
j. differential geometry

78 (2008) 33-111

POSITIVELY CURVED COHOMOGENEITY ONE

MANIFOLDS AND 3-SASAKIAN GEOMETRY
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Dedicated to Wilhelm Klingenberg on his 80th birthday

Abstract

We provide an exhaustive description of all simply connected
positively curved cohomogeneity one manifolds. The description
yields a complete classification in all dimensions but 7, where in
addition to known examples, our list contains one exceptional
space and two infinite families not yet known to carry metrics
of positive curvature. The infinite families also carry a 3-Sasakian
metric of cohomogeneity one, which is associated to a family of
selfdual Einstein orbifold metrics on the 4-sphere constructed by
Hitchin.

Since the round sphere of constant positive (sectional) curvature is
the simplest and most symmetric topologically non-trivial Riemann-
ian manifold, it is only natural that manifolds with positive curvature
always will have a special appeal, and play an important role in Rie-
mannian geometry. Yet, the general knowledge and understanding of
these objects is still rather limited. In particular, although only a few
obstructions are known, examples are notoriously hard to come by.

The additional structure provided by the presence of a large isom-
etry group has had a significant impact on the subject (for a survey
see [Gr]). Aside from classification and structure theorems in this
context (as in [HK], [GS1], [GS2], [GK], [Wi2], [Wi3] and [Ro],
[FR2], [FR3]), such investigations also provide a natural framework
for a systematic search for new examples. In retrospect, the classifica-
tion of simply connected homogeneous manifolds of positive curvature
([Be],[Wa],[AW],[BB]) is a prime example. It is noteworthy that in di-
mensions above 24, only the rank one symmetric spaces, i.e., spheres and
projective spaces appear in this classification. The only further known
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examples of positively curved manifolds are all biquotients [E1, E2, Ba],
and so far occur only in dimension 13 and below.

A natural measure for the size of a symmetry group is provided by
the so-called cohomogeneity, i.e., the dimension of its orbit space. It was
recently shown in [Wi3] that the lack of positively curved homogeneous
manifolds in higher dimensions in the following sense carries over to
any cohomogeneity: If a simply connected positively curved manifold
with cohomogeneity k ≥ 1 has dimension at least 18(k + 1)2, then it is
homotopy equivalent to a rank one symmetric space.

This paper deals with manifolds of cohomogeneity one. Recall that in
[GZ] a wealth of new nonnegatively curved examples were found among
such manifolds. Our ultimate goal is to classify positively curved (simply
connected) cohomogeneity one manifolds. The spheres and projective
spaces admit an abundance of such actions (cf. [HL, St1, Iw1, Iw2],
and [Uc1]). In [Se], however, it was shown that in dimensions at most
six, these are in fact the only ones. In [PV2] it was shown that this is
also true in dimension 7, as long as the symmetry group is not locally
isomorphic to S3 ×S3. Recently Verdiani completed the classification in
even dimensions (see [PV1, V1, V2]):

Theorem (Verdiani). An even dimensional simply connected coho-

mogeneity one manifold with an invariant metric of positive sectional

curvature is equivariantly diffeomorphic to a compact rank one symmet-

ric space with a linear action.

The same conclusion is false in odd dimensions. The three exceptional
normal homogeneous manifolds of positive curvature admit cohomo-
geneity one actions: The Berger space B7 = SO(5)/SO(3) with a sub-
action by SO(4), the Aloff Wallach manifold W 7 = SU(3)/diag(z, z, z̄2)
= SU(3)SO(3)/U(2) with subactions by SU(2)SO(3), denoted by W 7

(1),

and by SO(3)SO(3), denoted by W 7
(2), and finally the Berger space

B13 = SU(5)/Sp(2)S1 with a subaction by SU(4). It is perhaps some-
what surprising that none of the remaining homogeneous manifolds of
positive curvature admit cohomogeneity one actions. More interestingly,
the subfamily E7

p = diag(z, z, zp)\SU(3)/diag(1, 1, z̄p+2), p ≥ 1 of in-
homogeneous positively curved Eschenburg spaces admit cohomogene-
ity one actions by SO(3)SU(2) which extend to SO(3)U(2). Similarly,
the subfamily of the inhomogeneous positively curved Bazaikin spaces,
B13

p = diag(z, z, z, z, z2p−1) \SU(5)/Sp(2) diag(1, 1, 1, 1, z̄2p+3), p ≥ 1
admit cohomogeneity one actions by SU(4), which extend to U(4). We
point out that E7

1 = W 7
(1) with one of its cohomogeneity one actions,

and B13
1 = B13.

The goal of this paper is to give an exhaustive description of all simply
connected cohomogeneity one manifolds that can possibly support an
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invariant metric with positive curvature. In addition to the examples
already mentioned, it turns out that only one isolated 7-manifold, R
and two infinite 7-dimensional families Pk and Qk potentially admit
invariant cohomogeneity one metrics of positive curvature.

We will also exhibit an intriguing connection between these new can-

didates for positive curvature and the cohomogeneity one self dual Ein-
stein orbifold metrics on S4 constructed by Hitchin [Hi2]. As a biprod-
uct, the manifolds Pk and Qk all support 3-Sasakian Riemannian met-
rics, i.e., their Euclidean cones are Hyper-Kähler (see [BG] for a survey),
and are in particular Einstein manifolds with positive scalar curvature.
In dimension 7 the known examples, due to Boyer, Galicki, Mann and
Rees [BGM, BGMR], are constructed as so-called reductions from the
3-Sasakian metric on a round sphere, and except for S7, have positive
second Betti number. They include the Eschenburg spaces Ep as a spe-
cial case. The new 3-Sasakian manifolds Pk are particularly interesting
since they are, apart from S7 = P1, the first 2-connected examples in
dimension 7 (see Theorem C). Both Pk and Qk are also the first seven di-
mensional non-toric 3-Sasakian manifolds, i.e., do not contain a 3-torus
in their isometry group.

To describe the new candidates for positive curvature, recall that any
simply connected cohomogeneity one G-manifold admits a decomposi-
tion M = G×K−D−∪G×K+D+ where H ⊂ {K−,K+} ⊂ G are (isotropy)
subgroups of G, and D± are Euclidean discs with ∂D± = S± = K±/H.
Conversely, any collection of groups H ⊂ {K−,K+} ⊂ G where K±/H

are spheres, give rise in this fashion to a cohomogeneity one manifold.
Using this notation, we first describe a sequence of 7-dimensional

manifolds Hk. They are given by the groups Z2 ⊕ Z2 ⊂ {K−

0 · H,K+
0 ·

H} ⊂k SO(3)SO(3). Furthermore, the identity components K±

0
∼= SO(2)

depend on integers (p, q) which describe the slope of their embedding
into a maximal torus of SO(3)SO(3). They are (1, 1) for K−

0 embedded
into the lower 2× 2 block of SO(3), and (k, k+2) for K+

0 embedded into
the upper 2 × 2 block.

The universal covers of Hk break up into two families, Pk being the
universal cover of H2k−1 with G = SO(4) and principal isotropy group
Z2 ⊕ Z2, and Qk the universal cover of H2k with G = SO(3)SO(3) and
principal isotropy group Z2. The additional manifold R is like Qk but
with slopes (3, 1) on the left and (1, 2) on the right.

Our main result can now be formulated as:

Theorem A. Any odd dimensional simply connected cohomogeneity

one manifold M with an invariant metric of positive sectional curvature

is equivariantly diffeomorphic to one of the following:

• A sphere with a linear action,

• One of E7
p , B

13
p or B7,
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• One of the 7-manifolds Pk, Qk, or R,

with one of the actions described above.

The first in each sequence Pk, Qk admits an invariant metric with
positive curvature since P1 = S7 and Q1 = W 7

(2). For more information

and further discussion of the non-linear examples we refer to Section 4.
There are numerous 7 dimensional cohomogeneity one manifolds with

singular orbits of codimension two, all of which by [GZ] have invariant
metrics with non-negative curvature. Among these, there are two sub-
families like the above Pk and Qk, but where the slopes for K± are arbi-
trary. It is striking that in positive curvature, with one exception, only
the above slopes are allowed. The exception is given by the positively
curved cohomogeneity one action on B7, where the isotropy groups are
like those for Pk with slopes (1, 3) and (3, 1). In some tantalizing sense
then, the exceptional Berger manifold B7 is associated with the Pk fam-
ily in an analogous way as the exceptional candidate R is associated with
the Qk family. It is also surprising that all non-linear actions in The-
orem A, apart from the Bazaikin spaces B13

p , are cohomogeneity one

under a group locally isomorphic to S3 ×S3.

As already indicated, the manifolds Hk have another intriguing char-
acterization. To describe this in more detail, recall that S4 and CP2

according to Hitchin are the only smooth self dual Einstein 4-manifolds.
However, in the more general context of orbifolds, Hitchin constructed
[Hi1] a sequence of self dual Einstein orbifolds Ok homeomorphic to S4,
one for each integer k > 0, which are invariant under a cohomogeneity
one SO(3) action. It has an orbifold singularity whose angle normal
to a smooth SO(3) orbit RP2 is equal to 2π/k. Here O2k can also be
interpreted as an orbifold metric on CP2 with normal angle 2π/k, and
the cases of k = 1, 2 correspond to the smooth standard metrics on
S4 and on CP2 respectively. In general, any self dual Einstein orbifold
gives rise to a 3-Sasakian orbifold metric on the Konishi bundle, which
is the SO(3) orbifold principal bundle of the vector bundle of self dual
2-forms. The action of SO(3) on the base lifts to form a cohomogeneity
one SO(3)SO(3) action on the total space, and we will prove the follow-
ing surprising relationship with our positive curvature candidates:

Theorem B. For each k, the total space of the Konishi bundle cor-

responding to the selfdual Hitchin orbifold Ok is a smooth 3-Sasakian

manifold, which is equivariantly diffeomorphic to Hk with its cohomo-

geneity one SO(3)SO(3) action.

In this context we note that the exceptional manifolds B7 and R can
be described, up to covers, as the SO(3) orbifold principal bundles of
the vector bundle of anti-self dual 2-forms over O3 and O4 respectively.
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It was shown by O. Dearricott in [De1] that Konishi metrics, scaled
down in direction of the principal SO(3) orbits, have positive sectional
curvature if and only if the self dual Einstein orbifold base has positive
curvature. Unfortunately, the Hitchin orbifold metrics do not have pos-
itive curvature for k > 2, so this appealing description does not easily
yield the desired metrics of positive curvature on Pk and Qk.

Our candidates also have interesting topological properties:

Theorem C. The manifolds Pk are two-connected with π3(Pk) = Zk.

For the manifolds Qk and R we have H2(Qk,Z) = H2(R,Z) = Z and

H4(Qk,Z) = Z2k+1, respectively H4(R,Z) = Z35.

We note that the cohomology of Qk and R occur as the cohomology
of one or more of the seven dimensional positively curved Eschenburg
biquotients [E1],[E2]. In fact, surprisingly, Qk has the same cohomology
as Ek. On the other hand the manifolds Pk have the same cohomology
as S3 bundles over S4, and among such manifolds, so far only S7 and the
Berger space B7 (see [GKS]) are known to admit metrics of positive
curvature. It would be interesting to know whether there are other
cases where a manifold in the families Pk, Qk is diffeomorphic to an
Eschenburg space or to an S3 bundle over S4.

The fact that the manifolds Pk are 2-connected is particularly sig-
nificant. Recall that by the finiteness theorem of Petrunin-Tuschmann
[PT] and Fang-Rong [FR1], 2-connected manifolds play a special role
in positive curvature since there exist only finitely many diffeomorphism
types of such manifolds, if one specifies the dimension and the pinching
constant, i.e., δ with δ ≤ sec ≤ 1. Thus, if Pk admit positive curvature
metrics, the pinching constants δk necessarily go to 0 as k → ∞, and Pk

would be the first examples of this type. The existence of such metrics
would provide counter examples to a conjecture by Fang and Rong in
[FR2] (cf. also Fukaya [Fu], Problem 15.20).

We conclude the introduction by giving a brief discussion of the proof
of our main result and how we have organized it.

The most basic recognition tool one has is of course the group diagram
itself. However, given just the richness of linear actions on spheres,
one would expect that looking primarily for such detailed information
might actually hinder classification. It is thus crucial to have other
recognitions tools at our disposal, that do not require the full knowledge
of a group diagram. In fact, in our proof we often either exclude a
potential manifold, or determine what it is before we actually derive a
possible group diagram.

For this we first note that Straume [St1] has provided a complete
classification of all cohomogeneity one actions on homotopy spheres.
Aside from linear actions on the standard sphere, there are families of
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non-linear actions, and also actions on exotic Kervaire spheres. It was
observed by Back and Hsiang [BH] (Searle [Se] in dimension 5) that
only the linear ones support invariant metrics of positive curvature (in
dimensions other than five they cannot even support invariant metrics
of nonnegative curvature [GVWZ]). In particular, for our purposes it
suffices to recognize the underlying manifold as a homotopy sphere, and
we have two specific tools for doing so: One of them is provided by
the (equivariant diffeomorphism) classification of positively curved fixed

point homogeneous manifolds [GS2], i.e., manifolds on which a group G

acts transitively on the normal sphere to a component of its fixed point
set MG. The other is the Chain Theorem of [Wi3], which classifies up
to homotopy 1-connected positively curved manifolds that support an
isometric action by one of the classical groups, SO(n),SU(n) or Sp(n)
so that its principal isotropy group contains the same type of group as
a standard 3 × 3 block (or 2 × 2 block in case of Sp(n)).

Our classification of positively curved manifolds with an isometric
cohomogeneity one G-action is done by induction on the dimension of
the manifold M . Here the induction step is typically done via reduc-

tions, i.e., by analyzing fixed point sets of subgroups of G and how they
sit inside of M . Since such fixed point sets are totally geodesic, they
are themselves positively curved manifolds of cohomogeneity at most
one and hence in essence known by assumption. In this analysis, the
basic connectivity lemma of [Wi2] which asserts that the inclusion map
of a totally geodesic codimension k submanifold in an n dimensional
positively curved manifold is n − 2k + 1 connected, naturally plays an
important role.

Another variable in the proof is rkG, the rank of G. Here it is a
simple but important fact that in positive curvature, the corank of the
principal isotropy group H, i.e., corankH = rkG− rkH, is 1 in even
dimensions, and 0 or 2 in odd dimensions. The equal rank case is fairly
simple and induction is not used here (see Section 5).

The following brief description of the content of the sections will
hopefully support the overall understanding of the strategy of the proof
just outlined.

In Section 1 we recall some essential simple curvature free facts about
cohomogeneity one manifolds we will need throughout. This includes
a discussion of the Weyl groups and reductions, i.e., fixed point sets of
subgroups, including the core of the action.

Sections 2 and 3 form the geometric heart of the paper. It is here
we present and derive all our obstructions stemming from having an
invariant metric of positive curvature. Some of these, which have been
derived earlier in more general settings (see [Wi2, Wi3]), become par-
ticularly powerful in the context of cohomogeneity one manifolds. Other
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than the rank restriction, which enters from the outset, two key ob-
structions used throughout are primitivity, and restrictions imposed on
the isotropy representation of the principal isotropy group. The full
strength of primitivity is derived in Section 3 after a classification of all
Weyl groups corresponding to non trivial cores. It is also shown here
that all Weyl groups are finite and strong bounds on their orders are
derived.

In Section 4 we present and discuss some of the properties of the
cohomogeneity one actions on the known examples of positive curvature,
as well as on the new candidates.

We start the classification in Section 5 with the equal rank case and
in Section 6 we deal with the case where G is not semisimple. For
semisimple groups G, it turns out to be useful to prove the theorem for
groups of rank 2 or 3 first, and this is done in the Section 7 and 8. In
a sense these two sections form the core of the classification. It is here
that all non spherical examples emerge. The case of semisimple groups
G with rkG ≥ 4 is done separately for non-simple groups in Sections 9
and 10 and for simple groups in Section 11.

In Section 12 we exhibit our new infinite families of candidates as 3-
Sasakian manifolds (Theorem B), and in Section 13 we prove Theorem
C. These sections can be read independently of the rest of the paper.

Since we need the classification in even dimensions, we have added
a relatively short proof as a service to the reader in Appendix I. As
another service to the reader, we have collected the cohomogeneity one
diagrams for the essential actions on rank one symmetric spaces, and
other known useful classification results in Appendix II.

It is our pleasure to thank Jost Eschenburg for useful comments.

1. Cohomogeneity one manifolds

We begin by discussing a few useful general facts about closed co-
homogeneity one Riemannian G manifolds M and fix notation we will
use throughout. Readers with good working knowledge of cohomogene-
ity one manifolds may want to proceed to Section 2, Section 3 and the
classification starting in Section 5 immediately and refer back to this
section whenever needed.

Our primary interest is in positively curved, 1- connected G mani-
folds M with G connected. However, since fixed point sets with induced
cohomogeneity one actions play a significant role in our proof, it is im-
portant to understand the more general case where G is not connected,
and M is connected with possibly non-trivial finite fundamental group.

Since M has finite fundamental group, the orbit space M/G is an
interval and not a circle. The end points of the interval correspond to
two non-principal orbits, and all interior points to principal orbits. By
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scaling the metric if necessary we may assume that M/G = [−1, 1] as a
metric space.

Fix a normal geodesic c : R → M perpendicular to all orbits (an
infinite horizontal lift of M/G). The image C = c(R) is either an
embedded circle, or a 1-1 immersed line (cf. [AA, Proposition 3.2]).
We denote by H the principal isotropy group Gc(0) at c(0), which is
equal to the isotropy groups Gc(t) for all t 6= 1 mod 2Z, and by K±

the isotropy groups at p± = c(±1). Then M is the union of tubular
neighborhoods of the non-principal orbits B± = G /K± glued along their
common boundary G /H, i.e., by the slice theorem

(1.1) M = G×K−D− ∪ G×K+D+,

where D± denotes the normal disc to the orbit G p± = B± at p±. Fur-
thermore, K±/H = ∂D± = S± are spheres, whose dimension we denote
by l±. It is important to note that the diagram of groups

G

K−

j−
>>}}}}}}}}

K+

j+
``AAAAAAAA

H

h−

``AAAAAAAA h+

>>}}}}}}}}

(1.2)

where j± and h± are the natural inclusions, which we also record as

(1.3) H ⊂ {K−,K+} ⊂ G,

determines M . Conversely, such a group diagram with K±/H = Sl± ,
defines a cohomogeneity one G-manifold.

In Section 12, we will see that the above construction, as well as the
principal bundle construction for cohomogeneity one manifolds in [GZ],
naturally carries over to a large class within the more general context
of orbifolds.

We point out that the spheres K±/H are often highly ineffective and
we denote by H± their ineffective kernel. It will be convenient to allow
the ineffective kernel of G /H to be finite, i.e., to allow the action to be
almost effective.

A non–principal orbit G /K is called exceptional if dim G /K =
dimG /H or equivalently K/H = S0. Otherwise G /K is called singular.
As usual we refer to the collection M0 of principal orbits, i.e., M−(B−∪
B+), as the regular part of M .

The Cohomogeneity One Weyl Group.

The Weyl group, W(G,M) = W of the action, is by definition the sta-
bilizer of the geodesic C modulo its kernel H. If N(H) is the normalizer
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of H in G, it is easy to see (cf. [AA]) that W is a dihedral subgroup
of N(H)/H, generated by unique involutions w± ∈ (N(H)∩K±)/H, and
that M/G = C/W. Each of these involutions can also be described as
the unique element a ∈ K± mod H such that a2 but not a lies in H.

