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ANCIENT SOLUTIONS OF THE AFFINE NORMAL

FLOW

John Loftin & Mao-Pei Tsui

Abstract

We construct noncompact solutions to the affine normal flow
of hypersurfaces, and show that all ancient solutions must be ei-
ther ellipsoids (shrinking solitons) or paraboloids (translating soli-
tons). We also provide a new proof of the existence of a hyperbolic
affine sphere asymptotic to the boundary of a convex cone con-
taining no lines, which is originally due to Cheng-Yau. The main
techniques are local second-derivative estimates for a parabolic
Monge-Ampère equation modeled on those of Ben Andrews and
Gutiérrez-Huang, a decay estimate for the cubic form under the
affine normal flow due to Ben Andrews, and a hypersurface barrier
due to Calabi.

1. Introduction

Consider a smooth, strictly convex hypersurface L locally parametr-
ized by F (x) ∈ Rn+1. The affine normal is a vector field ξ = ξL trans-
verse to L and invariant under volume-preserving affine transformations
of Rn+1. The affine normal flow evolves such a hypersurface in time t
by

∂tF (x, t) = ξ(x, t), F (x, 0) = F (x).

In [7], Ben Chow proved that every smooth, strictly convex hyper-
surface in Rn+1 converges in finite time under the affine normal flow to
a point. In [1], Ben Andrews proved that the rescaled limit of the con-
tracting hypersurface around the final point converges to an ellipsoid.
Later, Andrews [2] also studied the case in which the initial hypersur-
face is compact and convex with no regularity assumed. In this case, the
affine normal flow, unlike the Gauss curvature flow, is instantaneously
smoothing. In other words, such an initial hypersurface under the affine
normal flow will evolve to be smooth and strictly convex at any positive
time before the extinction time.
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In the present work, we develop the affine normal flow for any non-
compact convex hypersurface L in Rn+1 whose convex hull L̂ contains
no lines (if L̂ contains a line, the affine normal flow does not move it
at all). As in [2] we define the flow by treating the L as a limit of a
nested sequence of smooth, compact, strictly convex hypersurfaces Li.
Our main new result is to classify ancient solutions—solutions defined
for time (−∞, T )—for the affine normal flow.

Theorem 1.1. Any ancient solution to the affine normal flow must
be be either an elliptic paraboloid (which is a translating soliton) or an
ellipsoid (which is a shrinking soliton).

The proof of Theorem 1.1 relies on a decay estimate of Andrews for
the cubic form Ci

jk of a compact hypersurface under the affine normal

flow [1]. In particular, the norm squared |C|2 of the cubic form with
respect to the affine metric decays like 1/t from the initial time. For an
ancient solution then, we may shift the initial time as far back as we like,
and thus the cubic form Ci

jk is identically zero. Then a classical theorem
of Berwald shows that the hypersurface must be a hyperquadric, and
the paraboloid and ellipsoid are the only hyperquadrics which form an-
cient solutions to the affine normal flow (the hyperboloid, an expanding
soliton, is not part of an ancient solution).

In order to apply this estimate in our case, we need local regularity
estimates to ensure that for all positive time t, the evolving hypersur-
faces Li(t) converge locally in the C∞ topology to L(t). Thus Andrews’s
pointwise bound on the cubic form survives in the limit. We work in
terms of the support function. The C2 estimates are provided by a speed
bound of Andrews [2] and a Pogorelov-type Hessian bound similar sim-
ilar to one in Gutiérrez-Huang [15]. These estimates provide uniform
local parabolicity, and then Krylov’s theory and standard bootstrapping
provide local estimates to any order.

Another key ingredient is the use of barriers. Here the invariance of
the affine normal flow under volume-preserving affine transformations
is important. The main barriers we use are ellipsoids and a particular
expanding soliton (a hyperbolic affine sphere) due to Calabi [4]. In
particular, Gutiérrez-Huang’s estimate can only be applied to solutions
of PDEs which move in time by some definite amount. Calabi’s example
is a crucial element in constructing a barrier to guarantee the solution
does not remain constant in time.

Solitons of the affine normal flow have been very well studied [4, 6].
They are precisely the affine spheres. The shrinking solitons of the affine
normal flow are the elliptic affine spheres, and Cheng-Yau proved that
any properly embedded elliptic affine sphere must be an ellipsoid [6].
Translating solitons are parabolic affine spheres, and again Cheng-Yau
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showed that any properly embedded parabolic affine sphere must be an
elliptic paraboloid [6].

Expanding solitons are hyperbolic affine spheres, which behave quite
differently. Cheng-Yau proved that every convex cone in Rn+1 which
contains no lines admits a unique (up to scaling) hyperbolic affine sphere
which is asymptotic to the boundary of the cone [5, 6]. (For example,
the hyperboloid is the hyperbolic affine sphere asymptotic to the stan-
dard round cone.) The converse is also true: every properly embedded
hyperbolic affine sphere in Rn+1 is asymptotic to the boundary of a con-
vex cone containing no lines [6]. Our definition of the affine normal flow
immediately provides an expanding soliton which is a weak (viscosity)
solution, and our local regularity estimates show that this solution is
smooth.

We should note that Cheng-Yau [6] proved results for hyperbolic
affine sphere based on the affine metric. In particular, a hyperbolic affine
sphere has complete affine metric if and only if it is properly embedded
in Rn+1 if and only if it is asymptotic to the boundary of a convex cone in
Rn+1 containing no lines. Our methods do not yet yield any insight into
the affine metric of evolving hypersurfaces. If the initial hypersurface
of the affine normal flow is the boundary of a convex cone containing
no lines, then at any positive time, the solution is the homothetically
expanding hyperbolic affine sphere asymptotic to the cone. Cheng-
Yau’s result implies the affine metric in this case is complete at any
positive time t. It will be interesting to determine whether, under the
affine normal flow, the affine metric is complete at any positive time for
any noncompact properly embedded initial hypersurface. Presumably a
parabolic version of the affine geometric gradient estimate of Cheng-Yau
is needed, as suggested by Yau [25].

When restricted to an affine hyperplane, the support function of a
hypersurface evolving under the affine normal flow satisfies

(1.1) ∂ts = −(det ∂2
ijs)

− 1
n+2 .

Gutiérrez and Huang [15] have studied a similar parabolic Monge-
Ampère equation

∂ts = −(det ∂2
ijs)

−1.

They prove that any ancient entire solution to this equation which a
priori satisfies bounds on the ellipticity must be an evolving quadratic
polynomial. Our Theorem 1.1 reduces to a similar result for (1.1): The
ellipsoid and paraboloid solitons provide ancient solutions to (1.1) which
can be represented, up to possible affine coordinate changes, by

s =

(
−

2n + 2

n + 2
t

) n+2
2n+2 √

1 + |y|2, s =
|y|2

2
− t
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respectively. Our result doesn’t require any a priori bounds on the
ellipticity. We do not require our solutions to be entire, but they do
solve a Dirichlet boundary condition. See Section 14 below.

We also mention a related theorem due to Jörgens [17] for n = 2,
Calabi [3] for n ≤ 5, and independently to Pogorelov [21] and Cheng-
Yau [6] for all dimensions:

Theorem 1.2. Any entire convex solution to

det ∂2
iju = c > 0

is a quadratic polynomial.

The graph of each such u is a parabolic affine sphere, and Cheng-
Yau’s classification provides the result. Our techniques do not yet yield
an independent proof of this classical theorem: We do not yet know if
the affine normal flow is unique for a given initial convex noncompact
hypersurface. Even though any parabolic affine sphere may naturally
be thought of as a translating soliton under the affine normal flow, the
flow we define, with the parabolic affine sphere as initial condition, may
not a priori be the same flow as the soliton solution, and thus may not
come from an ancient solution in our sense.

It is also interesting to compare our noncompact affine normal flow
with other geometric flows on noncompact hypersurfaces. In particular,
Ecker-Huisken and Ecker have studied mean-curvature flow of entire
graphs in Euclidean space [12] [13] and of spacelike hypersurfaces in
Lorentzian manifolds [9] [10] [11]. In [13], Ecker-Huisken prove that
any entire graph of a locally Lipschitz function moves under the mean
curvature flow in Euclidean space to be smooth at any positive time,
and the solution exists for all time. Ecker proves long-time existence for
any initial spacelike hypersurface in Minkowski space under the mean
curvature flow [10] and proves instantaneous smoothing for some weakly
spacelike hypersurfaces in [11].

In the present work, we prove instantaneous smoothing and long-time
existence for the affine normal flow on noncompact hypersurfaces for any
initial convex noncompact properly embedded hypersurface L ⊂ Rn+1

which contains no lines. In this case, the evolving hypersurface L(t)
under the affine normal flow exists for all time t > 0 (Theorem 8.2)
and is smooth for all t > 0 (Theorem 13.1). Moreover, the following
maximum principle at infinity is satisfied: If L1 and L2 are convex

properly embedded hypersurfaces whose convex hulls satisfy L̂1 ⊂ L̂2,

then for all t > 0, the convex hulls satisfy L̂1(t) ⊂ L̂2(t). This sort of
maximum principle at infinity does not hold for all evolution equations
of noncompact hypersurfaces. In particular, there is an example due
to Ecker [10], of two soliton solutions to the mean curvature flow in
Minkowski space, for which this fails.
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The affine normal flow is equivalent (up to a diffeomorphism) to the

hypersurface flow by K
1

n+2 ν, where K is the Gauss curvature and ν
is the inward unit normal. The techniques we use (the definitions and
ellipticity estimates) should apply to flows of noncompact convex hyper-
surfaces by other power of the Gauss curvature. Andrews [2] addresses
many aspects of the compact case of flow by powers of Gauss curva-
ture. In particular, he verifies that for α ≤ 1/n, any convex compact
hypersurface in Rn+1 evolves under the flow by Kαν to be smooth and
strictly convex at any positive time t. In essence, we verify this in the
noncompact case for α = 1/(n + 2) (see Theorem 13.1 below). We ex-
pect the same result to be true in the noncompact case for all α ≤ 1/n.
We should note that for α > 1/n, flat sides of any initial hypersurface
remain non-strictly convex for some positive time. We note that in the
case of the Gauss curvature flow in R3 (α = 1), Daskalopoulos-Hamilton
[8] study how the boundary of such a flat side evolves over time.

Our treatment of the affine normal flow is largely self-contained. In
Sections 2 and 3, we recall the definition of the affine normal and the
basic affine structure equations. We develop the computations neces-
sary by using notation similar to that of e.g. Zhu [26]: let F : U → Rn+1

represent a local embedding of a hypersurface for U ⊂ Rn a domain.
Then we derive the structure equations based on derivatives of F . Using
this notation, we develop the affine normal flow of the basic quantities
associated with the hypersurface in Sections 4, 5 and 6. The main
estimate we need on the cubic form is found in Section 5. These evo-
lution equations are all due to Andrews [1], and we include derivations
of them for the reader’s convenience. In Section 7, we introduce the
support function and some basic results we will need. We define our
affine normal flow on a noncompact convex hypersurface L in Section
8, basically as a limit of compact convex hypersurfaces approaching L
from the inside, and we verify that the soliton solutions behave properly
under our definition in Section 9.

In Section 10, we turn to the estimates that are the technical heart
of the paper. We prove an estimate of Andrews on the speed of the
support function evolving under affine normal flow [2]. In particular,
we verify that this estimate survives in the limit to our noncompact
hypersurface. In Section 11, we prove a version of a Pogorelov-type
estimate due to Gutiérrez-Huang [15], which bounds the Hessian of
the evolving support function, and in Section 12, we construct barriers
to ensure that Gutiérrez-Huang’s estimate applies. Krylov’s estimates
then ensure that the support function is smooth for all time t > 0. In
Section 13, we verify that the evolving hypersurface is smooth as well,
and relate the noncompact affine normal flow to a Dirichlet problem
for the support function in Section 14. The main results are proved in
Section 15.
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Our treatment of noncompact hypersurfaces as limits of compact hy-
persurfaces is a bit different from the usual analysis on noncompact
manifolds. Typically noncompact manifolds are exhausted by compact
domains with boundary (e.g. geodesic balls on complete Riemannian
manifolds or sublevel sets of a proper height function on a hypersurface
considered as a Euclidean graph), and then a version of the maximum
principle is shown to hold in the limit of the exhaustion. Our limiting
process is extrinsic, on the other hand: We apply the maximum principle
to |C|2 to derive Andrews’s pointwise bound on compact hypersurfaces
without boundary, which in turn survives in the limiting noncompact
hypersurface. It is still desirable to implement an approach by intrin-
sically exhausting the hypersurface, to be able to use the maximum
principle more directly on the evolving noncompact hypersurface. Per-
haps the description in Section 14 of the affine normal flow in terms of
a Dirichlet problem for the support function will be of some use.

Acknowledgements. We would like to thank S.-T. Yau for introduc-
ing us to the beautiful theory of affine differential geometry, Richard
Hamilton for many inspiring lectures on geometric evolution equations,
and D.H. Phong for his constant encouragement.

Notation. Subscripts after a comma are used to denote covariant der-
ivatives with respect to the affine metric. So the second covariant deriv-
ative of H is H,ij , for example. Of course the first covariant derivative
of a function is just ordinary differentiation, which commutes with the
time derivative ∂t. ∂i will denote an ordinary space derivative. We use
Einstein’s summation convention that any paired indices, one up and
one down, are to be summed from 1 to n. Unless otherwise noted, we
raise and lower indices using the affine metric gij .

2. The affine normal

Here we define the affine normal to a hypersurface in a similar way
to Nomizu-Sasaki [20], but using notation adapted to our purposes.

