a) = Ey(a),

Eo(a) = up(@)¥y(a)da(a)J (%, 7, x, y)(a)
= J(x,y, w, Z)J(W’ Z, x’y)
= |det(Dzz)l,
where w, z are the variables defined earlier in this section. This implies that

Ry = |det(Ds)|, the desired formula.
More work is required to compute @R,.

(3.4) R, =05 + 5.
First we will compute the term £, = ((7J, + [jy)éo + B
(3.5) Bi(@) = updp (%, 7, x,y) = |det(Ds)|(7/6),

where 7 is the scalar curvature of M. This computation uses the well-known
fact [4, p. 922] that u,(a) = 7/6. We turn our attention to

(Dx + Dy)_ﬁo = (Dx + Dy)(“o(xa)’)%(x’ ,V)*Pz(x’ y)J(f’)T, x,y))
= |det(Dz)|(O, + O,) (ue(x, )1 (%, ¥)s(x, ¥)I (W, 2, x, »)).
The Jacobian J(w, z, x, y) arises from the change of variables required to

represent d(X, y) — d*(m,(x), 7(¥)) as a sum of squares in x, y. It is a
consequence of formula (2.2) of [7] that

dz(z, )7) - dz('”l(f)’ 7’2()7))
= 2 W + 2 Zz — 3 Ry Xi %, fffclsfs —gRrkihfkfh er.-ij_cl.fif
— 3 Ran %, %, C; J-')’,-'CB‘)’:' +--,

where the three dots - - - indica}e terms which will make zero contribution
to our computation of (0, + [7,)E-
Now, according to the formulas (3.1), (3.2), we may write
d¥(x,y) — d*(m (%), 772()7))
=X W+ - 3 Ry Wi Wy D, 2D z; -3 ki WicWh D,j 25z
hm m 1

2 - - - —— -
= 3 RokinWi Dy zﬁDrj Zizp —3 RFklhka

_1 _ 1 _ 4 ...
3 Recth D DriaZmZaZizi — 3 R Wi Wa 2721 + .
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We may choose

x‘ = w, + - - - s
Yr=zj— RrkshwkwhD ZD RrklhwkwhD i Zj Rrklhkahmz D
R,k,,,ka,,,,,z—z- - ER;kithﬁDhaZmZ,—,Z; R i WiWyZz + 0 0 .

Then
J(w,z, x,y) =1+ éRrkshxkthrl_Dsl_ + %Rrkl_hxkthrl_ + ZIRI'kihxkxh
+ ¢ Ruin DinDyinyinys + & R DiiDriy s
+ § R Dy Dury; +
Formula (2.6) of [7] gives the expansion

(x) =1 _%Riajaii‘i_} 6py')xx + -

Therefore
‘xbl('x y) Ruya i RwyaD Dmylym Rmya _/mym
_Ep(l)xx - 6plj Dmylym (l)xtl)jmym
Formula (2.6) of [7] also implies that
Ya(x,y) =1 —blRIamaDli—yi_ij_yj_ —lRl_aﬁayl-yﬁ = Rz Diyivem
~ 40D yD, v = §p$ iV — 50D vivm +
Finally from [4, p. 923] we recall the formula:
1 1
Up(x,y) =1+ 12 Pen X + 12 Py Vi +

Thus
O, (u1¥2d ) = 309D, Dy + 30PD,; + 308 — 308 + comn:

Moreover,
O, (uo¥1¥2J ) = 5 Riin Diza Dy + 5 R DiiDyi + 5 Risin Dz Dni
- R DIID 3 py D RlamaDIID Rlalu

—2 R0 D — 395 DI'D "’"P’Z) _§P§ Dy + 69517'
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Combining the above two equations gives
|det(Dy)l(3P£1DD + 3Pf0 —P(‘) 30(1) + 6phh +3 lelthmDhm

