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SPECTRUM OF THE LAPLACIAN ON
QUATERNIONIC KAHLER MANIFOLDS

SHENGLI KONG, PETER L1 & DETANG ZHOU

Abstract

Let M*" be a complete quaternionic Kihler manifold with
scalar curvature bounded below by —16n(n + 2). We get a sharp
estimate for the first eigenvalue A;(M) of the Laplacian, which
is A1 (M) < (2n + 1)2. If the equality holds, then either M has
only one end, or M is diffeomorphic to R x N with N given by
a compact manifold. Moreover, if M is of bounded curvature,
M is covered by the quaterionic hyperbolic space QH™ and N is
a compact (quot)ient of the generalized Heisenberg group. When

8(n+2

A (M) > ===, we also prove that M must have only one end

with infinite volume.

0. Introduction

Let M™ be a complete n-dimensional Riemannian manifold with Ricci
curvature bounded below by —(n—1). It is well known from Cheng [Ch]
that the first eigenvalue A\ (M) satisfies

—1)2
A (M) < (”4)

In [LW3], Li and Wang proved an analogous theorem for complete
Kéhler manifolds. They showed that if M?" is a complete Kihler man-
ifold of complex dimension n with holomorphic bisectional curvature
BKjs bounded below by —1, then the first eigenvalue A\ (M) satisfies

A (M) < n?.
Here BKj; > —1 means that

Rzgﬁ > —(1 + 52_])

for any unitary frame ey, ..., e,.
In this paper, we prove the corresponding Laplacian comparison the-
orem for a quaterionic Kéhler manifold M*". As an application we get
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the sharp estimate A;(M) for a complete quaterionic Kéhler manifold
M*" with scalar curvature bounded below by —16n(n + 2) as

M (M) < (2n +1)2

It is an interesting question to ask what one can say about those man-
ifolds when the above inequalities are realized as equalities. In works
of Li and Wang [LW1] and [LW2], the authors obtained the following
theorems. The first was a generalization of the theory of Witten-Yau
[WY], Cai-Galloway [CG], and Wang [W] for conformally compact
manifolds. The second was to answer the aforementioned question.

Theorem 0.1. Let M™ be a complete Riemannian manifold of di-
mension n > 3 with Ricci curvature bounded below by —(n — 1). If
M(M) >n —2, then either

(1) M has only one infinite volume end; or

(2) M =R x N with warped product metric of the form

ds3; = dt* + cosh? t s,

where N is an (n —1)-dimensional compact manifold of Ricci cur-
vature bounded below by A\ (M).

Theorem 0.2. Let M"™ be a complete Riemannian manifold of di-
mension n > 2 with Ricci curvature bounded below by —(n — 1). If

AM(M) > (n_41)2, then either

(1) M has no finite volume end; or
(2) M =R x N with warped product metric of the form

ds3; = dt* + e*' ds%;,

where N is an (n — 1)-dimensional compact manifold of nonnega-
tive Ricci curvature.

In [LW3] and [LWS5], Li and Wang also consider the Ké&hler case.
They proved the following theorems.

Theorem 0.3. Let M™ be a complete Kdhler manifold of complex
dimension n > 1 with Ricci curvature bounded below by

Ricpyr > —2(n+1).
If M (M) > ”TH, then M must have only one infinite volume end.

Theorem 0.4. Let M™ be a complete Kdhler manifold of complex
dimenston n > 2 with holomorphic bisectional curvature bounded by

BKy, > —1.

If M (M) > n?, then either
(1) M has only one end; or
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(2) M = R x N with N being a compact manifold. Moreover, the
metric on M 1is of the form

2n
dsi; = dt? + e w3 + * E w2,
i=3

where {wa,ws, . ..,wa,} are orthonormal coframe of N with Jdt =
wy.
If M has bounded curvature, then we further conclude that M is covered
by CH™ and N is a compact quotient of the Heisenberg group.

In [LW5], the authors pointed out that the assumption on the lower
bound of A\; (M) in Theorem 0.3 is sharp, since one can construct M of
the form M =3 x N satisfying

(0.1) Ricyr > —2(n+1)
and
(0.2) n() ="11

with N being a compact Kéahler manifold and ¥ being a complete surface
with at least two infinite volume ends. However, it is still an open
question to characterize all those complete Kéhler manifolds satisfying
conditions (0.1) and (0.2).

In Sections 4 and 5, we will prove the following quaternionic Kéhler
versions of the above theorems.

Theorem 0.5. Let (M*", g) be a complete quaternionic Kdhler man-
ifold with scalar curvature satisfying

Sy > —16n(n + 2).

If (M) > 8(7?2), then M must have only one infinite volume end.

Theorem 0.6. Let (M*", g) be a complete quaternionic Kdhler man-
ifold with scalar curvature satisfying

Sy > —16n(n + 2).

If M (M) > (2n + 1)2, then either

(1) M has only one end, or
(2) M s diffeomorphic to R x N, where N is a compact manifold.
Moreover, the metric is given by the form

4 4n
ds?\/[ = dt? + ¥ E wz +e2t E wi,
p=2 a=>5

where {wa, . ..,wsn} are orthonormal coframes for N.
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If M is of bounded curvature then we further conclude that M is covered
by the quaterionic hyperbolic space QH" and N is a compact quotient
of the generalized Heisenberg group.

Remark 0.1. It is known that a horosphere in QH" is isometric to a
certain generalized Heisenberg group with three-dimensional center and
left-invariant Riemannian metric. Such generalized Heisenberg groups
have compact quotients. For an explicit construction, see for instance
Example 2.6 in [G]. We don’t have an example to show that the bounded
curvature condition in Theorem 0.6 is necessary. If such an example
exists, its curvature should decay exponentially in some directions.

Perhaps it is interesting to restrict our attention to the special case
when M*" = QH" /T is given by the quotient of the quaternionic hyper-
bolic space QH™ with a discrete group of isometies I'. In particular, it
is instructional to compare with previous results by Corlette [C2] and
Corlette-lozzi [CI] where the Lie group theoretic approach was used in
understanding these manifolds. For example, in [CI], the authors proved
a Patterson-Sullivan type formula for A\;(M) in terms of the Hausdorff
dimension 6(I") of the limit set of I". More specifically, they proved that
if " is geometrically finite, then for §(I') > 2n + 1 one has

AM(M)=06(T)((4n+2) — 6(I)).
Hence in this case, the condition in Theorem 0.6 on A\; (M) = (2n + 1)?
is equivalent to the condition §(I") = 2n + 1.

In [C2] (Theorem 4.4), Corlette also pointed out that by a result of
Kostant A\ (M) = 0 or A;(M) > 8n. On the other hand, it was also
shown in [CI] that if I is geometrically finite and torsion free, then
M = QH"/T" must have at most one end with infinite volume. These
two statements give an interesting comparison to Theorem 0.5 stated
above.

We would also like to point out to the interested readers that in [LW4]
and [LW5] Li and Wang considered a more general class of manifolds
satisfying a weighted Poincaré inequality. However, since quaternionic
Kéhler manifolds are automatically Einstein, the same type of questions
are not interesting for this class of manifolds.

Acknowledgement. This work was done when the third author was
visiting the University of California, Irvine. He wishes to thank the
institution for its hospitality. He also would like to thank Professor J.
Berndt for pointing out the paper of [G] to him.

1. Preliminaries on quaternionic Kéhler manifolds

In this section, we will recall basic properties of quaternionic Kéhler
manifolds that will be needed in the sequel. These properties were
proved by Berger [B] and Ishihara [I] (also see [Be]).
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Let (M™, g) be a Riemannian manifold, 7'M the tangent space of
M and V the Levi-Civita connection. The Riemannian curvature R :
TMQTM ®TM — TM is defined by

R(X,Y)Z = VxVyZ - VyVxZ - Vixy|Z.