Let F = F (x1, . . . , xn) be a local embedding of a smooth, strictly
convex hypersurface in Rn+1. Let F : Ω → Rn+1, where Ω is a domain
in Rn. Let ξ̃ be a smooth transverse vector field to F . Now we may
differentiate to determine

∂2
ijF = g̃ij ξ̃ + Γ̃k

ij∂kF,(2.1)

∂iξ̃ = τ̃iξ̃ − Ãj
i∂jF.(2.2)

It is straightforward to check that g̃ij is a symmetric tensor, Γ̃k
ij is a tor-

sion free connection, τ̃i is a one-form, and Ãj
i is an endomorphism of the

tangent bundle. With respect to ξ̃, g̃ij is called the second fundamental

form and Ãj
i is the shape operator.
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Proposition 2.1. There is a unique transverse vector field ξ, called
the affine normal, which satisfies

1) ξ points inward. In other words, ξ and the hypersurface F (Ω) are
on the same side of the tangent plane.

2) τi = 0.
3) det gij = det(∂1F, . . . , ∂nF, ξ)2. The determinant on the left is that

of an n × n matrix, while the determinant on the right is that on
Rn+1.

Note we have dropped the tildes in quantities defined by the affine
normal (the connection term is an exception: see the next section).
Condition 1 implies that the second fundamental form gij is positive
definite, and thus we say gij is the affine metric. Condition 2 is that ξ
is equiaffine. Condition 3 is that the volume form on the hypersurface
induced by ξ and the volume form on Rn+1 is the same as the volume
form induced by the affine metric.

The following proof of Proposition 2.1 will be instructive in computing
the affine normal later on.

Proof. Given an arbitrary inward-pointing transverse vector filed ξ̃,
any other may be written as ξ = φξ̃+Zi∂iF , where φ is a positive scalar
function and Zi∂iF is a tangent vector field.

Condition 3 determines φ in terms of ξ̃: Plug ξ = φξ̃ + Zi∂iF into
(2.1), and the terms in the span of ξ̃ give

(2.3) gij = φ−1g̃ij .

Now Condition 3 shows that

φ−n det g̃ij = det gij = det(∂1F, . . . , ∂nF, ξ)2 = φ2 det(∂1F, . . . , ∂nF, ξ̃)2,

and so

(2.4) φ =

(
det g̃ij

det(∂1F, . . . , ∂nF, ξ̃)2

) 1
n+2

.

Finally, we use the equiaffine condition to determine Zi: Plug in for
ξ, set τi = 0, and consider the terms in the span of ξ̃ to find

−Aj
i∂jF = ∂i(φξ̃ + Zj∂jF )

= ∂iφ ξ̃ + φ∂iξ̃ + ∂iZ
j ∂jF + Zj ∂2

ijF

= ∂iφ ξ̃ + φ(τ̃iξ̃ − Ãj
i∂jF ) + ∂iZ

j ∂jF + Zj(g̃ijξ + Γ̃k
ij∂kF ),

0 = ∂iφ + φ τ̃i + Zj g̃ij ,

Zj = −g̃ij(∂iφ + φ τ̃i),(2.5)

where g̃ij is the inverse matrix of g̃ij . q.e.d.
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Corollary 2.1. The affine normal is invariant under volume-pre-
serving affine automorphisms of Rn+1. In other words, if Φ is such an
affine map, and ξ is the affine normal filed to a hypersurface F (Ω), then
Φ∗ξ is the affine normal to (Φ ◦ F )(Ω).

Proof. The defining conditions in the proposition are invariant under
affine volume-preserving maps on Rn+1. q.e.d.

3. Affine structure equations

Consider a smooth, strictly convex hypersurface in Rn+1 given by
the image of an embedding F = F (x1, . . . , xn). The affine normal is
an inward-pointing transverse vector field to the hypersurface, and we
have the following structure equations:

∂2
ijF = gijξ + (Γk

ij + Ck
ij)F,k(3.1)

ξ,i = −Ak
i F,k.(3.2)

Here gij is the affine metric, which is positive definite. Γk
ij are the

Christoffel symbols of the metric. Since Γk
ij + Ck

ij is a connection, Ck
ij

is a tensor called the cubic form. Ak
i is the affine curvature, or affine

shape operator. Equation (3.1) shows immediately that

Ck
ij = Ck

ji.

Now consider the second covariant derivatives with respect to the
affine metric

F,ij = ∂2
ijF − Γk

ijF,k

= gijξ + Ck
ijF,k(3.3)

ξ,ij = −Ak
i,jF,k − Ak

i F,kj

= −Ak
i,jF,k − Aijξ − Ak

i C
ℓ
kjF,ℓ.

Since ξ,ij = ξ,ji, we have
Aij = Aji

and the following Codazzi equation for the affine curvature:

(3.4) Ak
j,i − Ak

i,j = Aℓ
iC

k
ℓj − Aℓ

jC
k
ℓi,

Ajk,i = Aji,k + Al
iCljk − Al

jClik.

Finally, consider the third covariant derivative of F

F,ijk = gijξ,k + Cℓ
ij,kFℓ + Cℓ

ijF,ℓk

= −gijA
ℓ
kF,ℓ + Cℓ

ij,kF,ℓ + Cijkξ + Cm
ij Cℓ

mkF,ℓ.

Recall the conventions for commuting covariant derivatives of tensors
by using the Riemannian curvature Rℓ

ijk:

vh
,ji − vh

,ij = Rh
ijkv

k, and wk,ji − wk,ij = −Rh
ijkwh.
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Therefore,

−Rℓ
jkiF,ℓ = F,ikj − F,ijk

= −gikA
ℓ
jF,ℓ + Cℓ

ik,jF,ℓ + Cikjξ + Cm
ikCℓ

mjF,ℓ

+ gijA
ℓ
kF,ℓ − Cℓ

ij,kF,ℓ − Cijkξ − Cm
ij Cℓ

mkF,ℓ.

From the part of this equation in the span of ξ, we see

Cikj = Cijk,

and so the cubic form is totally symmetric in all three indices. Lower
the index Rjkℓi = Rm

jkigmℓ and compute 2Rjkℓi = Rjkℓi − Rjkiℓ to find

(3.5)
Rjkℓi = 1

2gikAjℓ −
1
2gijAkℓ −

1
2gℓkAji + 1

2gℓjAki − Cm
ikCmjℓ + Cm

ij Cmkℓ,

Rℓ
jki = 1

2(gikA
ℓ
j − gijA

ℓ
k − δℓ

kAji + δℓ
jAki) − Cm

ikCℓ
mj + Cm

ij Cℓ
mk,

and the Ricci curvature of the affine metric

Rki = gjℓRjkℓi = 1
2gikH + n−2

2 Aki + Cmℓ
i Cmkℓ.

Note here that H = Ai
i is the affine mean curvature.

On the other hand we may compute 0 = Rjkiℓ + Rjkℓi to find the
following Codazzi equation for the cubic form:

(3.6) Cijℓ,k − Cikℓ,j = 1
2gijAkℓ −

1
2gikAjℓ + 1

2gℓjAki −
1
2gℓkAji.

Thus far, we have only used equations (3.1) and (3.2) to derive the
structure equations. The only constraint is that the transversal vector
field ξ be equiaffine. The position vector and the Euclidean normal are
also equiaffine. Another important property of the affine normal is the
following apolarity condition

(3.7) Ci
ij = 0,

which follows from taking the first covariant derivative of Condition 3
in Proposition 2.1:

0 = ∂j det(F,1, . . . , F,n, ξ)

= det(F,1j , . . . , F,n, ξ) + · · ·

+ det(F,1, . . . , F,nj , ξ) + det(F,1, . . . , F,n, ξ,j)

= C1
1j det(F,1, . . . , F,n, ξ) + · · · + Cn

nj det(F,1, . . . , F,n, ξ) + 0

=
(
Ci

ij

)
det(F,1, . . . , F,n, ξ).

The apolarity condition and (3.3) imply the following formula for the
affine normal in terms of the metric:

ξ =
∆F

n
.
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4. Evolution of ḡij, gij and K

Let Mn be an n-dimensional smooth manifold and let F (·, t) : Mn 7→
Rn+1 be a one-parameter family of smooth hypersurface immersions in
Rn+1. We say that it is a solution of the affine normal flow if

∂tF =
∂F (x, t)

∂t
= ξ , x ∈ Mn , t > 0(4.1)

where ξ is affine normal flow on F (·, t).
In a local coordinate system {xi}, 1 ≤ i ≤ n. The Euclidean inner

product 〈·, ·〉 on Rn+1 induces the metric ḡij and the Euclidean second
fundamental form hij on F (·, t). These can be computed as follows:

ḡij = 〈∂iF, ∂jF 〉

and

hij = 〈∂2
ijF, ν〉,

where ν is the unit inward normal on F (·, t). The Gaussian curvature
is

K =
det hij

det ḡij
.

By (2.3) and (2.4), the affine metric is

gij =
hij

φ
, where φ = K

1
n+2 .

(Note that det ḡij = det(∂1F, . . . , ∂nF, ν)2.) Proposition 2.1 shows that
the affine normal is

(4.2) ξ = −hki ∂iφ∂kF + φν = −gki ∂i(lnφ) ∂kF + φν.

(Note that ν is equiaffine.) Also recall the affine curvature {Ak
j } is

defined by

(4.3) ∂jξ = −Ak
j ∂kF.

As we’ll see below in Section 7, the support function of a smooth
convex hypersurface is defined by

s = −〈F, ν〉.
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Proposition 4.1. Under the affine normal flow,

∂tF,i = −Ak
i F,k,

∂tν = 0,

∂jν = −hjlḡ
lmF,m,

∂tḡij = −(Ak
i ḡkj + Ak

j ḡki),

∂tḡ
ij = Ai

kḡ
kj + Aj

kḡ
ki,

∂t det ḡij = −2H det ḡij ,

∂thij = −φAij ,

∂t dethij = −H det hij ,

∂tK = HK,

∂tφ =
H

n + 2
φ,

∂tgij = −
H

n + 2
gij − Aij ,

∂ts = −φ.

Proof. We interchange partial derivatives and use equation (4.1) to
get

∂tF,i = ∂2
tiF = ∂iξ = −Ak

i F,k.

Note we have also used the definition of affine curvature in equation
(4.3).

Since ∂tν is a tangent vector,

∂tν = 〈∂tν, F,i〉ḡ
ijF,j

= −〈ν, ∂2
tiF 〉ḡijF,j

= −〈ν,−Ak
i F,k〉ḡ

ijF,j

= 0.

∂pν = 〈∂pν, F,i〉ḡ
ijF,j

= −〈ν, ∂2
piF 〉ḡijF,j

= −hpiḡ
ijF,j .

∂tḡij = ∂t〈∂iF, ∂jF 〉

= 〈∂2
tiF, ∂jF 〉 + 〈∂iF, ∂2

tjF 〉

= 〈−Ak
i ∂kF, ∂jF 〉 + 〈∂iF,−Al

j∂lF 〉

= −Ak
i ḡkj − Ak

j ḡki.
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∂t det ḡij = (det ḡlm)ḡij∂tḡij

= (det ḡlm)ḡij(−Ak
i ḡkj − Ak

j ḡki)

= −2(det ḡlm)H.

∂thij = ∂t〈∂
2
ijF, ν〉

= 〈∂3
tijF, ν〉 + 〈∂2

ijF, ∂tν〉

= 〈∂2
ijξ, ν〉

= 〈∂i(−Ak
j ∂kF ), ν〉

= −Ak
j hik.

∂t det hij = (det hlm)hij∂thij

= (det hlm)hij(−Ak
j hik)

= −(det hlm)H

Recall the formulas for the Gaussian curvature K, the affine metric
gij and φ:

K =
dethij

det ḡij
, gij =

hij

φ
, φ = K

1
n+2 .

Thus, lowering the index on Ak
i by the affine metric,

∂thij = −Ak
i hkj = −φhklAlihkj = −φAij ,

∂tK = ∂t

(
det hij

det ḡij

)

=
(∂t dethij) det ḡij − det hij(∂t det ḡij)

(det ḡij)2

= HK.

and

∂tφ =
1

n + 2
Hφ.
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Thus

∂tgij = ∂t

(
hij

φ

)

= (∂thij)

(
1

φ

)
−

hij

φ2
∂tφ

= (−φAij)

(
1

φ

)
−

hij

φ2

(
1

n + 2
Hφ

)

= −
H

n + 2
gij − Aij .

∂ts = −〈∂tF, ν〉 − 〈F, ∂tν〉 = −〈φν, ν〉 − 0 = −φ.

q.e.d.

5. Evolution of the cubic form

We use the structure equation (3.1) to compute the evolution of the
cubic form. First, we need to find the evolution of the affine normal ξ
and of the Christoffel symbols.

Proposition 5.1. Under the affine normal flow,

∂tξ = −
1

n + 2
gijH,i F,j +

H

n + 2
ξ

=
1

n + 2
∆ξ +

2

n + 2
Hξ +

4

n + 2
Am

i Cik
mF,k.

Proof. Recall ξ = −gki(lnφ),iF,k + φν. First note

∂tg
iq = −giℓ(∂tgℓm)gmq = −giℓ

(
−

H

n + 2
gℓm − Aℓm

)
gmq(5.1)

=
H

n + 2
giq + Aiq.

Then compute using Proposition 4.1

∂tξ = ∂t

(
−gki(lnφ),iF,k + φν

)

= −(∂tg
ki)(lnφ),iF,k − gki(∂t lnφ),i)F,k

− gki(lnφ),i(∂tF,k) + (∂tφ)ν + 0

= −

(
H

n + 2
gki + Aki

)
(lnφ),iF,k − gki

(
H

n + 2

)

,i

F,k

+ gki(lnφ),iA
ℓ
kF,ℓ +

H

n + 2
φν

= −
1

n + 2
gijH,iF,j +

H

n + 2
ξ.
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From equation (3.3), we have

∆ξ = gijξ,ij = gij(−Ak
i,jF,k − Aijξ − Ak

i C
ℓ
kjF,ℓ)

= −Hξ + gij(−Ak
i,jF,k − Ak

i C
ℓ
kjF,ℓ).

Now

gijAk
i,jF,k = gijgklAil,jF,k = gijgkl(Aij,l + Am

i Cmlj − Am
l Cmij)F,k

= gklH,lF,k + Am
i Cik

mF,k.