(3.6)
+ 3 Raain DiiDyii + 5 Ry Dy Dy — 2R, D;D;; — Ry,

iaja
=2R D = 3P DD, ; —3pf? — 308D +¢ow)-
Finally one must compute the term
(O,L0)(a) = (O.L0)(a) = |det( D) (uei¥2))
= |det( D)0, (e (W, 2, x, ¥))-

Recall that the v; are the normal coordinates on N of m,(y) for a coordinate
system centered at a,(x). To compute [J,(#e/(w, z, x, y)) we may use formula
(2.2) of [7] to write

d¥(%,y) — d¥(m(X), (7)) = 2, w2 + X 2 _%Rakﬁhikihvavﬂ +-,
where the three dots - - - indicate terms which will make zero contribution
to our computation. Then

d*(%, y) — d¥(m(X), m(7))
=2 W + 227 — S RugWiWias — 5 RoygnWi D 270,05
-3 R g DkﬁDhi ZjZmg t+
One has
J(w, 2z, %,9) = 1+ $p{30,05 + § R pn Diizs Dy O V-

Moreover, from the well-known formula [4, p. 923] for u, we have

up(x,y) = 1+ Tlipaﬁoavﬁ +-
Finally
BN (OuL)(@) = |det(DF)|(§Pan + 5952 + 5 Ruka Dicm Di)
The required formula for
R =05 + &
follows by adding (3.5), (3.6) and (3.7).

To obtain the invariant theory characterization for the terms %}, one needs
only to observe that

!
1 .
%, =2 (8-,
j=0 J*
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where
ko1 —
Bk = 2 ~—'(Dx + Dy)JBk—j,
j=0J:

£, = |det(Dp)|u (X, 7)1 () () (W, 2, x, y).
It follows from the expansion in [7, Section (2)] that each of the terms u,, ¥,
Yy, J(w, z, x,y) has an expansion in x, y, v whose coefficients depend
polynomially on the tensors in C. This gives the invariant theory characteriza-
tion of the terms AR,.

4. A generalization of Patodi’s theorem

In this section we will assume that M is a compact oriented even dimen-
sional Riemannian manifold of dimension d = 2n. Let N be a totally geo-
desic oriented submanifold with dimension », half the dimension of M. We
orient the normal bundle TN+ of N in M to be compatible with the
decomposition TM = TN @ TN *.

The heat equation for n-forms on M has a fundamental solution K"(¢, x, y)
which is a smooth double form on M X M. Since N is oriented we may
integrate K"(z, x,y) over N in the y variable to obtain an asymptotic
expansion similar to that of Theorem 2.1. It will be more interesting to
consider instead the expansion associated to *yK"(¢, x, y), where *y is the
Hodge star operator of M applied to the second variable y. We denote

KI[*N] = [ K1),

where K"(x,y) = K"(1, x, y), the fundamental solution of the heat equation
for n-forms.

Theorem 4.1. Suppose M is a compact oriented Riemannian manifold of
even dimension d = 2n and that N is a totally geodesic oriented submanifold of
dimension n, half the dimension of M. Then for x & N one has

K2(0)[*N] = 0(e),
where c(x) > 0 is a constant depending on x. If x € N, then there exists an
asymptotic expansion

KA(x)[*N] ~ (40) ™2 go 1T ().

The n-forms T (x) are local invariants of the Riemannian metric of M near x.
Denote i: N — M the inclusion map and vy, = i*T;, the pull-backs of the T,.
Then the v, are O(n) X SO(n) invariant polynomial maps (corresponding to the
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decomposition TM = TN @ TN 1) from the curvature tensor R of M and its
covariant derivatives to n-forms on N.

Proof. The proof is similar to that of Theorems 2.1 and 3.3. The y/(x) are
clearly SO(n) X SO(n) invariant. The only interesting point is to check that
they are actually O(n) X SO(n) invariant. To see this, one needs only to
observe that if one reverses the orientation of N while fixing the orientation
of the normal bundle to N, then K;"[* N] is invariant.