If {e1,...,e,} is an orthonormal basis of T M, the components of cur-
vature tensor is defined by

Rijr = (R(es, ej)er, ex),

the Ricci curvature is defined by

n

Ricy (X,Y) =) (R(X,ei)e;, Y),
i=1
and the scalar curvature is defined by

n

SM = Z <R(ei,ej)ej,ei).

1,j=1

Definition 1.1. A quaternionic K#hler manifold (M, g) is a Rie-
mannian manifold with a rank 3 vector bundle V' C End(T' M) satisfy-
ing

(a) In any coordinate neighborhood U of M, there exists a local basis
{I,J,K} of V such that

P=J"=K*=-1

1J=—-JI=K
JK =-KJ=1
KlI=—-IK=J

and
(IX,1Y)=(JX,JY)=(KX,KY) =(X,Y)

forall X,Y € TM.
(b) If p € T(V), then Vx¢ € I'(V) for all X € TM.

Remark 1.1. It follows from (a) that dim M = 4n. A well known
fact about 4n-dimensional Riemannian manifold is that it is quater-
nionic Kéhler if and only if its restricted holonomy group is contained

in Sp(n)Sp(1).

The 4-dimensional Riemannian manifolds with holonomy Sp(1)Sp(1)
are simply the oriented Riemanian manifolds; naturally we only consider
those when n > 2.

Notice that, in general, I, J, K are not defined everywhere on M. For
example, the canonical quaternionic projective space QP" admits no
almost complex structure.
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On the other hand, the vector space generated by I,J, K is well
defined at each point of M and this 3-dimensional subbundle V' of
End(TM) is in fact “globally parallel]” under the Levi-Civita connec-
tion V of g. A basic fact about the connection is the following lemma.

Lemma 1.1. The condition (b) is equivalent to the following condi-
tion:

VxI =c¢(X)J —-bX)K,

VxJ =—c(X)I+a(X)K,

VxK =bX)I —a(X)J,
where a, b, c are local 1-forms.

Definition 1.2. Let (M, g) be a quaternionic Kidhler manifold. We
can define a 4-form by

Q=wi ANwi +wr Aws + w3 Aws,

where
wi = (1),
wo = (-, J+),
wg = (-, K-).
Let {e1, Ie1, Jer, Keq, ... en, Iy, Jen, Key,} be an orthonormal basis

of TM and {6',16',J0', Ko' ... 0", 16" JO0" KO"} the dual basis. It
follows that

w =Y (6" NI+ J6' N KO,
=1

wp =Y (6°NJO + K6 AIO),
=1

ws =Y (0°NKO +16"AJO),

i=1
and
Q=) (0" ATOAGT AIOT+6" A JO"AOT A JOT + 6" NKO NG A KO
1]
+ > (JOANKO AT NKO + KON TP A K67 A T67

0]
+ 10" AN JO NIOT A TO7)
+2) (0P AIOAJOT N KO+ 6 A TOT A KO A TO
1,]

+ 0 ANKO NI A TO).
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Lemma 1.2. The condition (b) is equivalent to the following condi-
tion:
Vxw: = c(X)ws — b(X)ws,
Vxws = —c(X)w; + a(X)ws,
Vxws = b(X)w; — a(X)ws,
where a, b, c are local 1-forms.
Proof. It follows from the identities
(Vxwi)(Y,Z2) = (Y, (VxI)Z),
(Vxw) (Y, Z) = (Y, (VxJ)Z),
(Vxws)(Y,Z) = (Y, (Vx K)Z).

q.e.d.

Using this lemma, we have that

Theorem 1.1. The condition (b) is equivalent to that Q is parallel,
that s
VxQ=0
forany X e TM.

In the following, we shall study the curvature of quaternionic Kéhler
manifold. First we have the following lemma.

Lemma 1.3. If (M*",g) is a quaternionic Kihler manifold, then
ROX,Y), 1) =+(X,Y).J — A(X,V)K,
[R(X,Y),J] = —(X,Y)I + a(X,Y)K,
[R(X,Y),K] = B(X,Y)] — a(X,Y)J,

where a, B and 7y are local 2-forms given by

a=da+bAc,
B =db+cAa,
y=dc+aAlb.

Corollary 1.1. If (M*", g) is a quarternionic Kdhler manifold, then
(R(X,Y)Z,IZ) +(R(X,Y)JZ,KZ) = a(X,Y) |Z)?,
(R(X,Y)Z,JZ) +(R(X,Y\KZ,IZ) = B(X,Y) |Z|?,
(RIX,Y)Z,KZ) +(R(X,Y)IZ,JZ) =~(X,Y)|Z|%.

The following lemma is the key for quaternionic Kéhler manifolds.

Lemma 1.4. If (M*",g) is a quaternionic Kdhler manifold and n >
2, then

(1.1) (X, 1Y) = B(X,JY) = y(X,KY) = —

i X.Y).
n+2R1CM( Y)
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As applications of the above lemma, one can show the following two
main theorems on curvature of quaternionic Kéhler manifolds.

Theorem 1.2. If (M*", g) is a quaternionic Kdhler manifold and
n > 2, then (M*", g) is Einstein, that is, there is a constant § such that
Ricpr(g) = 4(n + 2)dg.
Theorem 1.3. If (M*",g) is a quaternionic Kdhler manifold and
n > 2, then
(1) For any tangent vector X, the sectional curvature satisfies
(R(X,IX)IX, X))+ (R(X,JX)JX, X)
HR(X,KX)KX, X) =125 | X|*.
(2) For any tangent vector Y satisfying
(Y, X) =(Y,1X) =(V,JX) = (Y, KX) =0,
the sectional curvature satisfies
(RIX, Y)Y, X)+ (R(X,IY)IY, X)
+(R(X,JY)JY, X))+ (R(X,KY)KY, X) = 46 | X|? |V %,
where 4(n + 2)0 is the Einstein constant.

Finally, we end this section with the following lemma.

Lemma 1.5. Let v : [a,b] — M be a geodesic with unit speed. If
S = 16n(n+2)0, and X(t), Xs(t), X ( ) are parallel vector fields along
v such that Xi(a) = Iv(a), Xj(a) = J¥'(a), Xk (a) = Kv/'(a), then

K/ (8), Xr(t)) + K (8), X5 (1) + K(' (1), Xk (1)) = 126,
for allt and ~.

LetY be a tangent vector at y(a) satisfying (v'(a),Y) =0, (I7'(a),Y)
=0, (JY(a),Y) = 0, and (K~'(a),Y) = 0. If we denote the paral-
lel vector fields Y (t), Y1(t), Y;(t), and Yk (t) along v with initial data
Y(a) =Y, Yi(a) = IY, Yj(a) = JY, and Yk (a) = KY, respectively,
then

K(y'(1), Y (1) + K(Y'(£), Y1 () + K(v'(£), Y5 (1) + K (1), Y () = 49,
for allt and ~.

Proof. By the discussion above, we know the 3-dimensional vector
space E(t) spanned by X(t),Y(t), Z(t) does not depend on the choice
of I,J, K. Hence it is parallel under the Levi-Civita connection. We
consider (R(-,7/(t))¥'(t),-) as a symmetric bilinear form on E(t). Then
KA @), X))+ KA (1), Y () + K (t), Z(t)) is its trace on F(t) which
is independent of the choice of orthonormal basis. By the computation
above it is equal to 12§. The same argument also applies to the second
part of the lemma. q.e.d.
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2. Laplacian Comparison theorem

For a complete Riemannian manifold M and p € M, let us denote
the cut locus with respect to p by Cut (p).