Hence

∆ξ = −Hξ − gklH,lF,k − 2Am
i Cik

mF,k

and (
∂t −

1

n + 2
∆

)
ξ =

2

n + 2
Hξ +

4

n + 2
Am

i Cik
mF,k.

q.e.d.

We also compute

∂tΓ
k
ij = ∂t

1
2gkl(∂igjℓ + ∂jgiℓ − ∂ℓgij).

Note ∂tΓ
k
ij is a tensor; therefore, we may choose normal coordinates so

that ∂kgij = Γk
ij = 0 at time t = 0. In these coordinates,

∂tΓ
k
ij = 1

2gkℓ

[
∂i

(
−

H

n + 2
gjℓ − Ajℓ

)
+ ∂j

(
−

H

n + 2
giℓ − Aiℓ

)

− ∂ℓ

(
−

H

n + 2
gij − Aij

)]

= −
1

2(n + 2)
[(∂iH)δk

j + (∂jH)δk
i − gkℓ(∂ℓH)gij ]

− 1
2(∂iA

k
j + ∂jA

k
i − gkℓ∂ℓAij)

= −
1

2(n + 2)
(H,iδ

k
j +H,jδ

k
i − gkℓH,ℓgij)−

1
2(Ak

j,i + Ak
i,j −gkℓAij,ℓ).

Now compute the evolution of F,ij

∂tF,ij = ∂t∂
2
ijF − (∂tΓ

k
ij)F,k − Γk

ij∂tF,k

= (∂tF ),ij − (∂tΓ
k
ij)F,k

= ξ,ij +
1

2(n + 2)
(H,iδ

k
j + H,jδ

k
i − gkℓH,ℓgij)F,k

+ 1
2(Ak

j,i + Ak
i,j − gkℓAij,ℓ)F,k

= −Ak
i,jF,k − Aijξ − Aℓ

iC
k
ℓjF,k + 1

2(Ak
j,i + Ak

i,j − gkℓAij,ℓ)F,k

+
1

2(n + 2)
(H,iδ

k
j + H,jδ

k
i − gkℓH,ℓgij)F,k.
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On the other hand,

∂tF,ij = ∂t(gijξ + Ck
ijF,k)

=

(
−

H

n + 2
gij − Aij

)
ξ + gij

(
−

1

n + 2
gkℓH,ℓF,k +

H

n + 2
ξ

)

+ (∂tC
k
ij)F,k − Cℓ

ijA
k
ℓ F,k.

Therefore,

∂tC
k
ij = −Ak

i,j − Aℓ
iC

k
ℓj + 1

2(Ak
j,i + Ak

i,j − gkℓAij,ℓ)

+
1

2(n + 2)
(H,iδ

k
j + H,jδ

k
i − gkℓH,ℓgij)

+ Cℓ
ijA

k
ℓ +

1

n + 2
gijg

kℓH,ℓ

= −1
2Aℓ

iC
k
ℓj −

1
2Aℓ

jC
k
ℓi −

1
2gkℓAij,ℓ

+
1

2(n + 2)
(H,iδ

k
j + H,jδ

k
i − gkℓH,ℓgij)

+ Cℓ
ijA

k
ℓ +

1

n + 2
gijg

kℓH,ℓ.

The second line follows from the first by the Codazzi equation (3.4) for
Ak

i . Furthermore,

∂tCijm = ∂t(gkmCk
ij)

=

(
−

H

n + 2
gkm − Akm

)
Ck

ij −
1
2Aℓ

iCℓjm − 1
2Aℓ

jCℓim − 1
2Aij,m

+
1

2(n + 2)
(H,igjm + H,jgim−H,mgij) + Cℓ

ijAℓm +
1

n + 2
gijH,m

= −
H

n + 2
Cijm +

1

2(n + 2)
(H,igjm + H,jgim + H,mgij)

− 1
2(Aij,m − Aℓ

mCℓij) −
1
2Aℓ

iCℓjm − 1
2Aℓ

jCℓim − 1
2Aℓ

mCℓij .

Note the first term in the last line is totally symmetric by the Codazzi
equation (3.4) for Ak

i .
Now we compute the Laplacian of the cubic form. We use apolarity

(3.7), the Codazzi equations (3.4) and (3.6) for A and C respectively,
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and the curvature equation (3.5).

0 = gjkCijk,ℓm

= gjk(Ciℓk,jm + 1
2gijAkℓ,m − 1

2giℓAjk,m + 1
2gkjAℓi,m − 1

2gkℓAji,m)

= gjkCiℓj,km + 1
2Aiℓ,m − 1

2giℓH,m + 1
2nAℓi,m − 1

2Aℓi,m

= gjk(Ciℓj,mk − RkmipC
p
ℓj − RkmℓpC

p
ij − RkmjpC

p
iℓ)

− 1
2giℓH,m + 1

2nAℓi,m

= gjkCiℓj,mk − 1
2giℓH,m + 1

2nAℓi,m

− Cpk
ℓ [12(gikAmp − gimAkp − gpkAmi + gpmAki)

− Cr
ikCmrp + Cr

imCkrp]

− Cpk
i [12(gℓkAmp − gℓmAkp − gpkAmℓ + gpmAkℓ)

− Cr
ℓkCmrp + Cr

ℓmCkrp]

− gjkCiℓp[
1
2(gjkAmp − gjmAkp − gpkAmj + gpmAkj)

− Cr
jkCmrp + Cr

jmCjrp]

= gjkCijℓ,mk − 1
2giℓH,m + 1

2nAℓi,m

+ 1
2gimAp

kC
k
pℓ −

1
2Aj

iCmℓj + 2Cr
ikC

p
mrC

k
pℓ − Cr

imCp
krC

k
pℓ + 1

2gℓmAp
kC

k
pi

− 1
2AkℓC

k
mi − Cr

ℓmCp
krC

k
pi −

1
2nAp

mCpiℓ −
1
2HCmiℓ − Cr

jmCj
rpC

p
iℓ

= gjkCiℓm,jk + 1
2Amℓ,i −

1
2gimAk

ℓ,k + 1
2Ami,ℓ

− 1
2gℓmAk

i,k − 1
2giℓH,m + 1

2nAℓi,m

+ 1
2gimAp

kC
k
pℓ −

1
2Aj

iCmℓj + 2Cr
ikC

p
mrC

k
pℓ − Cr

imCp
krC

k
pℓ + 1

2gℓmAp
kC

k
pi

− 1
2AkℓC

k
mi − Cr

ℓmCp
krC

k
pi −

1
2nAp

mCpiℓ −
1
2HCmiℓ − Cr

jmCj
rpC

p
iℓ.

Now the Codazzi equation (3.4) for Ak
i and the apolarity condition (3.7)

imply

Ak
i,k = Ak

k,i + Aℓ
kC

k
ℓi − Aℓ

iC
k
ℓk = H,i + Ap

kC
k
pi.

Apply this identity and the Codazzi equation (3.4) for Ak
i to the first

two occurrences of the covariant derivatives of A to find

∆Ciℓm = gjkCiℓm,jk = 1
2gimH,ℓ

+ 1
2gℓmH,i + 1

2giℓH,m + 1
2(n + 2)(Ak

mCkiℓ − Aℓi,m)

− 2Cr
ikC

p
mrC

k
pℓ + Cr

imCp
krC

k
pℓ + Cr

ℓmCp
krC

k
pi

+ Cr
jmCj

rpC
p
iℓ + 1

2HCmiℓ.
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Together with the evolution equation of C, compute

∂tCijk =
1

n + 2
∆Cijk −

3H

2(n + 2)
Cijk +

2

n + 2
Cm

iℓ Cp
kmCℓ

pj

−
1

n + 2
(Cm

ikCp
ℓmCℓ

pj + Cm
jkC

p
ℓmCℓ

pi + Cm
ℓkCℓ

mpC
p
ij)

−
1

2
(Aℓ

iCℓjk + Aℓ
jCℓik + Aℓ

kCℓij).

To compute ∂t|C|2, use (5.1) to show

∂t|C|2 = ∂t(Cijkg
iqgjrgksCqrs)

= 3Cijk(∂tg
iq)Crs

q + 2(∂tCijk)C
ijk

=
3H

n + 2
|C|2 + 3Cr

ikA
iqCk

qr +
2

n + 2
∆CijkC

ijk −
3H

n + 2
|C|2

+
4

n + 2
Cm

iℓ Cp
kmCℓ

pjC
ijk −

6

n + 2
Cm

ikCp
ℓmCℓ

pjC
ijk − 3AiℓCj

ℓkC
k
ij

=
2

n + 2
∆CijkC

ijk +
4

n + 2
Cm

iℓ Cp
kmCℓ

pjC
ijk −

6

n + 2
|P |2

for Pij = Ck
iℓC

ℓ
jk. Finally compute ∆|C|2 = 2∆CijkC

ijk + 2|∇C|2 to
find

∂t|C|2 =
1

n + 2
∆|C|2−

2

n + 2
|∇C|2+

4

n + 2
Cm

iℓ Cp
kmCℓ

pjC
ijk−

6

n + 2
|P |2.

Now if Yijkl = Cm
ij Cklm − Cm

ikCjlm, we find

0 ≤
1

2
|Y|2 = |P |2 − Cm

iℓ Cp
kmCℓ

pjC
ijk,

and so

∂t|C|2 ≤
1

n + 2
∆|C|2 −

2

n + 2
|P |2 ≤

1

n + 2
∆|C|2 −

2

n(n + 2)
|C|4,

since |C|2 = P i
i , and thus Cauchy-Schwartz applied to the eigenvalues

of P implies |P |2 ≥ 1
n |C|4. We note this estimate of Andrews [1] is

a parabolic version of an estimate of Calabi [4] on the cubic form on
affine spheres, and is related to Calabi’s earlier interior C3 estimates of
solutions to the Monge-Ampére equation [3].

The maximum principle implies the following estimate for |C|2 then:
If L is any compact smooth strictly convex hypersurface evolving as
L(t) under the affine normal flow, then

sup
L(t)

|C|2 ≤
1

(supL(0) |C|2)−1 + 2
n(n+2) t

.

Thus we get the following bound independent of initial data:
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Proposition 5.2 (Andrews [1]). Let L be any compact smooth strictly
convex hypersurface evolving under the affine normal flow. Then

sup
L(t)

|C|2 ≤
n(n + 2)

2t
.

6. Evolution of the affine curvature

In this section, we treat the evolution of the affine curvature Ai
k, as

computed by Andrews [1], and also the evolution of the affine conormal
vector U . At each point, U is defined by

(6.1) 〈U, ξ〉 = 1, 〈U, F,i〉 = 0, i = 1, . . . , n.

(It should be clear that in this case, we are using the Euclidean inner
product 〈·, ·〉 only for notational convenience. As its name suggests, the
conormal vector U is more naturally a vector in the dual space to Rn+1,
not a vector in Rn+1 itself.)

Proposition 6.1. Under the affine normal flow,

∂tU = −
H

n + 2
U =

1

n + 2
∆U,

∂tA
k
i = Aj

iA
k
j +

1

n + 2
H,ℓi g

ℓk +
1

n + 2
H,ℓ gℓjCk

ji +
H

n + 2
Ak

i ,

∂tAij =
1

n + 2
H,ij +

1

n + 2
H,ℓ gℓkCijk,

∂tH =
1

n + 2
∆H + |A|2 +

1

n + 2
H2.

∂tAij =
1

n + 2
∆Aij −

1

n + 2

(
2ApkCpmkC

m
ij + 2AmlCmij,l + Ap

i CpmlC
ml
j

+ C lp
i ClpmAm

j − 2Ap
l CpmiC

ml
j − gijA

k
mAm

k + nAm
i Amj

)
.

Proof. Compute ∂tU by differentiating its defining equation (6.1):

〈∂tU, ξ〉 = −〈U, ∂tξ〉 = −

〈
−

1

n + 2
gijH,iF,j +

H

n + 2
ξ

〉
= −

H

n + 2
.

〈∂tU, F,i〉 = −〈U, ∂tF,i〉 = −〈U,−Ak
i F,k〉 = 0,

∂tU = −
H

n + 2
U.

Similarly, covariantly differentiate in space to find

〈U,i, ξ〉 = −〈U, ξ,i〉 = −〈U,−Ak
i F,k〉 = 0,

〈U,i, F,j〉 = −〈U, F,ij〉 = −〈U, gijξ + Ck
ijF,k〉 = −gij ,

〈U,ij , ξ〉 = −〈U,i, ξ,j〉 = −〈U,i,−Al
jF,l〉 = −gilA

l
j = −Aij ,

〈U,ij , F,k〉 = −〈U,i, F,kj〉 = −〈U,i, gkjξ + C l
kjF,l〉 = gilC

l
kj = Cijk.
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Now for ∆U = gijU,ij , we have 〈gijU,ij , ξ〉 = −H, 〈gijU,ij , F,k〉 =
gijCijk = 0 by the apolarity of the cubic form. So ∆U = −HU and

∂tU =
1

n + 2
∆U.

To compute ∂tA
i
k, we use the defining equation for A: ξ,i = −Ak

i F,k.
Take ∂t to find

(
−

1

n + 2
H,ℓg

ℓkF,k +
H

n + 2
ξ

)

,i

= ∂tξ,i = −∂t(A
k
i Fk)

= −(∂tA
k
i )F,k + Ak

i A
j
kF,j .

So we have

(∂tA
k
i )F,k = Ak

i A
j
kF,j −

(
−

1

n + 2
H,ℓg

ℓkF,k +
H

n + 2
ξ

)

,i

= Ak
i A

j
kF,j −

1

n + 2
[−H,ℓig

ℓkF,k − H,ℓg
ℓkF,ki

+ H,iξ − HAk
i F,k]

=

(
Aj

iA
k
j +

1

n + 2
H,ℓig

ℓk +
1

n + 2
H,ℓg

ℓjCk
ji +

H

n + 2
Ak

i

)
F,k.

Here we have used the structure equation (3.1).