One has

Lemma 4.2.

b

fN y(x) =0, 1+

>

Nl Nl

wa(x)'—'[N] N[N], I=

where [N] N [N] is the self-intersection number of N.

Proof. Let Ey' be an eigenspace of the Laplacian on n-forms correspond-
ing to an eigenvalue A # 0. It is a consequence of Hodge theory that there
exists an orthogonal decomposition

E! = dE}~' @ d*EJ*),

where d is the exterior derivative, and &* is the adjoint of d.

Now let {¢,(x)} be an orthonormal basis for the eigenforms of the Lapla-
cian on n-forms, where ¢,(x) corresponds to the eigenvalue A, We may
suppose, as observed in the above paragraph, that if A; # O, then ¢,(x) is
either exact or coexact. It is well-known [5] that

K"t x,9) = 3 e 4,(x) ® (),

so that

[, Kwxn =3 e [ o) [ 00|
- ;0[ [, 2| f, o)

Since if A; # 0 then ¢,(x) is either exact or coexact. However, for A, = 0, the
harmonic forms ¢,(x) represent a basis for H"(M, R), while *¢,(y) represent
a dual basis. Thus

foN *yK"(1, x,y) =[N] N[N].
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However, by Theorem 4.1 we may write

fN L YK X ) = fN KMNx)[*N] ~ (4m)™" EO 1! fN (%)

The left-hand side was just computed above, and is equal to [N] N [N],
independent of ¢. Thus the lemma follows.
It is well-known [6, p. 196] that

[M]n[N] = [ x*@,

where x* () is the Euler form of the normal bundle to the totally geodesic
submanifold N. Thus one is led to conjecture that the singular terms in the
expansion

#(KP()[*N]) ~ (dmt) ™2 I§0 iy (x)

vanish, and that the constant term is equal to x * (). In fact, one has

Theorem 4.3. Suppose M is a compact oriented manifold of even dimension
d = 2n, and that N is a totally geodesic oriented submanifold of dimension n,
half the dimension of M. Then in the expansion

(KID[N]) ~ @m) ™ 5 o)

one has
v, =0, 1 <n/2,
Y= XL(Q)’ I=n/2

Proof. An invariant polynomial map P, from the curvature tensor of M
and its covariant derivatives to n-forms on N, is said to have weight k if
under a scaling g — c¢% of the metric g on M one has P — c*P. It is well
known [8, Theorem 5.1] that an invariant polynomial map P of weight k
vanishes identically if £k > 0. If k =0, then P is a polynomial in (1) the
Pontriagin forms of N, (2) the Euler form of the normal bundle to N, and (3)
the Pontriagin forms of the normal bundle to N.

It is easy to see how the n-forms v, transform under a scaling g — c’g of the
metric on M. In fact, if g — c’g then

K"(t, x,y) > K"(c™4, x, y).

Moreover, since d = 2n, the Hodge star operator is invariant under scaling of

the metric on M. Thus when g — c’g, one has y, » ¢"~?y, and therefore

y, = 0 for / < n/2 by Theorem 5.1 of [8].
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Now suppose n is even and that / = n/2. By Theorem 5.1 of [8] one knows
that v, is a polynomial in (1) the Pontriagin forms of N, (2) the Pontriagin
forms of the normal bundle to N, and (3) the Euler form of the normal
bundle to N. However, if one reverses the orientation of M, or equivalently of
the normal bundle to N, while fixing the orientation of N, then vy, — —v,.
Consequently y, must be a multiple of x*(2). However

=) x@ =[N n[N].

Sov, = x*(@. |

Let X be a compact oriented Riemannian manifold of dimension n. The
diagonal %) is a totally geodesic submanifold of the product X X X. This
follows since 9 is the fixed point set of the isometry (x,, x,) = (x,, x,). By
applying Theorem 4.3 in the special case N = ), M = X X X, one recovers
a well-known result of Patodi [11].