Theorem 2.1. Let (M*", g) be a complete quaternionic Kdhler man-
ifold with scalar curvature Spy > 16n(n+2)6 and let r(z) be the distance
function to a fixed point p € M. Then, for x ¢ Cut(p),

6 coth2r(x) + 4(n — 1) cothr(z) when 6 = —1
(2.1) Ar(z) <{ (4n—3)r1(z) when § =0
6 cot 2r(z) + 4(n — 1) cot r(z) when § = 1.
Proof. Let ~ be the minimizing geodesic joining p to z. At z, we

choose {ej,eg,...,e,}, and two local almost complex structures I,.J
and K = IJ such that e; = Vr and

{e1,1e1,Je1, Key, e, lea, Jeo, Kea, ... en, Iey, Je,, Kep}

is an orthonormal frame. By parallel translating along v we obtain
an orthonormal frame with e; = Vr. For the sake of convenience, we
denote this frame by {e1,e2,...,e4}. Since |Vr|2 = 1 on M\Cut(p),
by taking covariant derivative of this equation, we have

(2.2) 0=|Vr

4n In
=2 Z TikTil 1 2 Z TiTikls
i=1 i=1
for each k,l = 2,...,4n. Since

n
Tikl = Tkli + Z Rjgiry,
=1
with Riju = (R(ei,€j)e,€x), and 1 =1, 75 =0, j = 2,...,4n, we have
4n

(2.3) Zrik?”z‘l + k1 + Rigu = 0.
i=1

In particular, if £ =1, we have

an

(24) Zrzk + Tkl + ’C(Ela €k) = 07
=1

where K(e1,er) = Rikik is the sectional curvature of the 2-plane section
spanned by €1, €. Using the inequality

4 4 2
2

oz (Do

k=2 k=2

W
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and setting f(t) = Zi:2 Trk, (2.4) implies that

4
(2.5) £ + %fQ(t) + kZ:QIC(gl,gk) <.
By Lemma 1.5, we have
(2.6) f(t) + %fQ(t) 4126 < 0.

Since a smooth Riemannian metric is locally Euclidean, then lim;_q (%)
= 3. By a standard comparison argument for ordinary differential equa-
tions, we conclude that

6cot2t whend =1
(2.7) ft) < ¢ 3t when 6 =0
6coth2¢t when § = —1.

Similarly, using the inequality

4i44 | [ dita 2
> ri2k24< > "”kk)
k=4i+1 k=4i+1
for 1 <i<mn—1, and setting h;(t) = i’jﬁﬂ Trk, (2.4) implies that
1 4i44
/ 2
(2.8) O+ 300+ 3 Klewar) <0
=4i

Together with Lemma 1.5 asserting that

4144
> K(er,er) = 44,
k=4i+1
we have
1
(2.9) Ri(t) + Zhf(t) +46 <0.

Hence, as before, we conclude that

4cott whend =1
(2.10) hi(t) < ¢ 4t~ ! when 6 = 0
4cotht when § = —1.

The result follows from the equation Ar(z) = f(r(z)) + S0 hi(r(x)).
q.e.d.

Remark 2.1. The estimate in Theorem 2.1 is sharp since the right
hand sides are exactly the Laplacian of the distance functions of quater-
nionic hyperbolic space QH", quaternionic Euclidean space Q", and
quaternionic projective space QP" respectively.
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Remark 2.2. We actually proved the estimate for the Hessian of the
distance function. In particular,

4 6cot2t whend=1
(2.11) Zrkk <{ 3t when § =0
k=2 6coth2t when § = —1.

Also for 1 <i <n —1, we have

2i+4 4cot2t whend=1
(2.12) > o< At when § = 0
k=4i+1 4coth2t when 6 = —1.

Corollary 2.1. Let (M*", g) be a complete quaternionic Kdhler man-
ifold with scalar curvature Spy > —16n(n+2). Then for any point x € M
and r > 0, the area A(r) of the geodesic spheres centered at x satisfies
A'(r)
A(r)

In particular, A(r) < C(sinh 2r)?(sinhr)*("=1 < Celn+2)r,

(2.13) < 6coth2r +4(n — 1) cothr.

Corollary 2.2. Let (M*", g) be a complete quaternionic Kdihler man-
ifold with scalar curvature Spr > —16n(n+2). Then for any point x € M
and 0 < ry < ro, the volume of the geodesic balls centered at x satisfies

Va(r2) _ Vour(r2)
Ve(r1) — Vour(r1)’

where Vomr (r) denotes the volume of the geodesic ball of radius r in
QH". In particular, \y(M) < (2n + 1)2.

(2.14)

Corollary 2.3. Let (M*", g) be a complete quaternionic Kdihler man-
ifold with scalar curvature Spyr > 16n(n+2) . Then it is compact, and
the diameter d(M) < 5, which is the diameter of the model space QP™.
Moreover, the volume of M is bounded by

(2.15) V(M) < V(QP"),
where Vgpr is the volume of QP".

3. Quaternionic harmonicity

In this section we will derive an over-determined system of harmonic
functions with finite Dirichlet integral on a manifold with a parallel
form. This result was first proved by Siu [S] for harmonic maps in his
proof of the rigidity theorem for Ké&hler manifolds. Corlette [C1] gave a
more systematic approach for harmonic map with finite energy from a
finite-volume quaternionic hyperbolic space or Cayley hyperbolic plane
to a manifold with nonpositive curvature. In [L], the second author
generalized Siu’s argument to harmonic functions with finite Dirichlet
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integral on a Kdhler manifold. We will provide an argument that gen-
eralizes Corlette’s argument to harmonic functions with finite Dirichlet
integral on a complete manifold with a parallel form. We believe that
it should be of independent interest.

Theorem 3.1. Let M be a complete Riemannian manifold with a
parallel p-form Q. Assume that f is a harmonic function with its Dirich-
let integral over geodesic balls centered at o of radius R satisfying the
growth condition

| Vi = o(?)
o(R)

as R — oo; then f satisfies

(3.1) dx* (df NQ)=0.

Before we prove the theorem, let us first recall the following operators
and some of the basic properties. For an oriented real vector space V'
with an inner product, we have the Hodge star operator

*: NPV — APTPY

For any # € A'V and v € V, we also have exterior multiplication and
interior product operators

£(0) : APV — APHLY,
((v) : APV — APTLY

For § € A'V and v € V is the dual of @ by the inner product, if £ € APV
we list the following identities among the operators:

1) wx€ = (1P

2) *e(0 ) = (=1)PL(v) % &,

3) e(0) x &= (1P xL(v)E,

4) xe(0 ) = (=1)=D=Plg(p)e,

5) L(v)e (9/)§+€( Y(v)€ = 0, where v/,
6) L(v)e(0)E +e(0)E(v)E = &.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let 1 : [0,4+00) — R be a smooth function satis-
fying 1/ (t) < 0, and

1  when t € 0,1]
n(t) = {

0 when t € [2,+00].
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For R > 1, we define the cut-off function ¢r(z) = n(r(z)/R), where

r(x) is the distance function from a fixed point o € M; then there is a
positive constant C; depending on 7 and C such that

IVér(z)| < CL R

Since d? = 0, then
(3.2) 0_/ d{¢% = (df AQ) Ad*(df A*Q)}
M
:/ d(¢%) A *(df AQ) Ad* (df A+Q)
M

+/ phd* (df AQ)Adx (df A*Q).
M

We claim that

(3.3) sd* (df AQ) = (—=1)"1d % (df A *9Q).