Note that W is finite if and only if C is a closed geodesic, and in
that case the order |W| is the number of minimal geodesic segments
C − (B− ∪B+). Note also that any non principal isotropy group along
c is of the form wK±w−1 for some w ∈ N(H) representing an element of
W. The isotropy types K± alternate along C and hence half of them are
isomorphic to K+ and half to K−, in the case where W is finite.

Group Components.

In this section G is a not necessarily connected Lie group acting with
cohomogeneity one on a connected manifold M with finite fundamental
group. From the description of M as a double disc bundle (1.1), we see
that

G /K± ∼= B± →M is l∓-connected.(1.4)

G /H →M is min{l−, l+}-connected.

Recall that by definition a map f : X → Y is l-connected if the induced
map fi : πi(X) → πi(Y ) between homotopy groups is an isomorphism
for i < l and surjective for i = l.

First observe that it is impossible that both l± = 0. Indeed, if both
normal bundles to G /K± are trivial M is a bundle over S1. If one of
the orbits, say G /K+, has non-trivial normal bundle, the two fold cover
G /H → G /K+ gives rise to a two fold cover M ′ of M on which G acts
by cohomogeneity one with diagram H ⊂ {K−, w+K−w+} ⊂ G. We are
now either in the first situation, or we can repeat the second argument
indefinitely, contradicting that π1(M) is finite.

If both l± > 0, (1.4) implies that G /H is connected and hence G and
G0 have the same orbits, and in particular the same Weyl group. If one
of l± say l− = 0 and l+ > 0, (1.4) implies that G /K− is connected.
Since G /H is a sphere bundle over G /K−, it follows that G /H has at
most two components. This in turn implies that

(1.5) The Weyl group W(G0 ,M) has index at most 2 in W(G,M).

We now assume that M is simply connected and G is connected.
The above covering argument then implies that there cannot be any
exceptional orbits. If both l± ≥ 2, (1.4) implies that all orbits are
simply connected and hence all isotropy groups are connected. If one
of l± say l− = 1 and l+ ≥ 2, then G /K− is simply connected and hence
K− connected. Since G /H is a circle bundle over G /K− it follows that
π1(G /H) and hence H /H0 ≃ K+/K+

0 are cyclic. In summary,
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Lemma 1.6. Assume that G acts on M by cohomogeneity one with

M simply connected and G connected. Then:

(a) There are no exceptional orbits, i.e., l± ≥ 1.
(b) If both l± ≥ 2, then K± and H are all connected.

(c) If one of l±, say l− = 1, and l+ ≥ 2, then K− = H ·S1 = H0 · S
1,

H = H0 · Zk and K+ = K+
0 · Zk.

The situation where both l± = 1 is analyzed in the presence of an
invariant positively curved metric is in (3.5). Finally we observe

Lemma 1.7. Suppose K̄± ⊂ K± are subgroups with K±/K̄± finite,

K̄± 6⊂ H, and K̄− ∩ H = K̄+ ∩ H =: H̄. Then K−/K̄− ≃ H /H̄ ≃ K+/K̄+

and the cohomogeneity one manifold M̄ defined by H̄ ⊂ {K̄−, K̄+} ⊂ G

is an H /H̄ cover of M .

In general, a subcover of a compact cohomogeneity one manifold with
finite fundamental group and G connected is obtained by a combination
of the following three: We can add components to K± and H as in
(1.7), or we can divide G by a central subgroup which does not intersect
K±. These two yield orbitspace preserving covering maps. We can also
create a subcover where one of the orbits is exceptional, if K+ is the
w conjugate of K− for an order two element in N(H)/H represented by
w ∈ N(H).

Reductions.

Fixed point sets of subgroups L ⊂ G will play a pivotal role through-
out. It is well known that the fixed point set ML of L consists of a
disjoint union of totally geodesic submanifolds. If ML is non empty, L

is of course a subgroup of an isotropy group, and hence of H or of K± (up
to conjugacy). In general when L ⊂ K ⊂ G, it is well known that N(L)
acts with finite orbit space on (G /K)L, and transitively when L = K, or
when L is a maximal torus of K (see e.g., [Br], Corollary II.5.7).

Suppose first that L ⊂ K− is not conjugate to a subgroup of H.
Then no component of ML intersects the regular part M0 of M . In
this case, all components of ML are homogeneous, and we usually con-
sider the component in one of B± say B− containing p− which equals
N(L)0/N(L)0 ∩K−. As a particular application of this, we point out that
a central involution in G which lies in one of K± say K− but not in H

has G /K− as its fixed point set.

If L is conjugate to a subgroup of H, the components of ML which in-
tersect the regular part of M form a cohomogeneity one manifold under
the action of N(L) since N(L) acts with finite quotient on (G /H)L. Each
component ofML that intersects the regular part is hence a cohomogene-
ity one manifold under the action of the subgroup of N(L) stabilizing the
component. Unless otherwise stated, the reduction we will consider is
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the component ML
c of ML containing the geodesic c. We will denote it’s

stabilizer subgroup of N(L) by N(L)c and refer to (ML
c ,N(L)c) as reduc-

tions (for general actions see [GS3]). In general the length of ML
c /N(L)c

is an integer multiple of the length of M/G. The orbit spaces coincide if
both N(L)∩K± act nontrivially on the normal spheres of ML

c ∩B± ⊂ML
c

at p±, which are given by SL
± = N(L)c ∩ K±/N(L)c ∩ H. If this is the

case, N(L)c acts (L ineffectively) by cohomogeneity one onML
c with orbit

space M/G, and diagram N(L)c∩H ⊂ {N(L)c∩K−,N(L)c∩K+} ⊂ N(L)c.
In the main part of the induction proof, it is usually sufficient to con-

sider the cohomogeneity one action of the connected component N(L)0

of N(L)c on ML
c keeping in mind that its Weyl group need not be that

of M .

If L is a maximal torus of H0 and a ∈ N(H), then aLa−1 ⊂ H0 is also
conjugate to L by an element in H0. In particular, one can represent w±

by elements in the normalizer of L. The same holds by definition of the
Weyl group for L = H, and hence:

Lemma 1.8 (Reduction Lemma). If L is either equal to H or given

by a maximal torus of H0, then N(L)c/L acts by cohomogeneity one on

ML
c and the corresponding Weyl groups coincide.

In the most reduced case where L = H, we refer to MH
c as the core of

M and N(H)c as the core group.
Often we consider also the least reduced case, that is we take the

fixed point set of an involution or of an element ι whose square, but not
ι itself, lies in the center of G, i.e., ι is an involution in some central
quotient of G. In this case we can determine N(〈ι〉) = N(ι) using the well
known fact that G /N(ι) is a symmetric space with rk(N(ι)) = rk(G), and
appeal to their classification, see Table G, Appendix II.

In general the codimension of a reduction might be odd. However,
if L is a subgroup of a torus in T ⊂ G, and M is positively curved and
odd dimensional, then all components of ML have even codimension.
One can establish this fact by induction on the dimension, where one
uses that odd dimensional positively curved manifolds are orientable
and that the statement holds for cyclic subgroups L ⊂ T.

As a simple consequence of the Rank Lemma 2.1, we also see that in
positive curvature, ML has even codimension when rkN(L) = rkG and
rkG− rkH = 2.

Equivalence of diagrams.

Recall that in order to get a group diagram we choose an invariant
metric on M . Thus it can happen that different metrics on the manifold
give different group diagrams. Of course, one can conjugate all three
groups by the same element in G, and one can also switch K− and K+.
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Let us now fix a point p in the regular part of the manifold and an
orientation of the normal bundle G p. For each invariant metric g on the
manifold we consider the minimal horizontal geodesic cg : [−ε1(g), ε2(g)]
→ M from the left singular orbit to the right with cg(0) = p. We re-
parametrize these geodesics relative to a fixed parametrization of the
orbit space M/G = [−1, 1], where the orbit through p corresponds to
0. The resulting curves c̄g are fixed pointwise by H. Using a (smooth)

family of such reparametrized geodesics in MH corresponding to convex
combinations of two invariant metrics g1, g2 and the fact that N(H)
acts transitively on (G /H)H, we can find a curve a : [−1, 1] → N(H)0

such that the curve c̄g2 is given by a(t)c̄g1(t). This proves that we
can find two elements a−, a+ ∈ N(H)0 such that the group diagram
for the metric g2 is obtained from the group diagram for the metric g1
by conjugating K± with a±. On the other hand it is easy to see that
indeed for any a−, a+ ∈ N(H)0 one can find a metric for which there is
a horizontal geodesic from a−c(−ε1(g)) to a+c(ε2(g)). In fact this can
be achieved by changing the metric on the complement of two small
tubular neighborhoods of B±.

All in all we conclude that two group diagrams H ⊂ {K−,K+} ⊂ G

and H̃ ⊂ {K̃−, K̃+} ⊂ G yield the same cohomogeneity one manifold
up to equivariant diffeomorphism if and only if after possibly switching
the roles of K− and K+, the following holds: There is a b ∈ G and an
a ∈ N(H)0 with K− = bK̃−b−1, H = bH̃b−1, and K+ = abK̃+b−1a−1 (cf.
also [Ne]).

2. Positive Curvature Obstructions

In this section we will discuss a number of severe obstructions on a
cohomogeneity one manifold to have an invariant metric with positive
curvature. We point out that none of our obstructions are caused by
nonnegative curvature only. We also mention that Alexandrov geometry
of orbit spaces, which is used extensively to obtain our two geometric
recognitions tools (2.11) and (2.8), enters only once directly in our proof,
namely the rank two case (7.1).

The simplest obstruction is a direct consequence of the well known
fact (see, e.g., [Gr]) that an isometric torus action on a positively curved
manifold has fixed points in even dimensions and orbits of dimension at
most one in odd dimensions. Applying this to a maximal torus in G,
and using the fact that a sphere K/H has corank at most one, we get:

Lemma 2.1 (Rank Lemma). If M is even dimensional, at least one

of K± has corank 0 and H has corank 1 in G. If M is odd dimensional,

at least one of K± has corank 1 and H has corank 0 or 2.

A second powerful and much more difficult result expresses in two
ways how the representation of the triple H ⊂ {K−,K+} in G is maximal.
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The first of these, which we will refer to as linear primitivity, follows
from [Wi4, Corollary 10], and has the Weyl group bound below as an
immediate consequence. As we will see in the next section this type of
primitivity implies that the Weyl group is finite as well (see (3.1)).

To define the second kind of primitivity, we say that a G - mani-
fold is non-primitive if there is a G equivariant map M → G /L for
some subgroup L ⊂ G (see [AA, p.17]). Otherwise, the action is
said to be primitive. For cohomogeneity one manifolds, non-primitivity
is equivalent to the statement that for some representation we have
H ⊂ {K−,K+} ⊂ L ⊂ G, i.e., for some invariant metric and some normal
geodesic, K± generate a proper subgroup of G. By the last subsection of
section 1 we know exactly all possible groups K± arising from different
metrics. Hence, in terms of the original groups, the action is primitive
if K− and nK+n−1 generate G, for any fixed n ∈ N(H)0.

In the next section we will show that the core with its core action is
primitive (3.2). When this is combined with linear primitivity for G, we
will show that the G action itself is primitive (see (3.3)):

Lemma 2.2 (Primitivity Lemma). Let c : R →M be any horizontal

geodesic as above. Then

(a) (Linear Primitivity) The Lie algebras of the isotropy groups along

c generate g as a vectorspace.

(b) (Lower Weyl Group Bound) The Weyl group is finite, and |W| ≥
2 dim(G /H)/(l− + l+).

(c) (Group Primitivity) Any of the singular isotropy groups K±, to-

gether with any conjugate of the other by an element of the core

group, generate G as a group. In particular this is true for conju-

gation by elements of N(H)0.

The following obstructions deal with isotropy representations. The
first of these is a special case of a more general result in [Wi3]. The
key observation in the proof is that the direct sum of all irreducible sub-
representations equivalent to the given one form a parallel subbundle
along the normal geodesic. Since the norm of the volume form of a
parallel bundle is strictly concave in positive curvature, it must vanish
at one of the singular orbits. The second part of the lemma follows from
the first part and the classification of transitive actions on spheres, see
Table C, Appendix II.

Lemma 2.3 (Isotropy Lemma). Suppose H is non trivial. Then

(a) Any irreducible subrepresentation of the isotropy representation of

G /H is equivalent to a subrepresentation of the isotropy represen-

tation of one of K/H, where K is an isotropy group of some point

in c(R)
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(b) The isotropy representation of G /H0 is spherical, i.e., H0 acts

transitively on the unit sphere of any k dimensional irreducible

subrepresentation if k > 1.

Notice that part a) implies that any subrepresentation of G /H, i.e.,
the isotropy representation of G /H, is weakly equivalent to a subrepre-
sentation of K−/H or K+/H. Recall that two representations of H are
weakly equivalent if they are equivalent modulo an automorphism of H.
We thus often say that a particular representation has to degenerate in
K+/H or K−/H.

The fact that the isotropy representations are spherical is a partic-
ularly powerful tool. In [Wi3] one finds an exhaustive list of such so-
called spherical subgroups when H and G are simple (apart from the case
where H is a rank one group in an exceptional Lie group). We reproduce
this list in Table B, since it will be used frequently.

Lemma 2.3 has the following very useful consequence:

Lemma 2.4. Assume that G is simple. Then:

(a) If L1 and L2 are two simple normal subgroups of H, there exists

an irreducible subrepresentation of H in G on which both L1 and

L2 act non-trivially.

(b) H can have at most one simple normal subgroup of rank at least

two.

Proof. Assume that G /H has no subrepresentation on which L1 and
L2 act non-trivially. Decompose g = m1 ⊕ m2 ⊕ n such that L1 acts
non-trivially on m1 and trivially on m2, L2 acts trivially on m1 and
non-trivially on m2 and both act trivially on n. Note that [m1,m2] =
0 since both L1 and L2 act non-trivially on any subrepresentation of
m1⊗m2. Similarly [m1, n] ⊂ m1 and in summary [m1, g] ⊂ m1 +[m1,m1].
Using the Jacobi identity we see that [[m1,m1], n] ⊂ m1 + [m1,m1] and
[[m1,m1],m2] = 0. Thus m1 + [m1,m1] is an ideal of g, a contradiction.

For part (b), assume that L1 and L2 are two simple normal subgroups
of H with rk Li ≥ 2. From the classification of transitive actions on
spheres it follows that either L1 or L2 must act trivially on the irre-
ducible subrepresentations of H in K±. By the Isotropy Lemma the
same then holds for each irreducible subrepresentation of H in G and
part (a) finishes the proof. q.e.d.

For the singular orbits there are two relevant representations, the
isotropy representation and the slice representation. These are related
via equivariance of the second fundamental form

(2.5) B± : S2(T±) → T⊥
±

where T± is the tangent space of B±
∼= G /K± at p±, and T⊥

± is the
normal space.
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As an example of an application of this, it sometimes follows that
equivariance forces a singular orbit to be totally geodesic. In particular,
this singular orbit must then be in the short list of positively curved
homogeneous manifolds, see Table C and D in Appendix II.

The next result also follows from equivariance of the second funda-
mental form applied to a singular orbit.

Lemma 2.6 (Product Lemma). Suppose G = L1 × L2 is semisimple

and that the identity component of at least one of K± is a product sub-

group, say K−

0 = K1 ×K2, and that one of NLi(Ki)/Ki is finite. Then M
cannot carry a positively curved G- invariant metric if it is odd dimen-

sional.

Proof. Denote by Ui the subspace tangent to the factor Li/Ki. Note
that dimUi > 1 since G is semisimple. A non-trivial subrepresentation
of K−

0 in U1 cannot be equivalent to one in U2 and by assumption, one
of Ui has no trivial subrepresentations. Thus Schur’s Lemma implies
that every invariant metric on G /K is (locally) a product metric on
(L1/K1) × (L2/K2).

From the classification of transitive actions on spheres, see Table C,
we may assume that one of the factors, say K1, acts transitively on the
normal sphere. Since K1 acts trivially on U2, no subrepresentation of
S2U2 is equivalent to the slice representation, and hence BS2U2

= 0.
Since any plane generated by one vector in U1 and one vector in U2 has
intrinsic curvature 0, we see from the Gauss equation that B(u1, u2) 6=
0 for all nonzero ui ∈ Ui. Because B is bilinear, this implies that
dim(Ui) ≤ dim(T⊥).

If there exists a K1-invariant subspace U ′
1 ⊂ U1 such that the in-

duced representation in U ′
1 is not equivalent to the slice representa-

tion, then the equivariance of B implies that BU ′
1⊗U2

= 0, contradicting

B(u1, u2) 6= 0 for all nonzero ui ∈ Ui. Thus, using in addition the above
dimension restriction, the representation of K1 on all of U1 is equivalent
to the slice representation. In particular, K1 acts transitively on the unit
sphere in U1, and hence L1/K1 is two point homogeneous. Thus L1/K1

is isometric to a rank one symmetric space. From the classification of
rank one symmetric spaces as homogeneous spaces we see that the rep-
resentation of K1 is either of real or complex type, but not quaternionic.
Recall that a representation π has real type, complex type, or quater-
nionic type corresponding to π ⊗ C being irreducible, π ⊗ C ∼= σ ⊕ σ∗

with σ ≇ σ∗ or π ⊗ C ∼= σ ⊕ σ. The algebra of endomorphisms that
commute with π is then equal to R, C, respectively H.

Since the manifold is odd dimensional and U1 and the slice have the
same dimension, it follows that U2 is odd dimensional and therefore
dim(U2) ≥ 3. Because of dim(U2) ≥ 2 there exists a K1 invariant
irreducible subspace U ′ 6= 0 of U1 ⊗ U2 contained in the kernel of B.
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If the representation of K1 on U1 is of real type, we claim that U ′ is
necessarily of the form U1⊗U

′
2, where U ′

2 is a one dimensional subspace
of U2, which contradicts B(u1, u2) 6= 0. To see this, choose a basis
e0 , e1, . . . , ek of U2. Any K1 invariant subspace of U1 ⊗ U2, which we
can assume projects onto U1 ⊗ e0 , must be of the form x⊗ e0 +L1(x)⊗
e1 + · · ·+Lk(x)⊗ ek, where x ∈ U1 and Li endomorphisms of U1. To be
K1 invariant implies that Li commute with the representation of K1 on
U1. Since it is of real type, this means that Li are scalar multiplication
with λi, and hence e0 + λ1e1 + · · · + λkek spans U ′

2.
If the representation of K1 on U1 is of complex type, we can repeat

the previous argument in the complexifications Ui ⊗ C. Thus any K1

invariant irreducible subspace U ′ ⊂ U1 ⊗ U2 corresponds to a one di-
mensional subspace in U2 ⊗ C. Since the kernel of BU1⊗U2 contains
dim(U2) − 1 linearly independent K1 invariant irreducible subrepresen-
tations, we may view these subrepresentations as a complex hyperplane
in U2 ⊗ C. Because of dim(U2) ≥ 3, this hyperplane intersects U2 ⊗ R,
and we get a contradiction as before. q.e.d.

We stress that in even dimensions, the statement of the product
lemma is no longer valid in general. We will determine the exceptions
in (14.2).

We conclude this section with a discussion of the recognition tools we
will apply in this paper. These tools are indispensable for our proof.