Corollary 4.4 (Patodi). Let X be a compact oriented Riemannian manifold.
Denote e?(t, x, y) the fundamental solution of the heat equation for p-forms on
X. Then

2 (=1 Tr(e? (s, x, x))*1 = x(@) + O(v),

where * is the Hodge star operator of X, and x(R) is the Euler form of X.

Proof. Suppose {¢,,} is an orthonormal basis, for the space of square
integrable p-forms on X, consisting of eigenforms of the Laplacian with
eigenvalues {A;}. Then {*¢,,} is an orthonormal basis for the space of square
integrable (n — p)-forms on X, since * is an isometry which commutes with
the Laplacian. It is well-known [5] that we may write

ep(t, X, y) = 2 e_’)\”d’i,p(x) ® ¢i,p(y)’
Ut x3) = S e Porg (1) ® *6,,(2)

forp + g = n.

The eigenforms of the Laplace operator of M = X X X acting on n-forms
are spanned by wedge products Y(x;, x;) = ¢;,(x)) N\ ; (%), p+ g = n.
Therefore the heat kernel for n-forms on X X X is

K'(t, (x1, %), (ypy)) = 2 €2(t, x, ) N e9(t, xy, ,).

p+q=n
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Moreover
*YK(t, (x5, X3), (V1 2))
= 2 (_l)q*ylep(t, X1 yl) N\ *yzeq(t; X3, }’2)

p+q=n

= 3 DTS e () @ %,,00)

p+q=n

A (2 eherg, (x,) ® qb,,,,(yz))

J

= 2 (D)X e N9, ,(x) Aty ,(x)))

ptg=n ij
® (4’,’,,;()’2) VAN *4’1',1:()’1))-
By integrating over N = ) one obtains
K/ (x), x))[*N] = ; (DX e?Mog, ,(x)) A %, ,(x2),
ptq=n i

and thus
K/(x, x)[*N] = p+§=n(—l)q Tr(e,(t, x, x))*1.
Consequently, by Theorem 4.3,
; (-1 Tr(e, (2, x, x))*1 = x*(2) + O(¢),

where x*(Q) is the Euler form of the normal bundle to the diagonal N = 9
in M = X X X. Furthermore, the map (v, v) - (v, —v) is a connection pre-
serving isomorphism of the tangent bundle and normal bundle to the diago-
nal. Therefore x* () = x(?), the Euler form of X, and Patodi’s theorem
follows.

Remark. If X is not necessarily orientable, one still has Patodi’s theorem:

2 (-1 Tr(eP(1, x, x)) = *x(@) + O(2).
This follows from Corollary 4.4 by considering the oriented double cover of
X.

5. Invariant theory

It requires some preparation to develop further generalizations of Patodi’s
theorem. This section is devoted to some preliminary work which is mainly
algebraic in nature. The methods used here are rather standard [1], [2], [3], [8].

Let M be a compact oriented Riemannian manifold of dimension 4, and
N,, N, C M be two totally geodesic oriented submanifolds of dimensions n,,
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n, respectively, and let n, + n, = d. We suppose that the intersection  of N,
and N, is the disjoint union of oriented submanifolds, and focus our attention
on a particular component N C €, N of dimension n. We may use the
notation of §3.

Consider the collection € of tensors, defined in §3, consisting of C, D and
the curvature tensor R of M and its covariant derivatives. There is a natural
action of O(n; — n) X O(n) X O(n, — n) X SO(n) on C, corresponding to
the decomposition TM = TN;* @ TN @ TN, @ TN; and a chosen orien-
tation of TN3. To specify this action, we define a coordinate system

Xy, * © -, x4 centered at @ € N to be normalized if (1) dx,, - - -, dx, _, lie in
TN dX, 41 * > dx, lie in TN; dx, ., - - -, dx,_, lie in TN;"; and
dxy;_,,p - ,dxgliein TN;, and 2) dx,, - - - , dx, are orthonormal at a. A

function y of the tensors © will be called an invariant polynomial map to
n-forms on N if, with respect to any normalized coordinate system centered
at a € N, y is an O(n, — n) X O(n) X O(n, — n) X SO(n) invariant poly-
nomial map from C to n-forms on N.