In fact, for any point z € M, we can choose an orthonormal tangent
basis {e;};"; in a neighborhood of = such that Ve;(z) = 0. Denote by
{67} | the dual basis of {e;}",. Then for w € AP(T*M) we have

dw = &(0")Ve,w.
Hence,
d* (df N*Q) =d*e(df) =2

= (—1)P= V=gV £)0)

m

= (~)PVEPN e (6) Ve, (U(V £)RQ)

i=1

(=D)P=DOPY 7 e(0:) (Ve Ve, f) (Ues) )

ij=1
(1)@m=l N fie(0:) (Ce;)),
ij=1

where f;; = V¢, Ve, f and the facts Q is parallel and V,e;(x) = 0 have
been used. On the other hand,
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(34) *xd=*(df NQ)
— wd# (df)Q

PP S fe(6) (Ees) ),

ij=1
where we used fi; = fj; and Y_" fi; = 0. So the claim is proved. By
(3.2), we have

(3.5) /M % |d * (df AQ)[Pdv

= (-1)™ /M d(¢%) A *(df AQ) Ad* (df A+Q)

<2</ % |d * (df A Q) de> </ |dor|?| * (df A Q)| dv)

On the other hand, (3.3) and the fact that w is bounded implies that
there exists a constant Cy > 0, such that

| (df AQ)| < Ca|df|
|d* (df A Q)| = |d* (df AQ).

Hence, combining with (3.5) and using the definition of ¢, we conclude
that

/ d * (df AQ)2dv < 013—2/ \df|?dv.
o(R) Bs(2R)

The assumption on the growth of the Dirichlet integral of f implies that
the right hand side tends to zero as R — oco. Therefore d* (df AQ) =0,
and the proof is complete. q.e.d.
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Lemma 3.1. Let (M*", g) be a quarternionic Kdhler manifold and
n > 2. If f is a function on M satisfying

(3.6) dx(df NQ) =0

for the 4-form € determined by the quaternionic Kdihler structure, then
f is quaternionic harmonic; namely, for any nonzero tangent vector X,

Ix.x + fixix + fixox + fex,xkx =0,
where fx x = Vdf (X, X).
Proof. Let
{ea}t, ={e1,ea,...,en, Ie1, Ieo, ... Iey,
Jei, Jea, ..., Jen, Kei, Keo, ..., Key,}

be an orthonormal basis of TM and {wa} the dual basis with e; = ”X—”

Since €2 is parallel, by (3.4) and (3.6), we have
4n

0= (Vendf) Al(es)R

A=1

4n
= Z ferenwn Al(ea)d,
A,B=1

where we have used the fact that f is a harmonic function. Hence,
equation (3.6) implies

4n
> feneswn Al(ea)2=0.
A,B=1

Comparing the coefficient of w; A Tw; A Jw; A Kw; on both sides by the
explicit formula for € given before, we obtain that

6 (fei,ei + eri,Iei + fJei,Jei + fKei,Kei) =0
for all e;, (1 <4 < mn). So the proof is complete. q.e.d.
The following corollary is an immediate consequence of the lemma.

Corollary 3.1. Let M*" be a complete quaternionic Kihler mani-
fold. Assume that [ is a harmonic function with its Dirichlet integral
satisfying the growth condition

[ Vs = o(?)
Bo(R)
as R — oo; then f must satisfy

(3.7) dx (df A Q) =0,

where ) is the parallel 4-form determined by the quaternionic Kdhler
structure. Moreover, f is quaternionic harmonic.
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4. Uniqueness of infinite volume end

Recall that for any complete manifold, if A;(M) > 0 then M must
be nonparabolic. In particular, M must have at least one nonparabolic
ends. It was also proved in [LW1] that under the assumption that
A1(M) > 0, an end is nonparabolic if and only if it has infinite volume.

Let us assume that M has at least two nonparabolic ends, F; and
E5. A construction of Li-Tam [LT] asserts that one can construct a
nonconstant bounded harmonic function with finite Dirichlet integral.
The harmonic function f can be obtained by taking a convergent sub-
sequence of the harmonic functions fr, as R — 400, satisfying

Afr=0 on B(R),
with boundary conditions
frR=1 on dB(R)NE;

and
frR=0 ondB(R)\ E;.

It follows from the maximum principle that 0 < fr <1, hence 0 < f <
1. We need the following estimates from [LW1](Lemma 1.1 and 1.2 in
[LW1]), and [LW3|(Lemma 5.1 in [LW3]).

Lemma 4.1. Let M be a complete Riemannian manifold with Ay (M)
> 0. Suppose M has at least two nonparabolic ends and E be an end of
M. Then for the harmonic function f constructed above, it must satisfy
the following growth conditions:

1) There exists a constant a such that f —a € L?>(E). Moreover, the
function f — a must satisfy the decay estimate

/ (f = a)? < Cexp(—21/M(E)R)
B(R+1)\E(R)

for some constant C' > 0 depending on f, A\1(E) and the dimension
of M.

2) The Dirichlet integral of the function f must satisfy the decay es-
timate

/ V2 < Cexp(—2/M(E)R),
E(R+1)\E(R)

and

/ exp(—2v/ M (B)r(x))|Vf|* < CR
E(R)

for R sufficiently large.
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Lemma 4.2. Let M be a complete Riemannian manifold with at least

two nonparabolic ends and A1 (M) > 0. Then for the harmonic function
f constructed above, for any t € (inf f,sup f) and (a,b) C (inf f,sup f),

V2= (- il
/W) f2 = a)/l(b)\ fl

where
1(t) ={z € M[f(z) = t},
and
L(a,b) ={z € M|a < f(x) < b}.
Moreover,

/l(t) v = /l@ V1.

We are now ready to prove Theorem 0.5.

Proof of Theorem 0.5. Suppose to the contrary that there exist two ends
E; and E5 with infinite volume. The assumption that A\; (M) > 0 implies
that they are nonparabolic. By the construction above, there exists a
harmonic function f with finite energy such that

liminf f(z)=1

r—00,rEFR]

and

liminf f(x)=0.

r—00,xEFy

The Bochner formula implies that
(4.1) SAIVSP = Riea(Vf, V1) + [V 42
We now choose an orthonormal basis {e A}4A”:1 satisfying
{e1,€9,...,en,Ie1,Ieg, ... Iey,, Jer, Jea, ..., Je,, Ke1,Kea, ..., Key}
with e; = % Corollary 3.1 implies that

3

Z fin+1)(int1) = 0.

1=0
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Therefore, applying the arithmetic-geometric means, we have

4n
(4.2) V2P = > fis

A,B=1

3 4an
> fi + Z f(2m+1)(m+1) +2 Z fia
A=2

i=1
1 /(3 2 in
> i+ 3 (Z f(m+1)(m+1)> +2 Z fia
i=1 A=2
4 2
> v,
hence combining with (4.1) we obtain
1 4
(4.3) SAIVI® 2 —d(n+2)|VF* + S [VIVFIP

If we write u = \Vf|%, then

8 2
(4.4) Au > —(”;)u.
We want to prove that the above inequality is actually an equality. The
argument follows from that in [LW4] after making suitable modification
to fit our situation. For any compactly supported smooth function ¢ on
M, we have

(4.5) 0< /M ¢*u <Au + 8(”;2)u)

< —2/M pu(Vu, V) —/M¢>2|Vu2+A1(M) /M(¢>u)2
< /M (Y, V) — /M &Vl + /M V()

= [ 1vapa

Let us choose ¢ = ¥y to be the product of two compactly supported
functions. For any ¢ € (0, %), we define
on £(0,0e)UL(1 - 5,1)
log2)~l(log f —log(5))  on £(5,2)N (M\ Ey)
log2)~t(log(1 — f) —log(§5)) on L(1—¢,1—5)NE;
otherwise.

x(z) =

—_—— O
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For R > 1 we define

1 on B(R—1)
v={ R—r onB(R)\B(R-1)
0 onM)\B(R).

