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O N D E F O R M I N G C O N F O L I A T I O N S 

STEVEN J. ALTSCHULER & LANI F. WU 

Abstract 
We present a parabolic deformation of one-forms on compact, orientable, 
odd-dimensional manifolds. The flow produces contact forms from the class 
of initial conditions called "conductive confoliations". We give applications 
of these techniques to new constructions of contact forms on products of 
contact manifolds with surfaces. In particular, we produce contact forms 
on the product of any three dimensional manifold with any surface. 

1. Introduction 

1.1. Results. In this paper, manifolds are assumed to be smooth, 
compact, orientable and endowed with a Riemannian metric. A one-
form 7] is contact on a 2n + 1 dimensional manifold if at every point 
r] A {drj)n ^ 0. A global volume form may be chosen to reformulate the 
(positive) contact condition as 

(1.1) *{riA(dr])n) > 0 . 

Received August 18, 1999, and, in revised form, J anua ry 20, 2000. The au thors 
t h a n k David Blair for helpful references, John Sullivan for set t ing up a symbolic 
differential forms package [17], and Yakov Eliashberg, Michael Freedman, Richard 
Hamil ton, and Dan Strook for useful suggestions. 

Key words and phrases. Contac t manifold, contact form, confoliation, geometric 
evolution equat ion, degenerate parabolic equat ion. 

1991 Mathematics Subject Classification. P r imary : 53D10, 53C44 ; Secondary: 
35K65, 53C15. 

e-mail address: s teve_al tschulerQhotmai l .com; lani_wu@hotmai l .com. 

75 

http://steve_altschulerQhotmail.com
mailto:lani_wu@hotmail.com


76 STEVEN J. ALTSCHULER & LANI F. WU 

If rj only satisfies the weaker inequality 

(1.2) * (n A (dn)n) > 0 

it is a so-called (positive) "confoliation" [6]. 
Deformations of confoliations were studied in [1], and later [6], only 

for the case of 3-dimensional manifolds. As in [1], we present a heat 
equation tailored to diffuse the "positivity" of the form in the contact 
region throughout the rest of the manifold. The transport mechanism 
for this heat equation is related to the two-form 

(1.3) T = *(rìA(drì)
n-1). 

and conditions on this form are needed to ensure heat flow throughout 
the manifold. 

Loosely speaking, we call a confoliation "conductive" (see §1.3) if 
every point on M2n+1 can be connected to a point where n is contact 
by a curve whose tangent vector is in the "range" of r . The subset 
of smooth one-forms that are conductive confoliations are denoted by 
Con ( M 2 n + 1 ) . Our main result is as follows: 

T h e o r e m 1.1. Ifrj£ Con ( M 2 n + 1 ) ; then n is C°° close to a contact 
form. 

The analytical program to prove this result may be summarized as 
follows: 

1. Define a diffusion equation on one-forms that preserves the con­
foliation condition for all time; 

2. Prove a strong maximum principle so that under suitable condi­
tions confoliations become contact; this is subtle as the transport 
mechanism for the equation does not produce diffusion in all di­
rections; 

3. Characterize the class of so-called "conductive confoliations" that 
satisfy the conditions necessary in step 2 for the maximum prin­
ciple. 

We use this flow to demonstrate new constructions of contact forms 
for certain products of contact manifolds with surfaces. The following 
result resolves a case left open by the work of Lutz [IO].1 

1We have been informed by Y. Eliashberg that M. Gromov has an unpublished 
approach [8] using branched coverings over M3 x S2. 
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T h e o r e m 1.2. Let S 2 be any compact orientable surface, and M 3 

be any compact, orientable 3-manifold. Then M 3 x S 2 is contact. 

We next include an explicit construction of a conductive confoliation 
on S3+2p x S 2 . The construction of conductivity is more sophisticated 
than the one needed for the previous result and is included as a case 
study. It is already established that S3+2p x S 2 is contact. 

At the end of the paper, we indicate a number of additional ap­
plications. In particular we extend the techniques to generalizations of 
contact forms. For example, under analogous conductivity conditions, a 
3-form r?(3) on a 7-manifold may be produced satisfying * (r?(3) A dn^) > 
0. 

A second generalization is deforming differential forms that have a 
notion of non-integrability when paired with a background structure. 
For example, a precondition for a manifold M2n+1 to be contact ([2]) 
is a 1-form n and a globally defined 2-form $ such that * (n A Qn) > 0 
everywhere. Again, under suitable conductivity conditions, "intermedi­
ate" measurements of non-integrability such as -k (rj A dr\k A $ n _ f e ) > 0 
are constructed. 

1.2. C o m m e n t s . The existence of a contact form (or a confoli­
ation) on a closed compact manifold is a topological condition. There 
are known topological obstructions to the existence of contact forms. 
When contact forms do exist, it is well known by the classical integra-
bility theorem of Darboux that all contact forms of the same dimension 
are locally equivalent. 