∂tAim = ∂t(gkmAk
i )

(6.2)

= gkm

(
Aj

iA
k
j +

1

n + 2
H,ℓig

ℓk +
1

n + 2
H,ℓg

ℓjCk
ji +

H

n + 2
Ak

i

)

+ Ak
i

(
−

H

n + 2
gkm − Akm

)

=
1

n + 2
H,mi +

1

n + 2
H,ℓC

ℓ
im.

Finally,

∂tH = ∂tA
i
i

= Aj
iA

i
j +

1

n + 2
H,ℓi g

ℓi +
1

n + 2
H,ℓ gℓjCi

ji +
H

n + 2
Ai

i

=
1

n + 2
∆H + |A|2 +

H2

n + 2

by the apolarity condition Ci
ji = 0. q.e.d.
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∆Aij = gklAij,kl = gklAji,kl

= gkl(Am
k Cmij + Ajk,i − Am

i Cmjk)l

= gkl(Amk,lC
m
ij + Am

k Cmij,l + Ajk,il − Ami,lC
m
jk − Am

i Cmjk,l)

Ajk,il = Ajk,li + Rm
iljAmk + Rm

ilkAjm

= Akj,li −
[

1
2(−gljA

m
i + gijA

m
l + δm

l Aij − δm
i Alj)

+ Cp
ljC

m
pi − Cp

ijC
m
pl

]
Amk

−
[

1
2(−glkA

m
i + gikA

m
l + δm

l Aik − δm
i Alk)

+ Cp
lkC

m
pi − Cp

ikC
m
pl

]
Amj

Ajk,li = Akl,ji + (Am
l Cmjk − Am

j Cmlk)i

= Akl,ji + (Aml,iC
m
jk + Am

l Cmjk,i − Amj,iC
m
lk − Am

j Cmlk,i)

gklAjk,il = H,ij + Aml,iC
ml
j + Am

l C l
mj,i −

1
2gijA

m
l Al

m + n
2 Am

i Amj

− Cp
ljC

m
pi A

l
m + Cp

ijC
m
pl A

l
m + Cp

ikC
k
pmAm

j

Am
l C l

mj,i = AmkCmkj,i

= AmkCmjk,i

= Amk[Cmji,k + 1
2(gmkAji + gjkAmi − gmiAjk − gjiAmk)]

= AmkCmij,k + 1
2HAij −

1
2gijAmkA

mk

gklAjk,il = H,ij + Aml,iC
ml
j + AmkCmij,k + 1

2HAij

− 1
2gijAmkA

mk − 1
2gijA

m
l Al

m

+ n
2 Am

i Amj − Cp
ljC

m
pi A

l
m + Cp

ijC
m
pl A

l
m + Cp

ikC
k
pmAm

j

∆Aij = gkl(Amk,lC
m
ij + Am

k Cmij,l + Ajk,il − Am
i,lCmjk − Am

i Cmjk,l)

= gkl(Amk,lC
m
ij + Am

k Cmij,l + Ajk,il − Am
i,lCmjk − Am

i Cmjk,l).
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By the Codazzi equations (3.4) and (3.6),

gklAmk,lC
m
ij = H,mCm

ij + ApkCpmkC
m
ij ,

gklAm
l,iCmjk = gklAmi,lC

m
jk + Ap

i CmplC
ml
j − Ap

l CmpiC
ml
j ,

gklAm
i Cmjk,l =

1

2
(HAij + Am

i Amj − Am
i Amj − nAm

i Amj)

=
1

2
(HAij − nAm

i Amj).

Hence

∆Aij = gkl(Amk,lC
m
ij + Am

k Cmij,l + Ajk,il − Am
i,lCmjk − Am

i Cmjk,l)

= H,mCm
ij + ApkCpmkC

m
ij + AmlCmij,l

+ H,ij + Aml,iC
ml
j + AmkCmij,k

+ 1
2HAij −

1
2gijAmkA

mk − 1
2gijA

m
l Al

m + n
2 Am

i Amj − Cp
ljC

m
pi A

l
m

+ Cp
ijC

m
pl A

l
m + Cp

ikC
k
pmAm

j − Ami,lC
ml
j − 1

2(HAij − nAm
i Amj)

= H,ij + H,mCm
ij + 2ApkCpmkC

m
ij + 2AmlCmij,l

+ Ap
i CpmlC

ml
j + Am

j ClpmC lp
i

− 2AplgmnCpmiClnj − gijA
k
mAm

k + nAm
i Amj .

By the evolution equation (6.2) of Aij ,

∂tAij =
1

n + 2
∆Aij −

1

n + 2

(
2ApkCpmkC

m
ij + 2AmlCmij,l + Ap

i CpmlC
ml
j

+ C lp
i ClpmAm

j − 2Ap
l CpmiC

ml
j − gijA

k
mAm

k + nAm
i Amj

)
.

7. The support function

In this section, we recall some standard facts about the support func-
tion of a convex body in Rn+1, derive the equation satisfied by the
support function under the affine normal flow, and use convexity to
prove local C0 and C1 estimates for support functions of a family of
smooth bounded convex domains exhausting a general convex domain.

Below we will consider the following situation: Let K =
⋃∞

i=1 K
i be

a convex domain in Rn+1 exhausted by bounded convex domains Ki.
Our initial hypersurface L = ∂K will then be considered as a limit of
the more regular hypersurfaces Li = ∂Ki. Let Li(t) and L(t) denote
the affine normal flow with initial hypersurface Li and L respectively.

Then, for an initial convex hypersurface L = ∂K = ∂
(⋃∞

i=1 K
i
)
, we

want local uniform estimates of the affine normal flow Li(t) as Li(t) →
L(t). In this section, we recall some standard facts about the support
function and use convexity to prove C0 and C1 estimates locally in
D◦(sK).
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Recall that for L = ∂K, the support function is defined for Y ∈ Rn+1

by
s(Y ) = sup

x∈K
〈x, Y 〉.

Here are some important properties of the support function (see Rock-
afellar [22]). First of all, recall equation (7.2) that in the case L is
smooth and strictly convex, the total derivative of the support function
ds = F the embedding. In our case, L may not be smooth and strictly
convex; but we may still recover the convex domain K from the support
function. Take the Legendre transform of s : For x ∈ Rn+1, let

δ(x) = sup
Y ∈Rn+1

〈x, Y 〉 − s(Y ).

Then δ is the indicator function of the closed convex set K̄. In other
words,

δ(x) =

{
0 for x ∈ K̄

+∞ for x /∈ K̄.

Let D(s) = s−1(−∞, +∞) ⊂ Rn+1 be the domain of the support
function s, and let D◦(s) denote the interior of the domain. The support
function of a convex domain K is always a convex, lower-semicontinuous
function s : Rn+1 → (−∞, +∞] of homogeneity one. Moreover, any con-
vex lower-semicontinuous function s : Rn+1 → (−∞, +∞] of homogene-
ity one is the support function of a closed convex set so long as s is not
identically +∞. The support function, since it is convex, is continuous
on D◦(s) but may not be continuous on all of D(s).

The following lemma follows from the description above of the Le-
gendre transform of the support function:

Lemma 7.1. If Q1 and Q2 are closed convex subsets of Rn+1, then
Q1 ⊂ Q2 if and only if the support functions sQ1 ≤ sQ2 on all Rn+1.

All of our estimates will be uniform on compact subsets of D◦(s) ×
(0, T ] for some positive time T . So we need the following lemma to start

Lemma 7.2. If K is a convex domain in Rn+1 which contains no
lines, then for the support function sK, D◦(sK) 6= ∅.

Proof. We prove the lemma by contradiction. If D◦(sK) = ∅, then
since D(sK) is a convex collection of rays, D(sK) must be contained in
a hyperplane H = {Y : 〈Y, v〉 = 0}. Since sK|H is a convex function of
homogeneity one on H, there is a linear function 〈Y, w〉 which is ≤ s on
H. Now consider the line L = {w+τv : τ ∈ R}, whose support function
is

sL(Y ) =

{
+∞ for 〈Y, v〉 6= 0
〈Y, w〉 for 〈Y, v〉 = 0.

By construction, sL ≤ sK on Rn+1, and so L ⊂ K̄ by Lemma 7.1. The
convex hull of L and any open ball in K then contains another line
contained in the open set K, and this provides a contradiction. q.e.d.
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Proposition 7.1. Let

K =
∞⋃

i=1

Ki

be convex bodies so that Ki ⊂ Ki+1. Then the support functions s = sK,
si = sKi satisfy si+1 ≥ si and si → s everywhere, and the convergence
is uniform on compact subsets of D◦(s). If, in addition, each Ki is
bounded with smooth, strictly convex boundary, then the C1 norm of si

is uniformly bounded on each compact subset of D◦(s).

Proof. First of all, it is clear from the definition of s that si+1 ≥ si,
and s(Y ) = limi→∞ si(Y ) for all Y ∈ Rn+1:

s(Y ) = sup
x∈K

〈x, Y 〉 = sup
x∈

S

Ki

〈x, Y 〉 = sup
i

sup
x∈Ki

〈x, Y 〉

= sup
i

sKi(Y ) = lim
i→∞

si(Y )

since {si(Y )} is an increasing sequence for all Y .
Let C ⊂ D◦ be a compact subset. Choose a compact C ′ ⊂ D◦ which

contains a neighborhood of C. Note that on all of D◦, for all i,

s1 ≤ si ≤ s.

Thus for Y ∈ ∂C, we have

|dsi(Y )| ≤
max∂C′ |s| − min∂C |s1|

dist (∂C ′, ∂C)
.

(Proof: For every direction v, consider si restricted to the line L through
Y with direction v. Then the directional derivative of si at Y is bounded
above by the slope of the secant line of the graph of si through Y and
a point in L ∩ ∂C ′.)

Since each si is convex, the same estimate is true on all of C. There-
fore, the C1 norm of all the si is bounded on C, and since we have point-
wise convergence, Ascoli-Arzelá implies uniform convergence of si → s
on C. q.e.d.

Now we recall the standard formulas for the support function of a
domain with smooth and strictly convex boundary, in particular relating
it to the Gauss curvature. We also derive the parabolic Monge-Ampère
equation the support function satisfies under the affine normal flow.

Recall above that ∂ts = −φ = −K
1

n+2 . We now derive some standard
formulas relating the Gauss curvature K to the support function s.

Recall s(Y ) is a convex function on Rn+1 which is homogeneous of
degree one. Let F (x) denote a local embedding of a smooth, strictly
convex hypersurface L = ∂K. Then at any F (x) ∈ L at which s(Y ) =
〈F (x), Y 〉, Y is perpendicular to the tangent space TF (x)L. By restrict-

ing to Y on the unit sphere Sn in Rn+1, we have a natural parametriza-
tion of L, which is given by the inverse of the Gauss map −ν. For
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F (x) ∈ L, let Y = −ν(x) be the outward normal. Then since L is
strictly convex, x 7→ Y is a local diffeomorphism for Y ∈ Sn, and we
can consider F = F (Y ) for Y ∈ Sn. We extend F to be homogeneous
of order zero:

F : Rn+1 \ {0} → Rn+1, F (Y ) = F

(
Y

|Y |

)
.

Then s(Y ) = −〈F, ν〉 and thus

(7.1) s(Y ) = 〈F, Y 〉

for all Y ∈ Rn+1 \ {0}.
It is useful to consider the support function restricted to an affine hy-

perplane of distance 1 to the origin in Rn+1. We may choose coordinates
so that

Y = (y,−1) = (y1, . . . , yn,−1).

By projecting from this hyperplane to Sn, we still have a local parametr-
ization of our hypersurface L, and (7.1) still holds. Now differentiate
(7.1) to find for i = 1, . . . , n

∂s

∂yi
=

〈
∂F

∂yi
, Y

〉
+ F i = F i

since Y is normal to L. Moreover, we use Euler’s formula

n+1∑

i=1

yi ∂F

∂yi
= 0

to show

∂F

∂yn+1
= −

1

yn+1

n∑

i=1

yi ∂F

∂yi
=

n∑

i=1

yi ∂F

∂yi
,

∂s

∂yn+1
=

〈
∂F

∂yn+1
, Y

〉
+ Fn+1

=

〈
n∑

i=1

yi ∂F

∂yi
, Y

〉
+ Fn+1

= Fn+1

since Y is normal to the image of F . Thus at any Y ∈ Rn+1 \ {0}, the
total derivative

(7.2) ds = (F 1, . . . , Fn+1) = F.
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Now differentiate 〈 ∂F
∂yi , Y 〉 = 0 to find for i, j = 1, . . . , n,

0 =
∂

∂yj

〈
∂F

∂yi
, Y

〉

=

〈
∂2F

∂yi∂yj
, Y

〉
+

∂F j

∂yi
,

∂2s

∂yi∂yj
=

∂F j

∂yi
= −

〈
∂2F

∂yi∂yj
, Y

〉

=

〈
∂2F

∂yi∂yj
, ν|Y |

〉

=
√

1 + |y|2
〈

∂2F

∂yi∂yj
, ν

〉

= hij

√
1 + |y|2.

Moreover, we compute for i, j = 1, . . . , n

ḡij =

〈
∂F

∂yi
,
∂F

∂yj

〉

=
n+1∑

k=1

∂F k

∂yi

∂F k

∂yj

=
∂Fn+1

∂yi

∂Fn+1

∂yj
+

n∑

k=1

∂2s

∂yi∂yk

∂2s

∂yj∂yk

=
∂F i

∂yn+1

∂F j

∂yn+1
+

n∑

k=1

∂2s

∂yi∂yk

∂2s

∂yj∂yk

=

(
n∑

k=1

∂F i

∂yk
yk

)(
n∑

l=1

∂F j

∂yl
yl

)
+

n∑

k=1

∂2s

∂yi∂yk

∂2s

∂yj∂yk

=
n∑

k,l=1

∂2s

∂yi∂yk
(ykyl + δkl)

∂2s

∂yj∂yl
,

det ḡij = det

(
∂2s

∂yi∂yk

)
det(ykyl + δkl) det

(
∂2s

∂yj∂yl

)

= (1 + |y|2) det

(
∂2s

∂yi∂yj

)2

.