Applying to the right hand side of (4.5), we obtain
@o) [ vep <z [ [wup st vz [ [wxPeval
M M M

Since Ricpys > —4(n + 2), the local estimate of Cheng-Yau [CY] (see
also [LW2]) implies that there exists a constant depending on n such
that

[VfI(z) < C[1 = f(2)].
On FEj, the first term of (4.6) satisfies

(47) [ werervsi< ([ |Vf|2)g (f 1)§,

where Q = By N (B(R)\ B(R—1))N(L(1 —¢,1 = 5)UL(5,¢). Since

5
/Ql<4/9(1;2f)2
4

2
< 62/Q(l - f)
< 4C="?exp(—2y/ M R),

where in the last inequality we have used Lemma 4.1. Again by Lemma
4.1, from (4.7) we have

(48) /M VYRV IS < CeF exp(—2V/AR).

For the second term of (4.6) we have

4
/ CNEEE
Ey
< (log2)™2 / VAR )
L(1-¢,1-5)NE1NB(R)

< C(log2)? / VAP )R

L(1—e,1-£)NE1NB(R)
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Using the co-area formula and Lemma 4.2, we have
2

/ VIR0 )
L(1—¢,1-£)NEINB(R)

1-£
g/ (1_t)—§/ IV f|dAdt
1—¢ I(t)NE1NB(R)

1-£
gc/ |Vf\dA/ (1— )3t
1(b) !

€

— 30[(1—}]iE / 1V fldA
1(b)

— 3C¢e3 / IV f|dA.
1(b)
Combining the above inequality with (4.8), we have

(4.9) / IVo[2u2 < C(e3 exp(—2v/ M R) + €3).

£y
A similar argument using f instead of 1 — f on the other end yields the
estimate

w\»a

/ |Vo|>u® < O( 63 exp(—2v/ M R) +
M\E;

Letting R — oo and € — 0, we have

8(n+2)u

4.10 Ay = —
(4.10) u=—2

with A\ (M) = w, since f is nonconstant and u cannot be identically
zero. Therefore, all the inequalities used to prove (4.4) are equalities.
Thus there exists a function y, such that,

Dq
(4.11) (faB) = b D, :
Dy
where D1 and D5 are n X n matrices defined by
—3u
D, = 0
0
and
I
Dy = 0
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Since fi1o = 0 for a # 1 implies that |V f| is constant along the level
set of f. Moreover, regularity of the equation (4.10) implies that |V f]
can never be zero. Hence M must be diffeomorphic to R x N, where N
is given by the level set of f. Also, N must be compact since we assume
that M has at least 2 ends.

Fix a level set Ny of f, consider (—¢,e) x Ny C M. Note that {ea}
is an orthonormal basis of T'M such that e is the normal vector to Ny
and {e,} are the tangent vectors of Ny. We shall compute the sectional
curvature

K(ei,eq) = (R(e1,eq)eqse1).
We claim that
Ve, e1 = 0.
Indeed, it suffices to prove all integral curves n(t) of the vector field
er = % emanating from Ny are geodesics. For any point 7(tg), let

be the geodesic realizing the distance between 7(tg) and Ny. Then + is
perpendicular to every level set N;. So ' is parallel to e; along . This
implies ~y coincides with the integral curve of e;.

Let (hqg) with 2 < o, 8 < 4n be the second fundamental form of the
level set of f. Then

(412) hozﬁ fl = _fozﬁa

and
4n
Ve,€1 = — Z hageg.
B=2

By the definition of curvature tensor, we have
<R(€1, ea)ela €a><vel Vea€1 — Ve, Ve €1 — v[el,ea]elv ea)
= <v61v6a617 €a> - <v[el,ea]617 ea)
= <velvea€l7 €a> - <Vvelea7vmel €1, €a>

4n
= (Ve, Ve €1,€0) — Z<ve1€a, eg)(Vegel, €a)
f=2
4an
+ Z<veaela e,@><v65ela €a)
f=2

4n 4n 4n
- - Z<v€1 (hocﬂeﬁ)’ 6Oé> + Z ha5<v€1604a €ﬁ> + Z hiﬁ
B=2 B=2 B=2

4n 4n
== ((erhap)es €a) = > hap(Ve,€s, €a)
B=2 B=2
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4an
+ Z hap(Ve €a,eg) + hiﬁ
B=2
4n
= —€1haa + 2 hag(Ve,€a,€p) + his.
B=2
Therefore,
4n 4n
(4.13) K(e1,eq) = e1haa — 2 Z hap(Ve €a,ea) — Z hiﬁ.
p=2 p=2

Since hqg is diagonal, this implies that
K(e1,eq) = e1haa — h2

[e7e'M

Combining with (4.11) and (4.12), we conclude that
K(ei,e2) = K(e1, Iez) = K(ey, Jea) = K(ey, Kea) =0,
which implies M is Ricci flat by Theorem 1.3. This contradicts to the

assumption that \; > w > (0. Therefore M must have only one end

with infinite volume. q.e.d.

5. Maximal first eigenvalue

In this section, we will consider the case when A;(M) is of maximal
value.

Proof of Theorem 0.6. According to Theorem 0.5, we know that M has
exactly one nonparabolic end. Suppose that M has more than one end.
Then there must exist at least one end with finite volume. We divide
the rest of the proof into several parts. The first part follows exactly
as that in the proof of the corresponding theorem in the Kéhler case
(Theorem 3.1) in [LW5]. For the sake of completeness, we will give a
quick outline of it.

Part 1. Assume that F; is such an end with finite volume given by
M\ Bp(1). Then we can choose a ray 7 : [0, +00) such that n(0) = p and
n[l,+00) C E;. The Busemann function corresponding to «y is defined

by
Ba) = lim [t~ d(e,n(t))].
— 400
The Laplacian comparison theorem, Theorem 2.1, asserts that
AB > —-2(2n+1)

in the sense of distribution. We define the function f = exp((2n+1)5),
and using the fact that V3| = 1 almost everywhere, we have

Af = (2n+1)exp((2n + 1)B)AB + (2n + 1)?
> —(2n +1)%f.
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Similar to the proof of above theorem, we conclude that for any com-
pactly supported function ¢,

0< [ a7+ @n+ s
M
< / Vo[,
M
By choosing the function ¢ to be
1, on By(R);
¢=14 @ on B,(2R) \ By(R);
0, on M \ B,(2 ),
we obtain
[ e
MNE
1 / 9
< = f
B2 J(B,2r\B,(R)NE:
[R]
< 12
RQ Z/Bp R+i)\Bp(R+i—1))NE;
C [R]

—5 > (Vi (R+1i) — Vg, (R+1i — 1)) exp(2(2n + 1)(R + 1))

=1

where Vg, (R + i) denotes the volume of the set E1 N B,(R +4). On the

other hand, the volume estimate in Theorem 1.4 of [LW1] implies that
Vi, (00) = Vg, (R) < Cexp(—2(2n + 1)R),

hence

Ve, (R+14) — Vg, (R+1i1—1)
= Vg, (OO) - Vi, (R +i— 1) - (VEI (OO) — Ve, (R + Z))
< Cexp(—2(2n+1)(R+1)).

Therefore, we conclude that

/ PV <
MNE,

Let us now denote Ey = M \ (B,(1) U Ey) to be the other end of M.
When z € Es, following the argument in Theorem 3.1 of [LW4], we
have

¢
=

Blx) < —d(p, x) + 2.
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Therefore,
f ?|IVel* < f?

»(2R)\Bp(R))NE2

o
/ exp(—2(2n + 1)(r — 2))
»(2R)\ By (R))NE

2

:U\Q :o\q :o\

Letting R — 400, we conclude that
(5.1) Af+(2n+1)%f =0,

and all inequalities used are indeed equalities and f is smooth by regu-
larity of the equation (5.1). Moreover, |V3| = 1, and

AB=-2(2n+1).