First of all by combining Straume’s classification of cohomogeneity
one homotopy spheres [St1] with the work of Back-Hsiang [BH] (and
Searle [Se] in dimension five) we have

Theorem 2.7. Any cohomogeneity one homotopy sphere Σn with an

invariant metric of positive curvature is equivariantly diffeomorphic to

the standard sphere Sn with a linear action.

The same conclusion is true for all manifolds whose rational coho-
mology ring is like that of a nonspherical rank one symmetric space (see
[Iw1, Iw2] and [Uc1]).

The following very general recognition theorem was proved in [Wi3]:

Theorem 2.8 (Chain Theorem). Suppose Gd∈{SO(d),SU(d),Sp(d)}
acts isometrically and nontrivially on a positively curved compact simply

connected manifold M . Suppose also that a principal isotropy group

of the action contains up to conjugacy a k × k block with k ≥ 2 if

Gd = Sp(d), and k ≥ 3 otherwise. Then M is homotopy equivalent to a

rank one symmetric space.

In conjunction with the reduction idea, the following basic connect-

edness lemma of [Wi2] provides another general topological tool that
will aid us in the recognition process.
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Theorem 2.9 (Connectedness Lemma). Let Mn be a compact posi-

tively curved Riemannian manifold, and Nn−k ⊂Mn a compact totally

geodesic submanifold. Then

(a) The inclusion map Nn−k →Mn is (n− 2k + 1)−connected.

(b) If in addition Nn−k is fixed pointwise by a compact group L of

isometries of M , then the inclusion map is
(

n − 2k + 1 + δ(L)
)

-

connected, where δ(L) is the dimension of a principal orbit of the

L action.

(c) If also V n−l ⊂Mn is a compact totally geodesic submanifold, and

k ≤ l, k + l ≤ n, then the inclusion map Nn−k ∩ V n−l −→ V n−l

is (n− k − l)−connected.

As an example of a simple application of this result, combined with
Poincare duality, we note (cf. [Wi2]):

M2n+1 positively curved, π1(M) = {1}, and V 2n−1 ⊂M(2.10)

totally geodesic =⇒ M is a homotopy sphere.

We finally recall that a G-manifold is fixed point homogeneous if
MG is non-empty and G acts transitively on the normal spheres to a
component of the fixed point set, equivalently dimM/G−dimMG = 1.
The classification of fixed point homogeneous manifolds with positive
curvature [GS2] will be used frequently.

Theorem 2.11 (Fixed Point Homogeneity). Let M be a compact

simply connected manifold of positive curvature. If M is fixed point

homogeneous, then M is equivariantly diffeomorphic to a rank one sym-

metric space endowed with a linear action.

Consider the special case, where one of K±, say K−, contains a con-
nected normal subgroup G′ ⊳G. Let G′′ ⊳G be a normal subgroup with
G′ ·G′′ = G. Clearly G′ acts trivially on G /K−. Thus if G′ acts transi-
tively on the normal sphere Sl− , M is fixed point homogeneous. If not,
G′′ ∩K− acts transitively on Sl− , and hence G′′ has the same orbits as G

does. In summary:

Lemma 2.12. If one of K± contains a normal connected subgroup

of G, then either there is a proper normal subgroup of G acting orbit

equivalently, or M is fixed point homogeneous.

This motivates the following:

Definition 2.13. An action is called essential if no subaction is fixed
point homogeneous, and no normal subaction is orbit equivalent to it.

Note that the above lemma asserts in particular that:

• For an essential G-action, none of K± contain a connected normal
subgroup of G.
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In the proof of Theorem A we restrict ourselves to essential actions.
In the case that the underlying manifold is a sphere this is justified
by Theorem 2.7. If the underlying manifold is not a sphere, Theo-
rem 2.11 implies that a non-essential cohomogeneity one action has an
orbit equivalent essential normal subaction. By Lemma 4.2 below this
subaction already determines the action itself.

In the case of linear actions on spheres, all essential actions but three
(and one extension) are irreducible. All non-essential actions without
normal essential subactions are reducible and we refer to them as sum

actions for short (they are in fact characterized by having a fixed point
homogeneous subaction). See Appendix II for a description of such sum
actions and their isotropy groups. The essential actions on spheres with
their isotropy groups, which we use frequently, are collected in Table
E (and for the even dimensional rank 1 projective spaces in Table F).
We include their normal extensions since, although not essential in the
above sense, they will also be used in our induction steps.

3. Weyl Groups

The main objective in this section is to obtain effective upper bounds
on the Weyl groups of positively curved cohomogeneity one manifolds,
and to prove group primitivity of such manifolds. The main result
asserts that except for the cases of corank(H) = 0, and H finite and
non-cyclic, the order of the Weyl group divides 4 corank(H) ≤ 8. We
will first analyze the situation in the case of a trivial H and later on
reduce the general case to this one.

We begin with the following crucial observation:

Lemma 3.1. The Weyl group of a positively curved cohomogeneity

one manifold is finite.

Proof. Since the Weyl group is a subgroup of N(H)/H our claim is
obvious when N(H)/H is finite. When dim(N(H)/H) > 0 we will use
the fact noted earlier, that the Weyl group of M coincides with the
Weyl group of its core (1.8). In particular, it suffices to prove our claim
for G-actions with trivial principal isotropy group. Now suppose W =
〈w−, w+〉 is infinite, i.e., the Weyl group elements w+, w− are involutions

in G and w+ · w− generates an infinite cyclic group. Let Th, h ≥ 1
be the identity component of the closure of this cyclic group. Choose
a positive integer l with (w+w−)l ∈ Th. Clearly w−(w+ · w−)w− =
w+(w+ · w−)w+ = (w+ · w−)−1 and similarly

w−(w+ · w−)lw− = w+(w+ · w−)lw+ = (w+ · w−)−l.

Since the infinite group generated by (w+ ·w−)l is dense in Th, it follows

that the maps Th → Th, a 7→ w±aw± both coincide with the inverse
map ι : T → T taking t to t−1. Thus Adw+ v = Adw−

v = −v for all
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vectors v in the Lie algebra of Th. On the other hand, since K± can only
be Z2, S1 or S3, w± is central in K±, and hence Adw±

v± = v± for v± in
the Lie algebra of K±. If we fix a biinvariant metric we deduce that the
Lie algebras of K± are perpendicular to the Lie algebra of Th. Applying
the same argument again on any of wK±w−1, w ∈ W, we see that in
fact the Lie algebras of wK±w−1 for any w ∈ W are perpendicular to
the Lie algebra of Th. This contradicts linear primitivity. q.e.d.

It is now possible to classify all cores with their core actions (see also
[Pü] for the even dimensional case). However, the following suffices for
our purposes:

Lemma 3.2 (Core-Weyl Lemma). Suppose a Lie group G acts with

cohomogeneity one on a positively curved compact manifold M with fi-

nite fundamental group and trivial principal isotropy group. Then G has

at most two components and the action is primitive. Moreover,

| W | divides 2 rk(G) · |G /G0 | ≤ 8.

Furthermore G0 is one of the groups S1,S3,T2,S1 ×S3,U(2),S3 ×S3,
SO(3) × S3, or SO(4), and M is fixed point homogeneous in all cases

but G0 = SO(3) × S3.

Proof. First notice that the rank of G is 1 or 2 by the rank lemma.
Since the group H is trivial, it follows that K± is isomorphic to one of
the groups Z2,S

1 or S3. Moreover, at most one of K± is Z2 and G has
at most two components (cf. (1.4)). Furthermore if G is not connected
then the Weyl group of the G0 action has index 2 in W, and the bound
follows from the connected case. It is also easy to see that primitivity
follows from primitivity in the connected case. In other words it suffices
to consider the connected groups of rank at most two.

We start by excluding the case where G is simple and without cen-
tral involution, i.e., we suppose G is one of the groups SO(3),SU(3),
SU(3)/Z3, SO(5), or G2. The Weyl group is generated by two involu-
tions w− and w+ in G and we claim that one can find elements g ∈ G

arbitrarily close to e such that the group generated by w− and gw+g
−1

is infinite. This in turn implies that there are invariant metrics on M
that are C∞ close to the given metric for which the normal geodesic goes
from p− to gp+ and for which the Weyl group is hence infinite. But this
contradicts Lemma 3.1. To see the claim we assume, on the contrary,
that it is false. Then we could find a small neighborhood U of e ∈ G

and a map k : U → Z with (w−gw+g
−1)k(g) = e. Since for each integer

k the set of all g satisfying (w−gw+g
−1)k = e is an algebraic subvariety

of G, it follows that all (w−gw+g
−1) have a common order independent

of g ∈ U . However, this is false for each of the above groups. In all cases
but SO(5), this follows from the fact that all involutions are unique up
to conjugacy, see Table G.
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The case G ∼= SO(3) × SO(3), where G is non-simple without central
involutions, is ruled out as well: As above, we can find a nearby metric
with infinite Weyl group unless w− ∈ 1 × SO(3) and w+ ∈ SO(3) × 1
(or vice versa) and hence W ∼= Z2 ⊕ Z2. Since SO(3) × SO(3) contains
no subgroup isomorphic to S3 it follows that dim(K±) ≤ 1, but this
contradicts linear primitivity.

Now suppose G has central as well as non-central involutions, i.e., G is
one of the groups U(2),S1 ×SO(3), SO(4), S3 ×SO(3), or Sp(2). We can
argue as before unless one of the elements, say w−, is central in G. But
then W ∼= Z2 ⊕ Z2 or W ∼= Z2 and W normalizes the group K+. From
linear primitivity we see that the Lie algebras of the groups K−, K+ and
w+K−w+ generate the Lie algebra of G as a vector space. Because of
dim(K±) ≤ 3 this clearly rules out Sp(2). For the other groups it follows
that either K− or K+ is three dimensional and thus isomorphic to S3,
so S1 ×SO(3) is ruled out as well . If G = SO(4) or U(2), every S3 is
normal and hence M is fixed point homogeneous. Note that primitivity
in these cases immediately follows from linear primitivity since one of
the groups K± is a normal subgroup of G.

If G = S3 ×SO(3) and one of K± is an S3 factor, M is fixed point
homogeneous as above, and W = Z2. If both K± are diagonal 3-spheres,
we obtain a contradiction to linear primitivity by observing that they
must have at least a one dimensional intersection. If K− is diagonal and
K+ = Z2, the conjugates K− and w+K−w+ also have a one dimensional
intersection. In all other cases, one of K±, say K−, is a diagonal S3

and K+ is a circle with slope (p, q) in a maximal torus of G. Notice that
linear primitivity also implies that W = Z2×Z2. We will later determine
what slopes (p, q) are possible, and the corresponding manifolds are
Eschenburg spaces (cf. Section 4). To prove primitivity in this case it
is sufficient to show that neither K− nor a conjugate of K− can be a
subgroup of K+. But under such an assumption, we would have that
w+ = w− and thus W ∼= Z2, contradicting the Lower Weyl Group
Bound.

It remains to consider the cases where all involutions of G are central,
i.e., G is one of the groups S1, S3, S1 ×S1, S1 ×S3, S3 ×S3. Clearly the
order of the Weyl group is at most 2 rkG. From linear primitivity it
follows that the Lie algebras of K± generate the Lie algebra of G as a
vector space. This implies that at least one of the groups K± is normal
and M is fixed point homogenous and primitive. q.e.d.

We can now use the above lemma and the last paragraph of Section 1
to prove the group primitivity stated in (2.2):
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Corollary 3.3 (Group Primitivity). Suppose that M admits a pos-

itively curved cohomogeneity one metric. Consider any other cohomo-

geneity one metric on M ; then the corresponding groups K−,K+ gener-

ate G as a Lie group. Equivalently K− and nK+n−1 generate G for any

n ∈ N(H)0.

Proof. Let K± denote the isotropy groups with respect to a positively
curved metric. By linear primitivity K− and K+ generate G as a group.
We need to show that for any a ∈ N(H)0 , the groups K− and aK+a−1

generate G as well. But by primitivity of the core, we know that K− ∩
N(H)c and a(K+∩N(H)c)a

−1 = aK+a−1∩N(H)c generate the core group.
In particular, the group generated by K− and aK+a−1 contains N(H)0 ,
and hence is equal to the group generated by K− and K+. q.e.d.

We have the following useful consequence of primitivity:

Lemma 3.4. Assume G acts effectively. Then the intersection

H− ∩H+ of the ineffective kernels H± of K±/H is trivial.

Proof. We first observe the following: If for a connected homogeneous
space K/H a normal subgroup L of H acts trivially on K/H, then L is
normal in K also. Indeed, first observe that N(L) acts transitively, since
it in general acts with finite quotient on the fixed point set of L. Hence
K/H = N(L)/(N(L) ∩H) = N(L)/H and thus K = N(L). In our case, we
can apply this to the normal subgroup H− ∩H+ of H which fixes both
Sl± . Thus K± ⊂ N(H− ∩H+), and hence by primitivity N(H− ∩H+) = G.
Since the action is effective, H− ∩H+ is trivial. q.e.d.

When M is simply connected and G is connected, we recall from (1.6)
that K± and H are all connected as long as both l± ≥ 2. If exactly one
of l± is 1, say l− = 1 and l+ ≥ 2, K− is connected, H /H0 = K+/K+

0 is
cyclic, and H = H−. If in addition G is assumed to act effectively, it
follows from the above Lemma 3.4 that K+ acts effectively on Sl+ . In the
remaining situation where both l± = 1, Lemma 3.4 and |H /H± | ≤ 2
yield:

Lemma 3.5. Suppose M is a 1-connected positively curved manifold

on which the connected group G acts effectively and isometrically with

codimension two singular orbits. Then one of the following holds:

(a) H = {1} and both K± are isomorphic to SO(2).
(b) H = H− = Z2, K− = SO(2) and K+ = O(2).
(c) H = H− ·H+ = Z2 × Z2, and both K± are isomorphic to O(2).

Notice that part (a) of (3.5) is not possible when rkG ≥ 2 since the
action would then not be group primitive due to the fact that both K+

and K− can be conjugated into a common maximal torus.
As a consequence of the Core-Weyl Lemma one obtains an important

upper bound for the Weyl group:
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Proposition 3.6 (Upper Weyl Group Bound). Assume that M is

simply connected and G connected. Then

(a) If H /H0 is trivial or cyclic, we have |W| ≤ 8 if the corank of H in

G is two, and |W| ≤ 4 if the corank is one.

(b) If H is connected and l± are both odd, |W| ≤ 4 in the corank two

case and |W| ≤ 2 in the corank one case.

(c) If none of N(H) ∩ K± are finite, |W| ≤ 4 in the corank two case

and |W| ≤ 2 in the corank one case.

Proof. We first consider the case where H /H0 is non-trivial and cyclic.
Then (1.6) and (3.5) imply that the codimension of one of the orbits is
two and one of the corresponding K groups is connected. Thus N(H)/H

is not finite since K ⊂ N(H). By passing to the reduction MH, we deduce
from the Core-Weyl Lemma 3.2 that |W| ≤ 8 ( |W| ≤ 4 in the corank
one case).

Now assume that H is connected. If H = {e}, the claim follows again
from the Core-Weyl Lemma. If not, fix a maximal torus T ⊂ H. Clearly
then MT has positive dimension. By Lemma 1.8, the group N(T)c acts
on the reduction MT

c with the same Weyl group. By (1.5), the Weyl
group of N(T)0/T has index at most two in W(G,M).

Next observe that for any torus T of a connected compact Lie group
G, N(T)0 ⊂ C(T), the centralizer of T in G. Because H is a connected
Lie group, T is maximal abelian in H and thus C(T) ∩ H = T. Hence
N(T)0 ∩ H = T and thus N(T)0/T acts with trivial principal isotropy
group on the reduction MT

c . It follows that |W| ≤ 8 ( |W| ≤ 4 in even
dimensions) by the Core-Weyl Lemma.

Since the codimension of ST
± ⊂ Sl± is always even, ST

± ≇ S0 if both l±

are odd and hence (1.5) implies that N(T)c/T and N(T)0/T have the
same Weyl group, which implies part (b).

For part (c) just note that by assumption both normal spheres of the
core MH

c have positive dimension. As we have seen then N(H)c and its
identity component have the same orbits and Weyl group. Thus from
Core-Weyl Lemma |W| ≤ 4 (|W| ≤ 2 in even dimensions). q.e.d.

Remark 3.7. The only cases where we have no bound on the Weyl
group are hence when H has corank zero, or when H has corank one or
two and H = Z2 ⊕ Z2.

In the equal rank case, N(H)/H is always finite, and hence the Core-
Weyl Lemma does not apply. However, in this case, information about
the Weyl group does not enter in the proof of Theorem A. It will follow
as a consequence of the proof that W is one of D1,D3,D4,D6.

If H = Z2 ⊕ Z2, we note that N(H)/H is also finite since each of
(N(H)∩K±)/H is and MH is primitive. In fact this is the case where the
Weyl group can become larger. One easily sees that the Weyl groups
are D3 for P2k and D6 for P2k+1, whereas for Qk and R it is always
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D4. Hence, as a consequence of our classification, it follows that the
Weyl groups for simply connected positively curved cohomogeneity one
manifolds are the same as for linear actions on spheres. Notice also that
there are many actions among the linear actions on spheres, for example
all tensor product actions, where W = D4, and some of those with l±

odd and H not connected (see Table E).

4. Examples and Candidates

To aid the induction step in our proof of Theorem A it is important
to know more details about the individual manifolds and actions that
occur. The linear actions are of course well known, and the essential
ones and their normal extensions are exhibited in Tables E and F in
Appendix II. The corresponding details for the remaining spaces and
actions, i.e., for the known non-spherical cohomogeneity one manifolds
of positive curvature (the second part of Theorem A), and for our new
candidates (third part of Theorem A), are provided in the following
Table A. In the next seven sections we show that the list is complete.
Indeed all the cases in which nonspherical examples occur are covered
by Lemma 7.2 and Proposition 8.2.

In this section, we will explain which of these actions correspond
to the known cohomogeneity one manifolds of positive curvature. The
information in the table is separated into homogeneous examples, biquo-
tients, and candidates (with some overlap). Due to its special signifi-
cance we have included as a separate entry the linear action of SO(4)
on S7 and separated the two cohomogeneity one actions on the Aloff
Wallach space W 7 by its lower index. All manifolds are assumed to be
simply connected.

For subgroups S1 ⊂ S3 ×S3 we have used the notation Ci
(p,q) =

{(epiθ, eqiθ) | θ ∈ R} and C
j
(p,q) = {(epjθ, eqjθ) | θ ∈ R} and Q denotes

the quaternion group {±1,±i,±j,±k}.
Some explanations are in order. The embedding of H is not always

explicitly given, but can be determined in each case. Z4 ⊕ Z2 is always
embedded as {(±1,±1), (±i,±i)}. Otherwise, a Z2 inside H is always
embedded in the circle inside K+. The embedding of Q depends on the
slopes, although it is always embedded diagonally up to conjugacy. e.g.,
for B7 it must be of the form {±(1, 1),±(i,−i),±(j,−j),±(k, k)}. The
embedding of SU(2) is in a 2 × 2 block in SU(4).