So the Gaussian curvature

K =
dethij

det ḡij
= (1 + |y|2)−

n+2
2

(
det

∂2s

∂yi∂yj

)−1

,

φ = K
1

n+2 = (1 + |y|2)−
1
2

(
det

∂2s

∂yi∂yj

)− 1
n+2

.
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In order to address the evolution of s, we note a priori that there are
two natural parametrizations F of our hypersurface. First, the affine
normal flow defines a particular parametrization at time t > 0 given an
initial parametrization at time t = 0. On the other hand, for any hyper-
surface F (y, t), there is a natural parametrization in terms of the inverse
of the Gauss map −ν. These two parametrizations are compatible in
the following sense:

Proposition 7.2. Given a hypersurface L ⊂ Rn+1 parametrized by
the inverse of its Gauss map F : Sn → L, under the affine normal flow,
F (y, t) is still a parametrization by the inverse of the Gauss map.

Proof. The two parametrizations are related by the Gauss map −ν.
Under the affine normal flow, ν satisfies ∂tν = 0 by Proposition 4.1.
q.e.d.

Thus if we assume the initial parametrization is via the inverse of the
Gauss map, the formulas developed in this section are still valid under
the affine normal flow (and in any case the two parametrization merely
differ by a diffeomorphism).

Denote by s(y)

s(y) = s(y1, . . . , yn,−1) =
√

1 + |y|2 s

(
Y

|Y |

)

for Y/|Y | ∈ Sn. Thus we find under the affine normal flow

∂ts(y) =
√

1 + |y|2 ∂ts

(
Y

|Y |

)
= −φ

√
1 + |y|2 = −

(
det

∂2s

∂yi∂yj

)− 1
n+2

,

where we have used ∂ts = −φ from Proposition 4.1.
We record this as

Proposition 7.3. For any smooth solution to the affine normal flow,
the support function s(y) as defined above satisfies

(7.3) ∂ts(y) = −

(
det

∂2s

∂yi∂yj

)− 1
n+2

.

8. The flow

There is no question about the definition of affine normal flow begin-
ning at a smooth strictly convex compact hypersurface in Rn+1 (this is
true for any convex compact hypersurface by Andrews [2]). It is con-
venient to define the affine normal flow for an open convex domain in
Rn+1 by performing affine normal flow on the boundary of the domain.
In this way we let ΨtJ = J (t) denote the affine normal flow of J a
bounded domain with smooth strictly convex boundary in Rn+1. For t
larger than the extinction time, define ΨtJ = J (t) = ∅.
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Note to pass from a convex embedded hypersurface L to a domain J
with L = ∂J , set J to be the interior of the convex hull (L̂)◦.

Consider an open convex region K ⊂ Rn+1 which contains no lines.
Then the boundary ∂K is a properly embedded convex hypersurface in
Rn+1. We define the affine normal flow on the hypersurface ∂K by its
action on the interior of its convex hull K. Now we define the affine
normal flow on the hypersurface ∂K and on the region K by

(8.1) K(t) =
⋃

J⊂K

J (t),

where each J in (8.1) is a bounded domain with smooth strictly convex
boundary.

Lemma 8.1. If L is a compact convex hypersurface in Rn+1, then
our definition of the affine normal flow L(t) corresponds with the usual
one.

Proof. If L is strictly convex and smooth, then this follows at once
from the maximum principle. Otherwise, Andrews [2] shows that there

is a viscosity solution L̃(t) to the affine normal flow which is unique

provided that the Hausdorff distance from L̃(t) to L goes to zero as

t → 0. Moreover L̃(t) is smooth and strictly convex for positive t less
than the extinction time.

Our definition L(t) is clearly a viscosity solution, and the Hausdorff
convergence property is satisfied by Lemma 8.3 below. Therefore, An-
drews’s uniqueness result implies L̃(t) = L(t), and so our definition
coincides with the standard one in the compact case. q.e.d.

Remark 8.1. We recall (see e.g., [2]) that a viscosity solution to a
hypersurface flow problem is a family of hypersurfaces L(t) with initial
condition L(0) = L so that: 1) If J is a smooth hypersurface contained
in L, then the evolving hypersurface J (t) is contained in L(t) for all
t ∈ [0, T ], and 2) If J is a smooth hypersurface containing L, then the
evolving hypersurface J (t) contains L(t) for all t ∈ [0, T ]. In short, a
viscosity solution L(t) is one for which the maximum principle always
works, even if L(t) does not have C2 regularity.

The following proposition depends on estimates proved by Ben An-
drews in the case of compact hypersurfaces [2]. Below, we prove local
versions of the estimates needed.

Proposition 8.1. Let Ki and K be open convex bodies containing no
lines so that

K =
∞⋃

i=1

Ki, Ki ⊂ Ki+1.
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Then for all t > 0,

K(t) =
∞⋃

i=1

Ki(t).

Proof. Let J ⊂ K be a bounded domain with smooth, strictly convex
boundary. Then

J =
∞⋃

i=1

J i, J i = J ∩ Ki.

Then we claim that

(8.2) J (t) =
∞⋃

i=1

J i(t).

To prove the claim (8.2), we recall estimates of Andrews [2, Section
8] for compact convex hypersurfaces (we prove local versions of these
estimates below).

By exhausting J i =
⋃∞

j=1 I
i
j by nested domains Ii

j with smooth,

strictly convex boundary, the affine normal flow J i(t) is defined as a
limit as j → ∞ of the affine normal flow Ii

j(t). The support functions

sIi
j
→ sJ i uniformly on compact subsets of Rn+1 as j → ∞. The result-

ing C0 estimates automatically entail parabolic C2,1 estimates for posi-
tive t (see below), and then Krylov’s theory implies parabolic C2+α,1+ α

2

estimates. These estimates ensure that the limit sJ i(t) of the sIi
j
(t)

exists and is smooth for t > 0. Andrews shows this solution is unique
by applying barriers and the maximum principle.

The key point is that C0 estimates on the support function of convex
bounded regions imply local parabolic C2+α,1+ α

2 estimates of the affine
normal flow for all times t > 0. Since J =

⋃∞
i=1 J

i, we have that
sJ i → sJ locally in C0. Therefore, under the affine normal flow, sJ i(t)

converges to a limit s(t) locally in parabolic C2+α,1+ α
2 for t > 0. Since

J =
⋃∞

i=1 J
i, the limit s(t) converges uniformly on convex sets to sJ (0)

as t → 0. Andrews’s uniqueness argument then shows that s(t) = sJ (t)
and the claim (8.2) is proved.

Now use (8.2) to compute

K(t) =
⋃

J⊂K

J (t) =
⋃

J⊂K

(
∞⋃

i=1

J i(t)

)
⊂
⋃

J⊂K

(
∞⋃

i=1

Ki(t)

)
=

∞⋃

i=1

Ki(t).

(J of course represents bounded domains with smooth, strictly convex
boundaries.) On the other hand,

K(t) =
⋃

J⊂K

J (t) =
⋃

J⊂
S

∞

i=1 K
i

J (t) ⊃
∞⋃

i=1




⋃

J⊂Ki

J (t)



 =
∞⋃

i=1

Ki(t).
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This completes the proof of Proposition 8.1. q.e.d.

The following corollary ensures convexity:

Corollary 8.1. K(t) is convex for all t > 0 before the extinction
time.

Proof. Choose each Ki in the previous proposition to be a bounded
domain with strictly convex smooth boundary. Then K(t) is an increas-
ing union of convex sets. q.e.d.

We verify that our definition satisfies the semigroup property:

Lemma 8.2. ΨtΨsK = Ψt+sK.

Proof. We work in terms of the support functions. Let sK(Y, t) denote
the support function of the domain ΨtK. We claim

(8.3) sK(Y, t + s) = sΨsK(Y, t).

To prove the claim, write K =
⋃∞

i=1 K
i, where each Ki is a bounded

domain with smooth strictly convex boundary and Ki ⊂ Ki+1 for all i.
Since the semigroup property holds for each Ki, we have

Ψt+sK
i = ΨtΨsK

i =⇒ sKi(Y, t + s) = sΨsKi(Y, t)

for all t, s > 0 and Y ∈ Rn+1. Now let i → ∞. Propositions 7.1 and 8.1
then prove the claim (8.3).

The lemma follows from (8.3) because any open convex domain can
be recovered from its support function by taking the Legendre transform
[22]. q.e.d.

We also have a lemma on the continuity of the flow:

Lemma 8.3. For any τ ≥ 0, and K a convex body in Rn+1 containing
no lines,

K(τ) =
⋃

t>τ

K(t).

Proof. By the semigroup property, we may assume τ = 0. Consider
any point p ∈ K. Since K is open, there is a small ball around p
contained in K. This ball acts as a barrier under the affine normal flow,
and p ∈ K(t) for t > 0 the extinction time of the affine normal flow of
this ball. q.e.d.

By means of outer barriers, we show our definition actually corre-
sponds to the usual definition of affine normal flow for a smooth, strictly
convex hypersurface. Let Aff(n + 1) denote the special affine group
SL(n + 1) ⋉ Rn+1.
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Proposition 8.2. Let L ⊂ Rn+1 be a properly embedded convex hy-
persurface which contains no lines. Assume in a neighborhood of a point
p ∈ L that L is C2 and strictly convex. Then

∂L

∂t
(p) = ξp mod Tp(L(t)).

Remark 8.2. This proposition should also follow from the estimates
proved below (what is still needed in addition is a local version of An-
drews’s speed bound).

Proof. Note that of course the derivative ∂L
∂t (p) is defined only when

L(t) is locally parametrized. This parametrization defines the deriva-
tive, but different parametrizations may cause it to vary by an element
of the the tangent space Tp(L(t)).

Since Ψt is a semigroup, we may assume t = 0.
To proceed with the proof, we need a lemma on choosing nice coor-

dinates.

Lemma 8.4. Let p ∈ L ⊂ Rn+1, and let L be a C2 strictly convex
hypersurface near p. Then there is an element Φ ∈ SL(n+1, R)⋉Rn+1

so that p 7→ 0 and the image locally is

(8.4) Φ(L) =
{

xn+1 =
γ

2
|x|2 + o(|x|2)

}

for x = (x1, · · · , xn), γ > 0.

Proof. This amounts to using Aff(n+1) to choose coordinates. Use a
rotation to set the inward-pointing normal to be en+1, and translate so
that p is at the origin. We can still move the tangent plane {xn+1 = 0}
by an action of SL(n, R). Since L is strictly convex, we have

L =




xn+1 =
∑

i,j

aijx
ixj + o(|x|2)






for (aij) a positive definite symmetric matrix. Use the action of SL(n, R)
to send the ellipsoid aijx

ixj ≤ C to a sphere of the same volume. This
amounts to setting aij = γ

2 δij for a positive constant γ. q.e.d.

Locally we write L(t) = {xn+1 = f(t, x)} for f(0, x) = f(x) given
in (8.4). Modulo a tangential piece, the affine normal to L at 0 is

ξ = (det fij)
1

n+2 en+1 (see e.g., Nomizu-Sasaki, p. 48). Thus we want to
show that

∂f

∂t
(0) = (det fij)

1
n+2 .

In other words, we want to show
(8.5)

lim sup
t→0+

f(t, 0) − f(0, 0)

t
≤ (det fij)

1
n+2 ≤ lim inf

t→0+

f(t, 0) − f(0, 0)

t
.
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The left-hand inequality in (8.5) is equivalent to showing that for each

smooth strictly convex hypersurface H ⊂ L̂, p ∈ H, the affine normal

of H at p is ≤ (det fij)
1

n+2 . This is true by the definition. Consider

H a compact, strictly convex, C2 hypersurface so that H ⊂ L̂ and H
coincides with L in a neighborhood of the point p. Then the definition
gives L̂(t) ⊃ H(t) for all small positive t. Therefore, the left-hand
inequality in (8.5) is proved.

To show the right-hand inequality in (8.5), we find specific hyper-
boloid barriers whose en+1 component of the affine normal at p ap-

proaches (det fij)
1

n+2 .
So choose ǫ > 0. Then consider hyperboloids of the form

{xn+1 = G(x) =
√

α|x|2 + β −
√

β}

for α, β > 0. Then compute the Hessian matrix Gij(0) = β− 1
2 αδij . Fix

α and β so that β− 1
2 α = γ − ǫ so that

G(x) = Gβ(x) =

√√
β(γ − ǫ)|x|2 + β −

√
β.

Then for x in a small ball B near 0, G1(x) ≤ f(x) by (8.4). Now
since L is convex, L \ B lies above the graph of a function c|x| for c a
positive constant. Gβ(x) → 0 as β → 0+, and moreover ∂Gβ/∂β ≥ 0.
So we may choose β close to zero so that Gβ(x) ≤ f(x) on B and also
Gβ(x) ≤ c|x|. Therefore, L lies above the graph of Gβ(x), and the graph
of Gβ is a barrier to all compact hypersurfaces contained in L. The en+1

component of the affine normal of the graph of Gβ at 0 is given by

(
det

∂2Gβ

∂xi∂xj
(0)

) 1
n+2

= (γ − ǫ)
n

n+2 .

Therefore, by our definition of affine normal flow, we have

lim inf
t→0+

f(t, 0) − f(0, 0)

t
≥ (γ − ǫ)

n
n+2

for all ǫ > 0. Now let ǫ → 0 and Proposition 8.2 is proved. q.e.d.

An important and easy consequence of our definition is the following

Theorem 8.1 (Maximum principle at infinity). Consider two convex
domains K1 ⊂ K2. Then for all positive t, K1(t) ⊂ K2(t).

Remark 8.3. There are other natural flows for which such a global
maximum principal fails. For example, there is an example in Ecker
[10] in which two spacelike soliton solutions to the mean curvature flow
in Minkowski space cross at infinity in finite time.