One may denote by det the determinant map from tensors to functions on
N:

det: ® TN — A%(N)

corresponding to the orientation of TN ;.

Well-known results '[3, p. 287], [13] from classical invariant theory imply
that an invariant polynomial map y to n-forms on N is a linear sum of
elementary monomial invariants:

mon(R, C, D) = X Ry, - - - Ry Cq, -+ - C Dy, - - - Dy,

where Fy, - - -, F, are multi-indices containing indices which may refer to
any of TN;*, TN, TN;", or TN3; Gy,- -+, G, H},- - -, H, are pairs of
indices corresponding to TN~ and TN," only. It is understood that n of the
indices, necessarily among the Fs, corresponding to TN must be alternated.
Moreover, det may be applied to n-tuples of indices corresponding to TN 3.
The remaining indices must be contracted in pairs.

An invariant polynomial map v is said to be of weight k if under a scaling
g — c’g of the metric on M one has y — c*y. Our first goal will be to
characterize the elementary monomial invariants of nonnegative weight.

Lemma S5.1. The weight of an elementary monomial invariant
mon(R, C, D) is 2p + n — X f; where f; is the total number of indices in F..

Proof Each R, Cq. , and Dy has weight two. If (con) is the total number
of contractions and (det) is the total number of times det is applied, then
mon(R, C, D) has weight 2p + 2 + 2s — 2(con) — n(det). On the other
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hand, n + 2(con) + n(det) = 2 f; + 2q + 2s. Thus mon(R, C, D) has weight
2p+n—-3f.

Denote by ¢, the total number of covariant derivatives in all the Rgs. Then
2 f, = 4p + &;. Thus one obtains the formula n = weight (mon(R, C, D)) +
2p + e

Now we recall the classical identities satisfied by the curvature tensor R.

Lemma 5.2. The Riemann curvature tensor R satisfies the identities:

521D Ry, =0, Ry, =0,

(52.2) Rijkl = _Rjikl’ Ry = _Rijlk
and consequently

(5:2.3) Rjy; = Ry

(52.4) Ry = %Ru[ kP

where the bow — denotes alternation over three indices, and the bracket [ ]
denotes alternation over two indices.

The following lemma is a consequence of the curvature identities:

Lemma 5.3. Let mon(R, C, D) be an elementary monomial invariant of
weight k.

(1) If k > 0O, then mon(R, C, D) = 0.

(ii) If k = 0 and mon(R, C, D) # 0, then n is necessarily even. Moreover, in
the above notation, n = 2p and ez = 0. We may assume that precisely the last
two indices are alternated in each Rg.

Proof. The identities (5.2.1), (5.2.2), and (5.2.3) imply that for the terms
Ry we may alternate over at most two of the first five indices, else
mon(R, C, D) = 0. Thus as n is the total number of alternations in the R’s,
one has n < 2p + g with strict equality if ¢ > 0. However, 2p + g4 = n-
weight (mon(R, C, D)) as shown above. Thus, if weight (mon(R, C, D)) > 0
and (mon(R, C, D)) # 0, we must have & = weight (mon(R, C, D)) = 0.
Consequently, n = 2p. In particular, n is even.

Since n = 2p, we must alternate exactly two indices in each R. By (5.2.3),
(5.2.4) we may suppose that the last two indices in each R are alternated.

The Euler form of TN;3, x () has the property that x*(2) — -x*(2)
when the orientation on TN,, is reversed. In fact, x () is essentially the only
such invariant of weight zero.

Lemma 5.4. Let y be an invariant polynomial map, to n-forms on N, of
weight zero. Suppose that Y — —y when the orientation on TNj is reversed.
Then v is a multiple of x ().