Most of these actions are only almost effective, i.e., G and H have a
finite normal, hence central subgroup in common. The effective version
can easily be determined in each case, and we include in our table the
most important part, the effective group H̄. It is also important to notice
that the full effective groups for Pk are Z2⊕Z2 ⊂ {O(2),O(2)} ⊂k SO(4)
and for Qk (as well as for R) are Z2 ⊂ {SO(2),O(2)} ⊂k SO(3)SO(3).
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Mn G K− K+ H H̄ (l−, l+) W

S
7 S3 × S3 Ci

(1,1)H C
j

(1,3)
H Q Z2 ⊕ Z2 (1, 1) D6

B7 S3 × S3 Ci
(3,1)H C

j

(1,3)
H Q Z2 ⊕ Z2 (1, 1) D3

W 7
(1) S3 × S3 ∆ S3 ·H Ci

(1,2) Z2 1 (3, 1) D2

W 7
(2) S3 × S3 Ci

(1,1)H C
j

(1,2)
H Z4 ⊕ Z2 Z2 (1, 1) D4

B13 SU(4) Sp(2) · Z2 SU(2) · S1
1,2 SU(2) · Z2 SU(2) · Z2 (7, 1) D2

E7
p, p ≥ 1 S3 × S3 ∆ S3 ·H Ci

(p,p+1) Z2 1 (3, 1) D2

B13
p , p ≥ 1 SU(4) Sp(2) · Z2 SU(2) · S1

p,p+1 SU(2) · Z2 SU(2) · Z2 (7, 1) D2

Pk, k ≥ 1 S3 × S3 Ci
(1,1)H C

j

(2k−1,2k+1)
H Q Z2 ⊕ Z2 (1, 1) D3 or D6

Qk, k ≥ 1 S3 × S3 Ci
(1,1)H C

j

(k,k+1)
H Z4 ⊕ Z2 Z2 (1, 1) D4

R S3 × S3 Ci
(3,1)H C

j

(1,2)
H Z4 ⊕ Z2 Z2 (1, 1) D4

Table A. Known examples and candidates.

Here the groups K− and K+ are embedded in different blocks in each
component of SO(3)SO(3). The isomorphism types of these groups are
consistent with, and in fact determined by, Lemma 3.5.

There are obvious and important isomorphisms among some of these
cohomogeneity one actions which are apparent from the tables: P1 =
S7 , Q1 = W 7

(2) , E1 = W 7
(1) and B13

1 = B13.

The Weyl groups can be computed from the given isotropy groups.
For example in the case of Pk, one chooses w− = (eπi/4, eπi/4) and w+ =

(eπj/4, (−1)keπj/4) as representatives. One then checks that (w−w+)3 =
1 in N(H)/H for k even, and (w−w+)6 = 1 for k odd. Hence W = D3

for k even and W = D6 for k odd.

The cohomogeneity one actions on the known positively curved man-
ifolds were discovered by the first and last author in 1997, see [Zi] and
[GSZ]. Although one can determine the group diagrams for these ac-
tions directly, it will be much simpler for us to use the classification.
More precisely we will use Lemma 7.2 and Proposition 8.2 from below,
whose proofs are independent of this section.

S7 with G = SO(4)

The 7-sphere has a cohomogeneity one action by SO(4) given by the
isotropy representation of the symmetric space G2 /SO(4). A normal
subgroup SU(2) of SO(4) acts freely on S7 and hence is given by the
Hopf action. If we divide by this action, we obtain an induced action
of SO(3) on S4, which must be given by the usual action on trace free
symmetric 3 × 3 matrices. The isotropy groups of this action on S4 are
given by K− = O(2), K+ = O(2), and H = Z2 ⊕ Z2 and hence are the
same for the SO(4) action on S7. Since SU(2) acts freely, the slopes
for the circles K±

0 , viewed as subgroups of S3 ×S3, must have ±1 in the
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second component. Using Lemma 7.2, the slopes must be (1, 1) and
(3, 1) and this completely determines the group picture.

B7 = SO(5)/SO(3) with G = SO(4)

In the positively curved homogeneous Berger space SO(5)/SO(3) the
subgroup SO(3) is embedded via the irreducible representation of SO(3)
on trace free symmetric 3 × 3 matrices (see [Be]). Notice that SO(4) \
SO(5)/SO(3) = S4/SO(3) is one dimensional and thus SO(4) acts on
SO(5)/SO(3) by cohomogeneity one. Next we observe that the extended
O(4) action is not orbit equivalent to the SO(4) action since for the
SO(3) action on S4 the antipodal map takes one singular orbit to the
other. This implies that the two singular isotropy groups K− and K+

are isomorphic up to an outer automorphism of SO(4). Combining this
property with Lemma 7.2 we see that the action is determined: both
singular groups are 1 dimensional and that the slopes of the circles of
the corresponding ineffective S3 × S3-action are given by {(3, 1), (1, 3)}.

E7
p with G = SO(3) × SU(2)

The Eschenburg space E7
p = diag(z, z, zp)\SU(3)/diag(1, 1, z̄p+2),

p ≥ 1 has positive curvature according to [E2]. The group SU(2)×SU(2)
acting from left and right in the first two coordinates induces an action
on E7

p whose orbit through the identity is SU(2) × SU(2)/(△S3 ·H) =

RP3 with H = Z2 = 〈(1,−1)〉 or 〈(−1, 1)〉. One easily sees that the
action of K− on the slice is nontrivial and hence E7

p is cohomogeneity
one. The group K+ is in this case not determined by this informa-
tion. A computation shows it is a circle with slope (p+ 1, p) and hence
H = ((−1)p+1, (−1)p), see [GSZ]. For p even, the left hand side SU(2)
acts effectively as SO(3), and for p odd, the right hand side one does.
For p = 1 we obtain the cohomogeneity one picture for W 7

(1) and the

right hand side SO(3) acts freely. For p = 2 the left hand side SO(3)
acts freely, as one sees immediately from the group picture.

W 7
(2) with G = SO(3) × SO(3)

For the positively curved Aloff–Wallach space W 7 = SU(3) /
diag(z, z, z̄2) [AW], we have N(H)/H = U(2)/H = SO(3) which acts
freely on the right and hence we can write B7 = SU(3)SO(3)/ U(2)
(see [Wi1]). Furthermore the second factor acts freely on W 7, and the
action descends to the natural cohomogeneity one action of SO(3) on
CP2 = W 7/SO(3). Thus G acts by cohomogeneity 1. From Lemma 7.2
it follows that there is only one cohomogeneity one action of SO(3)2

on a positively curved simply connected 7-manifold for which one of
the factors acts freely. Thus the action is determined, both singular
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isotropy groups are one dimensional and that the slopes are given by
{(1, 2), (1, 1)}.

B13
p with G = SU(4)

The Bazaikin space

B13
p = diag(z, z, z, z, z2p−1)\SU(5)/Sp(2) diag(1, 1, 1, 1, z̄2p+3), p ≥ 1

has positive curvature by [Ba] (see also [Zi] and [DE]). The action
of SU(4) ⊂ SU(5) on the left induces an action on B13

p whose orbit

through the identity is SU(4)/(Sp(2) ∪ iSp(2)) = RP5. The action on
the slice is easily seen to be nontrivial and hence B13

p is cohomogeneity
one. From the proof of Proposition 8.2 in the case of G = SU(4) it
follows that H = SU(2) · Z2 and K+ = SU(2) · S1 where S1 is allowed
to have slopes (q, q + 1) inside of a maximal (two dimensional) torus
of the centralizer of H. We can now consider the fixed point set of
the involution diag(−1,−1, 1, 1, 1) ∈ SU(5) as in [Ta] and one shows
that its fixed point set is diag(z, z, z2p−1)\SU(3)/diag(z, z, z̄2p+3) =
diag(z, z, zp)\SU(3)/diag(1, 1, z̄p+2) = E7

p (see [DE]). Hence the slopes

of the SU(4) action are determined (i.e., q = p). Because of B13
1 = B13,

this group picture is determined as well.

We add the following information about these actions, needed in our
proof:

Lemma 4.2 (Extensions). The nonlinear actions in Table A have

the following normal extensions

(a) The manifolds B7, Pk, Qk, and R, with their natural cohomogene-

ity one action, do not admit any connected normal extensions.

(b) For the manifolds Ep and B13
p , the natural action has a unique

connected normal extension by S1.

Proof. For the spaces B7, Pk, Qk, and R, which have singular orbits
of codimension two, the identity component of the principal isotropy
group of the extended action would normalize both singular isotropy
groups contradicting primitivity.

For the spaces Ep and B13
p , the natural action has a U(1) extension,

since e.g., SU(4) ⊂ SU(5) lies in U(4). Since the group diagram of
this extension can be derived from that of G, any two extensions are
equivariantly diffeomorphic. q.e.d.

One also easily derives the following information from the group di-
agrams in Table A and Table E.

Lemma 4.3 (Free Actions). If G acts by cohomogeneity one on an

odd dimensional simply connected positively curved manifold M and
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there exists a subgroup L ⊂ G with L = SU(2) or L = SO(3) which

acts freely, then

(a) M = E1 = W 7
(1) or M = E2 with L = SO(3) ⊂ SO(3)SU(2) = G.

(b) M = W 7
(2) with L = SO(3) ⊂ SO(3)SO(3) = G.

(c) M is a sphere and the subaction of L ∼= S3 is given by the Hopf

action.

Remark 4.4. The existence of the free SO(3) actions on E1 and E2

was first observed by Shankar in [Sh], in connection with his discovery
of counter examples to the so-called Chern conjecture. In the case of
E1 = W 7

(1) and W 7
(2) it is the natural free action of N(H)/H on W 7.

Also notice that in all three cases the quotient by SO(3) is equal
to CP2, which one can recognize from the induced cohomogeneity one
diagram on the base. In the case of E1 and E2 it is the action of SU(2) on
CP2 which has a fixed point. In the case of W 7

(2) it is the cohomogeneity

one action by SO(3) with singular orbits of codimension two.

The proof of Theorem A will occupy the next seven sections. As
stated earlier, this is achieved by classifying essential cohomogeneity
one actions by compact connected groups on simply connected odd di-
mensional manifolds with positive (sectional) curvature.

All partial classification results will be formulated in propositions,
and

• for simplicity we will abuse language and assume from now on
without stating it explicitly, that the manifolds M under consid-
eration are simply connected and positively curved.

When a manifold is recognized via its isotropy groups, we will often
say that we have “recovered” a particular action and manifold and leave
it up to the reader to find the corresponding entry in Tables E or F and
to verify that the groups are indeed recovered up to equivalence of their
diagrams.

5. Equal Rank Groups

We are now ready to begin our classification of essential isometric co-
homogeneity one G-actions on simply connected positively curved man-
ifolds M . This section is concerned with the simplest situation of the
rank lemma, where

• rk(H) = rk(K−) = rk(K+) = rk(G).

In particular, the normal spheres

• Sl± = K±/H are even dimensional

and hence one of SO(2n+ 1)/SO(2n) or G2 /SU(3). Thus

• H ⊂ {K−,K+} ⊂ G are all connected.
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Since an equal rank subgroup of G1 ·G2 is of the form H1 ·H2 with Hi ⊂
Gi, G is clearly semisimple, and hence by the product lemma

• G is simple.

Since the weights of the isotropy representation of an equal rank sub-
group are roots, we have

• The irreducible subrepresentations mi of H are pairwise non-equi-
valent.

We will divide our analysis into the following three cases: (1) H is not
semisimple, (2) H is semisimple, but not simple, and (3) H is simple.

Proposition 5.1. If G acts essentially, with non-semisimple H of

corank zero, then G is one of SU(3),Sp(2), or G2 and the action is the

adjoint representation restricted to the sphere.

Proof. We first show that in fact H is a maximal torus T. If not, let
H′ ⊳H be a simple connected normal subgroup, and S1 ⊂ Z(H). Since
K±/H are even dimensional spheres, either H′ or S1 must act trivially on
the irreducible subrepresentations of H in K±. By the Isotropy Lemma
the same then holds for each irreducible subrepresentation of H in G and
Lemma 2.4 implies that G is not simple, contradicting our assumption.

Therefore H = T and we conclude that Sl± ∼= S2, and H /H± both
circles. By primitivity we see that dimT = rkG ≤ 2. If rkG = 1 the
action is obviously a suspension action which is non essential. It follows
that G is one of SU(3),Sp(2), or G2.

To unify the discussion of these three cases we will use the well known
fact (see e.g., [Wo]) that the Weyl group, N(T)/T of G acts transitively
on the set of roots of G of the same length.

The Weyl group of SU(3) is D3 acting transitively on its set of three
equal length roots. Each root corresponds to a U(2) ⊂ SU(3), and by
primitivity the pair (K−,K+) must be a pair of U(2) subgroups of SU(3)
corresponding to different roots. We have recovered the diagram for the
adjoint action of SU(3) on S7.

Both Sp(2) and G2 have roots of two lengths. From the Isotropy
Lemma it follows that the singular isotropy groups must correspond to
roots of different lengths.

The Weyl group of Sp(2) is D4 with two long roots Sp(1) × S1 ⊂
Sp(1) × Sp(1) ⊂ Sp(2) and two short roots U(2) ⊂ Sp(2). All pairs
(K−,K+) corresponding to a long and a short root define the same man-
ifold, namely S9 with the adjoint action of Sp(2).

The Weyl group of G2 is D6, and has three long roots and three
short roots. A short root corresponds to U(2) ⊂ SU(3). There are two
U(2) ⊂ SO(4), one a long root and one a short root. Since K± cannot
both be in SO(4) by primitivity, this leaves, modulo the action of the
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Weyl group, only one configuration for the pairs (K−,K+) and we have
recovered the adjoint action of G2 on S13. q.e.d.

Proposition 5.2. If G acts essentially, with semisimple, nonsimple

H of corank zero, then G = Sp(3) and the action is the unique linear

action on S13 with H = Sp(1)3.

Proof. Suppose H′ is a simple normal subgroup of H with rkH′ ≥ 2.
By Lemma 2.4, we can find a subrepresentation of G /H on which H′

and H /H′ act non-trivially, which can not degenerate since K±/H are
even dimensional spheres. Thus H is a semisimple group with rank one
factors only. In particular both Sl± are 4-dimensional.

Again by Lemma 2.4, we see that for any two different simple sub-
groups H1 and H2 of H, the isotropy representation of G /H has an ir-
reducible subrepresentation on which both Hi act non trivially. By the
isotropy lemma, this representation has to degenerate along the normal
geodesic c at some singular orbit, say K/H = Sp(2)/Sp(1)Sp(1). Note
that there is an element w ∈ W represented by an element w ∈ K∩N(H),
which acts on H by permuting the two factors H1 and H2, and leaving all
other factors of H invariant. Thus the action of the Weyl group on the
factors of H contains all possible transpositions, and it is hence the full
symmetric group. The only symmetric groups which are dihedral are S2

and S3. Hence H has at most three factors or equivalently rk(G) ≤ 3. If
rk(G) = 2, G must contain an Sp(2) or SO(5), which rules out G = SU(3)
and G2, and for G = Sp(2) the action must be a suspension action, which
is not essential.

If rk(G) = 3, G contains a semisimple 9-dimensional subgroup H as
well as an Sp(2)Sp(1), which rules out SU(4) and SO(7), and in the
case of G = Sp(3) with H = Sp(1)3 leaves, by primitivity, only one
configuration for K± and we have recovered the action of Sp(3) on S13.

q.e.d.

Proposition 5.3. If G acts essentially, with simple H of corank zero,

then G = F4, and the action is the unique linear action on S25 with

H = Spin(8).

Proof. Using that H is a simple equal rank subgroup of G with a
spherical isotropy representation, we can deduce from Table B that
(G,H) is either (F4,Spin(8)) or (F4,Spin(9)). The latter case can ac-
tually not occur since the 16-dimensional representation of F4/Spin(9)
can not possibly degenerate. Recall that the isotropy representation of
F4/Spin(8) decomposes into three pairwise nonequivalent 8 dimensional
representations of Spin(8), each contained in a Spin(9). Clearly the ac-
tion is determined by primitivity, and we have recovered the unique
cohomogeneity one action of G = F4 on S25. q.e.d.



62 K. GROVE, B. WILKING & W. ZILLER

We point out that for all actions classified in this section the cohomo-
geneity one Weyl groups coincide with the core groups N(H)/H which
are either D3, D4 or D6.

6. Non Semisimple Groups

In this and the following five sections we assume that:

• M is a simply connected cohomogeneity one G-manifold, with an
invariant metric of positive curvature,

• G is connected acting essentially with principal isotropy group H

of corank two.

Based on the even dimensional classification [V1, V2], the following is
quite simple:

Proposition 6.1. Suppose G is not semisimple and acts essentially

with corank 2. Then either G = S1 ·L, where L is one of SO(n),Spin(7),
or G2, and the action is a tensor product action on S2n−1,S15, or S13

respectively.

Proof. After passing to a finite covering of G we may assume G =
S1 ×L. Since H∩S1 is in the ineffective kernel of the action we can
assume it is trivial. Moreover, H does not project surjectively onto
S1, since otherwise the subaction of L would be orbit equivalent to the
G-action, which would then not be essential. Assume first that the sub-
action of the S1-factor is free. Then B = M/S1 is an even dimensional
simply connected manifold of positive sectional curvature with a coho-
mogeneity one action of L, and B is not 2-connected. So Verdiani’s
classification implies that B is a complex projective space. Since M
is simply connected, the Euler class of the bundle S1 → M → B is a
generator of H2(B,Z). Using the Gysin sequence we deduce that M is
a homology sphere.

If the subaction of the S1-factor is not free, we can assume without
loss of generality that K− ∩ S1 6= 1. Since S1 ∩H = 1, K− ∩ S1 acts
freely on K−/H and hence G /K− is a component of the fixed point

set M (K−∩S1). By assumption (cf. 2.12) K− is not normal in G, and
dim(G /K−) > 1. Moreover, K− must project surjectively to S1, since
G /K− has positive curvature and hence finite fundamental group. On
the other hand, since H does not project surjectively to S1, it follows
that G /K− has codimension 2, and thus M is a homotopy sphere by the
connectedness lemma (cf. 2.10).

The actual determination of the action follows from Straume’s clas-
sification (see Table E). q.e.d.
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7. Semisimple Rank 2 Groups

In the next four sections we assume in addition to M being a simply
connected cohomogeneity one G-manifold, with an invariant metric of
positive curvature, that:

• G is connected, simply connected and semisimple acting essentially
with principal isotropy group H of corank two.

In this section we consider the case where rk G = 2, and hence H is
finite. Clearly then K±

0 = S1 or S3.

We will first deal with the most interesting case, where G is not simple,
i.e., G = S3 ×S3.

Proposition 7.1. If G = S3 ×S3 acts essentially with corank 2, M is

equivariantly diffeomorphic to one of the following spaces: An Eschen-

burg space Ep, p ≥ 1, a Pk, k ≥ 1, the Berger space B7, a Qk, k ≥ 1, or

R with the actions described in Table A.

Since our actions are not assumed to be effective, we will use the
notation Ḡ, K̄ and H̄ if the action is made effective. In view of our
description provided in Table A in Section 4, the proposition is easily
seen to follow from the following:

Lemma 7.2. Under the condition of the above proposition, there are

three possibilities:

1) H̄ = 1, K̄− ∼= S3 and K̄+ ∼= S1. In S3 ×S3, K− = △S3 ·H, K+ =
Ci

(p,p+1) with p ≥ 1, and H ∼= Z2.

2) H̄ ∼= Z2, K̄− ∼= SO(2) and K̄+ ∼= O(2). In S3 ×S3, the groups are

K− = Ci
(1,1) ·H , K+ = C

j
(p,p+1) ·H with p ≥ 1 and H ∼= Z4 ⊕Z2, or

the same kind of space with slopes {(3, 1), (1, 2)}.
3) H̄ ∼= Z2 ⊕ Z2, and K̄− ∼= O(2) ∼= K̄+. In S3 ×S3, the groups are

K− = Ci
(1,1) · H , K+ = C

j
(p,p+2) · H with p odd ≥ 1 and H ∼= Q, or

the same kind of space with slopes {(3, 1), (1, 3)}.