This implies that M must be diffeomorphic to R x IV, Where N is given
by the level set of 3. We choose an orthonormal basis {ez 7, as follows

{e1,e2,...,en,ler,lea, ... . Iey, Jey, Jea, ..., Je,, Kej, Keg, ..., Ke,}
with e; = V3. Applying the Bochner formula to 5, we get

1
- FAIVSE

= Z .+ Ricar (VB, V) +Zﬁl AB);

i,7=1

4n
=Y 8 —4n+2).

ij=1

By the comparison theorem, we have

3
Zﬂ(mﬂ)(mﬂ) = —6.
=0

Hence

Dy

Do
(ﬂaﬁ) = D2 )
Dy

where D1 and Dy are n X n matrices defined by

0

-1

Dy =
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and

Dy =
-1
Part 2. For a fixed level set Ny of 3, we consider (—e,e) x Ny C M.
Note that {e;} is an orthonormal basis of 7'M such that e; is the normal

vector to Ny and {e,}, for 2 < o < 4n, are the tangent vectors of Nj.
We shall compute the sectional curvature

K(e1,eq) = (R(e1,€q)€as€1)-

The fact that V. e; = 0 implies that the integral curves of e; are
geodesics. Let (hay) be the second fundamental form of the level set of
V3. Then

ha'y = <vea€'ya 61)

= <vea6'ya Vﬁ)
= —Bary
and
4n
(5.2) Veo€1 = — Z ha~ey.
y=2

By (4.13) in the proof of Theorem 0.5 we have

4n 4n
(R(e1,eq)e1,€ea) = —€1haa +2 Z hay(Ve ey, €e3) + Z hgw.
y=2 y=2

Since (hqay) are constant and diagonal, then
K(e1,eq) = —h2,.
In particular, we have

K(e1, ) = —4 whena=in+1,:1=1,23
€L )=\ 1 otherwise.

On the other hand, we also have

K(ent1,e2nt1) + K(ent1,e3n11) = =12 — K(e1, enq1) = —8
K(eni1,eant1) + K(esnt1, e2ny1) = —8
K:<€3n+1a €2n—|—1) + Ic(en-l-l: e3n+1) = _87

hence

K(en+1,e2n+1) = K(ent1, €3n+1) = K(ean+1, €3n41) = —4.
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Since for a« =2,3,...,n,

K(Iei,eq) = —(R(le1,eq)ler, eq)
= —(IR(Ie1,eq)ler, Ieqy)
= (R(le1,eq)er, Iey)
= (R(e1,leq)leq,eq)
= K(e1, leq)

and K(Jer,eq) = K(Kei,eq) = —1, we have
K:(ein—‘rlvea) - _17

foralli=0,1,2,3and a# 1,n+1,2n+1,3n + 1.
Let KN (eq,e,) denote the sectional curvature of the level set with
induced metric. By Gaussian equation,

KN (eqyey) — K(easey) = haahqy,
it is straightforward to obtain

KN (ens1s eanti1) = KN (ent1, eant1) = KN (e2nt1, €3ni1) = 0,
and
(5.3) KN (einy1,eq) =1,

foralli=1,2,3and a # 1,n+1,2n+ 1,3n + 1.

Part 3. There is a natural map ¢, between the level sets Ny and NV,
given by the gradient flow of 3. Since the integral curves are geodesics,
dpy(X) are Jacobi fields along corresponding curves. Let (N, go) = Ny
with the induced metric. We can consider ¢ as a flow on N. We claim
that

dpilv, = e*id
and
dptly, = elid,

where TN = Vi @ Vi, V; = span{le;, Je1, Ke1} and Vo = Vi-. Indeed,
for any point ¢ € Ny, denote e1(t) = VB(p(t)) and {e4(t)}4", to be
the parallel transport of the orthonormal base {%}4&12 of Ny at ¢ along
©t(q). Since both V; and V5 are g-invariant, we have, in particular,

(54) <v61(t)8047 €’7> = 07

when a € {n+1,2n+1,3n+ 1}, and v ¢ {n +1,2n + 1,3n + 1}.



SPECTRUM ON QUATERNIONIC KAHLER MANIFOLDS 321

Now we can compute R141,. Then
(5.5)  (R(e1,eq)e1,ey)
= <V61V€ael — Vsavelel — v[ehsa]ela{fv)
= <v€1v€76175a> - <v[61,5a]€17€7>

= (Ve, Ve e1,89) — <vvelaa_v5aelel757>
in
= <Vel v5a817 57> - Z<V615a7 €T><v67—el7 5"/>

T=2

4in
+ Z<vea€17 er)(Ve,e1, 57)
T=2

an An An
- Z<vel <ho‘7—€7—)’ E'Y> + Z h’YT<v61€av 87’) + Z hafrhq—ry
T=2 T=2

T=2
an
= —erhay — Z har(Ve €7, €y)
T=2
an an
+ Z h7’r<v615a7 57—> + Z haThT'y-
T=2 T=2

We see that (hq) is diagonal and

- 2, whena=n+1,2n+1,3n+1;
@71 1, otherwise.

Therefore, when o # ~,
Rlal’y = _haa<velga7€7> + h'y'y<v615a75'y>
= (hyy — haa)(Ve €as Eq)-

Since hoao = hyy when o,y € {n+1,2n+1,3n+ 1} and o,y ¢ {n +
1,2n 4+ 1,3n + 1}, using (5.4), we have
Ria1y =0, for all a # .

Define

Talt) = e ?e,, whena € {n+1,2n+1,3n+1};

YT eten, whenad {n+1,2n+1,3n+ 1}.
Since
V%dSOt(eoz”t:O = le1,€a] = —Ve,e1,
we see that J, satisfies the Jacobi equation and initial conditions J,(0) =
eq and J/(0) = eq = V.o dpi(eq)|i=o. By the uniqueness theorem for
ot

the Jacobi equations, we have dp;(e,) = J,. The claim is proved.
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Part 4. We have now a family of metrics on N written as

3 3 n
2 4t § : 2 2t § : § : 2
dst =e Win+1 +e Wintao
i=1

i=0 a=2
and the metric of M can be rewritten as

4 4an
(5.6) ds* = dt* + et Zw:% + &% Z w2,
p=2 a=5H

where {wa, w3, wy, ...,wsn} is the dual coframe to {eq, €3, €4, ..., €45} at
Ny. We also choose that Ieqs_3 = e45_9, Jeqs_3 = €451, and Kegs_3 =
eqs fors=1,...,n, withe; = %. In particular, the second fundamental
form on N; must be a diagonal matrix when written in terms of the
basis {e; ?22 with eigenvalues given by

6.7) (ered (5 0 ).

where I}, denotes the kx k identity matrix. Also, the sectional curvatures
of the sections containing e; are given by

K(ei,ep) = —4 for 2<p<i4
and
K(ei,eq) =—1 for 5 < a<4n.

The Guass curvature equation also asserts that

Rijii = Rijra + hiihij — haihgj,

where Rijkl is the curvature tensor on N;. In particular,

Rijki + 61i0kj — Okidy; if 5<i,j,k1<4n

Rijki + 4010 — 40015 if 2 <1, j k1 <4

ik +2 if 2<i=1<4 and 5<k=j<4n
g +2 if 2<k=35<4 and 5<i=1[0<4n
ik —2 if 2<i=k<4 and 5<j=1[01<4n
ikt —2 if 2<j=1<4 and 5<i=k<4n
ikt —2 if 2<k=i<4 and 5<j=10<4n

ooyl

(5.8) Rijm =

SR B

Riji otherwise.