Theorem 8.2 (Long Time Existence). Let K be an unbounded convex
domain in Rn+1 which contains no lines. Then for all t > 0, K(t) 6= ∅.
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Proof. It is well known that such a K contains an infinite half-cylinder
in Rn+1. Therefore, K contains ellipsoids of unbounded volume, which
in turn have unbounded extinction times (the ellipsoids are equivalent
under the action of Aff(n + 1) to spheres of unbounded volume; these
have unbounded extinction times, as in Example 1). The maximum
principle then completes the proof. q.e.d.

Proposition 8.3. If K is a convex domain in Rn+1 which contains
a line, then the affine normal flow leaves K unchanged.

Proof. Let p ∈ K and recall K is open. Then K contains a round
cylinder centered at p. This cylinder contains ellipsoids of arbitrarily
large volume centered at p, which act as barriers to the affine normal
flow. These barriers ensure that p is always in K(t). Thus K(t) = K for
all t ≥ 0. q.e.d.

9. Soliton solutions

It is well-known that solitons of the affine normal flow are the convex
properly embedded affine spheres—see Proposition 9.1 below. These
were classified by Cheng and Yau [6].

Proposition 9.1. Under the affine normal flow, an expanding soliton
is a hyperbolic affine sphere, a translating soliton is a parabolic affine
sphere, and a shrinking soliton is an elliptic affine sphere.

Proof. This is a simple local calculation. F = F (x) is a local embed-
ding of an expanding soliton which expands away from a central point
P at a given point in time if and only if

∂tF = ξ = λ(F − P ) + ZiF,i

for λ a positive constant and ZiF,i a tangent vector field.
The equiaffine condition of the affine normal (as in Proposition 2.1)

states that ξ,j is contained in the tangent space. Thus we compute

ξ,j = λF,j + ZiF,ij + Zi
,jF,i = (λδi

j + Zi
,j)F,i + Zi(gijξ + Ck

ijF,k).

By comparing both sides of the equation in the span of ξ, we find Zigij =
0, and so the tangential piece Zi = 0. Therefore, ξ = λ(F − P ), which
is the equation for a hyperbolic affine sphere centered at P . The cases
of shrinking and translating solitons are essentially the same. q.e.d.

So shrinking solitons are elliptic affine spheres, and the only properly
embedded examples are ellipsoids [6], which are images under Aff(n +
1) of the Euclidean spheres discussed above. Since they are compact,
Lemma 8.1 shows our definition corresponds with the classical one. We
record the example of the round sphere.
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Example 1. For a sphere of radius r in Rn+1, the affine normal ξ is

r−
n

n+2 times the unit inward normal vector. So then, the affine normal

flow ∂tF = ξ becomes the ODE dr/dt = −r−
n

n+2 , and so the radius at
time t satisfies

r(t) =

(
r

2n+2
n+2

0 −
2n + 2

n + 2
t

) n+2
2n+2

.

The extinction time of a sphere with initial radius r0 is

n + 2

2n + 2
r

2n+2
n+2

0 .

Note that if the initial radius (or the initial enclosed volume) of a family
of spheres tends to ∞, then the extinction time goes to ∞.

Translating solitons are parabolic affine spheres, and the only prop-
erly embedded examples are elliptic paraboloids. Expanding solitons
are hyperbolic affine spheres, and for every convex cone in Rn+1 con-
taining no lines, there is a homothetic family of hyperbolic affine spheres
asymptotic to the cone (for the standard round cone, these are simply
hyperboloids). In the next few examples, we verify that our definition
of affine normal flow leads to the correct behavior for these solitons.

Example 2. We consider the paraboloid L = {xn+1 = |x|2}. Our
affine normal flow Ψt is invariant under the action of Aff(n+1). Consider
a point P = (x̃1, . . . , x̃n+1) on the paraboloid. Then the following map
in Aff(n + 1) preserves the paraboloid:

(x1, . . . , xn, xn+1) 7→

(
x1 + x̃1, . . . , xn + x̃n, xn+1 + x̃n+1 + 2

n∑

i=1

xix̃i

)
.

This map sends the origin to P , and also sends

(0, . . . , 0, c) 7→ P + (0, . . . , 0, c).

Since Ψt is invariant under such transformations, each ΨtL = L(t) must
be a paraboloid xn+1 = |x|2+c(t), and since Ψt is the usual affine normal
flow pointwise, L(t) is the standard translating soliton.

Example 3. Let C be a convex cone in Rn+1 which contains no
lines and has the origin as vertex. Then C is invariant under scaling
by positive constants. Of course, such homothetic scalings are not in
Aff(n + 1) in general, but we can still use the scaling properties of the
usual affine normal flow to determine how ΨtC = C(t) scales in time.

It is straightforward to check that for each compact convex region K
and scale parameter λ > 0,

Ψt(λK) = λΨtλ−(2n+2)/(n+2)K.

Because

K ⊂ C ⇐⇒ λK ⊂ C,
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and by our definition of Ψt,

Ψt(C) = Ψt(λC) = λΨtλ−(2n+2)/(n+2)C

for all λ > 0. Thus for all t > 0, we have

ΨtC = t
n+2
2n+2 Ψ1C.

Thus the hypersurface evolving from any such cone C scales as a hyper-
bolic affine sphere under the affine normal flow. Indeed, this expanding
soliton is (homothetic scalings of) Cheng-Yau’s hyperbolic affine sphere.
The local regularity results below will prove that this viscosity solution
is the same as Cheng-Yau’s smooth solution.

If the cone C is homogeneous, then we can use the full affine symmetry
group to conclude much more. Below we analyze the affine normal flow
of Calabi’s example [4]. The case of the hyperboloid is similar (the
symmetry group being the Lorentz group in this case).

Example 4. Let C = C(0) be the boundary of the first orthant. Then
since C is invariant under multiplying all the coordinates by positive
scalars, and the flow is invariant under Aff(n + 1), C(t) is invariant
under the group

G = {(λ1, . . . , λn+1) : λi > 0,
∏

λi = 1}

acting by

(x1, . . . , xn+1) 7→ (λ1x
1, . . . , λn+1x

n+1).

At time ǫ, Calabi’s example does move (consider a hyperboloid contain-
ing the first orthant with vertex at the origin). By group invariance,
C(t) must be of the form

{
∏

i

xi = const., xi > 0

}
,

which is an orbit of G. Proposition 8.2 shows that at time t > 0, our
flow is the affine normal flow pointwise. The radial graph of ΨtC must
solve an ODE in t, and so it must be the standard solution

C(t) = {(x1, . . . , xn+1) ∈ Rn+1 : xi ≥ 0,
∏

i

xi = cnt
n+2

2 }

for cn = (n + 1)
1
2 ( 2

n+2)
n+2

2 .

10. Andrews’s Speed Estimate

The following proposition is essentially found in Andrews [2], follow-
ing work of Tso [24], although the statement of the proposition in [2]
is slightly incorrect.
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Proposition 10.1. Let s be the support function of a smooth strictly
convex compact hypersurface evolving under affine normal flow. If s(Y, t)
≥ r > 0 for all Y ∈ Sn and t ∈ [0, T ], then

|∂ts| ≤
(
C + C ′t−

n
2n+2

)
s

on Sn × [0, T ], where C and C ′ are constants only depending on r and
n.

Proof. Consider the function

q =
−∂ts

s − r/2
.

We apply the maximum principle to log q = log |∂ts| − log(s − r/2). In
particular, at a fixed time t ∈ [0, T ], consider a point Y ∈ Sn at which
q attains its maximum. By changing coordinates, we may assume that
this point Y = (0, . . . , 0,−1) is the south pole. Then, as in Tso, con-
sider the coordinates y = (y1, . . . , yn) for s restricted to the hyperplane
{(y1, . . . , yn,−1)}. At y = 0, we have for i = 1, . . . , n

(10.1) (log q)i = 0 ⇐⇒
sti

st
=

si

s − r/2
.

The condition for (log q)|Sn to have a maximum at the south pole is

(10.2) (log q)ij + (log q)n+1δij ≤ 0

as a symmetric matrix. Here we use subscripts to denote ordinary dif-
ferentiation fi = ∂yif and ft = ∂tf .

To compute the second term in (10.2), use Euler’s identities

n+1∑

i=1

yisti = st,

n+1∑

i=1

yisi = s

at the point Y = (0, . . . , 0,−1) to conclude stn+1 = −st, sn+1 = −s,
and

(log q)n+1 =
r/2

s − r/2
.

For the first term in (10.2), compute

(log q)ij =
stij

st
−

stistj

s2
t

−
sij

s − r/2
+

sisj

(s − r/2)2

=
stij

st
−

sij

s − r/2

at y = 0 by (10.1). Thus (10.2) becomes at y = 0

(10.3)
r/2

s − r/2
δij +

stij

st
−

sij

s − r/2
≤ 0.
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Now, we compute using the flow equation (7.3)

(log q)t = ∂t log |∂ts| − ∂t log(s − r/2)

= −
1

n + 2
∂t log det(sij) −

st

s − r/2

= −
1

n + 2
sijstij −

st

s − r/2

for sij the inverse matrix of sij . Then (10.3) implies that

(log q)t ≤
r/2

n + 2
·

st

s − r/2
δijs

ij −
2n

n + 2
·

st

s − r/2

= −
r/2

n + 2
q δijs

ij +
2n

n + 2
q,

qt ≤ −
r/2

n + 2
q2 δijs

ij +
2n

n + 2
q2.

Now if we let µi be the eigenvalues of sij , or equivalently the reciprocals
of the eigenvalues of sij , then we see

|st| = (det sij)
− 1

n+2 =

(
n∏

i=1

µi

) 1
n+2

≤

(
1

n

n∑

i=1

µi

) n
n+2

=

(
1

n
δijs

ij

) n
n+2

by the arithmetic-geometric mean inequality. Therefore,

δijs
ij ≥ n|st|

n+2
n = nq

n+2
n (s − r/2)

n+2
n ≥ nq

n+2
n (r/2)

n+2
n

since s ≥ r. And so finally, at y = 0, and thus at any maximum point
of q|Sn ,

(10.4) qt ≤ −
n(r/2)

2n+2
n

n + 2
q

3n+2
n +

2n

n + 2
q2.

Now define Q(t) = maxY ∈Sn q(Y, t). Then (10.4) implies that

Qt ≤ −Q2
(
cnr

2n+2
n Q

n+2
n − c′n

)

for constants cn, c′n depending only on n. Therefore,

(10.5) Q ≤ max
{

cnr−
2n+2
n+2 , c′nr−1t−

n
2n+2

}

for cn, c′n new constants depending only on n. The result easily follows.

Remark 10.1. Q may not be differentiable as a function of t, but
the above estimate (10.5) still holds—see e.g., Hamilton [16, Section 3].

q.e.d.
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11. Gutiérrez-Huang’s Second Derivative Estimate

In this section, we follow Gutiérrez-Huang [15] to find an upper bound
of the Hessian of solutions to the equation satisfied by the support
function under the affine normal flow

∂ts = −

(
det

∂2s

∂yi∂yj

)− 1
n+2

.

This is a parabolic version of an estimate of Pogorelov for elliptic Monge-
Ampère equations. We will treat the slightly more general case

(11.1) ∂tu = −ρ(y)

(
det

∂2u

∂yi∂yj

)−α

,

for ρ(y) a smooth positive function on Rn and α a positive constant.
Gutiérrez and Huang considered the case ρ(y) = α = 1. The reason
we introduce ρ(y) is that the evolution of the support function of a
hypersurface by a power of the Gauss curvature involves a term ρ(y)
which is a power of 1 + |y|2. The calculations are essentially the same
as those in [15].

First we define a bowl-shaped domain in spacetime and its parabolic
boundary. A set Ω ⊂ Rn×R is bowl-shaped if there are constants t0 < T
so that

Ω =
⋃

t0≤t≤T

Ωt × {t},

where each Ωt is convex and Ωt1 ⊂ Ωt2 whenever t1 < t2. The parabolic
boundary of Ω is then ∂Ω \ (ΩT × {T}).

Proposition 11.1. Let u be a smooth solution to (11.1) which is
convex in y, and let Ω be a bowl-shaped domain in space-time Rn×R so
that u = 0 on the parabolic boundary of Ω. Let β be any unit direction
in space.

Then at the maximum point P of the function

w = |u| ∂2
ββu e

1
2
(∂βu)2 ,

w is bounded by a constant depending on only α, ρ, u(P ), ∇u(P ) and
n.

Proof. Choose coordinates so that β = (1, 0, . . . , 0) and so that at a

maximum point P of w, uij = ∂2u
∂yi∂yj is diagonal (in order to bound all

second derivatives uββ, it suffices to focus only on the eigendirections of
the Hessian of u).

Since w is positive in Ω and 0 on the parabolic boundary, there is a
point P outside the parabolic boundary of Ω at which w assumes its
maximum value. We work with log w instead of w. Then at P ,

(log w)i = 0, (log w)t ≥ 0, (log w)ij ≤ 0.
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Here we use i, j, t subscripts for partial derivatives in yi, yj and t, and
the last inequality is as a symmetric matrix. These equations become,
at P ,

ui

u
+

u11i

u11
+ u1u1i = 0,(11.2)

ut

u
+

u11t

u11
+ u1u1t ≥ 0,(11.3)

uij

u
−

uiuj

u2
+

u11ij

u11
−

u11iu11j

u2
11

+ u1ju1i + u1u1ij ≤ 0.(11.4)

To use (11.3), we compute

u1t =
[
−ρ(detuij)

−α
]
1

= (det uij)
−α(−ρ1 + αρ uijuij1),

u11t = (det uij)
−α

·
[
2αρ1 uijuij1 − α2ρ(uijuij1)

2 − ρ11

− αρ uikujlukl1uij1 + αρ uijuij11

]
,

where uij is the inverse matrix of the Hessian uij . Now plug into (11.3)
and divide out by (detuij)

−α to find

(11.5)
1

u11

[
2αρ1 uijuij1 − α2ρ(uijuij1)

2 − ρ11

− αρ uikujlukl1uij1 + αρ uijuij11

]

−
ρ

u
+ u1(−ρ1 + αρ uijuij1) ≥ 0.