Proof. Since y is always a sum of elementary monomial invariants, it
suffices to treat the special case where y = mon(R, C, D) is an elementary
monomial invariant.
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By Lemma 5.3 one has ¢ = 0, n = 2p. Thus 2 f, = 4p, and half of these
indices are alternated. We may assume that the last two indices are alternated
in each Ry

Moreover, y — —y under reversal of the orientation on TN ;. Therefore the
basic invariant map det must be applied to some indices in mon(R, C, D).
However, C, D do not contain indices corresponding to 7N 3. Thus det must
be applied; to the n = 2p indices consisting of the first two indices in each
Rg, and we may write

mon(R, C, D) = x*-(2)(mon(C, D)),
where mon(C, D) is an elementary invariant monomial map from the tensors
C, D to functions on N. However, as observed in §3, the normal form of C, D

is independent of the point of reference a € N. Thus mon(C, D) = b. a
constant, and mon(R, C, D) = bx*(Q).

6. A generalization of the local Lefschetz formula

Let M be a compact oriented Riemannian manifold of dimension 4, and
N,, N, C M be totally geodesic oriented submanifolds of dimension n,, n,
respectively, and let n; + n, = d. Suppose that the intersection © of N, and
N, is the disjoint union of totally geodesic oriented submanifolds N of
dimension n. Moreover, assume that the chosen orientations are compatible
with the vector bundle isomorphisms:

TN, =TN ® TN,
TN, = TN & TN,
TM = TN ® TN ® TN;* ® TN,

Denoting by K"™(¢, x, y) the fundamental solution of the heat equation for
n,-forms on M, one defines

KP)[*N] = [ 9K (5 x,9).

The right-hand side is an n,-form whose asymptotic behavior as #/0 is local in
nature. In particular,

KP[*N,] = 0(e<™/), x & Ny Ny

where ¢(x) > 0 is a constant depending on x.

Now suppose that a lies in some component N of N, N N,. Denote Uy, a
tubular neighborhood of N in N;; Uy may be identified with a neighborhood
of N in its normal bundle, via the exponential map along N, considered as a
submanifold of N,. It is interesting to integrate K,"(x)[* N,] over the fiber F,
of UN.' In fact, one has
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Theorem 6.1.  Suppose that M is a compact oriented Riemannian manifold of
dimension d, and that N, N, are two totally geodesic oriented submanifolds of
dimensions n,, n, respectively, and n, + n, = d. Let N, of dimension n, be any
oriented component of the intersection Ny N N,. If a € N, then there exists an
asymplotic expansion:

o)
[ KrO[*N] ~ @m0y 3 1T (a),
F, =0
where the n-forms I (a) are local invariants of the Riemannian metric of M near
a.

Denote i: N — M the inclusion and y/(a) = i*T'(a), the pull-backs of the
I'/(a). Then the y/(a) are O(n, — n) X O(n) X O(n, — n) X SO(n) invariant
polynomial maps from the collection C of tensors (described in Theorem 3.3) to
n-forms on N.

Proof. Similar to the proofs of Theorems 2.1, 3.3, and 4.1.

One may also generalize Lemma 4.2 to obtain

Lemma 6.2.

=0, 1#0,
NZEQ fN Y1+ny2(@) #*
Nzesz fN Y1+n/2(a) =[N1] n[Nz], /=0,

where v, are the invariants of Theorem 6.1, and [N|] N [N,] is the intersection
number of N, and N,.

Proof. Similar to the proof of Lemma 4.2.

Now it is well-known [6, p. 196] that

[MIn[m] = 2 [ x*@,

where x*(®) is the Euler form of TN ;. This leads one to the following local

version of Lemma 6.2.

Theorem 6.3. Let N,, N, C M be totally geodesic oriented compact sub-
manifolds of the compact oriented manifold M. Suppose N, of dimension n, is
some oriented component of the intersection N; N N,. Then for the expansion

i* fF KP[*N] ~ (4m) ™/ 3 rva)

one has
vf(a) =0, 1 <n/2,
v(a) =x*(®), I=n/2
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where x () is the Euler form of the normal bundle TN ;.