We will now use (5.6) to compute the curvature tensor of M and
hence Ny. Using the orthonormal coframe
m=w1 = dt7

_ 2t
Tlp = € Wp

t
To = € Wq
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for 2 <p <4 and 5 < a < 4n, we obtain the first structural equations

(5.9) dnm =0,
4 an
(5.10) dn, = 2et Wy A wp + e?t Z Wpq N\ wg + et Z Wpa A Wa
q=2 a=5H
4 4an
= =2n, A\m + prq Ang+ e pra A Ne,
q=2 a=>5
and
4 an
(5.11) dna = €' wi A wgy + € Zwap/\wp—l—et Zwag/\c%
p=2 £=5
4 4n
=N A1+ et Zwap Anp + Zwag A ng,
p=2 B=5

where w;; are the connection forms of Ny. In the above and all subse-
quent computations, we will adopt the convention that 5 < «, 8 < 4n,
2<i,j<4n,2<o,p,q,r<4,2<s,t<m,and 1 < A,B < 4n.

Note that using the endomorphism I and the fact that VI = ¢J —bK,
we have

wij(X) = (Vxej, ei)

<IVX€J', Iei>
<VXIGJ',I€Z'> + C(X) <J€j, Iei> — b(X) (k:ej, Iei>
= (Vxlej, Iej) + c(X) (ej, Kei) + b(X){ej, Jei)

for any tangent vector X to Ny, where V denotes the connection on Np.
Hence, we conclude that

(5.12) Wij = WL, +C<€j,K€i>+b<ej,J€i>,
where I; denotes the index corresponding to Ie;ey,. Similarly, we have
wij = w1, +clej, Key) +aej, Ie;),
and
Wij = WK, K; +b <€j, Jez> +a <€j, Iei).
Together with (5.7), we conclude that
w2(4s—1)(€4s) =-1= _w2(4s)(€45—1)a
W2 (45-3) (€45-2) = —1= _w2(4s—2)(€4s—3)a
for all 2 < s < n, and

waa(eg) =0 otherwise.
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Similarly,

WQOc(ep) = <vep€ou 62>
= _<vepjeoc7€1>
=0.

These identities imply that

(5.13) Wa(45—3) = —Wi4s-2,
Wo(4s—2) = W4s—3;
Wo(4s—1) = —Wis,

W2(4s) = Was—1-
A similar calculation using the endomorphisms J and K yields
(5.14) W3(45—3) = —Wias—1,

W3(4s—2) = W4s,

W3(4s—1) = W4s—3;

W3(4s) = —Was—2;,
and
(515) W4(4s—3) = —Wa4s,
W4(4s—2) = —W4s—1,

Wia(4s—1) = Was—2,

Wi4(4s) = W4s—3-

We claim that the connection forms are given by

(5.16) Np = —Np1
=2n, for 2<p<4,

(5.17) Ma = —Nal
= Na for 5 < a<4n,

(5.18) Tlpg = —TNgp = Wpq>

(5.19) Npa = —Nap = et Wpars
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N(4s)s = 715 (4s)
wasp — (1—e ) if  B=4s—1
wasg+ (1—eny i B=4s—2
wagp — (1—e )y if  B=4s-3
W(4s)8 if B #4s—1,4s — 2,0r 45 — 3,

(5.20) =

N(4s—1)8 = —13(4s—1)
wis—1)g + (1= ) 1 it p=4s
2ype i B=ds—2

was—1yg— (1—e)mg if  [B=4s—3
W(4s—1)8 if B #4s,4s — 2, or 4s — 3,

(521) =] “ens (e

N(4s—2)8 = —13(45—2)

Was—2yp — (1—e )z if  B=ds

W(4s—2)8 + (1—e %)y if B=4s—1

was—2ys — (1= *)my  if  B=45-3
W(4s—2)8 if B # 4s,4s — 1,0r 4s — 3,

(5.22) =

N(4s—3)3 = —13(45—3)

was—z)p+ (1= ny i B=4ds

W(4s—3)8 T (1—e 2"y m3 if B=4s—1

Was—zyp+ (1—e ) if  F=4s—2
W(4s—3)8 if B # 4s,4s — 1,0r 4s — 2.

(5.23) =

Indeed, if we substitute (5.16—5.23) into the first structural equations

4 4n
dna =na1 Am +Z77Aq Ag + Z?Mﬁ A 1g,
q=2 B=5

we obtain (5.9), (5.10), and (5.11).
To compute the curvature, we consider the second structural equa-
tions. In particular,

dmp — Mg A Ngp — Ma A Nap
= 2dnp — 21 A Ngp — Na A Nap
= —4np A+ Na A Nap
= —dn, ANm + el Wpa A Na-
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Hence, using (5.13 — 5.15), we have
Rlplp = _47
Ris4s-1)(as) = — 2 = —Riz(4s)(4s-1)>
Rig4s—3)(as—2) = — 2 = —Rio(45-2)(45-3)s
— 2= —Ry3(45-2)(4)>

R13(4s)(4s—2

)
)
Ri3(45-1)(4s-3) = 2 = —Ri3(45-3)(4s-1)s
Riy4s)(45-3) = 2 = —R14(45-3)(4s)>
Riys-1)(as—2) = 2 = —Rig4s-2)(4s-1)s
and
Ripap =0, otherwise.
Also,
dnia — Mg N Nga — M8 N Ma
= dija — 21g N 1lga — 18 N\ 1ga
=N NN+ etwqa A Ngs
hence
Rigia = -1,
Ri4syas—12 = — 1 = —Rys—1)(45)2s
Ri4s)as—2)3 = 1 = —Ry(4s-2)(45)3
Ry4s)as—3)a = — 1 = —Ry(45-3)(45)4>
Ry4s—1)(4s-3)3 = — 1 = —R14s-3)(4s-1)3:
Rygs—1)(4s—2)4a = — 1 = —Rius—2)(4s—1)4s
Ry4s—2)(4s—3)2 = — 1 = —Ri(1s-3)(4s-2)2:
and
Ripag =0 otherwise.
Similarly,
dilpg = Tlp1 A Mg — Tpr N 1ieq — Tlps \ 13
= dwpq + 4np N 1g — Wpr N\ wWrg — e2twpﬁ A wgq
= Qg+ (1 — e?t) wpg A\ wgg + 4np A g,
where

_ 1_
Qpg = §quijwj A Wi

is the curvature form of Ny. In particular, this implies that
—4teH Rpapq if r=pand o=q
(5.24) Rpgro = 4+e™ Rypgop if r=gqando=p

4t B .
e Rygro otherwise,
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(5.25) Roz(as)as—3) = € ' Rog(as)as—3) — 2(e~* — 1),
(5.26) Rozas—1)(1s—2) = € > Rog(as—1)(as—2) — 2(e > — 1),
(5.27) Roqasyas—2) = € ' Rosgas)as—2) — 2(e7* — 1),
(5.28) Rog(as—1)(4s—3) = € > Rog(as_1y(4s—3) + 2(e > = 1),
(5.29) Ray(as)(as—1) = € 2 Raa(a)(as—1) — 2(e7* = 1),
(5.30) Rayas—2)(as—3) = € > Ragus—ayas—3) — 2(e > = 1),
and

(5.31) Rpgop = € 2 Rpgap, otherwise.