The last term of the first line of (11.5) leads us to contract (11.4)
with the positive-definite matrix uij so that at P :

0 ≥ uij

(
uij

u
−

uiuj

u2
+

u11ij

u11
−

u11iu11j

u2
11

+ u1ju1i + u1u1ij

)

=
n

u
−

2uijuiuj

u2
+

uiju11ij

u11
−

uijuiu1u1j

u
−

uijuju1u1i

u

− uiju2
1u1iu1j + uiju1ju1i + uiju1u1ij (by (11.2))

=
n

u
−

2uijuiuj

u2
+

uiju11ij

u11
−

2u2
1

u
− u2

1u11 + u11 + uiju1u1ij

(since uij is diagonal at P )
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≥
n

u
−

2uijuiuj

u2
−

2u2
1

u
− u2

1u11 + u11 + uiju1u1ij +
1

αu
+

ρ1u1

αρ

− u1u
ijuij1 −

2ρ1u
ijuij1

ρu11
+

α(uijuij1)
2

u11
+

ρ11

αρu11
+

uikujlukl1uij1

u11

(by (11.5))

≥
n + 1

α

u
− 2

n∑

i=1

u2
i

u2uii
−

2u2
1

u
− u2

1u11 + u11 +
ρ1u1

αρ

−
ρ2
1

αρ2u11
+

ρ11

αρu11
+

n∑

i,j=1

u2
ij1

u11uiiujj

by collecting terms, completing the square, and since uij is diagonal at
P . Continue computing

0 ≥
n + 1

α

u
− 2

n∑

i=1

u2
i

u2uii
−

2u2
1

u
− u2

1u11 + u11 +
ρ1u1

αρ

−
ρ2
1

αρ2u11
+

ρ11

αρu11
+

u2
111

u3
11

+ 2
n∑

i=2

u2
11i

u2
11uii

=
n + 1

α

u
−

2u2
1

u2u11
−

2u2
1

u
− u2

1u11 + u11 +
ρ1u1

αρ

−
ρ2
1

αρ2u11
+

ρ11

αρu11
+

u2
1

u11u2
+

2u2
1

u
+ u2

1u11

by (11.2) and since uij is diagonal at P . Finally, collect terms so that

0 ≥ u11 +

(
n + 1

α

u
+

ρ1u1

αρ

)
+

1

u11

(
−

u2
1

u2
−

ρ2
1

αρ2
+

ρ11

αρ

)

and multiply each side of the inequality by u2u11e
u2
1 to find a quadratic

inequality

w2 + aw + b ≤ 0

for w = |u|u11e
1
2
u2
1 at P the point in Ω at which the maximum of w

is achieved. The coefficients a and b involve only n, α, ρ, u(P ) and
u1(P ), and so there is an upper bound of w on Ω depending on only
these quantities. q.e.d.

This bounds ∂2
ijs away from infinity, which, together with Andrews’s

speed estimate, shows that the ellipticity is locally uniformly controlled
in the interior of appropriate bowl-shaped domains. In the next section,
we use barriers constructed from Calabi’s example to find appropriate
bowl-shaped domains.
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12. Applying Gutiérrez-Huang’s Estimate

In this section, we find bowl-shaped domains which are uniformly
large on any compact subset of D◦(s) for s = s(·, t) the support function
of K(t). Upper barriers will be produced from Calabi’s example to
achieve this.

First, we give an outline of our approach: Given a sequence of smooth

solutions s to ∂ts = −(det sij)
− 1

n+2 , and a point y0 in D◦(s0), modify s
by adding a linear function so that s|t=0 has its minimum at y0. Adding
a linear function does not affect the flow. Then, if s(y0, 0) = p, the
sublevel set {(y, t) : s(y, t) ≤ p, 0 ≤ t ≤ T} is a bowl-shaped domain
with (y0, 0) at its vertex. In order to apply Gutiérrez-Huang’s estimate,
we must ensure that these bowl-shaped domains are uniformly large.
This amounts to showing that s must decrease by a definite amount in
a neighborhood of (y0, 0).

We achieve this by using barriers made out of Calabi’s Example 4.
For each of the n + 1 faces in Calabi’s initial orthant C = C(0), consider
the outward normal directions Y i, i = 1, . . . , n + 1. Under the affine
normal flow of Calabi’s example, the support function sC(Y

i, t) remains
constant in t for each i = 1, . . . , n + 1. Thus Calabi’s example, in and
of itself, is inadequate as a barrier to move the support function in
directions normal to these faces.

For our initial convex domain K, we will obtain estimates only for
those Y ∈ D◦(sK) the interior of the domain of the support function.
For such a Y , there is a supporting hyperplane to K with Y as its outer
normal which intersects the hypersurface ∂K in a compact set W . Then
an appropriate barrier can be constructed as the intersection

X =
n+1⋂

i=1

Ci

of n+1 affine images Ci of Calabi’s example so that the boundary of X
has one bounded face which contains W and is normal to Y , and n + 1
unbounded faces (for example, a U-shaped well in R2 is the intersection
of two affine images of the first quadrant). Under the affine normal
flow, X(t) must remain inside each Ci(t), and the explicit solution to
Calabi’s example then shows that the support function sX(Y ) must
move as t increases away from 0. The discussion below proves this
geometric sketch by working with the support functions instead of the
hypersurfaces involved.

Here are the details of the construction. Recall Calabi’s Example 4
from above:

C(t) = {(x1, . . . , xn+1) ∈ Rn+1 : xi ≥ 0,
∏

i

xi = cnt
n+2

2 }
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for cn = (n + 1)
1
2 ( 2

n+2)
n+2

2 and t ≥ 0. Compute the support function

for t ≥ 0 and Y = (y1, . . . , yn+1):

(12.1) sC(Y, t) =





+∞ if any yi > 0

−(n + 1)
(
cnt

n+2
n
∏n+1

i=1 |yi|
) 1

n+1
if all yi ≤ 0

In our analysis, we restrict the homogeneity-one function sC to an affine
hyperplane ∼ Rn so that sC(0) = 0 on a simplex in Rn and is +∞
elsewhere.

Now consider the action of the affine group on the support function.
If K is a convex body and Y ∈ Rn+1, recall sK(Y ) = supx∈K〈x, Y 〉.
Then for any matrix A and vector b,

(12.2) sAK+b(Y ) = sK(Y )(A⊤Y ) + 〈b, Y 〉.

Therefore, for any simplex S in Rn and any linear function ℓ(y) on Rn,
there is an affine image of C(0) whose support function restricted to an
affine Rn ⊂ Rn+1 is equal to ℓ(y) on its domain S.

We will use n+1 of these copies of Calabi’s example to construct our
barrier. Consider a regular (n + 1)-simplex in Rn+1 with one vertex at
the origin and such that the face opposite this vertex is in a hyperplane
yn+1 = c > 0 and intersects the positive yn+1 axis. Then the n + 1
remaining faces of this simplex form the graph of a piecewise-linear
convex function P whose domain is a simplex Sn in Rn centered at the
origin. Extend this function to be +∞ outside Sn. We refer to P as a
polyhedral pencil function, after the shape of the region above its graph.

Now consider our convex body K = ∪∞
m=1K

i, and let sK(y) denote
the support function of K restricted to an affine slice of Rn+1. Let
N be a compact subset the interior of the domain of sK(y) (i.e. N
is the intersection of the affine hyperplane Rn with a compact subset
of D◦(sK)). Then we know that sKm = sm → s = sK uniformly on
N and that |dsm| is uniformly bounded on N . This bound on the
first derivatives of sm means that there is a uniform λ > 1 so that by
replacing P (y) by λnP (λy), we have

(12.3) P (y − ỹ) +
n∑

j=1

∂sm

∂yj
(ỹ)(yj − ỹj) + sm(ỹ) ≥ sm(y)

for all ỹ ∈ N , y ∈ Rn.
So the polyhedral pencil function P provides an initial barrier at each

point ỹ ∈ N . We do not have an explicit solution for the evolution of
P , but we can conclude enough to apply Gutiérrez-Huang’s estimates.
Since P can be extended to be a convex, lower-semicontinuous function
of homogeneity one on Rn+1, there is a corresponding convex body KP

whose support function is P . The affine normal flow on KP induces
a natural flow on P : P (Y, 0) = P (Y ) for all Y ∈ Rn+1, and P (Y, t)
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is the support function of KP (t). Assume that the affine hyperplane
Rn ⊂ Rn+1 is given by {yn+1 = −1}, and then we have

Lemma 12.1. P (0, . . . , 0,−1, t) < 0 for all t > 0.

Note that in the notation Y = (y,−1), P (0, . . . , 0,−1, t) is just P (y, t)
for y = 0. (So the lemma may be restated as P (0, t) < 0 for all t > 0.)
We use this notation for the proof.

Proof. Note P (0, 0) = 0.
As a function of y, the domain of P (y, 0) consists of n + 1 simplices

in Rn, and P (y, 0) is the restriction of a linear function on each one.
P (y, 0) is then the minimum of n+1 copies C1, . . . Cn+1 of Calabi’s initial
example, each properly modified by an affine transformation. Each of
C1(t), . . . Cn+1(t) is an upper barrier for the evolution of P . Ck(0, t) = 0
for all t ≥ 0, however.

To show that P (0, t) < 0, we use the fact that P (y, t) is always convex
and less than each Ck(y, t). The explicit formula (12.1), together with
(12.2), shows that each Ck(y, t) < 0 for y near zero on a ray Rk leaving

the origin—this is because, near the origin, the −(
∏

|yi|)
1

n+1 term in
(12.1) will dominate any linear term coming from (12.2). Since P (y, t)
is convex in y and is less than each Ck(y, t), the graph of P (y, t) must
be below the convex hull of the graphs of {Ck(y, t)}n+1

k=1 . Since 0 is in

the convex hull of the rays {Rk}
n+1
k=1 (because P was constructed using a

regular (n + 1)-simplex in Rn+1) and since Ck(y, t) < 0 for y ∈ Rk near
0, we conclude P (0, t) < 0 for each t > 0. q.e.d.

For each ỹ ∈ N , and for m = 1, 2, 3, . . . , consider

s̃m(y) = sm(y) − sm(ỹ) −
n∑

j=1

∂sm

∂yj
(ỹ)(yj − ỹj).

Then at t = 0, s̃m(y, 0) has its minimum value of 0 at y = ỹ. As
time goes forward, for each T > 0, the sublevel set {(y, t) : t ∈ (0, T ],
s̃m(y, t) < 0} is a bowl-shaped domain. This bowl-shaped domain must
contain the sublevel set

B = {(y, t) : t ∈ (0, T ], P (y − ỹ) < 0},

which contains {0} × (0, T ] by Lemma 12.1. Note that B is (except
for translation) independent of m and ỹ ∈ N . There is an increasing,
positive function of t > 0 ǫ(t) so that for each ỹ ∈ N , Gutiérrez-Huang’s
estimates can be applied uniformly on the ball Bǫ(t)/2(ỹ)× {t} to s̃m—
since s̃m satisfies the same flow equation (7.3) as sm.

Since the second derivatives of s̃m are the same as those of sm,
Gutiérrez-Huang’s estimate Proposition 11.1, Andrews’s speed bound
Proposition 10.1 and the convexity of sm imply uniform C2 estimates
on sm on each compact subset of D◦(s) × (0, T ], where T is chosen so
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that each sm ≥ r on [0, T ] (this is possible for some T by choosing co-
ordinates so that an evolving sphere centered at the origin as a uniform
inner barrier.)

Proposition 12.1. If T is chosen so that each sm ≥ r on Sn× [0, T ],
then on each compact subset of D◦(s) × (0, T ] there are uniform spatial
C2 estimates for sm and the Hessian of sm is uniformly bounded away
from zero.

Recall that sKm → sK everywhere on Rn+1 × [0, T ] by Propositions
8.1 and 7.1. The estimates will give greater regularity to this pointwise
convergence.

Note that the locally uniform spatial C2 estimates in Proposition 12.1
imply, by the evolution equation (7.3), locally uniform parabolic C2,1

estimates (i.e., two derivatives in spatial coordinates and 1 in t). Then,
since the logarithm of the Monge-Ampère operator is concave, Krylov’s
interior parabolic C2+α,1+ α

2 estimates [18] are available. Ascoli-Arzelá
then shows that the convergence must be in C2,1 on each compact subset
of D◦(s) × (0, T ]. Indeed, sK is a C2+α,1+ α

2 solution on D◦(s) × (0, T ],
and further bootstrapping shows sK is smooth. See e.g. Gutiérrez-Huang
[15] for details on defining the C2+α,1+ α

2 norm and on applying Krylov’s
estimates in the present case.

A remaining issue is long-time regularity. Since long-time existence
is already guaranteed, we need only apply the estimates again starting
at t = T . The only possible sticking point is that we still need to make
sure that the same r satisfying sKm ≥ r still works (in order to apply
Andrews’s speed estimate Proposition 10.1). This can be assured by
an affine change of coordinates. As in the proof of Theorem 8.2, K
contains ellipsoids of arbitrarily large volume. We can change the affine
coordinates so that an appropriate ellipsoid becomes a sphere centered
at the origin which is large enough to guarantee that sK(Y, t) > 2r for
all Y ∈ Sn and t ∈ [T, 2T ]. This is certainly enough to ensure that we
can choose new exhausting domains Km satisfying sKm(Y, t) ≥ r for all
Y ∈ Sn and t ∈ [T, 2T ].

Theorem 12.1. If K is an unbounded convex domain in Rn+1 which
contains no lines, then, under the affine normal flow, the support func-
tion sK = sK(Y, t) is smooth and spatially locally strictly convex on
D◦(sK) × (0,∞).

13. Regularity of the hypersurface

We’ve seen in the previous sections that under the affine normal flow,
if K is an unbounded convex domain in Rn+1 containing no lines, the
support function sK evolves to be smooth and strictly convex for all
positive time for all Y ∈ D◦(sK). In this section, we verify that, for
t > 0, every supporting hyperplane of the evolving hypersurface ∂K(t)
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has its normal vector in D◦(sK). Therefore, since the smoothness and
convexity of the hypersurface are determined by the regularity of the
support function, the hypersurface ∂K(t) is smooth and strictly convex
for all t > 0.