In three dimensions, the topological obstructions to finding contact 
forms vanish. It was shown by Martinet [12] that all three manifolds 
have contact forms. Work by Gonzolo [9] in fact demonstrated the 
paralellization of every three manifold by contact forms. In five dimen­
sion, existence results were obtained by Lutz [10] for the case of tori 
bundles over three-manifolds, and in particular for the cross-product of 
3-manifolds with two-dimensional tori. However, this approach relied 
on the special structure of tori and did not extend to general surfaces. 
Results in this dimension were also obtained by Thomas [15] for simply 
connected manifolds. 

Many properties of contact and confoliation forms in low dimensions 
have since been studied in depth (see [6]). In contrast, for higher di­
mensions, a general program for even demonstrating the existence of 
confoliations and contact forms is lacking. On many spaces where all 
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known obstructions vanish, such as the cross-product of a contact mani­
fold with a surface, contact forms are conjectured to exist. An indication 
of the remarkable diÆculty encountered in this subject is that the exis­
tence of contact forms, even on such spaces as the odd-dimensional tori, 
is an open question. 

There are several factors contributing to the diÆculty of constructing 
contact forms on manifolds of dimensions greater than three. Foremost 
among these is that condition (f.f) places a non-linear condition on 
the antisymmetrized matrix of first derivatives of 7]. This makes an 
approach of adding locally defined contact forms together to form a 
global contact form diÆcult. Adding to the formidable computational 
diÆculty of constructing contact forms is the seemingly non-geometric 
nature of the hyper-plane distribution of the tangent bundle defined by 
the null space of 77. In contrast to integrable distributions that define 
foliations, contact distributions are "maximally twisted." This makes 
contact distributions diÆcult to visualize at scales larger than those 
given by Darboux. 

Since progress in producing high dimensional contact forms has been 
diÆcult, new approaches such as those presented in this paper may prove 
valuable for approaching the general problem of existence. Additionally, 
the techniques presented in this paper may provide new examples of 
non-homotopically equivalent contact forms. 

1.3. Def ini t ions . In this section we discuss the conditions needed 
for the class of so-called "conductive confoliations." Recall that these 
are forms suited for perturbations by our heat equation techniques. Ex­
amples illustrating structures in this section will be given in § 1.4. Let 
a G A1 ( M 2 n + 1 ) and g be a metric on M 2 n + 1 . Recall from (1.3) the 
two-form 

(1.4) r = * [a A (da)""1) . 

The "square" of r is defined on two vector fields X and Y by 

(1-5) {X,Y)a = {iXT,iYT)g 

or, in local coordinates, 

l̂ -oj a,%j = TimTjng 

The vector space of degenerate directions of a is denoted by 

(1.7) Null(a) = {X\ {X, Y)a = 0, VY} 
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Null(a) is its orthogonal complement with respect to g. It may be 
easily seen that NUII{T) = {X\ixr = 0} = Null (a) and NUII(T)L = 
Null(a) . With this in mind, we make the following definition. 

Definit ion 1.3. A point p G M2n+l is accessible from q G M2n+l 

if there is a smooth path x : [0,1] —> M2n+l from p to q with x'(s) G 
Null {a)1- for all s. 

We now define the class of confoliations amenable to perturbation 
by our heat equation. These are confoliations that are able to conduct 
heat, i.e., "contactness", to all points of the manifold via paths in the 
range of a. 

Definit ion 1.4. The space of conductive confoliations, Con (M2n+1), 
is defined to be the subset of a G A1 (M2n+1) such that 

1. a is a confoliation: -k(a A (da)n) > 0; 

2. every point is accessible from a contact point of a. 

Note that at a point where Rank (da\Nuu^ 

) = 2 n , a is contact. A 
computation in coordinates given by Darboux's theorem yields Rank(a) 
= 2n. 

At a point where Rank (da\Nuu^ ) = 2n - 2 we choose an orthonor­
mal frame {Z, Xi, • • • , X2n_2, Yi, Y2} with the properties 
(1.8) a(Z) + 0, a(Xi) = a{Yj) = 0, da(Yj, •) = 0 Vi, j . 

One may compute that T(Z, •) = 0, r p Q , •) = 0 for all i, and r(Yi , Y2) ¥" 
0. Hence, Nul^a)1- = Span{Yi,Y2} = Null (da) and Rank(a) = 2. 

In contrast, if Rank (da\Nuu^ ) < 2n - 2, then a A (da)11'1 = 0. 

Hence r = 0 and Null (a)1- = {0}. 

1.4. E x a m p l e s . We now give examples that help illustrate con­
cepts introduced in the previous section. 

E x a m p l e 1. In 3-dimensions, the previous discussion indicates that 
Rank(a) = 2 whether a is contact or not. It is also the case that 
Null(a)± = Null(a). 