Proof. If l− = l+ = 3, the assumption that the action is essential
means that K0 cannot be one of the S3 factors. Hence both K±

0 ≃ S3 are
embedded diagonally in S3 ×S3, contradicting group primitivity since
any two diagonal embeddings are conjugate, and in the effective picture
all groups are connected, and in particular H̄ = {1}.

We now know that at least one of the singular orbits has codimension
2, which for the moment we denote as G /K and where we can assume
that, up to conjugacy, K0 = Ci

(p,q) for two relatively prime nonnegative

integers p, q. Moreover, note that the Product Lemma 2.6 implies that
neither p nor q can be 0 since the normalizer of K0 in one of the S3

factors is finite.
In the following we will make use of a consequence of the equivariance

of the second fundamental form of G /K regarded as a K equivariant
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linear map B : S2T → T⊥. The non-trivial irreducible representations
of S1 = {eiθ | θ ∈ R} consist of two dimensional representations given
by multiplication by einθ on C, called a weight n representation. The
action of K0 on T⊥ = R2 will have weight k if H∩K0 = Zk since Zk is
the ineffective kernel. As we will show below, only the cases k = 2, 4
arise and we claim that |p− q| = 2 or (p, q) = (1, 1) in the case of k = 4,
and |p− q| = 1 in the case k = 2.

To see this, we first observe that the action of K0 on T has weights 0
on W0 spanned by (−qi, pi), weight 2p on the two plane W1 spanned by
(j, 0) and (k, 0) and weight 2q on the two plane W2 spanned by (0, j)
and (0, k). The action on S2(W1 ⊕W2) therefore has weights 0 and 4p
on S2W1, 0 and 4q on S2W2 and 2p+ 2q and 2p− 2q on W1 ⊗W2.

Next, we claim that for any homogeneous metric on G /K0 there exists
a vector w1 ∈W1 and w2 ∈W2 such that the 2-plane spanned by w1 and
w2 tangent to G /K has curvature 0 intrinsically. Indeed, if (p, q) 6= (1, 1)
or equivalently p 6= q, Ad(K0) invariance of the metric on G /K0 implies
that the two planes span{(j, 0), (0, j)} and span{(k, 0), (0, k)} and the
line W0 are orthogonal to each other. Hence Ad((j, j)) induces an isom-
etry on G /K0, which implies that the two plane spanned by the commut-
ing vectors w1 = (j, 0) ∈ W1 and w2 = (0, j) ∈ W2 is the tangent space
of the fixed point set of Ad((j, j)) and thus has curvature 0. If (p, q) =
(1, 1), Ad(K0) invariance implies that the inner products between W1

and W2 are given by 〈(X, 0), (0, Y )〉 = 〈φ(X), Y 〉 where φ : W1 →W2 is
an Ad(K0) equivariant map. Hence, if we choose j′ = φ(j) and k′ = φ(k),
the two planes span{(j, 0), (0, j′)} and span{(k, 0), (0, k′)} are orthogo-
nal to each other, so that by the same argument w1 = (j, 0) ∈ W1 and
w2 = (0, j′) ∈W2 span a 2-plane with curvature 0.

If we now assume that (p, q) 6= (1, 1) at least one of the numbers 4p
or 4q is not equal to the normal weight k > 0. The equivariance of
the second fundamental form then implies that BS2Wi

vanishes for at
least one i and hence by the Gauss equations B(w1, w2) 6= 0 for the
above vectors w1 and w2. If (p, q) = (1, 1) the same holds if k = 2.
Using the equivariance of the second fundamental form once more we
see that W1 ⊗W2 contains a subrepresentation whose weight is equal
to the normal weight k. Hence, |2p + 2q| = k or |2p − 2q| = k, which
proves our claim.

In addition we observe that H cannot contain an element h of the
form (a,±1) or (±1, a) with a being a noncentral element. Indeed, this
would imply that N(h)0 = S1 ×S3 or S3 ×S1 and hence Mh would be
a totally geodesic submanifold of codimension 2 in M . By (2.10) M
would be S7 with a linear action. But there is only one action on S7

with K±

0 = S1, see Table E, and for that action H does indeed not contain
such elements (cf. Table A).
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Now let us consider the case where say (l−, l+) = (3, 1). Since the
action is assumed essential we have K−

0 = △S3 and K+
0 = S1. From

the fact that △S3 can be extended only by the central element (1,−1),
we see that K̄− is connected and H̄ = 1. Thus H = Z2 since H =
1, and hence k = 1, contradicting the above equivariance argument.
Thus H = {(1,±1)} or {(±1, 1)}, and K+ ⊃ H is connected since M
is simply connected (cf. (1.6)). We can assume that, up to conjugacy
and switching the two factors in S3 ×S3, K+ = K+

0 = (eipθ, eiqθ) for two
relatively prime positive integers p, q such that q ≥ p. Using k = 2,
the above equivariance argument implies that q − p = 1 and hence
(p, q) = (p, p+ 1) with p > 0.

It remains to consider the cases where (l−, l+) = (1, 1), i.e., K±

0 = S1.
By Lemma 3.5 H̄ contains only elements of order two, which implies
that H can only contain elements of order two or four. This in turn
implies that the normal weights of the two singular orbits are 2 or 4.

We now have slopes p−, q− on the left and p+, q+ on the right. We
next proceed to derive the following strong restrictions:

1 = min{|q+|, |q−|} = min{|p+|, |p−|}.

The first step utilizes the Alexandrov geometry of the quotientsM/S3×1
and M/1 × S3.

In general, for an isometric G action on M , it is a consequence of
the slice theorem that the strata, i.e., components in M/G of orbits
of the same type are (locally) totally geodesic (cf. [Gr]). In the case
of M/S3 ×1, the isotropy groups are effectively trivial on the regular
part since (a, 1) cannot lie in H unless it lies in the center. Along
B± the isotropy groups are Zq− and Zq+ . This implies that the im-

age of both B± in M/S3 ×1 are totally geodesic if min{|q+|, |q−|} > 2.
Since these strata are two dimensional and M/S3 is four dimensional,
both strata cannot be totally geodesic according to Petrunin’s ana-
logue [Pe] of Frankel’s theorem for Alexandrov spaces. Hence we have
min{|q+|, |q−|} ≤ 2 and min{|p+|, |p−|} ≤ 2. Furthermore, if equality
holds in one of these inequalities, then G acts effectively as SO(3)× S3.

According to Lemma 3.5, two cases remain corresponding to H̄ = Z2

or Z2 ⊕ Z2 since H̄ = 1 and l± = 1 contradicts group primitivity. In
either case H contains an element h of order four. Combined with the
above restrictions on h, we have h2 = (−1,−1). Thus Ḡ 6= SO(3) × S3

and 1 = min{|q+|, |q−|} = min{|p+|, |p−|} as claimed above.

If H̄ = Z2, we can assume that K̄− = SO(2) , K̄+ = O(2) and the
non-trivial element h̄ ∈ H̄ is in the second component of K̄+. Clearly,
H contains an element h, whose image in H̄ is h̄, and by the above
each component in h is an unit imaginary quaternion. Since h̄ acts
trivially on Sl− and by reflection on Sl+ , so does h. In particular, h
commutes with K−

0 and we can arrange w.l.o.g. that K−

0 = Ci
(p−,q−) for
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two relatively prime positive integers p−, q− with q− ≥ p−. Then h is
one of (i,±i), and hence p−, q− are both odd. Also, since conjugation
by h must preserve K+

0 and induce a reflection on it, we can assume,

after possibly conjugating with an element in N(h), that K+
0 = C

j
(p+,q+)

with positive integers p+ and q+ which are relatively prime.
For the precise group picture in S3 ×S3, there are two possible sub-

cases. Either H = Z4 = 〈h〉 = {±(1, 1),±h} or H = Z4 ⊕ Z2 =
〈h, (1,−1)〉 = {(±1,±1), (±i,±i)}. To rule out H = Z4, assume first
that p+ and q+ are both odd. In this case H∩K+

0 = Z2. Thus the
normal weight is 2 and equivariance implies that |p+ ± q+| = 1, a
contradiction. If one is even and the other odd, H∩K+

0 = 1, which
contradicts again the above equivariance argument. Now assume that
H = Z4 ⊕Z2 = {(±1,±1), (±i,±i), which implies that H∩K+

0 = Z2 and
hence q+ − p+ = ±1. On the left, we have that K−

0 ∩ H = 〈h〉 = Z4

and hence the normal weight is 4, which implies that q− − p− = 2, or
(p−, q−) = (1, 1). Together with the above Frankel argument, this im-
plies that we have the possibility (p−, q−) = (1, 1) and q+ − p+ = ±1
or (p−, q−) = (1, 3) and (p+, q+) = (2, 1). In the first case we can also
assume that q+ > p+ by interchanging the two factors if necessary, and
hence (p+, q+) = (p, p+ 1) with p ≥ 1.

Finally, we assume that H̄ = Z2⊕Z2. In this case there are up to sign
two noncentral order 4 elements h− and h+ in H, whose images h̄− and
h̄+ in H̄ are in the second components of K̄+ and of K̄− respectively, as
well as in the identity components K−

0 and K+
0 respectively. Notice that

h− and h+ must anticommute in G since both components of h− and
h+ as well as h−h+ are unit imaginary quaternions. Since h̄± act on Sl±

as expected from the previous case, we can arrange that K±

0 are of the

form K−

0 = Ci
(p−,q−) and K+

0 = C
j
(p+,q+) respectively, and correspondingly

h− = (±i,±i) and h+ = (±j,±j) and thus all pi, qi are odd. We can
also arrange, as above, that q− ≥ p− > 0 and p+, q+ > 0.

There are now two possibilities for H. Either H = △Q (up to signs of
the components) or H = △Q⊕〈(1,−1)〉. In the latter case, since (1,−1)
generates another component for K− and for K+, M is not simply con-
nected by Lemma 1.7. Thus H = △Q, the weights on both normal spaces
are 4 and hence q±−p± = ±2 or (p±, q±) = (1, 1). Combining all of the
above now yields only two possibilities. Either {(p−, q−) , (p+, q+)} =
{(1, 3), (3, 1)} or {(1, 1), (p+, q+)} with q+ − p+ = 2, where we used
the fact that {(p−, q−) , (p+, q+)} = {(1, 1), (1, 1)} would not be group
primitive. q.e.d.

We now turn to the simple rank two groups:

Proposition 7.3. There are no actions of corank two of any of the

groups SU(3), Sp(2) or G2.
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Proof. From the Core-Weyl Lemma, we see that for the effective ver-
sions H̄ 6= 1. In particular, (1.6) implies that l± cannot both be 3.

Now suppose one of l± is 3, and w.l.o.g. then K̄− = S1, and K̄+ = S3 ·H̄
and hence H̄ is cyclic by(1.6). It follows that N(H)∩K± are both at least
1-dimensional and by part c) the Upper Weyl Group Bound |W| ≤ 4.
But this yields a contradiction to the Lower Weyl Group Bound if G =
Sp(2), or G2. If G = SU(3), then N(H)0 = U(2) or T2. In either case
it follows that w+ may be represented by a central element in N(H)0 .
Using S1 = K̄− ⊂ N(H)0 it follows that the Weyl group normalizes K−.
But then linear primitivity implies that equality can not hold in the
lower Weyl group bound – a contradiction.

It remains to consider the situation where both l± = 1, and thus, by
Lemma (3.5), either H̄ = Z2 or Z2 ⊕ Z2. In the latter case we know
that N(H)/H must be finite since each of (N(H)∩K±)/H are and MH is
primitive. However, for Ḡ = SO(5) we can diagonalize both involutions
simultaneously. In one case, Z2 ⊕Z2 is contained in an SO(3) block and
the normalizer contains a circle. In the other case, Z2⊕Z2 is contained in
an SO(4) block, and the normalizer contains a torus. Similar arguments
can be applied to all the other groups individually as well. These,
however, are also all covered by the a general result due to Borel [Bo],
which asserts in particular that any Z2 ⊕Z2 ⊂ Ḡ is contained in a torus
unless π1(Ḡ) has 2-torsion.

If H̄ = Z2 and hence K̄− = S1, K̄+ = O(2) the Lower Weyl Group
Bound implies that |W | ≥ dimG /H = dimG and |W | ≤ 8 by the Upper
Weyl Group Bound. Hence G = SU(3), and it follows that N(H) =
U(2) since this is the only equal rank symmetric subgroup of SU(3).
In particular N(H) is connected and the Core-Weyl Lemma gives the
contradiction |W | ≤ 4. q.e.d.

8. Semisimple Rank 3 Groups

If G has rank 3 and H has corank 2, one has the two subcases H0 = S1,
or H0 is one of S3 or SO(3). Also recall that H /H0 is cyclic. By the
Isotropy Lemma max{l−, l+} ≥ 2, and by the rank Lemma l± cannot
both be even.

In the case of H0 = S1, one has the possibilities (l−, l+) = (1, 2),
(1, 3), (2, 3), (3, 3) (up to order) and in the latter two cases all groups
are connected. Furthermore, K0 = T2 if l± = 1, K0 = SO(3), or S3 if
l± = 2 and K0 = U(2), or S1 ×S3 if l± = 3.

If H0 is 3-dimensional, one has the possibilities l± = 1, 3, 5, 7 and
K0 = U(2), S3 ×S1, or SO(3) × S1 if l± = 1, K0 = SO(4), or S3 ×S3

if l± = 3, K0 = SU(3) if l± = 5 and Sp(2) if l± = 7. If H0 = SU(2)
(in every effective version), the lowest dimension of a representation is
4, which must degenerate somewhere and hence one of K±

0 = SU(3) or
Sp(2).
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We will first deal with the case where G has a normal subgroup of
rank one, i.e., almost effectively G = S3 ×L, where rk L = 2.

Proposition 8.1. If rkG = 3 and G has a normal subgroup of rank

one, an essential action of G with corank 2 is the tensor product action

of SU(2)SU(3).

Proof. Before we start with the four possible subcases, let us notice
that a three dimensional subgroup H0 of S3 ×L must be contained in L

since the action is almost effective and essential.

Case 1. G = S3 ×S3 ×S3

If H0 were three dimensional, the projection onto one of the factors
would be onto and hence the action would be inessential. Thus H0 = S1,
and one of l± is 2 or 3. First suppose, e.g., l− = 3. Then the semisimple
part of K− is S3 whose involution is a Weyl group element. Being central
in G, it has G /K− as a fixed point component, contradicting the fact
that it cannot have positive curvature. Hence we are left with l− = 2
and l+ = 1. In particular K−

0 = S3 and K+ = T2. By the Product
Lemma it follows that we can assume that K−

0 = {(q, q, q)|q ∈ S3} and
hence H0 = {(z, z, z)|z ∈ S1}. Clearly then the cyclic group K−/K−

0 =
H /H0 has at most two elements. Since K+ ∼= T2 ⊂ N(H0)0

∼= T3 we
can represent the Weyl group element w+ by an element of the form
ι = (ι1, ι2, ι3) of order 2 if H = H0, and order 4 otherwise. Since we
can also replace ι by ι(i, i, i) we can arrange that ι2p = 1 holds for at
least two indices p. But then a component of Mw+ is a totally geodesic
submanifold of G /K+ of the form S3 ×S3 ×S3 /T2 or S3 ×S3 ×S1 /T2,
neither one of which can have positive curvature.

Case 2. G = S3 ×SU(3)

We first settle the case that H is 3-dimensional. The only three dimen-
sional spherical subgroup of SU(3) is SU(2) (cf. Table B in Appendix
II). Since its normalizer is S3 ×U(2), the action by H0 is fixed point
homogeneous, M is a sphere, and the action is inessential.

Now suppose H0 = S1. We can then assume that H0 is not con-
tained in the S3 factor since otherwise M would again be fixed point
homogeneous. We distinguish between two subcases:

a) The involution ι ∈ H0 is not in the center of G, i.e., ι = (±1, b),
and we can assume b = diag(−1,−1, 1).

b) The involution of H0 is central in G.

Subcase a). Then N(ι)0 = S3 ×U(2) acts on M ι
c by cohomogeneity

one with one dimensional principal isotropy group. Thus M ι
c has di-

mension 7 and M dimension 11 and hence M ι
c is simply connected by

the Connectedness Lemma.
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Let us first assume that M ι
c is a sphere. The Connectedness Lemma

implies that M is 4-connected. We may assume that the action of
S3 ×U(2) on M ι

c has finite kernel, since otherwise we can deduce from
part (b) of the Connectedness Lemma that M is 5−connected and hence
a sphere. By assumption N(ι)0 acts linearly on M ι

c . There are two types
of linear actions by S3 ×U(2) on the 7-sphere: one is a sum action and
the other the tensor product action. If it were a sum action, the S3

factor would have a fixed point and hence would be contained in some
K±, contradicting the assumption that the action on M is essential.

Hence it is the tensor product action and thus S3 acts freely on M ι
c .

This implies that the action of S3 on M is also free since all G orbits
meet M ι

c and S3 is normal in G. Since M is 4-connected, the quotient
M/SU(2) is two connected but not 4-connected and by Verdiani’s classi-
fication in even dimensions M/SU(2) = HP2. From the Gysin sequence
it follows first that the Euler class of the bundle S3 → M → HP2 is a
generator of H4(HP2,Z) (again since M is 4-connected), and then that
M is a homology sphere. From Table E we then see that it must be the
tensor product action of SU(2)SU(3).

Next we exclude the case that M ι
c is not a sphere. Since any two invo-

lutions in SU(3) are conjugate, we can choose an element g ∈ SU(3) such
that ι and gιg−1 span a dihedral group D2 = Z2

2. By Frankel, M ι
c ∩gM

ι
c

is non-empty and by transversality at least 3-dimensional. Since D2

is contained in a torus the codimension is even. From the assumption
that M ι

c is not a sphere, we conclude that it cannot have dimension
5 by (2.10), and hence it is 3-dimensional. Since M ι

c ∩ gM ι
c → M ι

c is
3-connected by part (c) of the Connectedness Lemma, M ι

c ∩gM
ι
c is sim-

ply connected and hence must be S3. In particular M ι
c is 2-connected.

The only 2-connected positively curved 7-manifolds in our classification
theorem are B7 and Pk. However, as we have seen in Lemma 4.2, for
these manifolds the group does not have a connected normal extension.
It follows that the S3 ×U(2) action has a one dimensional kernel, which
must be the center of U(2), and hence this is actually an action by
SU(2)SO(3). But this group does not act on B7 or Pk or any of its
subcovers; see Table A.

Subcase b). In this case H0 has only one involution, namely
(−1,diag(1, 1, 1)).

Consider the cyclic subgroup C4 of order four in H0 . We may assume
C4 6⊂ S3 and thus N(C4) = Pin(2) × U(2) ⊃ N(H). Let M ′ be a com-
ponent of Fix(C4) on which N(C4)0 acts with cohomogeneity one. By
induction assumption M ′ is up to covering a 5-sphere endowed with a
linear action. This shows that K− ( or K+) is a 4-dimensional subgroup
of N(C4)0 .
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Clearly the semisimple part SU(2) of K− is normal in N(C4) ⊃ N(H)
and SU(2) · H = K−. Hence N(H) and thereby the Weyl group normal-
izes K−. Because of rk(K−) = 2 it is clear that N(H)0 6⊂ K−. Combining
this with linear primitivity we see that K+/H contains a trivial subrep-
resentation. Therefore K+/H ∼= S3, or S1. The latter case would imply
K± ⊂ N(C4), which contradicts primitivity. In the former case the Weyl
group has order at most 4, by the upper Weyl group bound, Proposi-
tion 3.6. Since K− is normalized by the Weyl group, linear primitivity
says that the Lie algebras of K−, K+ and w−K+w− span the Lie algebra
of G. But this is clearly impossible as these groups have H in common.