Proof. If we scale the metric on M: g— c’%, then *yK™(t, x,y)—>
*yK™(c™%, x, y). Therefore y,(a) — ¢"~y,(a).

From Lemma 5.3 it follows that y, = 0 for / < n/2. Now observe that if we
reverse the orientation on TN, then

i* fp KP[*N] - -1t fr,, KM(x)[*N,].

Therefore y, — —v, if the orientation on TN j is reversed. By Lemma 5.4 we
conclude that if n is even and / = n/2, then y, is a multiple of x*(R).
However, [y v, = [x X (R).Soy, = x () if I = n/2, n even.

Let f: X > X be an isometry of the compact oriented Riemannian mani-
fold X of dimension m. The fixed point set & of f is the disjoint union of
compact totally geodesic submanifolds N of dimension n. Suppose that the
components N of Q are oriented. Consider the product manifold M = X X
X. The submanifolds N, = G, the graph of f, and N, = %), the diagonal in
X X X, are totally geodesic. The components N of the intersection N, N N,
may be identified with the components of the fixed point set 2 of f.

Now let e”?(z, x, y) be the heat kernel for p-forms on X. Then, as is
well-known [8],

L(f) = fx 3 (1P Te(frer(, % SN,

where * is the Hodge star operator. L(f) is the Lefschetz number of f, the
alternating sum of the traces of the maps induced by f on each of the
cohomology groups H?(M, R).

If Uy is a tubular neighborhood of N, we may identify U, with a
neighborhood of the zero section of the normal bundle to N in X. This
identification is obtained via the exponential map along N in X. Fora € N,
denote F, the fiber over a of Uy — N. It is apparent that

fx S (-1F Tr(f*e? (1, x, f(x)))*1

= 32 S, D e s o] + o,
NeQ “N|'FR,
where ¢ > 0 is a constant. The integral inside brackets, on the right, denotes
integration over the fiber.
As a corollary of Theorem 6.3 we may rederive the local form of the
Lefschetz theorem which was given in [9]:
Corollary 64. Let f: X —> X be an isometry of the compact oriented
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Riemannian manifold X. If N is an oriented component of the fixed point set,
then one has the local Lefschetz formula:

[, S T 5, fGN)* = X(@) + 0()

for a € N, where the integration on the left is integration over the fiber, and
x() is the Euler form of N.

Proof. The heat kernel on m-forms for the product manifold X X X is
given by

K™(t, (x1, %), (W) = 2 (4, x,0,) A et xy, 1)
ptqg=m
Moreover, as in the proof of Corollary 4.4 we may write

*yK™(t, (x, f(x)), (,5))
= X (DT et Dag, (x) A, (f(x) B ,,(¥) A *d,,(»),

p+q=n ij

so that
K"(x, f(x))[*N,] = pgzn(—l)"Z e, (x) A *;,(f(x)).

Thus

J, ZC T X D) = [ KICx fG)[*Ns]

=x"(®) + 0()
by Theorem 6.3, where x () is the Euler form of the normal bundle TN,,,
consisting of all vectors in TM|N which are normal to both TN,|N and
TN,|N. However, TN; is isomorphic to TN via the isomorphism (v, v) —>
(v, —v). Consequently x ~(2) = x(R), the Euler form of N.
Thus

fF S (-1 Tr(f*e,(1, x, f(x)))*1 = x(@)(a) + O(r).

Remark. If x, N are not necessarily orientable, then one may still derive a
local Lefschetz formula

fF S (-1 Tr(f*e,(1, x, f(x)))d(x)dvoly. (x) = *x(@)(a) + O(2),

where dvolg (x) is the measure induced on F, by the Riemannian metric of M,
and Y(x) is defined by dvoly,(x) = Y(x)[7*dvoly(x)]dvolg (x).

This follows from Corollary 6.4 by observing that the statement is local in
nature, and that the manifolds N, X are always locally orientable.
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