E x a m p l e 2. Let IR5 be given with coordinates {z,xi,yi,X2,y2}, 
Euclidean metric, and volume form dz A dx\ A dy\ A dx2 A dy2- The one-
form a = dz + x\dy\ is a confoliation. Using r = dx2 A dy^-, it follows 
that Null (a) = span{-^, ^ | - , 5^-}. Hence, (•, -)a is proportional to the 
Euclidean metric on the {a;2,y2j-plane and degenerate otherwise. 
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If a is contact, say a = dz+xidyi+X2dij2, then the null space is one-
dimensional and given by Null (a) = span{-^ + xi~j&~ +X2-S~}- This is 
seen from the fact r = dx\ A dy\ + dx<2 A dyi — x\dx\ Adz — x^dxi A dz. 

Next, we construct an example of a confoliation that is not conduc­
tive. Let ip = ip(x\,yi,z) be a smooth function such that ip(xi,y\,z) > 
0 for \xi\ + |yi| + \z\ < 1 and ip(xi,y\,z) = 0 otherwise. Then for 

a = dz + x\dy\ + ip(xi,yi, z)x^dy2 

one may compute 

a Ada = 2tf)(x\,yi, z)dz A dx\ A dy\ A dx<i A dy2-

Hence a is contact only in the region where ip > 0. Outside this 
region, a = dz + x\dy\ and it follows from comments at the beginning 
of this example that non-contact points are not accessible from points 
in the contact region. 

E x a m p l e 3. We next look at a construction useful for constructing 
contact forms in lower dimensions and examine why it fails to produce 
a conductive confoliation in higher dimensions. 

Let a be a contact form on M 2 n + 1 . Let (r, 6) be polar coordinates 
on a unit 2-dimensional ball B2. Then, for functions a{r) and b(r) we 
consider the family one-form on M 2 n _ 1 x B2 defined by 

7] = a(r)a + b(r)d0. 

This form is similar to the "propeller" contact one-form (see [16],[1],[6] 
for geometric interpretations). One may compute 

drj = a(r)da + a'(r)dr A a + b'(r)dr A d0 

dv
n+1 = an+1(r)dan+1 + (n + l)ana'(r)dan AdrAa 

(1.10) + (n + l)anb'(r)dan A dr A dO 

r] A {dr])n+1 = (n + I K 
a a' 
b b' 

a A (da) Adr Ad9 

To look for conditions on a, b that give a sign to (1.10), we call out 
the following interpretation of the determinant condition. 

Defini t ion 1.5 (Propeller curves). Viewing X(r) = (a(r),b(r)) as 
a curve in R2 (see Figure(l)) , we require 

1. a = — 1 and b = —r near r = 0, 
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b 

X = (a(r),b(r)) 

X' = (a'(r),b'(r)) 

Figure 1: Propeller Curves 

2. a —> 1 and a', b, b', —> 0 as r —> 1, 

3. X and X' are never collinear and X(r) ^ (0,0), 

4. X rotates counter-clockwise, hence (ab' — ba') > 0 for r < 1. 

It is easy to find curves satisfying these conditions. For such a curve, 
r] is well defined. For n even, n A {dr])n+ > 0. However, for r$ such 
that a(ro) = 0, it is easily seen that n A (dq) and r\ A (dr])n vanish 
and hence r\ ^ Con (M 2 n + 1 ) . 

Example 4. Finally, we study two relevant degenerate quadratic 
forms. Let ip(s) be a smooth function that is positive for —1 < s < 1 
and 0 elsewhere. In R2 with coordinates (x, y) define 

fl.lli CL\ 
ip(x) 

0 02 
A%) o 

o l 

Points outside of R = (—1,1) x M1 are not accessible to points inside 
of R by curves in the range of a\. This is essentially the situation in 
example 2 above. In contrast, all points in R2 are accessible to each 
other by curves in the range of a<2 (see Figure(2)). This is the model of 
the quadratic forms a given by conductive confoliations. 

2. The flow 

Many of the computations in this section may be found in [1] for the 
special case of three-dimensional manifolds. 
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< > 
< > 
< > 

1 N u l l (a1) 
< > 
< > 
< > 

y 
• 

-> N u l l (a2) 

Figure 2: Degenerate Quadratic Forms 

(2.1) 

2.1 . Cross Term Energy. Let n = a + e/3. Then we may expand 

ri A (d'f])n = a A (da )" 

+ e ( ß A {da)n + n a A ( d a ) " " 1 A {dß)\ + 0 ( e 2 ) . 

Defini t ion 2 .1 . Let the first order cross terms be defined by the 
function 

(2.2) / ( a , ß) = -*(ßh (da)n + na A ( d a ) n _ 1 A (dß)) . 
n V 

The normalization of 1/n is used for convenience in later equations. 

The following is evident, and is justification for studying / more 
carefully. 

Propos i t i on 2 .2 . If-k(a/\ (da)n) > 0 and f(a,ß) > 0 then e may 
be chosen small enough to make n contact. 

Our problem then, may be neatly summarized by the task of making 

/ > 0 . 

Note that / measures some of the first derivatives of ß. Working by 

analogy with the derivation of the standard heat equation j^u = An 

from E(u) = j \Vu\ du we define the cross term energy of a and ß by 

(2.3) E(a,ß)= [f(a,ß)du 

We take the first variation of the energy with respect to ß treating 
a as a constant. That is, 

d 
(2.4) El{aJß) = —E{aJß + uß')\u=0. 

du 
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We then integrate by parts. 