Case 3. G = S3 ×Sp(2)

Again we first settle the case that H is 3-dimensional. There are
two spherical 3 dimensional subgroups of Sp(2) : Sp(1) × 1 and
△Sp(1) (cf. Table B). In the first case H0 acts transitively in the
unit sphere orthogonal to MH0 since N(H0) = S3 ×Sp(1) × Sp(1) and
is hence fixed point homogeneous. In the second case G /H effectively
becomes S3 ×SO(5)/SO(3) and the Chain Theorem applies.

We can now assume H0 = S1 and one, say K− has rank 2. If K−

0 con-
tains one of the involutions ι = (±1,±diag(1,−1)), up to conjugation,
we obtain a contradiction as follows. If ι lies in H, M ι

c is cohomogeneity
one under N(ι)0 = (S3)3 with one dimensional principal isotropy group.
As we saw in Case 1, such an action does not exist. If ι does not lie in
H, it has (S3)3/(K− ∩ N(ι)) as a fixed point component, which cannot
have positive curvature.

We may assume that K− contains the center of S3 ×Sp(2). Since
G /K− cannot be totally geodesic, it follows that the center of S3 ×Sp(2)
is contained in H. Therefore H is not connected and we may assume
that K− ∼= T2 (see Lemma 1.6). By the product lemma K− projects
to a maximal torus of Sp(2). Since H contains no involution as above,
it follows that the Weyl group element w− can be represented by an
element ι := (∗,diag(±1,±1)) ∈ K−. Clearly the fixed point set of ι
would be a homogeneous space which does not have positive sectional
curvature.

Case 4. G = S3 ×G2

We first rule out the case that H is 3-dimensional. The only 3-
dimensional spherical subgroup of G2 is SU(2) ⊂ SU(3) ⊂ G2. Al-
though this does not immediately follow from Table B, it is easily veri-
fied by considering the four three dimensional subgroups of G2. Since a
four dimensional representation of H0 = SU(2) must degenerate, one of
K±

0 = SU(3) ⊂ G2 (no Sp(2) exists in G2), which contradicts the Product
Lemma.
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Hence H0 = S1 and we can assume that rkK− = 2. Among the
involutions in K−

0 there is one of the form ι = (±1, b) with b an non-
trivial involution, which has normalizer SO(4) (see Table G). Thus
N(ι)0 = S3 ×SO(4). If ι lies in a principal isotropy group, the reduction
M ι

c has S3 ×SO(4) acting by cohomogeneity one with a one dimensional
principal isotropy group, but such an action does not exist as we saw
in the first case. Otherwise ι has a homogeneous fixed point component
S3 ×SO(4)/(K− ∩ N(ι)0) which cannot have positive curvature. q.e.d.

It remains to deal with the cases where G is simple.

Proposition 8.2. If G is simple with rkG = 3 acting essentially and

with corank 2, then it either the linear reducible representation of SU(4)
on S13 or the cohomogeneity one action of SU(4) on one of the Bazaikin

spaces B13
p , p ≥ 1 (see Table A).

Proof. There are three cases to consider, corresponding to G = SU(4),
Sp(3) or Spin(7). We first consider the most interesting case where
G = SU(4).

Case 1. G = SU(4)

We will first rule out the case that H0 = S1 . We can assume that H0 =
diag(zp1 , zp2 , zp3 , zp4) ⊂ SU(4) and hence the isotropy representation of
G /H has weights pi − pj . By the Isotropy Lemma there can be at most
two distinct non-zero weights and one easily sees that this leaves only
four possibilities (p1, p2, p3, p4) = (1,−1, 0, 0), (1, 1,−1,−1), (1, 1, 1,−3),
and (3, 3,−1,−5). In the last two cases N(a) = U(3) for some element
a ∈ H0 corresponding to z with z8 = 1. But then the reduction Ma

c is a
cohomogeneity one manifold manifold under U(3) with one dimensional
principal isotropy group, which does not exist by induction.

If (p1, p2, p3, p4) = (1,−1, 0, 0) we choose the involution ι = diag(−1,
−1, 1, 1) ∈ H0. Then N(ι)0/ι = S(U(2)U(2))/ι = SO(3)U(2) acts by
cohomogeneity one on the seven dimensional reduction M ι

c with one
dimensional principal isotropy group. By induction, up to covers, such
a 7-dimensional cohomogeneity one manifold could be only a sphere
with a sum action or the Eschenburg space Ep. But in both cases, the
isotropy group is not contained in the SO(3) factor as it is for M ι

c .

If (p1, p2, p3, p4) = (1, 1, −1, −1), we observe that N(H0)0/H0 =
S(U(2)U(2))/diag(z, z, z̄, z̄) is equal to SO(4) since SU(2)SU(2)) acts
transitively with isotropy diag(−1,−1,−1,−1). In the full normalizer
N(H0)/H0 we have a second component corresponding to the element
that interchanges the two normal SU(2) subgroups of S(U(2)U(2)).
Hence N(H0)/H0 = O(4). Furthermore, MH0 has only one seven di-
mensional component since the inclusion MH0 ⊂ M is 1-connected by
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part (b) of the Connectedness Lemma. Hence O(4) acts by cohomogene-
ity one on MH0 with cyclic principal isotropy group. Such a manifold is
either Qk or a space form. But in Qk the slopes of K+ = S1 are (k, k+1)
and hence its (ineffective) SO(4) action does not extend to O(4). It also
cannot be a space form, since the action on its cover would be a sum or
modified sum action and hence |W| ≤ 4, which gives a contradiction to
the lower Weyl group bound l− + l+ ≥ 7.

We can now assume that H0 is three dimensional. But the only spher-
ical 3-dimensional subgroups of SU(4) are SU(2) ⊂ SU(3) ⊂ SU(4) or
∆ SU(2) ⊂ SU(2)SU(2) ⊂ SU(4) , (cf. Table B). In the latter case
G /H0 = SO(6)/SO(3) and the Chain Theorem applies.

Hence we can assume H0 = SU(2) embedded as the lower 2×2 block.
By the isotropy lemma one of K±

0 is equal to SU(3) or Sp(2). It is
important to observe that N(H0)/H0 = U(2) acts transitively on all
possible embeddings of SU(3) or Sp(2) in SU(4) containing the same H0

(in the case of Sp(2) this is best seen in SO(6)).

Assume first that K−

0 = SU(3). If l+ = 1, K+ = SU(2) ·S1 is connected
and, modulo N(H0)/H0, both K± are contained in U(3), which contra-
dicts primitivity. If l+ = 3 and hence K+ = SU(2)SU(2), the element
− Id ∈ SU(4) is in K+ and represents a Weyl group element. Since it is
central, B+ is totally geodesic, but it cannot have positive curvature. If
l+ = 5 and hence K+ = SU(3), the action is not primitive. If l+ = 7 we
have K+ = Sp(2). All embeddings are determined, modulo N(H0)/H0,
and we have the linear action of SU(4) on S13.

This leaves K−

0 = Sp(2). If also K+ = Sp(2), the action is not prim-
itive. The case of K+ = SU(2)SU(2) is dealt with as above, and K+ =
SU(3) was already considered. It only remains to consider the case where
l+ = 1. Since K+ = K+

0 ⊂ S(U(2)U(2)) we can assume up to conjugacy

that K+ = H0 diag(zk, zl, z̄(k+l)/2, z̄(k+l)/2). Notice that − Id ∈ SU(4)
cannot be in H since it is in K−

0 = Sp(2) and K−/H = S7. But − Id can
also not be in K+, since then it would represent w+ in contradiction to
the fact that B+ has zero curvatures and hence cannot be totally geo-
desic. This implies that (k, l) = (2p, 2q) with (p, q) = 1, p and q not both
odd. Choosing z = i and multiplying by diag(1, 1,±(i,−i)) we see that
ι = diag(1,−1,−1, 1) or ι = diag(−1, 1,−1, 1) is in K+. If it does not lie
in H, it has U(2)SU(2)/T2 ⊂ B+ as a fixed point component, which does
not have positive curvature. Hence H is not connected. Since Sp(2) ⊂
SU(4) can only be extended by Z2, H /H0 = Z2, with ι representing a
second component. Thus M ι

c is cohomogeneity one under the action of
S(U(2)U(2))/〈ι〉 with NH(ι)/〈ι〉 = diag(1, 1, z, z̄) as its principal isotropy
group. Moreover, the subaction by SU(2)SU(2)/〈ι〉 = SO(3)SU(2) is
again cohomogeneity one with trivial principal isotropy group. In this
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reduction K+ = (z2p, z2q) which effectively becomes (zp, zq). This re-
duction must be an Eschenburg space, and hence (p, q) = (q+1, q) with
q ≥ 1. Hence our original manifold must be a Bazaikin space B13

p (cf.
Table A).

Case 2. G = Sp(3)

The symmetric subgroups of Sp(3) are Sp(2)Sp(1) and U(3) where
the latter is only a normalizer under an order 4 element (e.g., i Id). If
H0 = S1 we have, for appropriate a, N(a) = Sp(2)Sp(1) or U(3) with one
dimensional principal isotropy group which does not exist by induction.

Now assume that H0 is three dimensional. The 3 dimensional spher-
ical subgroups of Sp(3) are, according to Table B, diag(q, q, q),
diag(q, q, 1) or diag(q, 1, 1) with q ∈ Sp(1). In the first case, we can
choose ι = iId ∈ H0 and hence N(ι) = U(3) acts by cohomogeneity one
on M ι

c with one dimensional principal isotropy group, which does not
exist by induction. In the second and third case we can choose an invo-
lution ι ∈ H0 with N(ι) = Sp(2)Sp(1) which acts by cohomogeneity one
on the reduction M ι

c with three dimensional principle isotropy group.
By induction it must be a linear sum or modified sum action which
contains a standard Sp(1) ⊂ Sp(2) in its principal isotropy group. Thus
H0 = diag(1, 1, q) and hence Sp(2) acts with finite principal isotropy

group on the reduction M
H0
c , which, as we saw in Section 6, is not

possible.

Case 3. G = Spin(7)

The symmetric subgroups of SO(7) are SO(6), SO(5)SO(2) and
SO(4)SO(3), and correspondingly for Spin(7). If H0 = S1, we can choose
ι ∈ H0 with ι2 but not ι in the center of Spin(7), and N(ι)0 is one of
the groups Spin(6),Spin(5)Spin(2) or Spin(4)Spin(3). Hence they act by
cohomogeneity one on the reduction M ι

c with one dimensional principle
isotropy group. But such a manifold does not exist by induction.

Now suppose H is 3-dimensional. If H0 is a 3 × 3 block in Spin(7) we
are done by the Chain Theorem. Thus by Table B we can assume that
H0 = SU(2) is embedded as a normal subgroup of a 4 × 4 bock. By the
Isotropy Lemma a four dimensional representation of H0 must degener-
ate, which means that one of K±

0 must be SU(3) or Sp(2). There is only
one embedding of Sp(2) and, since it corresponds to SO(5) ⊂ SO(7), its
central element is central in Spin(7). It then has G /K = Spin(7)/Sp(2)
as its fixed point set which does not admit positive curvature.

We can therefore assume that K−

0 = SU(3). Observe now that N(H0)0/
H0 = (Spin(4) × Spin(3)/△Z2)/SU(2) = S3 ×S3 /(−1,−1) = SO(4)
acts by cohomogeneity one on the reduction MH0

c with cyclic princi-
pal isotropy group H /H0. All non-spherical examples and candidates in
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dimension 7, as well as their subcovers, either do not admit a cohomo-
geneity one action of SO(4), or only allow for actions with a noncyclic
principal isotropy group. Thus MH

c is a space form. Using once more
that the principal isotropy group is cyclic, we see that the action is
inessential and thus both singular orbit have codimension 4, a contra-
diction as the left singular orbit has codimension 2. q.e.d.

9. Semisimple Groups with a Rank 1 Normal Subgroup

In this section we will complete the analysis of simply connected,
positively curved cohomogeneity one G-manifolds, where G has a normal
subgroup of rank one:

Proposition 9.1. Suppose a semi-simple G of rank at least four has a

normal subgroup of rank one, and acts essentially with corank 2. Then

G = SU(2)SU(n), M = S4n−1 and the action is the tensor product

action.

Proof. Let G = S3 ×L, where L is a simply connected semisimple
group with rk L ≥ 3 and hence rkH ≥ 2 and rkH∩L ≥ 1.

First observe that if H∩S3 ⊳H is not contained in the center of S3,

then the reduction MH∩ S3

c has codimension 2 in M , and hence M is
a sphere, and we are done by the classification of essential actions on
spheres. Thus, if we set S = S3 if H∩S3 is trivial, and S = SO(3) if
H∩S3 is non-trivial, we can assume that G = S×L and H∩S is trivial.

In the proof we will use the following useful notation for the groups
K± and H: KS = K ∩ S and KL = K ∩ L. Furthermore, there exists a
connected normal subgroup K∆ of K0 embedded diagonally in S×L such
that K0 = (KS · K∆ · KL)0 . It follows that K∆ is a rank one group and,
by the Product Lemma, KS is finite, if non-empty.

We divide the proof into three subcases: (1) S = S3 acts freely, (2)
S = SO(3) acts freely, and (3) S does not act freely. As it turns out,
only the first case can occur.

Case 1. S3 acts freely

In this case B := M/S3 is an even dimensional simply connected
cohomogeneity one L - manifold of positive curvature. By Verdiani’s
classification, B is a rank one symmetric space and the action of L on
B is linear.

Fix a maximal torus T = Th of HL = H∩L ⊂ L, which has positive
dimension by assumption, and consider the reduction M ′ = MT

c . Since
N(T)/T = S3 ×NL(T)/T, the reduction M ′ supports a cohomogeneity
one action by a group S3 ×L′, where L′ has rank 1 if H0 ⊂ L, or rank
2 if H∆ is non-trivial. The group L′ also acts on the reduction BT

c as
well as on M ′/S3 ⊂ BT

c and in both cases with principal isotropy group
NH(T). Hence B′ := M ′/S3 = BT

c .
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The totally geodesic fixed point set B′ is again a rank one symmetric
space and must be simply connected since it is orientable. This in turn
implies that M ′ is simply connected.

Since T is a maximal torus in HL, the principal isotropy group of the
S3 ×L′ action on M ′ has at most finite intersection with the L′ factor.
As the subaction of the S3-factor is free, our results in the previous
two sections combined with Lemma 4.3 imply that M ′ = S4k+3 and
B′ = HPk.

The Euler class of the S3 bundle M → B pulls back to the Euler
class of M ′ → B′ which is a generator in H4(B′,Z) = Z. This is only
possible if B ∼= HPl. The Euler class of M → B = HPl is therefore also
a generator of H4(HPl,Z), and the Gysin sequence implies that M is
a homology sphere. Table E now shows that it is the tensor product
action of SU(2)SU(n).

Case 2. SO(3) acts freely

In this case B = M/SO(3) is an even dimensional positively curved
cohomogeneity one L-manifold. Since M → B is a principal SO(3) bun-
dle and M is simply connected we see that B is simply connected, but
not 2-connected. By Verdiani’s classification B is a complex projective
space. In the long homotopy sequence π2(M) → π2(B) → π1(SO(3)) =
Z2 → π1(M) the map in the middle can be regarded as representing the
second Stiefel Whitney class in H2(B,Z2). Hence it is non-trivial for
the bundle M → B.

Consider as above a maximal torus T = Th of HL and the correspond-
ing reductions M ′ ⊂M and B′ ⊂ B. Since the L action on B is linear, it
follows that B′ is a complex projective space as well, and by naturality,
the principle SO(3) bundle M ′ → B′ has a non vanishing second Stiefel
Whitney class also. This in turn implies that M ′ is simply connected.

Also as above, we note that M ′ comes with a cohomogeneity one
action of SO(3) × L′ where rk(L′) ∈ {1, 2}. Since SO(3) acts freely, it
follows from our previous sections and Lemma 4.3 that M ′ = E1 , E2

with L′ = SU(2) or M ′ = W 7
(2) with L′ = SO(3). In all three cases

B′ ∼= CP2 (see Remark 4.4) and the action of L′ on CP2 is the action
of SU(2) with a fixed point in the first two cases and in the third case
the action of SO(3) on CP2 induced by the tensor product action of
SO(2) × SO(3) on S5.

Consider first the case that B′ is endowed with the standard SU(2)
cohomogeneity one action which has a fixed point. Clearly only another
“sum” action on a higher dimensional complex projective space can have
this as a reduction. Because of rk(L) ≥ 3, it follows that a normal simple
subgroup L′ ⊂ L of rank at least 2 has a non-empty fixed point set in B,
and in fact acts fixed point homogeneously. Since the action of SO(3) on
the fibers only extends to an action of SO(4) and the action of L′ fixes
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one SO(3) orbit in M , it follows that M is fixed point homogeneous.
Clearly this is not possible since spheres do not support free actions of
SO(3).

Assume now that B′ ∼= CP2 is equipped with the cohomogeneity one
action of SO(3) with both singular orbits of codimension two. The only
way this is a reduction of an L-action on a higher dimensional complex
projective space is that up to orbit equivalence the L action is given
by an SO(h + 1)-action on CPh for some h ≥ 5. Indeed, one sees that
for all other actions in Table F, one of the normal spheres has odd
codimension, which is preserved under a reduction by a torus.

The codimension of the singular orbits of the SO(h + 1)-action are
2 and h − 1. The singular isotropy group for the orbit of codimension
h − 1 has a simple identity component of rk ≥ 2 and K− = SO(2) · H
(see Table F). For the lifted picture upstairs in M , i.e., in the diagram
H ⊂ {K−,K+} ⊂ SO(3) × L, we see that the projections of K+ and H to
the SO(3) factor are trivial and the projection of K− is one dimensional.
But this contradicts group primitivity.

Case 3. S3 or SO(3) does not act freely.

In this subsection S is one of S3 or SO(3), and we assume that HS =
H∩S = 1, but S does not act freely on M . In particular one of K±

S , say
K−

S , is non-trivial.
Choose an element ι ∈ K−

S . Since ι is not in H, the component V ofM ι

containing c(−1) is an odd dimensional positively curved homogeneous
space N(ι)0/K

− ∩ N(ι)0 . From the classification of positively curved
homogeneous spaces we deduce that

• V = L/K−

L .

Since K− ∩ N(ι)0 has corank one in N(ι)0 and rkN(ι)0 = rkS×L, it
follows that K− has corank one in G = S×L. The Product Lemma hence
implies that (K−

∆)0 is non-empty. Indeed, since S×L and K− do not have

a normal subgroup in common, we have either (K−

S )0 = S1, which has
finite normalizer in S, or K−

0 = (K−

L )0 is of equal rank in L which has
finite normalizer in L. Thus it also follows that the projection of K−

into L ⊂ S×L, which is isomorphic to K−

∆ · K−

L , has equal rank in L and

hence NL((K−

L )0) has equal rank also, i.e., (K−

L )0 is a regular subgroup
of L.