We now continue with our curvature computation and consider

dilpa — Np1 A\ a = Nipg A Tlga — Tps A\ e

= d(e! Wpa) + 21y Ao — wpg A el Wya — el wWpg A Ma

1 . _

=elm A Wpa + §etRpaijwj A wi + 21y Ao + el wps AN (Waa — MBa);
where Rpm-j is the curvature tensor of Ny. Using (5.13—5.15) and (5.20—
5.23), we have
1
532(45),43773 Ana

1,5 _
=M A N@4s—1) T *etR2(4s)z‘j wj Awi — 21y A2+ (1 —e 2h)
2

+(1—e?) Nas—3) A3 + (1 — e ) N(4s—2) N\ 14

N(4s) A 12

1,5 _
=M A N@4s—1) T §€tR2(4s)ij wj Aw; — (1+e7?) N(4s) N 12

+(1—e?) Nas—3) A3 + (1 — e ) M(4s—2) N\ N4

1
§R2(45—1)AB7]B Ana

1,5 _
= =M A Nus) + ietR2(4s—1)ij wj Aw; — (14 e7) Nas—1) N 12

+ (1= e *)nus—2) Anz — (1 — e ) nus—3) Ama.

1
§R2(4s_2)AB773 Ana

1 .,- _
= A Nas—3 + §6tR2(4s_2)ij wj Awi — (L4 e nigs_oy Ang

+ (1= e ) nus—1y) Ams — (1= e ) niasy A ma
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1
§R2(4s—3)ABnB Ana
1, _
=—m A Ms—2 + ietR2(4s—3)ij wj Aw; — (14 e7) N(4s—3) \ N2
—(1—e?) Nasy A3+ (1 — e ) Nas—1) N 14

There are similar formulas for the curvature tensors of the form R3, 45

and R4a AB-
Continuing with our computation of the second structural equations

using (5.13 — 5.15), we have

(5.32)
dn(4s—1)(4s) — M(as—1)1 N M1(4s) — M(as—1)q /\ Tg(4s) — M(as—1)8 /\ 15(4s)
= dwas—1)as) + 267 m Ana + (1 — e ) dnp
+ Nas—1) N\ N(as) — e* W(as—1)q /\ Wq(4s)
— (Ws—1)s—2) — (1 =€) ) A (Was—2)(as) — (1 — ) m3)
— (Was—1)(s—3) — (1 =€) m3) A (Was—3yas) + (1 — €7 ma)
R(4S 1)(4s)ij wj A wi + (1 — e?h) W(as—1)q N Wq(4s) T 211 A M2

1— e ™) wag g+ e (1= e ) wap Ag = Nas) Aias—1)

+ (
+(1—e2) Wias—1)(4s—2) N3 + (1 — e ) my A W(4s—2)(4s)
+ (1= e ) n3 Awus—ayas) — (1 — €7 wias—1)as—3) A
+2(1—e)Png Am

= %R(4s—1)(4s)ij Wi Awi (2= €72 Mas 1) Aias)
—2(1- 6_2t) 77(45 3) AMas—2) +2m A+ (1 — ) wag Ay
+2(1—e" 3) A\ M(4r—2) +2(1-e? ") ar—1) A ar)
+(1-e?) (W(4s 1)(45—2) — W(4s—3)(4s)) N 73
— (1= ") (W(as—2)(15) + Was—1)(as—3)) A+ 2(1 — e>")? 3 Ama.

Note that (5.22) asserts that

(1—e 2wy Ang=(1—e ) (—wis Anz+cAns+wiz Ang—bAmn)
=(1- 6_2t) (46_% N3 A4+ cAnz — bny),

(1= €72 (Wias—1)(45-2) — W(as—3)(4s)) A 713
—(1—e Y enns,
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and

—(1—e?) (Was—2)(4s) T W(as—1)(45—3)) N M4
= (1—e?YbAmn.
Hence, substituting into (5.32), we obtain

1
53(45—1)(45)AB nB Ana

1 D, —
= 5 Rus—1)s)is Wi Awi + (2= €*) Mas—1) Anas)

—2(1 = e ) nas—3) A Nas—a) + 211 A 12
+2(1 = e ) nar_s) A Nar—2)
+2(1 = e nar—y Anary +2(1— e )3 Am

15 _ _
=2m Ane + §R(4S—1)(4s)pq e g A +20—e s Am

_ - 1. B

+ R(4s—1)(4s)pa e Na N 1lp + iR(4s—1)(4s)o¢B e ng N\ Na
(2= e ) nas—1) A ngas) — 21— €7 ngas_z) A nas—2)
+2(1 = e nar—3) Agar—2) + 2(1 — €72 ar—1y A ngary-

A similar computation yields the curvature tensor of the form

R(4s—1)(4s—2)ABa R(4s—1) (4s—3)AB> R(4s—2) (4s—3)AB> R(4s—2) (48)AB> and
R(4s—3)(4s)AB' It remains to compute

(5.33)

%R(4s—3)(4r)AB nB A1na

= dn4s—3)(4r) — M(as—3)1 N N1(ar) — Nas—3)q N Tg(ar) — N(as—3)8 N\ Na(4r)

= dw(4s—3)(4r) + M(4s—3) N Nar) — et Was—3)q "\ Wa(ar) — MN(4s—3)3 /\ M3 (4r)
1_

= 5 Bus-s)@anij Wi Awi + (1= €*) wus—3)q A Wy(ar)

— (L= e (ma A wasyar) + 03 A Wias—1)(4r))

— (1= €e7%) (2 A was—2)(ar) + Was—3)(ar—1) A 2

— W(4s—3)(4r—2) N 13 T W(4s—3)(4r—3) A 14) + Nas—3) A N(ar)-
Using (5.12 — 5.14), we can write
W(as—3)g NWq(ar) = —M(48 = 2) AN(ar—1) M (as—1) N(ar—2) = N(as) N(ar—3))-
Also using (5.12) asserts that

W(4s—3)(4r—1) = W(4s—2)(4r)>

W(4s—3)(4r—2) = —W((4s—1)(4r)
W((45—3)(4r—3) = W((4s)(4r)-
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Hence (5.33) becomes

1
§R(4s—3)(4r)AB nB N\ nNA

1= _ _ _
= §R(4S*3)(4T)pq et Mg N 1p + R(4s—3)(4r)pp € o N3 N Tp
1= _
+ 53(4373)(47«)0(5 e g A g
—(1—¢€*) Nas—2) N Nar—1) + (1 — e ?) N(4s—1) N N(4r—2)
— (L= e nas) A n(ar—3) + M(as—3) A Nar-

So we have determined all curvature tensores of M. Note that the
quaternionic curvatures satisfy

K(ei,e2)+ K(e1,e3) + K(e1, eq
K(ea,e1)+ K(ea,e3) + K(ea, e4
K(es,e1)+ K(es,e2) + K(es, eq
K(eq,e1)+ K(eq, e2) + K(ea, e3
In particular, this implies that

KN (eg,e3) = KN (ea,e4) = KN (e3,e4) = 0.
Also, for 2 < p < 4, we have

3
Z’C €1, €s—iy) = —4
=0
3 3
ZK:GP, 45 1) :—4+€ (Z epa (4s—1) _4)7
1=0 =

—12
—12 4% (ICN(eg, es) + ICN(eg, €4))
—12 42 (ICN(eg, e2) + ICN(eg, €4))
—12 4 % (K(eq,e2) + ICN(64, e3)).

— ~— ~— ~—

implying
3

Z ’CN(epa 6(434)) =4.
i=0
We also have

3
ZK(6(45)7 6(4371)) =—-12+e" (Z IC €(4s— 1)) + 9) )
=1

implying
3

Z ICN(e(4s)7 6(43—@')) = —9.
=1
Lastly,
3

3
Z K(e(s)s €(ar—iy) = —4 + e % Z KN(€(43)7 €(4r—i))s

=0 i=0
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implying
3
N
> KN (equs)s ear—iy) = 0.
=0

The above computation determined the whole curvature tensor for
M and Ny. In particular, if M has bounded curvature, then from the
formulas about the components of curvature tensors of M, all curvature
components are determined as those of QH". So it must be covered by
QH™. q.e.d.
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