'^E'(a, ß) = f f • (ß' A (da)n + na A (dß') A ( d a ) n _ 1 ) 

ß' A f(da)n + nfa A (dß') A (da)11'1 

(2.5) = ß' A f(dan) - nd(fa A ß A (da)11'1) 

+ nd(fa) A ,0' A ( d a ) " " 1 

(n + l)ß' A f(da)n - nß' A a A (da)™"1 A df 

From 2.5 we see that a gradient descent for the energy is given by 
the variation 

(2.6) £ ' = • ( a A ( d a ) " " 1 A df) - Vl±lf * (rfa)n 
n 

2.2. T h e Evo lut ion Equat ions . The deformation defined in 
(2.6) has a number of interesting properties and deserves attention in 
its own right. However, this article has the primary goal of turning 
confoliations into contact forms; for this purpose it turns out that the 
zero t / i-order term in / may be dropped. The reduced evolution has the 
advantages of simplifying later computations. 

The deformation of 2.6 is therefore motivation for the following def­
inition. 

Definit ion 2.3 (The contact flow). Let a(-),ß(-,t) G A1 ( M 2 n + 1 ) 
where a is a time-independent and ß varies in time. We define the 
contact flow to be 

Utß = *(aA(da)n-1Adf) 
\ß(;0)=a(-) 

where 

(2.8) f = *-(ßA (da)n + naA (da)71'1 A (dß)) . 
n 

Note that one may more generally write ß(-,0) = ßo{-)- In our 
case where ßo(-) = a(-) and a is a confoliation, the function / ( - ,0 ) = 

-k (a A (da)n) and will be non-negative by assumption. w+l 
n 
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It is important to study the induced evolution of / since, by Propo­
sition 2.2, / is the key to determining whether r] = ea + ß can be made 
contact. The quadratic form defined in §1.3 is used to define a 
Laplacian-like second order operator 

(2.9) Aaf = aPiVpVqf 

where apq = gptgq3a,ij. 

Proposition 2.4. The evolution of f may be written as 

(2.10) ^f = Aaf + Vxf 

where X = X(a, Va) is a vector field depending only on a and its first 
derivatives. 

Proof. From the definition of / and equation (2.7), one has 

P = *ì {itß A {da)n + naA (da)n_1 A {dtiß) ) 
(2.11) = * f a A ( d a ) n " 1 A (d* (a A (da)""1 A d / ) ) ) 

(2.12) + • - U (a A (da)11'1 A df\ A (da)n\ . 

Term (2.12) contributes only first derivatives of / while term (2.11) 
contributes first and second derivatives. We leave it as an exercise to 
rewrite (2.11) in local coordinates as 

(2.13) < ? V V % V g (rjrVsf) = Aaf + g" (^g™TipVqTjr) V J 

q.e.d. 

The proof of existence of solutions follows the approach developed 
in §3 of [1]. 

Theorem 2.5. The contact flow defined by equations 2.7 has a 
unique, smooth solution on M2n+1 x [0, oo). 

Proof. We start with the observation that the contact flow may be 
viewed as a coupled system for the pair (ß, f) defined jointly by equa­
tions (2.7) and (2.10) with initial data (a,/(-,0)) Now, the evolution 
of / given in equation (2.10) above is decoupled from ß and may be 
studied separately. 
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The second order operator on / is not strictly elliptic as a will not 
have full rank. However, one can regularize the equation for / by arti­
ficially adding in a positive multiple e of the full Laplacian 

(2.14) J^/£ = eA/e + A a / e + Vx/e 

By standard theory of parabolic equations, equation(2.14) has short 
time existence on a positive time interval. 

As in Theorem 3.4 [1], the modified equation is used to obtain esti­
mates independent of e on all derivatives of f€. We show below estimates 
on fe and its first derivatives. 

Using 
d_ 
or 

one may compute 

—fe = eAfe + a« ViVj/c + ^ Vi/£ 

(2.16) J^ / 2 = e (A/ 2 - 2|V/e |2) + A a / 2 - 2a^V, / e V,/ e + Vxf
2
e 

and the weak maximum principle implies max/ 2( i ) < max/2(0) for all 
time. 

We then compute 

^ | V / e | 2 = e (A|V/ e |2 - 2|V2/e |2 - 2<f<>gr°RprVqfeVsfe) 

+ A a | V / e | 2 - 2 a V ' V i V p / e V i V qf-

(2.17) + 2 ^ V p a « V i V j / £ V qjf-

+ 2ai3gPigrsRptjrVqfeVsfe + X 'V, |V/ e | 2 

+ 2g™VpX
iViftVqf, 

The evolution of |V/ e |2 may be estimated as follows 

(2.18) ^ l V ^ | 2 ^ e ( A I V M 2 + 2C|V/e|2) 

+ A a |V/ e | 2 + Vx |V/ e | 2 + 2C7|V/e|
2 

for some constant C. To obtain this inequality, it is necessary to show 
that there exists a constant C\ such that 

(2.19) g^Vp^V^jhVgf, < / V ^ V ^ V . V ^ + Cx|V/e |2. 
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Using a%3 = gtrg3SgklTrkTsl and 

Vpa
ij = girg3Sgkl (VpTrk) TS1 + girg3SgklTrk {VPTS1) 

equation(2.19) results from an application of Cauchy's inequality. 
Now, letting Wt = \Vf,\2 + Cfl 

(2.20) J V e < eAWe + AaWe + VxWe + CWe at 
and the weak maximum principle implies 

m a x | V / e | 2 ( t ) < maxiy e ( t ) < maxW e (0)e c ' t 

for all time. Hence the first derivatives of fe are bounded independent 
of e. 