The cover Ṽ = L/(K−

L )0 of V is hence an odd dimensional homoge-
neous space of positive curvature with L semisimple of rank ≥ 3 and
(K−

L )0 regular. From the classification of 1-connected, positively curved
homogeneous spaces (Table C and Table D), we see that

• The pair (L, (K−

L )0) is one of (Sp(d),Sp(d−1)) or (SU(d+1),SU(d))
with d ≥ 3.
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Note that since (K−

L )0 is simple, K−

S is finite and K−

∆ of rank one, it

follows that K−

L acts transitively on Sl− , unless K−

L = HL. In the latter
case we can apply the Chain Theorem, and hence we can assume that
K−

L indeed acts transitively on Sl− .

Consider the case (L, (K−

L )0) = (Sp(d),Sp(d − 1)). Clearly, the odd

dimensional sphere Sl− = Sp(d−1)/(HL)0 is equal to Sp(d−1)/Sp(d−2).
If d ≥ 4, we can again apply the Chain Theorem. In the remaining case

consider the reduction M
Sp(1)
c corresponding to a standard Sp(1) ⊂

HL ⊂ Sp(3) = L which has a cohomogeneity one action by S×Sp(2).
From our classification in the previous section it follows that it must be
a sum action or a modified sum action. But in that case both K±∩S are
either trivial or all of S. This is a contradiction since K−

S is nontrivial
and finite.

In the case of (L, (K−

L )0) = (SU(d+ 1),SU(d)), d ≥ 3, we see as above

that Sl− = SU(d)/(HL)0 is one of SU(d)/SU(d− 1), or SU(4)/Sp(2). In
particular, we can appeal to the Chain Theorem when d ≥ 4.

If Sl− = SU(4)/Sp(2), we obtain a contradiction to the Isotropy
Lemma since the 8-dimensional representation of SU(5)/Sp(2) on the
orthogonal complement of U(4) can only degenerate in Sp(3)/Sp(2), but
Sp(3) * SU(5).

It remains to consider the case Sl− = SU(3)/SU(2). Since K−

0 ⊃
SU(3), the group (K−

∆)0 must be S1 and hence K−

0 = ∆ S1 ·SU(3) and

H0 = S1 ·SU(2), although the precise embedding of S1 ⊂ H0 is still to be
determined. In any case, the projection of H0 onto the first factor S is
also given by a circle and hence H0 has a two dimensional representation
(inside S) which necessarily degenerates in K+. Hence Sl+ is either
S2 = S3 /S1 or S3 = S3 ·S1 /S1 and all groups are connected. In both
cases primitivity implies that K+ projects onto S and hence in both cases
∆ SU(2) · SU(2) must be contained in K+.

If K+/H = S2, we have K+ = ∆ SU(2) · SU(2) which determines the
embedding of H, and hence the whole group diagram is determined. The
action is the tensor product action of SU(2) × SU(4) on S15, but this
contradicts the fact that the action of S = SU(2) was assumed to be
non free on the left singular orbit.

If K+/H = S3, we have K+ = ∆ SU(2) · SU(2) · S1 and hence w+ can
be represented by a central element in G. But then G /K+ is totally
geodesic, which is not possible. q.e.d.

10. Non Simple Groups without Rank 1 Normal Subgroups

It remains to consider semisimple groups G without normal subgroups
of rank one. In this section we deal with the non simple case, and prove
the following
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Proposition 10.1. Let G be a non simple semisimple group without

normal subgroups of rank one. If G acts essentially with corank 2, it is

the tensor product action of Sp(2)Sp(k) on S8n−1.

Proof. Allowing a finite kernel F ⊂ H for the action, we can assume
that G = L1 × L2 with rk(Li) ≥ 2, and none of the Li have normal
subgroups of rank one. We let pri : G → Li denote the projections,
and set K±

i = K± ∩ Li, and Hi = H∩Li. There are connected normal
subgroups K∆ of K0 and H∆ of H0 embedded diagonally in L1 × L2 such
that K±

0 = (K±

1 · K∆ · K±

2 )0 and H0 = (H1 ·H∆ ·H2)0 .

We first claim that at least one of the four groups K±

i acts transitively

on Sl± :

If one of Hi, say H1, is non trivial when the action is made effective,
then one of K±

1 acts transitively, since otherwise they both act freely
or trivially, which implies that H1 would be a subset of H− ∩H+ = F,
contradicting primitivity (3.4).

If both Hi ⊂ F, we see that H0 = H∆ embeds diagonally in L1 × L2,
and as a consequence rkH = rk Li = 2. Now assume w.l.o.g. that K−

has corank one in G. From the Product Lemma it follows as before
that K−

∆ is not trivial of rank one and hence each of K−

i has rank one.
Thus all simple subgroups of K−, and hence of H as well, have rank
one. In particular Sl− is one of S1 = T2 /S1, S3 = S3 ·S1 /∆ S1 , or
S3 = S3 ·S3 /∆ S3. If one of K−

i is three dimensional, it clearly must act
transitively on K−/H and the same is true if K− and hence H are abelian.
Hence we need to rule out the case K−

∆ = S3 and (K−

1 )0
∼= (K−

2 )0
∼= S1,

with H0 = T2 embedded into the maximal torus of K−, such that it is
onto K−

1 · K−

2 . Since rk(pri K
−) = rk(Li) = 2, we see that the isotropy

representation of L1 × L2/K
−

0 consists of a 3-dimensional representation
and all other irreducible subrepresentations are even dimensional and
pairwise inequivalent. It follows that there is an induced Riemannian
submersion

π : L1 × L2/K
−

0 → L1/pr1(K
−

0 ) × L2/pr2(K
−

0 )

where the latter is equipped with a product metric. Let ι = (ι1, ι2)
denote the central element in K−

∆
∼= S3. Since ι acts by the antipodal

map on the slice, the fixed point component V of M ι containing c(−1)
is the positively curved homogeneous manifold (N(ι1) × N(ι2))/K

− ⊂
L1 × L2/K

−. Since K− ∼= S3 ×T2, the classification of positively curved
homogeneous spaces (cf. Table C and D) implies that V = S3 ×S3 /∆ S3

effectively. Hence neither ιi can be central in Li and we let Ui ⊂
T (Li/K

−

i ) ⊂ T (L1 × L2/K
−) be the proper subspaces on which ι acts

by −id. Then U1 ⊕ U2 is horizontal with respect to the submersion
π. But in the base, any plane spanned by ui ∈ Ui, i = 1, 2 has curva-
ture zero, so in the total space it has nonpositive curvature intrinsically.
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This, however, yields the desired contradiction since by equivariance of
the second fundamental form, U1 ⊕ U2 is totally geodesic.

All in all it is no loss of generality to assume that say

• K−

1 acts transitively Sl− .

Since in this case K− = K−

1 · H, the Weyl group element w− may be
represented by an element in L1. Thus pr2(w−K+w−) = pr2(K

+) and
since pr2(K

−) = pr2(H) ⊂ pr2(K
+), we can employ Linear Primitivity to

see that pr2(K
+) = L2. In particular K+

2 ⊳ G, and hence K+

2 = {1} since
the action is essential. It follows that K+

∆
∼= L2 has rank two and thus:

• K+ has corank two in G, and rk L2 = 2.

Since K+ and H have the same rank, either K+

1 = H1, or K+

∆ = H∆.
The latter would imply that the subaction by L1 is cohomogeneity one.
Hence we can assume that K+

1 = H1, and K+

∆ acts transitively on Sl+ .

Since l+ is even, L2 is either Sp(2) or G2, corresponding to Sl+ either
Sp(2)/Sp(1)Sp(1) or G2 /SU(3). The latter, however, is impossible since
then H would contain SU(3) embedded diagonally in L1 ×G2 in contra-
diction to the Isotropy Lemma. In summary, using in addition the fact
that K− must be of corank one and H2 = {1}, we have:

• L1 × L2 = L1 × Sp(2)
• K+ = H1 ∆ Sp(2) and H = H1 ∆ Sp(1)2

• K−

1 = K−

1 K−

∆K−

2 with K−

∆ of rank one and K−

2 acting freely.

Since Sp(1)2 in H is embedded diagonally, one Sp(1) must agree with
K−

∆ and the other must be embedded diagonally in K−

1 K−

2 . From the
classification of transitive actions on spheres, it follows that K−

2 = Sp(1)
and K−

1 = Sp(k) with k ≥ 1 and hence H1 = Sp(k − 1). It remains
to determine L1. From the group diagram we have so far, it follows
that pr1(K

−) = Sp(k)Sp(1) and pr1(K
+) = Sp(k − 1)Sp(2) are equal

rank subgroups of L1. This implies that L1 = Sp(k + 1). The group
diagram is now determined and the action is the tensor product action
of Sp(k + 1)Sp(2) on S4k+11. q.e.d.

11. Simple Groups

In this section we will show that a simple group of rank at least
four either does not act isometrically on an odd dimensional positively
curved 1-connected manifold, or that it acts linearly on a sphere.

Proposition 11.1. There are no actions of corank two for G =
Sp(k), k ≥ 4.

Proof. Recall that we already saw that G = Sp(2) and G = Sp(3)
do not act with corank two on a positively curved cohomogeneity one
manifold .
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If H contains Sp(1) embedded as a standard 1× 1 block, then the re-

duction M
Sp(1)
c is odd dimensional, and Sp(k−1) acts by cohomogeneity

one on it. By induction, such an action does not exist. Thus we may
assume that H does not contain a 1 × 1 block.

Since rk(H) ≥ 2, we can find an involution ι1 ∈ T ⊂ H0 that is not
central in Sp(k). The reduction M ι1

c is odd dimensional and supports
a cohomogeneity one action of Sp(k − l) · Sp(l). From our induction
hypothesis, this action is a tensor product or a sum action and hence
H contains a 1 × 1 block unless (k, l) = (4, 2). It remains to consider
the tensor product action of Sp(2) × Sp(2), whose principal isotropy
group and hence also H contains ∆(Sp(1)×Sp(1)) ⊂ ∆ Sp(2) ⊂ Sp(2)×
Sp(2) ⊂ Sp(4). Now pick ι2 = diag(−1, 1,−1, 1) ∈ H ⊂ Sp(4), and
note that the reduction M ι2

c supports a cohomogeneity one action of
Sp(2) × Sp(2) corresponding to the (1, 3) and (2, 4) blocks, but with
principal isotropy containing the above ∆(Sp(1) × Sp(1)) since ι2 is
central in it. In particular, the principal isotropy group of this action
has a three dimensional intersection with either of the two Sp(2) factors.
But such a linear action does not exist. q.e.d.

The case of G = SU(k) with k ≥ 5 is harder since there is an excep-
tional cohomogeneity one action of SU(5) on S19, and because SU(4)
acts essentially on both S13 and on the Bazaikin spaces Bp, which can
hence occur in a reduction.

Proposition 11.2. The linear action of SU(5) on S19 is the only

essential cohomogeneity one action by SU(k), k ≥ 5 of corank two.

Proof. We first claim that H contains SU(2) embedded as a standard
2× 2–block. To see this, choose an element ι ∈ H0 of order 2 that is not
central in SU(k). Then S(U(k − 2l)U(2l)) acts by cohomogeneity one
on the reduction M ι

c . For max{k − 2l, 2l} ≥ 4 we see that either the
kernel of the action and in particular H contains a 2 × 2 block, or else
the action must be a tensor product action, a sum action, or the action
of U(5) on S19 or U(4) on S13. In either case we again obtain a 2 × 2
block in H . Thus we may assume (k, l) = (5, 1) and the universal cover
of M ι

c is S11 endowed with the tensor product action of SU(3)U(2) with
principal isotropy group T2. Since in this case ι = diag(1, 1, 1,−1,−1),
it follows that M ι

c admits an action of SU(3) ·SO(3) ·S1, and is therefore
RP11. From the connectedness lemma we deduce that the codimension
of M ι

c is strictly larger than 10. Thus dim(M) = 23 and H0
∼= T2.

The singular orbits in M ι
c have codimensions 3 and 4. Since H0

∼= T2,
these codimensions necessarily coincide with the codimensions in M , all
groups are connected, and we see that K−,K+ ⊂ N(ι) – a contradiction
to primitivity.
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From the fact that H ⊂ SU(k) contains SU(2) embedded as a standard

2 × 2–block we proceed as follows: The reduction M
SU(2)
c supports a

cohomogeneity one action by SU(k − 2) · S1. By induction, this corank
two action satisfies one of the following:

• The action is a sum action and SU(k−3) ⊂ SU(k−2) is contained
in the principal isotropy group, or k = 6 and the action is a sum
action of Spin(6) ·S1 which contains Sp(2) in its principal isotropy
group.

• The action is orbit equivalent to the subaction of the SU(k − 2)-
factor. This can only occur for k = 6 for the exceptional actions
on S13 or Bp, and for k = 7 for the exceptional action on S19. In
all cases, the isotropy group contains an SU(2) embedded as a 2×2
block, and in the last case SU(2)2 embedded as two 2 × 2–blocks.

• k = 6 and the action is given as the tensor product action of
S1 ·Spin(6) on S11 and the principal isotropy group contains SU(2)2

⊂ SU(4) embedded as two 2 × 2–blocks.

Clearly then for k ≥ 8, we see that H contains SU(k − 3) embedded
as a standard (k − 3) × (k − 3) block and we are done by the Chain
Theorem. It remains to deal with the cases k = 5, 6, 7.

G = SU(5)

By the above reduction argument we see that H contains another
SU(2) block. If dim(H) > 6, then H0 is an equal rank extension of
SU(2)2 ⊂ SU(5) and hence H0 = Sp(2) ⊂ SU(4) ⊂ SU(5). But the
irreducible 8-dimensional representation of SU(4) ⊂ SU(5) restricted to
H0 = Sp(2) cannot degenerate since Sp(3) is not contained in SU(5).
Thus H0 = SU(2)2.

Note that the 8-dimensional representation of SU(4) ⊂ SU(5) re-
stricted to H0 = SU(2) × SU(2) splits as a sum of two four dimensional
representations, each of which is acted on non trivially by exactly one
of the SU(2) factors. We may assume that such a representation degen-
erates in K−, and hence K−

0 = SU(3) · SU(2) ⊂ SU(5). There is also a
4-dimensional irreducible subrepresentation of H0 = SU(2) × SU(2) ⊂
Sp(2) and the Isotropy Lemma implies that K+

0 = Sp(2). All groups are
connected and we have recovered the picture of S19.

G = SU(6)

First suppose that the rank three group H contains Sp(2) ⊂ SU(4).
We can assume that Sp(2) is a normal subgroup of H, since otherwise
H is SU(4) and the chain theorem applies, or H is Sp(3), which is max-
imal and thus G has a fixed point. Since the isotropy representation of
SU(6)/Sp(2) has an irreducible 8-dimensional subrepresentation coming
from Sp(2) ⊂ SU(4) ⊂ SU(5), we can employ the Isotropy Lemma to
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see that one of the isotropy groups, say K−, contains Sp(3) as a normal
subgroup. But this is impossible since we also have rk(K−) = 4 and
Sp(3) ⊂ SU(6) is a maximal connected subgroup.

Now we can assume that H0 contains another SU(2) block. Let ι be
the product of the central elements of the 2 blocks, i.e., up to conjugacy
ι = diag(1, 1,−1,−1,−1,−1) ∈ S(U(2)U(4)) lies in H0. The reduction
M ι

c is an odd dimensional manifold which supports a cohomogeneity one
action by S(U(2)U(4))/ι = SU(2) · S1 ·SO(6), whose principal isotropy
group contains the lower 4 × 4-block SO(4) = SU(2)SU(2)/ι of SO(6).
If the action is a sum action H contains Sp(2), which we already dealt
with.

If the action is the tensor product action, it is SU(2) ineffective and
H contains the third 2 × 2-block. Then H0 = SU(2)3, since otherwise
H0 = Sp(1)Sp(2), which we already dealt with. At one singular orbit,
say K−/H, the trivial representation of H0 has to degenerate, which
can only happen in a codimension 2 orbit. Thus H0 is normal in K−.
Also, at least one of the three SU(2) factors of H is also normal in K+,
contradicting primitivity.

G = SU(7)

From the reduction argument above, it follows that H contains SU(2)3

embedded as three 2 × 2-blocks. Hence the element ι = diag(1,−1,−1,
−1,−1,−1,−1) lies in H up to conjugacy. The reduction M ι

c admits a
cohomogeneity one action of SU(6) × S1 which must be a sum action.
Hence H contains SU(5) and the chain theorem applies. q.e.d.

For G = Spin(k), k ≥ 8 we have:

Proposition 11.3. There are no essential cohomogeneity one actions

of corank two by Spin(k), k ≥ 8, other than the exceptional linear actions

of Spin(8) on S15 and Spin(10) on S31.

Proof. We will separately treat the cases k = 8, 9, 10, and k ≥ 11.

G = Spin(8)

In the case of Spin(8) we can assume, by the Chain Theorem, that
H even up to an outer automorphism of Spin(8) does not contain a
3× 3 block. This is particularly useful since there exists an outer auto-
morphism which takes the standard SU(4) ⊂ Spin(8) into the standard
Spin(6) ⊂ Spin(8) and Sp(2) into Spin(5).

Since rk(H0) = 2, H0 is one of G2 , Sp(2) , SU(3), S3 ·S3 , S1 ·SU(2)
or T2. We deal with each case separately, and we apply Table B to
determine the embeddings.

If H0 = G2, the groups K± must be Spin(7). There are 3 such Spin(7)
in Spin(8) which are taken into each other by the outer automorphisms
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of Spin(8). Primitivity then determines the group diagram and M is
S15.

If H0 = Sp(2) ⊂ SU(4) ⊂ Spin(8), an outer automorphism takes Sp(2)
into a 5 × 5 block, and the Chain Theorem applies.

If H0 = SU(3) ⊂ SU(4) = Spin(6) ⊂ Spin(8) the subgroup L = SU(2)
in H0 is normal in SU(2)SU(2) ⊂ SU(4) which also, via an outer au-
tomorphism, is a 4 × 4 block in Spin(8). The normalizer of this SU(2)
is therefore (S3)4, and hence (S3)3 acts by cohomogeneity one on the
reduction ML

c with a one dimensional principal isotropy group. As we
know such an action does not exist.

If H0 = S3 ·S3 we see from Table B that the S3 factors either sit
as a 3 × 3 block, as a Hopf action on R8, or as a normal subgroup of
a 4 × 4 block. In the second case, up to an outer automorphism, the
embedding is also given by a 3 × 3 block. By the Chain Theorem it
suffices to consider the case that both S3 factors are given as normal
subgroups of a 4 × 4 block. But then up to an automorphism H0 is a
4 × 4 block.

If H0 = S3 ·S1, we can assume as before that S3 is given by a normal

subgroup of a 4×4 block. Then MS3

c admits a cohomogeneity one action
of Spin(4)×S3 with one dimensional principal isotropy group. But such
an action does not exist.

If H0 = T2 is abelian, choose an element ι ∈ H0 for which ι2 but not ι is
in the center of Spin(8). Then the reduction M ι

c admits a cohomogeneity
one action of Spin(4) · Spin(4) or Spin(6) · Spin(2) = SU(4) · S1 with a
2-dimensional principal isotropy group. By our induction assumption
such an action does not exist.

G = Spin(9)

We can think of the maximal torus T2 in H0 as a subtorus in S1 ·SU(4)
⊂ Spin(8). Choose an involution ι ∈ T2 ∩SU(4). The normalizer N(ι)0

is then either Spin(8) or Spin(5) ·Spin(4), and the reduction M ι
c supports

a cohomogeneity one action by N(ι)0/〈ι〉 with principal isotropy group
of corank 2.