Theorem 13.1. Let K be an unbounded convex domain in Rn+1

which contains no lines. Then, under the affine normal flow, the hyper-
surface ∂K(t) is smooth and strictly convex for all t > 0.

Moreover, if

K =
⋃

i

Ki, Ki ⊂ Ki+1,

where each Ki is bounded and has smooth, strictly convex boundary, then
for all t > 0, each p ∈ ∂K(t) has a neighborhood on which the sequence
of hypersurfaces ∂Ki(t) converges to ∂K(t) in the C∞ topology.

The proof will depend on finding appropriate initial barriers. We
begin with some easy results on the support function.

Lemma 13.1. If K is an unbounded convex domain in Rn+1, then
for every nonzero Y0 ∈ ∂D(sK), there is a ray R perpendicular to Y0

which is contained in the closure K̄.

Proof. We work in terms of support functions. The support func-
tion sK is a homogeneity-one, convex, lower-semicontinuous function on
Rn+1 with values in (−∞, +∞]. Since K is unbounded, sK must assume
the value +∞, and the convexity of sK implies sK is infinite on an open
half-space of Rn+1.

R ⊂ K̄ if and only if sR ≤ sK on all of Rn+1. For the ray

R = {w + τv : τ ≥ 0}, sR(Y ) =

{
〈Y, w〉 for 〈Y, v〉 ≤ 0
+∞ for 〈Y, v〉 > 0.

Thus, given sK and Y0 ∈ ∂D(sK), we seek an R so that R ⊥ Y0 and
sR ≤ sK.

Since D(sK) is a convex cone in Rn+1 with vertex at the origin, if
Y0 ∈ ∂D(sK), then D(sK) is contained in a closed half-space with Y0 in
its boundary. Thus there is a nonzero vector v so that

D(sK) ⊂ {Y : 〈Y, v〉 ≤ 0}, 〈Y0, v〉 = 0.

In order to find R, we also need a vector w so that 〈Y, w〉 ≤ sK(Y )
for all Y ∈ D(sK). This is easy: 〈Y, w〉 is the support function of the
convex set {w}. So for any w ∈ K̄, 〈Y, w〉 ≤ sK(Y ) for all Y ∈ Rn+1,
and R = {v + τw : τ ≥ 0} is the ray to be constructed. q.e.d.

Lemma 13.2. If K is an unbounded convex domain in Rn+1, Y ∈
∂D(sK), and R is any ray contained in K̄, there is a half-cylinder Q
pointing in the direction of R which is contained in the open set K.
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Proof. Let B be an open ball contained in K. Then the convex hull
of R and B contains such a half-cylinder. q.e.d.

We are now ready to prove Theorem 13.1.

Proof of Theorem 13.1. We show that for all t > 0, every supporting
hyperplane of K(t) must have outward normal vector Y0 lying in D◦(sK).
Then the smoothness and strict convexity of the support function sK(t)

imply that the hypersurface ∂K(t) is also smooth and strictly convex.

First we rule out the case Y0 /∈ D(sK). In this case, there is a closed
half-space of Rn+1 containing D(sK) but excluding Y0. In other words,
there is a nonzero vector v so that

D(sK) ⊂ {Y : 〈Y, v〉 ≤ 0}, 〈Y0, v〉 > 0.

Then, as in Lemmas 13.1 and 13.2 above, there is a half-cylinder Q in
the direction of v contained in K. Since there are ellipsoids of arbitrarily
large volume inside Q to act as barriers, Q always intersects K(t). Since
Q is in the direction of v and 〈Y0, v〉 > 0, this shows that sK(t)(Y0) = +∞
for all t > 0. Since K(t) is convex, this shows it has no supporting

hyperplane with outward normal Y0 /∈ D(sK).
Finally, we show that if Y0 ∈ ∂D(sK) is a nonzero vector, then there

is no supporting hyperplane to ∂K(t) with outward normal Y0. By
Proposition 13.1 below, sK(t)(Y0) = sK(Y0) for all t > 0. Thus, we
simply need to ensure that the hyperplane P = {x : 〈Y0, x〉 = sK(Y0)}

does not intersect K(t) for t > 0. To achieve this, we choose an affine
image I of Calabi’s example as an initial outer barrier. In particular,
one of the faces of I can be chosen to be contained in the hyperplane
P. (Proof: The support function of I is a linear function on a cone over
a simplex and is +∞ elsewhere. To find such a function to be an upper
barrier to sK at Y0, note that for any closed simplex contained in D(sK),
the support function sK is continuous on this simplex by Theorem 10.2
in [22]. So for any cone C over a closed n-simplex containing Y0 and
contained in D(sK), we may find a linear function as an upper barrier
to sK at Y0. Then extend this function to be +∞ outside C.) The
explicit solution to Calabi’s example proves that P does not intersect
I(t) ⊃ K(t) for all t > 0.

Thus all the supporting hyperplanes of ∂K(t) have outward normal
in D◦(sK), and Theorem 13.1 is proved. q.e.d.

Proposition 13.1. If K is a convex unbounded domain in Rn+1

which does not contain any lines, then under the affine normal flow,
the support function sK(t)(Y0) = sK(Y0) for all t > 0 and Y0 ∈ ∂D(sK).

Proof. It is obvious that sK(t)(Y0) ≤ sK(Y0) since the effect of the
affine normal flow on support functions is to decrease them. We need
only show sK(t)(Y0) ≥ sK(Y0) for Y0 ∈ ∂D(sK).
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We achieve this by using ellipsoids as inner barriers. Assume that
sK(Y0) < +∞ and let ǫ > 0. Then there is an x ∈ K so that

〈x, Y0〉 > sK(Y0) − ǫ.

Lemmas 13.1 and 13.2 ensure that there is a half-cylinder Q ⊂ K which
points in a direction v perpendicular to Y0. Then, inside the convex hull
of Q and {x}, there is another half-cylinder Q′ ⊂ K which points in the
direction of v and whose central ray contains a point x′ satisfying

〈x′, Y0〉 > sK(Y0) − 2ǫ.

Now there are ellipsoids of arbitrarily large volume contained in Q′,
and these inner barriers show that for all t > 0, there is a point x′′ on
the central ray of Q′ which is contained in K(t). Now since x′′ − x′ is
perpendicular to Y0,

sK(t)(Y0) ≥ 〈x′′, Y0〉 = 〈x′, Y0〉 > sK(Y0) − 2ǫ.

Thus sK(t)(Y0) ≥ sK(Y0) so long as sK(Y0) < +∞. The case sK(Y0) =
+∞ is essentially the same. q.e.d.

14. A Dirichlet Problem

Proposition 13.1 above shows that the affine normal flow on noncom-
pact domains can be recast as a Dirichlet boundary problem for the
support function, although discontinuous and infinite boundary values
are allowed. In the interior D◦(sK), the support function evolves by
the affine normal flow equation, while the value of the support func-
tion on the boundary ∂D(sK) is fixed. At each positive time t, sK(t) is
lower-semicontinuous.

In terms of PDEs, we can take an affine slice of the domain of the
support function. Consider first the case when D(sK) contains no lines
(this is true if and only if K contains a nonempty open convex cone).
In this case, we can choose coordinates so that Ω = {y ∈ Rn : (y,−1) ∈
D◦(sK)} is bounded. The support function, when restricted to this
hyperplane, then satisfies the Dirichlet boundary problem for the flow
equation

∂s

∂t
= −

(
det

∂2s

∂yi∂yj

)− 1
n+2

with initial condition given by sK. If D◦(sK) does contain a line, then
we must consider more than one affine hyperplane slice. Since sK has
homogeneity one, this amounts to considering sK as a section of the
tautological bundle over projective sphere Sn

P = (Rn+1\{0})/R+, where
R+ acts on Rn+1 by homothetic scaling.

Alternately, we can consider s = sK restricted to the Euclidean sphere
Sn. Define a subset of Sn to be convex if it is the intersection of Sn with
a convex cone in Rn+1 with vertex at the origin. Then Υ = Sn ∩ D◦(s)
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is a convex domain in Sn, and s evolves under the affine normal flow via
a Dirichlet problem on Υ with equation, as in [2], for s = s|Sn

st = − [det (s;ab + sδab)]
− 1

n+2 .

Here s;ab denotes second covariant derivative of s with respect to the
standard connection on Sn and the subscripts a, b indicate an orthonor-
mal frame.

It is an interesting question to study under what condition this Dirich-
let problem admits a unique solution. We plan to study this problem
in detail later. We remark now that in the case where s is continuous
when restricted to the boundary ∂D(s), s must be continuous on the

closure D(s) (see Lemma 14.1 below). Thus in the case s is continuous
and finite when restricted to ∂D(s), the Dirichlet problem has a unique
solution by the maximum principle.

Lemma 14.1. Let s be a convex, lower semicontinuous function from
Rn to (−∞,∞]. If s is continuous when restricted to ∂D(s), then it is

continuous on the closure of its domain D(s).

Proof. Let xi ∈ D◦(s), xi → x ∈ ∂D(s). Let z ∈ D◦(s) and let yi

be the intersection of ∂D(s) and the ray from z to xi. yi → x and so
s(yi) → s(x). Moreover, s is convex restricted to each such ray, and so

s(yi) − s(xi) ≥
|yi − xi|

|xi − z|
[s(xi) − s(z)].

Thus, since |yi − xi|/|xi − z| → 0,

lim sup s(xi) ≤ lim s(yi) = s(x).

Lower semicontinuity then shows lim s(xi) = s(x). q.e.d.

15. Proofs of Theorems

Here we restate Theorem 1.1 a bit more precisely:

Theorem 15.1. Let L(t) be a solution to the affine normal flow
defined for all t ∈ (−∞, 0). Assume that at some t0 ∈ (−∞, 0), the

convex hull L̂(t0) contains no lines. Then L(t) must be a paraboloid
translating in time or an ellipsoid shrinking in time.

Proof. Consider L′(t) defined for t ∈ [τ, 0) so that L′(τ) is smooth,
compact, and strictly convex. Then Proposition 5.2 and the semigroup
property show that the cubic form

|C|2L′(t) ≤
cn

t − τ

for all t ∈ [τ, 0) for cn a constant depending only on the dimension.
Theorem 13.1 then shows that L(t), for t ∈ [τ, 0), is locally a C∞

limit of such L′(t). Thus |C|2
L(t) ≤ cn/(t − τ) also. Since L(t) is an
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ancient solution we may let τ → −∞. So Cijk = 0 identically on L(t)
for all t.

A well-known classical theorem of Berwald (see e.g. Cheng-Yau [6]
or Nomizu-Sasaki [20]) shows that L(t) must be a hyperquadric: an
ellipsoid, a paraboloid, or a hyperboloid. Only the ellipsoid (a shrinking
soliton) and the paraboloid (a translating soliton) are part of an ancient
solution. q.e.d.

We can also prove the following existence result on hyperbolic affine
spheres which is essentially due to Cheng-Yau [5]. The essential step,
due to Cheng-Yau, is to solve the Monge-Ampère equation

det ∂2
ijφ =

(
−

1

φ

) 1
n+2

, φ|∂Ω = 0, ∂2
ijφ > 0

on a convex bounded domain Ω ⊂ Rn. The radial graph of − 1
φ over Ω is

then a hyperbolic affine sphere asymptotic to the boundary of the cone
over Ω. We note that the proper embeddedness of the hyperbolic affine
sphere is contained in Gigena [14] and Sasaki [23]. See [19] for a more
complete discussion.

Theorem 15.2. For every open convex cone C in Rn+1 which con-
tains no lines, there is a properly embedded hyperbolic affine sphere in
Rn+1 asymptotic to the boundary of C.

Proof. Example 3 ensures that under the affine normal flow, the
boundary ∂C evolves as an expanding soliton ∂C(t). The regularity
result Theorem 13.1 ensures that for t > 0 the hypersurface ∂C(t) is
smooth and strictly convex. Thus, for each t > 0, ∂C(t) is a hyperbolic
affine sphere by Proposition 9.1. The discussion in Section 14 shows
that ∂C(t) is asymptotic to the boundary of the cone C. q.e.d.
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MR 901759, Zbl 0619.35004.

[19] J.C. Loftin, Affine spheres and convex RPn manifolds, American Journal of
Mathematics 123(2) (2001) 255–274, MR 1828223, Zbl 0997.53010.

[20] K. Nomizu & T. Sasaki, Affine Differential Geometry: Geometry of Affine Im-

mersions, Cambridge University Press, 1994, MR 1311248, Zbl 0834.53002.

[21] A.V. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedi-
cata 1(1) (1972) 33–46, MR 0319126, Zbl 0251.53005.

[22] R.T. Rockafellar, Convex analysis, Princeton Landmarks in Mathematics.
Princeton University Press, Princeton, NJ, 1997; Reprint of the 1970 original,
Princeton Paperbacks, MR 1451876, Zbl 0932.90001.

[23] T. Sasaki, Hyperbolic affine hyperspheres, Nagoya Mathematical Journal 77

(1980) 107–123, MR 0556312, Zbl 0404.53003.

[24] K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.
Pure Appl. Math. 38(6) (1985) 867–882, MR 812353, Zbl 0612.53005.

[25] S.-T. Yau, Perspectives on geometric analysis, math.DG/0602363.



162 J. LOFTIN & M.-P. TSU

[26] X.-P. Zhu, Lectures on mean curvature flows, AMS/IP Studies in Advanced
Mathematics, 32, American Mathematical Society, Providence, RI, 2002,
MR 1931534.

Dept. of Math. and Comp. Science
Rutgers University

Newark, NJ 07102

E-mail address: loftin@andromeda.rutgers.edu

Department of Mathematics
The University of Toledo

2801 W. Bancroft St.
Toledo, Ohio 43606-3390

E-mail address: Mao-Pei.Tsui@UToledo.Edu