The interested reader can consult [1] for similar computations of 
higher derivative estimates. 

A smooth solution to equation (2.10) for / may now be obtained as 
a limit of solutions for f€ as e —> 0. The solution for / yields a solution 
ß to evolution (2.7). The estimates above give a solution (ß, f) existing 
for all time. The weak maximum principle implies the solution for / , 
hence ß, is unique. Thus condition (2.8) holds true for all time. q.e.d. 

The following is a straightforward application of the weak maximum 
principle to the evolution equation for / (2.10). As desired, a flow that 
preserves the confoliation condition has been produced. 

Propos i t i on 2.6. If / ( • , 0) > 0, then / ( • , t) > 0 for all t > 0. 

The strong maximum principle was developed in [3] for the case of 
constant rank degenerate elliptic operators and later by [14] for a general 
class of degenerate parabolic operators. For convenience, we present a 
special case of the result in §4 of [14] as needed for our perturbation of 
conductive confoliations to contact forms. 

Let L be an operator on M 2 n + 1 x [0, oo) of the form 

(2.21) L = V, (a»Vj) + VVt - £ 

such that a and b are smooth and alJ > 0. For a point xo G M2n+1 

define A(XQ) to be the closure of points (x(t),t) in M 2 n + 1 x [0, oo) where 
x(t) : [0,t] —> M2n+1 is a smooth path satisfying x(0) = Xo and, for all 
t > 0, x'(t) + b(t) = w(t) where w% = a%3Vj for some v. Essentially, A(xo) 
contains points in M2n+1 x [0, oo) reachable from (a;o,0) by graphs of 
curves whose spatial tangent vectors are in the range of a plus the drift 
term b. 
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wi= aij v 

Figure 3: Accessible Points 

T h e o r e m 2.7. [14] Let u be a solution on M2n+1 x [0,T) to L(u) < 

0 such that u > 0 at t = 0. If u(xo,0) > 0 then u(x,t) > 0 for all 

(x,t) e A ( s 0 ) . 

We encourage the reader to think about the diffusion properties L 
in the case where a is the degenerate form given by either a\ or ai in 
§1.4, example 4. 

The operator for / given in equation (2.10) may be written in the 
form of equation (2.21). We are now ready to show that conductive 
confoliations may perturbed to contact forms by the contact flow. 

T h e o r e m 2.8. If a £ Con ( M 2 n + 1 ) then a is C°° close to a contact 
form. 

Proof. The definition of conductive confoliations (1.3) requires that 
every point be accessible by a curve whose tangent is in the range of a. 
To apply the strong maximum principle stated above, we need consider 
curves that additionally incorporate the first order drift term b. 

For a confoliation, if p is accessible from some point q where f(q, 0) > 
0, then there exists a smooth path from q to p satisfying x' = w where 
wi = a^Vj for a covector field v on M 2 n + 1 . However, by choosing k 
large enough, one may find a path y(t) satisfying y'(s) + b(s) = k • w(s) 
connecting q' to p where q' is some point near q and f(q',0) > 0 (see 
Figure (3)). 
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Since every point on a conductive confoliation is accessible from a 
point where the intial conditions are positive, it follows from the strong 
maximum principle that conductive confoliations instantly become con­
tact under the contact flow. q.e.d. 

3. N e w construct ions of contact forms 

In this section, we give applications of the contact flow to new con­
structions of contact forms. An interesting question is whether a contact 
manifold crossed with a surface is contact. A general answer to this is 
unknown. As mentioned in the introduction, the question of existence 
even in the case of such standard spaces as the odd-dimensional tori of 
dimension > 5 is open. Case studies of product manifolds can provide 
insight for existence of contact forms on more general manifolds. 

In [10], Lutz gave a construction for constructing contact forms on 
torus bundles over manifolds that can be described as fibered knots. 
The contact forms produced are invariant under the group action of the 
tori on the total space. For dimension 5 his techniques yielded contact 
forms on every T 2 fiber bundle over a 3-manifold. In particular, Lutz 
produced forms on M 3 x T 2 and gave the first known contact form on 
the torus T 5 . The constructions in [10] make specific use the fact that 
the fibers are tori and the techniques do not carry over to more general 
types of product manifolds. 

Below, we extend Lutz's results to all surface cross-products in di­
mension 5. We do this by producing a very simple conductive confolia­
tion and then deforming it to a contact form. 

T h e o r e m 3 . 1 . Let E 2 be any compact, orientable surface, and M 3 

be any compact, orientable 3-manifold. Then M 3 x E 2 is contact. 

Proof. Let { ^ i , ^ , 1P3} be a frame of one-forms on M 3 such that 
ipi is contact. In fact, by work of Gonzalo [9], the frame may be cho­
sen so that ip2 and ips are also contact, but these extra conditions are 
unnecessary for our construction. 

Let (2:1,2:2) represent coordinates on a ball B 2 C S 2 . Define 

(3.1) a = a(xi,X2)ipi + b(xi,X2)ip2 + c(z i , £2)^3-
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X(r) = (a(r),b(r),c(r)) 

X(1) = (1,0,0) 
a 

Figure 4: Propeller Surface 

Then 

(3.2) 

da = a(xi,X2)dipi + da(xi,X2) A ip\ 

+ b(xi,X2)dip2 +db(xi,X2) A ip2 

+ c(xi,X2)dip3 +dc(xi,X2) A ip3. 

Since a A da A da needs to contain dx A dy to be a non-zero mul­
tiple of the volume form, no terms arising from da in the collection 
{dipi, dip2, dips} can contribute to the final wedge product. 

Hence, 

a A da Ada = 2Aipi A ip2 A ip3 A dx\ A dx2 

where the subscripts on a, b, c indicate derivatives with respect to — 
and 

dxi 

(3.3) A 
a 
b 
c 

a\ 
h 
Cl 

(12 

&2 

C2 

The vector X = (a, b, c) defines a map X : B2 —> M3 that extends 
to all of E 2 . Similar to the case of propeller curves (1.5), a geometric 
interpretation of A ^ 0 is that X is never contained in the tangent plane 
to its image. "Propeller surfaces" are maps X that have "spherical" 
images, take the origin O G B2 to (—1,0, 0), and are constant (a, ft, c) = 
(1,0,0) outside of B2 C E 2 . An illustration of a propeller surface is 
given in figure (4) 

More explicitly, we see this by choosing a rotationally symmet­
ric map. If {x\,X2) are polar coordinates (r,0), then for functions 
(u(r),v(r)) we may rewrite the conditions 

b(r, 0) 

u(r) 
v(r) sin 
v(r) cos 
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and 

u u 
(3.4) a A da A da ipi A fa A ip3 A dr A d0. 

Choose a product metric on M 3 x S2 . For convenience we choose 

ß = —ipi A ^2 A ^ 3 A dx\ A d%2 

to be the volume form on M 3 x E2. A propeller curve (u(r),v(r)) in 
M2, defined by conditions (1.5), makes a well defined at the origin, a 
non-negative multiple of the volume form, and a positive multiple of 
the volume form on the interior of M 3 x B2. Therefore, a satisfies the 
confoliation condition in (1.4). 

Outside M 3 x B2 one has a = ipi and Null (a)1- = TE2 . Thus 
diffusion for the evolution equation will occur along the surface E and 
the conductivity condition of (1.4) is satisfied. q.e.d. 

As mentioned in the introduction, the next result, namely that 
g3+2p x ^2 j s c o n ^ a c ^ is already known. The interest in the case study 
below is that the construction of the confoliation is explicit, high dimen­
sional, and uses more than one propeller to make the form conductive. 

Theorem 3.2. Let E2 be any compact, orientable surface then 
S3+2p x E 2 is c o n t a c t 

Proof. Let m = 2 + p and 

h : S2rn-1 x S 2 4 R2m x E2 

be the standard embedding of the sphere into Euclidean space and the 
identity on the other components. Let (£i, • • • ,^2m) be Cartesian coor­
dinates on M2m. 

Let {-B2}._1 be disjoint balls in E2. Below, we will construct non-
intersecting propellers {^Pi}^i over each space S2m~l x B2. Each *PJ 
is constructed by a different identification of ffi2m with M4 x M2p given by 
the 2m coordinate re-labelings fei-i, 6i> • • • , 6 m - i , 6m, 6 ? 6 • • • , 61-2) 

Other than the relabeling of the coordinates, the *P, are constructed 
identically. So, below we will give a generic construction given any such 
coordinate identification. 

We now begin the construction of a propeller on 

s3+2p x B2 c R 4 x M2p x B2 
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and for convenience we further distinguish the coordinates on the Eu­
clidean factor by 

(y,z) = {yi,--- ,y±,zi,--- ,z2p) 

As in the previous theorem, denote the coordinates on a ball B2 C S 2 

by (xi,x2). 
We also introduce the notation 

Vy = dyi A • • • A dyA 

rv = yi + --- + yl 

(3 .5 ) Vy = TydTy = ^ ^ ^ 

and similarly define Vz and uz. Let 

V = Vy + VZ 

r = r'y + rz 

Finally, let Vs be the volume form on S 2 . 
Define the following forms 

tpi = y\dy2 - y2dy\ + y^dyi - yidy$ 

ih = yidy3 - yzdyi + y±dy2 - y2dy± 

(3.6) ^3 = yidyi - y^dyi + y2dy3 - y3dy2 

and 

a i = a(xi,x2)ipi + b(xi,x2)ip2 + c(xi,X2)ip3 

p 

«2 = ^ {z2i-idz2i - z2idz2 

i=l 

(3.7) a = ot\ + a2. 

Though h*a is properly the one-form of interest, it is computation­
ally most convienent to check the conductivity conditions in M4 + 2 p x S 2 . 
The user may verify that for any form A on M4 + 2 p x S 2 

h*\ = idr (v A A) | r = i 
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Figure 5: Multiple propellers create a conductive confoliation 

where igr denotes interior product with respect to the radial vector in 

M4+2p_ 

The formulas 

(da2f = 2P (p!) • Vz 

(3.8) a2AvzA ( d a 2 ) p _ 1 = -2p~l(p - l)\r2
z • Vz 

ai A vy A (da Aipi+dbAip2 + dcA ^ 3 ) 2 = 2r^A • F E A V9 

(adipi + &G?V2 + CG?V3) A (da A ipi + db A ip2 + dc A ip$) 

= - 4 r ^ A • F E A Vy 

are useful for deriving 

o-O+l) , N 

(3.9) j — * U « A (da)2+pJ = - r 2 r 2 A 

where A is as defined in equation (3.3). 
We choose the propeller surface X = (a, b, c) as in the previous 

theorem so that A > 0 in B2 and (a, b, c) = (1, 0,0) outside the ball. In 
fact, we can also ask that a2 + b2 + c2 > 0. Hence, a is contact over B2 

as long as r y ^ 0. 
We now check for conductivity at points where a is not contact. 

Either the point is contained in a propeller region or it is not. Two 
such points are shown in Figure (5). We first show that any point in a 
propeller for which a is not contact has the property that Nullfa)1- = 
TT.2 and hence diffusion will take place along the surface direction. 
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Next, we show that points outside the propellers also diffuse along the 
surface directions. Finally, we demonstrate that a is actually conductive 
in that every point is finite distance from a positive heat source, i.e., 
a contact region. First, in the region where r„ = 0, one has r2 = 1, 
v = vZj a = «2 but da = do>\ + da.2, and (dai) = 8 (a2 + b2 + c2) • Vy. 
One may verify that in this region 

(3.10) vAaA (da)p+1 = (P + 1 J (a 2 A vz) A {dai)2 A (da2)
p~1 

hence from identities (3.8) 

o-(p+l) / l N 

(3.11) - -*(vAaA(da)p+1) = - (a2 + b2 + c2) -FE2. 
(p + l j ! 

Equation (3.11) implies, for ry = 0 inside the propeller, that 
Null (a)1- = T E 2 . Hence diffusion occurs along the surface direction. 

Next, outside the propellers a = ip\ + a>2 and one may compute 

(3.12) * ( V (a A {da)p+1)) = 2P+1 (p + 1)! • FE2 

That is, a is a contact form for S3+2p (see also [10]). Hence Null(a)1- = 
T E 2 and diffusion occurs along the surface direction. 

Finally, now that we have seen that heat diffuses along the surface 
directions, we must demonstrate that there is actually some heat source 
that can be reached. This is readily seen as follows. For any point 
(p,x) G S2m~l x E 2 where p = (pi, • • • ip2m) G S2m~l C K2m there is 
at least one coordinate function P2i-i or p^% that is nonzero. For this i, 
by our construction of *}},, a(p,x') is contact for all x' G Bf. Therefore, 
a is conductive. q.e.d. 

There are a number of different initial conditions that offer varying 
degrees of symmetry. As an example, for S4p~l x E 2 only one propeller 
of the following type is necessary to provide a conductive confoliation. 
For coordinates (y1, • • • ,y4p) G S^'1 C R4p let 

p—i 

'1 

'2 

'3 

= (y^i+idy4i+2 
i=0 
p—1 

i=0 
p—1 

= 5Z (y4i+i%4i+4 
i=0 

- y4i+2dyAi+l + y 4 i+3%4i+4 

- y4i+3dy4i+i + yii+idyii+2 

- yii+idyu+i + y 4 i+2%4i+3 

- y4i+4dy4i+3 

- y4i+2dy4i+4 

- yu+zdyu+2 
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and let X(x\,X2) = (a(xi,X2), b(xi,X2),c(xi,X2)) be a propeller surface. 
For h : S4?'1 x S 2 4 M4?5 x E 2 , 

(3.13) a = h* (a(xi,X2)ipi + b(xi,X2)ip2 + c(z i , £2)^3) • 

One may compute inside the propeller that 

(3.14) * ( a A (da) 2 p ) = (2p - 2)! (4(a2 + b2 + c 2 ) ) P _ 1 A > 0 

where A is as defined earlier. 
Since ipi is contact on S'4 p _ 1 , a is a conducting confoliation on 

S4*-1 x E 2 . 

4. Other appl icat ions 

In this section, we describe a number of new applications of the 
program outlined above. First, we introduce a notion of integrability 
for higher degree forms. 

On M2n+1, let j,k,m be non-negative integers such that n = (k + 
l ) ( j + m) + k, a G A 2 f c + 1 (M 2 n + 1 ) and $ G A 2 f e + 2 ( M 2 n + 1 ) . Define the 
function 

(4.1) * (a A da' A $ m ) G A ° ( M 2 n + 1 ) . 

Note that 4.1 agrees with the notion of non-integrability 1.1 for 
contact forms when k = 0 and m = 0. Note also that we ask for a to be 
odd degree. This is because an even degree form a,2k has d(a2k Ao^fc) = 
2a>2k A <&*2fc and Stokes theorem implies f a,2k A do>2k = 0. So there can 
be no contact-like notion of positivity. 

As with before, if * [a A dai A $ m ) > 0, one can at tempt to con­
struct a new (2k + l)-form 77 = a + e/3 such that equation (4.1) is strictly 
positive. As in §2.1, we expand the cross terms 

'f]AdriJA^m = aA daj A $ m 

(4.2) + e (ß A ( W A $ m + ja A da 3 ' - 1 A dß A $ m ) 

+ 0 (e 2 ) . 

Again, defining 

(4.3) f = -*(ßAdaj A$m + ja A daj~x A dß A $ m ) 
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it is clear that if * a A da? A <&m > 0 and / > 0, then for e small 
enough one can obtain * (a A efo-7 A <&m) > 0. 

So the more general "non-integrability" flow is as follows. 

Definition 4.1. Let a(-),/9(-,t) G A2fc+1 (M 2 n + 1 ) and $(•) G A2fe+2 

where a and $ are time-independent and ß varies in time. The general 
non-integrability flow is 

(%ß = *(aAda?-1A$mAdf) 

\/3(-,0) =/5o(0 

Most importantly, this produces a nice evolution for / . As before, 
we define the fc-form 

(4.5) r = * ( « A da?'1 A $m ) 

and define the "metric" 

(4.6) (X,Y)a = (iXT,iYT) 

where the inner product < -, • > on the right hand side is the one induced 
by g on k — 1-forms. As before, we say that a point p is accessible from 
another point q if there is a curve x(s) connecting the two with x'(s) in 
the range of a. 

Then, it may be computed that the evolution of / is given by 

(4-7) ^f = Aaf + Vxf 

where Aa is defined as in the previous section and X = X(a, Va, <£>, V3>) 
is a vector field depending only on a, $ and their first covariant deriva­
tives. 

As with the confoliation case, a maximum principle may be applied 
to the evolution of / yielding the general result. 

Theorem 4.2. Let j,k,m be non-negative integers such that n = 
(k+l)(j+m)+k. Note that for a G A2fe+1 (M2 n + 1) and $ G A2fe+2 (M 2 n + 1 ) 
the wedge-product * (a A daj A $ m ) G A0 (M 2 n + 1 ) . If a and Ü satisfy 

1. * (a A do? A $ m ) > 0; 

2. every point p is accessible from a point q satisfying 
* (a A do? A $ m ) (q) > 0; 

then a is C°° close to a (2k + l)-form r\ such that * (p A dr '̂ A $ m ) > 0. 
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We now give some examples designed to be representative and illus­
trative of some of the phenomena discussed above. All manifolds will 
be assumed to be compact and orientable. 

E x a m p l e 1. If M 2 f c + 1 has a conductive confoliation one-form A and 
TV has symplectic form CJ then define the 3-form a = \ A UJ. Then a 
satisfies the two conditions of theorem 4.2 and is C°° close to a 3-form 
T) satisfying 77 A (d'q) > 0. 

E x a m p l e 2. let M2n+l be an almost contact manifold. That is, 
M2n+l has a 1-form a and a 2-form $ such that * (a A <&n) > 0. If, for 
some k, a additionally satisfies * (r/ A dr\k A $"_fc) > 0 and condition 2 
of theorem 4.2, then a may be perturbed to one with a strict inequality. 
This is interesting because it offers a range of non-integrability between 
foliation and contact forms. 

E x a m p l e 3 . For the product manifold M2k~1xN2k there is (2k — In­
form 77 such that -k (77 A dry) > 0. This is an example of a generalization 
of contact forms on 3-manifolds to higher dimensions. 

To see this, one may construct initial conditions similar to those in 
example (5) of §1 and in the proof of theorem 3.1. Let /J be a volume 
form for M. In a ball B centered around a point in N, make the volume 
form r2k~ldr Av where r is the radial coordinate and v is a volume form 
on the sphere S2n~l. For a = a(r)ßM + b(r)v one has 

a A da = det a ar 

b br 

/i A dr A v 

As with the previous propeller constructions, choose a propeller 
curve X(r) = (a(r),b(r)) such that b(r) behaves as r2k+1 near r = 0. 
Therefore, a A da > 0 for r < 1 and a A da = 0 elsewhere. It is easy to 
check that a satisfies the condition for heat conduction outside M x B 
and the result follows. 
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