It is easy to rule out the possibility N(ι)0 = Spin(8). Indeed, the
reduction M ι

c clearly has codimension ≤ 8 and dimM ≥ 22 since
dimH ≤ 14. Thus M ι

c is simply connected by the Connectedness
Lemma. Hence the action of Spin(8) would have to be the excep-
tional action on S15, which contradicts the fact that the action is by
Spin(8)/〈ι〉 ∼= SO(8).

Thus we may assume that N(ι)0 = Spin(4) · Spin(5). If the action
on M ι

c were almost effective or Spin(4) or Spin(5) its ineffective kernel,
H would contain a 3 × 3-block. Hence we can assume that a normal
subgroup of Spin(4) is contained in H and that the action is a sum
action of Spin(3) · Spin(5). If the second factor acts as SO(5), H again
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contains a 3 × 3-block. If on the other hand the second factor acts as
Sp(2), H contains Sp(1) ⊂ Sp(1) × Sp(1) ⊂ Sp(2) which is a normal
subgroup in Spin(4) ⊂ Spin(5). In this case, the involution (−1,−1) ∈
Sp(1) × Sp(1) ∈ H has Spin(8) as its normalizer. As seen above, this is
impossible.

G = Spin(10)

We choose an involution ι ∈ H that is not central in Spin(10). Then
N(ι)0 is given by Spin(2) · Spin(8) or by Spin(4) · Spin(6), and it acts on
the reduction M ι

c with cohomogeneity one and with principal isotropy
group of corank 2.

If N(ι)0 = Spin(4) · Spin(6), then we argue as in the case of Spin(4) ·
Spin(5) ⊂ Spin(9) that H contains an SU(2) normal in Spin(4) and an
SU(2) ⊂ SU(2)SU(2) ⊂ SU(4) from the sum or tensor product action of
SU(2)SU(4). This SU(2) is a normal subgroup of Spin(4) ⊂ Spin(6) and
we can find a different ι with N(ι)0 = Spin(2) · Spin(8).

Assume now that N(ι)0 = Spin(8) ·Spin(2). If H contains the Spin(2)-
factor, then by induction it must also contain G2 ⊂ Spin(8). It follows
that the isotropy representation of G /H0 contains a nontrivial tensor
product of Spin(2) and G2 coming from the tensor product representa-
tion of Spin(8) · Spin(2) in Spin(10). But then G /H0 is not spherical.

The only other possibility for the action of Spin(8) · Spin(2) on the
reduction M ι

c is that up to an outer automorphism and possibly a cov-
ering it is a tensor product or sum action. By the Chain Theorem we
can also assume that H contains no 6 × 6-block. Hence, if it is a tensor
product action, we can assume that H contains SU(4), and since SU(4)
is not of equal rank in any group, it follows that H0 = SU(4). Similarly,
if the reduction comes from a sum action, H0 = Spin(7) ⊂ Spin(8) via
the spin representation.

If H0 = SU(4), then H0 has a six dimensional representation from H0 =
Spin(6) ⊂ Spin(8) and an eight dimensional representation orthogonal
to Spin(8). They necessarily have to degenerate in different orbits and
hence H is connected, K− = Spin(7), K+ = SU(5) and we have recovered
the action of Spin(10) on S31.

If H0 = Spin(7), then H0 has a 7-dimensional, two 8-dimensional and
a trivial representation. The 8−dimensional representation can only de-
generate in K−

0 = Spin(9) and the trivial representation in K+ = Spin(2)·
Spin(7). The order two element in the center of Spin(10) is contained
in Spin(9) and hence not in H. Since H0 = Spin(7) has a one dimen-
sional centralizer in Spin(10), K+ = Spin(2)Spin(7) ⊂ Spin(2)Spin(8) ⊂
Spin(10). It follows that the central element of Spin(10) must also be
contained in Spin(2) ⊂ K+ and hence G /K+ is totally geodesic – a con-
tradiction.
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G = Spin(k) with k ≥ 11

We let C denote the center of Spin(k). We first consider the special
case that the subaction of C on M has more than one orbit type. Then
we may assume K−∩C 6= H∩C. Clearly K−∩C acts freely on the normal
sphere and hence G /K− is totally geodesic. This implies K− contains
Spin(k − 1) and H contains Spin(k − 2) – a contradiction.

Thus C acts with one orbit type and M/C is a manifold. We now
drop the assumption that M is simply connected and replace M by
M/C. We also replace Spin(k) by SO(k) and C by the center of SO(k).

Choose an involution ι ∈ H ⊂ SO(k) which is not contained in C.
Then N(ι) = SO(2h) ·SO(k− 2h). Given that rk(H) ≥ 3 for k ≥ 11 and
rk(H) ≥ 4 for k ≥ 12 we can arrange for h ≥ 2 and k − 2h ≥ 3.

Notice that Fix(ι) has a component M ′ with a cohomogeneity one
action of SO(2h) · SO(k − 2h). The kernel of the action contains ι
as well as C. Thus the center of SO(2h) · SO(k − 2h) is contained in
kernel of the action. We can assume that up to a covering this action
is induced by a representation of Spin(2h) × Spin(k − 2h) on a sphere
(with principal isotropy group of corank 2). Furthermore the center of
Spin(2h) × Spin(k − 2h) acts on the sphere with one orbit type. It is
easy to see that such a representation does not exist. q.e.d.

Proposition 11.4. There are no cohomogeneity one actions with

corank two of any of G = F4,E6,E7, or E8.

Proof. If G = F4, choose an involution ι1 ∈ H0. Then N(ι)0 = Spin(9)
or Sp(1) · Sp(3) acts by cohomogeneity one on the reduction M ι

c with
corank two. As we have seen, this rules out N(ι)0 = Spin(9). If N(ι)0 =
Sp(1) · Sp(3) then H contains Sp(2) ⊂ Sp(1) · Sp(3) ⊂ F4, and there is
a different involution ι2 = diag(−1,−1) ∈ Sp(2). Its normalizer cannot
be another Sp(1) ·Sp(3) since ι2 is central in Sp(2) and hence cannot be
central in the new Sp(3). Therefore we again have N(ι)0 = Spin(9) and
we obtain a contradiction.

If G = E6, choose an involution ι ∈ H0. Then N(ι)0 = SU(6) · SU(2)
or Spin(10) · S1 and by induction we see that H for any of the possible
actions of these groups on the reduction M ι1

c must contain SU(4).
Choose next ι2 = diag(1, 1,−1,−1) ∈ SU(4). Since N(ι2)0 ∩ SU(4) =

S(U(2)U(2)) it follows that H contains another SU(4) whose intersection
with the first SU(4) is at most seven dimensional. Thus dim(H) ≥ 23.
Using Table B, it follows that H0 = Spin(8) ⊂ Spin(9) ⊂ F4 ⊂ E6, where
we have used the fact that H0 = Spin(9) is not allowed since the 16
dimensional spin representation cannot degenerate. The centralizer of
H0 in E6 is at least two dimensional since the dimension of E6 /Spin(8)
equals 50 ≡ 2 mod 8 and E6 /Spin(8) has a spherical isotropy represen-
tation.



86 K. GROVE, B. WILKING & W. ZILLER

At one of the singular orbits the trivial representation has to degener-
ate. This can only occur in a codimension 2 orbit. At the other singular
orbit one of the 8-dimensional representation has to degenerate. But
l− = 1 and l+ = 8 is a contradiction to the Lower and Upper Weyl
Group Bound.

If G = E7 or G = E8, choose a noncentral involution ι ∈ H0. Then
N(ι)0 = SU(8) , Spin(12)/Z2 · S

3 or E6 ·S
1 in the case of E7 and N(ι)0 =

Spin(16)/Z2 or E7 ·S
3 in the case of E8. But by induction we know that

none of these groups can act isometrically by cohomogeneity one on a
positively curved manifold with corank two. q.e.d.

12. 3-Sasakian Structure of the Exceptional Families

In this section we establish the relationship (Theorem B) between
the manifolds Pk and Qk and the interesting orbifold examples due to
Hitchin [Hi1]:

Theorem 12.1 (Hitchin). There exists a unique self dual Einstein

orbifold metric Ok on S4 with the following properties:

a) It is invariant under the cohomogeneity one action by G = SO(3)
with singular orbits of codimension two.

b) It is smooth on M \B+.

c) Along the right hand side singular orbit B+ = RP2 it is smooth in

the orbit direction and has angle equal to 2π/k perpendicular to it.

For the cohomogeneity one action of SO(3) on S4 the isotropy groups
are given by K± = O(2) embedded in two different blocks and H =
Z2⊕Z2. There exists a similar action by SO(3) on CP2 given by multipli-
cation with real matrices on homogenous coordinates in CP2. One easily
shows that in this case K− = SO(2) , K+ = O(2), again in two different
blocks, and H = Z2 generating the second component in K+. Conjuga-
tion in CP2 then gives rise to an SO(3) equivariant two fold branched
cover CP2 → S4 with branching locus the real points G /K+ = RP2 and
a two fold cover along the left hand side singular orbits. When k = 2ℓ
is even, one can thus pull back the metric O2ℓ to become an orbifold
metric on CP2 with normal angle 2π/ℓ.

We now describe the relationship with 3-Sasakian geometry, see [BG]
for a general reference. Among the equivalent definitions, we will use
the following: A metric is called 3-Sasakian if SU(2) acts isometrically
and almost freely with totally geodesic orbits of curvature 1. More-
over, for U tangent to the SU(2) orbits and X perpendicular to them,

X ∧U is required to be an eigenvector of the curvature operator R̂ with
eigenvalue 1, in particular the sectional curvature sec(X,U) is equal to
1. The dimension of the base is a multiple of 4, and its induced met-
ric is quaternionic Kähler with positive scalar curvature, although it
is in general only an orbifold metric. Conversely, given a quaternionic
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Kähler orbifold metric on M with positive scalar curvature, one con-
structs the so-called Konishi bundle whose total space has a 3-Sasakian
orbifold metric, such that the quotient gives back the original metric
on M . In this fashion one obtains a one-to-one correspondence between
3-Sasakian orbifold metrics and quaternionic Kähler orbifold metrics
with positive scalar curvature. If the base has dimension 4, quater-
nionic Kähler is equivalent to being self-dual Einstein and the Konishi
bundle is the SO(3) principle orbifold bundle of self dual 2-forms on the
base with the metric given by the naturally defined connection metric.
Hence the Hitchin metrics give rise to 3-Sasakian orbifold metrics on a
seven dimensional orbifold H7

k . The cohomogeneity one action by SO(3)
on the base admits a lift to the total space H7

k which commutes with
the almost free principal orbifold SO(3) action. The joint action by
SO(3)SO(3) on H7

k is hence an isometric cohomogeneity one action. In
general, one would expect the metric on H7

k to have orbifold singulari-
ties since the base does. However, we first observe that this is not the
case. Although the claim also follows from the proof of Theorem 12.3,
we give a simple and more geometric proof.

Theorem 12.2. For each k, the total space H7
k of the Konishi bundle

corresponding to the selfdual Hitchin orbifold Ok is a smooth 3-Sasakian

manifold.

Proof. Notice that the singular orbit B+ in O4
k, k > 2 must be totally

geodesic. Indeed, being an orbifold singularity, one can locally lift the
metric on a normal slice D2 to RP2 to its k-fold branched cover D̂ → D
with an isometric action by Zk such that D̂/Zk = D. Hence the singular
orbit is a fixed point set of a locally defined group action and thus totally
geodesic.

The SO(3) principle bundle H7
k is smooth over all smooth orbits in

H4
k . If it has orbifold singularities, they must consist of an SO(3)SO(3)

orbit which projects to B+, and is again totally geodesic by the same
argument as above. This five dimensional orbit is now 3-Sasakian with
respect to the natural semi-free SO(3) action on H7

k , since it is totally
geodesic and contains all SO(3) orbits. But the quotient is 2-dimensional
which contradicts the fact that the base of such a manifold has dimen-
sion divisible by 4. q.e.d.

As mentioned in the Introduction, except for S7 = P1, the manifolds
Pk are the first 2-connected seven dimensional 3-Sasakian manifolds.
The cohomology rings of the manifolds Qk happen to coincide with the
cohomology rings of all the previously known 3-Sasakian 7-manifolds
with second Betti number one. These are exactly the Eschenburg spaces
diag(za, zb, zc)\ SU(3)/diag(1, 1, z̄a+b+c) with a, b, c positive pairwise
relatively prime integers [BGM]. They contain the 3-Sasakian man-
ifolds Ek as a special case. All of these, as well as those with second



88 K. GROVE, B. WILKING & W. ZILLER

Betti number at least two [BGMR], are constructed from the constant
curvature 3-Sasakian metric on S4n+3, equipped with the Hopf action,
as 3-Sasakian reductions with respect to an isometric abelian group ac-
tion commuting with the Hopf action. As a consequence all of them
are toric, i.e., admit an isometric action by a 2-torus commuting with
the SU(2) action. In contrast, the examples Pk and Qk, for k ≥ 2, are
not toric, since the orbifolds Ok, for k ≥ 3, have SO(3) as the identity
component of their isometry group.

Before verifying that the above manifolds H7
k coincide with the ones

described in the introduction, we first discuss a general framework for
cohomogeneity one orbifolds.

Observe that a group diagram as in (1.2), where we assume that
h± are embeddings, but j± are only homomorphisms with finite kernel
and j− ◦ h− = j+ ◦ h+ = j0 with K±/H = Sl± , defines a cohomogene-
ity one orbifold O: The regular orbits, being hypersurfaces, have no
orbifold singularities, and we can therefore assume that j0 is an embed-
ding, although we still allow the action of G to be ineffective otherwise.
A neighborhood of a singular orbit is given by D(B±) = G×K±Dl±+1

where K± acts on G via right multiplication: g ·k = gj±(k) and on Dl±+1

via the natural linear extension of the action of K± on Sl± . This then
can be written as D(B±) = G×(K±/ ker j±)(D

l±+1/ ker j±) and the sin-

gularity normal to the smooth singular orbit G /j±(K±) is Sl±/ ker j±.
It is easy to see that any cohomogeneity one orbifold can be described
in this fashion. In fact this follows since the frame bundle of a cohomo-
geneity one orbifold is a cohomogeneity one manifold, and thus orbifolds
inherit cohomogeneity one diagrams as described. In all the cases of in-
terest here, we note that both l± = 1, and the orbifolds are therefore
(topologically) manifolds.

We are now ready to prove:

Theorem 12.3. Our manifolds Pk and Qk are equivariantly diffeo-

morphic to the universal covers of the 3-Sasakian manifolds H2k−1 and

H2k respectively.

Proof. Since the metrics in the Hitchin examples are smooth near
B−, it follows that K− ∼= O(2) and hence H ∼= Z2 ⊕ Z2. Hence we can
assume that j− is an embedding of K− ∼= O(2) into the lower block
in SO(3), h− the diagonal embedding Z2 ⊕ Z2 ⊂ O(2), and via j− ◦
h− the group H is embedded as the set of diagonal matrices in SO(3).
As in the case of smooth SO(3) invariant metrics on S4, the Hitchin
orbifold metrics collapse in different directions corresponding to K±

0 , and
the normal angle along B+ is 2π/k . If we define the homomorphism
φk : SO(2) → SO(2) by A → Ak, we see that j+(A) ∈ SO(3) is φk(A)
for A ∈ K+

0 followed by an embedding into SO(3), which we can assume
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is in the upper block in order to be consistent with the H-irreducible
1-dimensional subspaces of so(3).

On the right hand side a neighborhood of the singular orbit is given
by D(B+) = SO(3) ×K+ D2

+ where K+
0 acts on SO(3) via φk and on D2

+

via φ2 since K+
0 ∩ H = Z2. The description of the disc bundle D(B+)

gives rise to a description of the corresponding (smooth) SO(4) principle
orbifold bundle SO(3) ×K+ SO(4) where the action of K+

0 on SO(3) is
given by φk as above, and the action on SO(4) is given via SO(2) ⊂
SO(4) : A ∈ SO(2) → (φk(A), φ2(A)) acting on the splitting T ⊕ T⊥

into tangent space and normal space of the singular orbit. Similarly
for the left hand side where k = 1. In order to take orientations into
account and their consistent match for the gluing in the middle, we start
with an oriented basis ċ(t), i, j, k for the regular orbits, where we have
used for simplicity the isomorphism so(3) ∼= su(2). On the left hand
side the i direction collapses, T is oriented by j, k and T⊥ by ċ(−1), i.
Here i corresponds to the derivative of the Jacobi field along c induced
by i. On the right hand side the j direction collapses, T is oriented
by k, i and T⊥ by ċ(1), j. Here j corresponds to the negative of the
derivative of the Jacobi field along c induced by j. Furthermore, one
easily checks that SO(2) ⊂ O(2) has a positive weight on T where we
have endowed the isotropy groups on the left and on the right with
orientations induced by i and j respectively. Hence K±

0 ⊂ SO(3)SO(4)
sits inside the natural maximal torus in SO(3)SO(4) with slopes (1, 1, 2)
on the left, and (k, k,−2) on the right.

We can now determine the group picture for the SO(3)SO(3) action
on the principle bundle of the vector bundle of self dual two forms.
This vector bundle can also be viewed as follows: If P is the SO(4)
principle bundle of the orbifold tangent bundle of S4, then the quotient
P/SU(2) under a normal SU(2) in SO(4) is an SO(3) principle bundle
and by dividing by the two normal subgroups, one obtains the principle
bundles for the vector bundle of self dual and the vector bundle of anti
self dual 2 forms. This is due to the fact that the splitting Λ2V ∼=
Λ2

+V ⊕ Λ2
−V for an oriented four dimensional vector space corresponds

to the splitting of Lie algebra ideals so(4) ∼= so(3) ⊕ so(3) under the
isomorphism Λ2V ∼= so(4). Alternatively we can first project under
the two fold cover SO(4) → SO(3)SO(3) and then divide by one of the
SO(3) factors. Under the homomorphism SO(4) → SO(3)SO(3) and
the natural maximal tori in SO(4) and in SO(3)SO(3), a slope (p, q)
circle goes into one with slope (p+ q, p− q). Hence the slopes of K±

0 in
SO(3)SO(3)SO(3) are (1, 3,−1) on the left, and (k, k− 2, k+ 2) on the
right. This also implies that both SO(3) factors act freely on P . If we
divide by one of the SO(3) factors to obtain the two SO(3) (orbifold)
principal bundles, the slopes of the circles K±

0 viewed inside SO(3)SO(3)
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become (1, 3) on the left and (k, k − 2) on the right for one principal
bundle, and (1,−1) on the left and (k, k+ 2) on the right for the other.

To see which principal bundle is the correct one for the Hitchin metric,
recall that in [Hi1] one chooses an orientation on the regular orbits
in order to derive the correct differential equation for Eintein metrics
which are self dual with respect to the given orientation. For this fixed
orientation Hitchin constructs the solution for the self dual Einstein
metrics and checks smoothness at the singular orbits. Hence either the
family of principal bundles with slopes {(1, 3), (k, k − 2)} or the one
with slopes {(1,−1), (k, k + 2)} are the desired SO(3) principle bundle
for all k. But we know that for k = 1 the principle bundle H1 = RP7

has slopes {(1,−1), (1, 3)} and for k = 2 the bundle H2 = W 7/Z2 has
slopes {(1,−1), (1, 2) = (2, 4)} (see Section 4). Hence the slopes for the
principle bundles defined by the Hitchin metric are {(1,−1), (k, k+2)},
which is, up to covers, the P family for k odd and the Q family for k
even. q.e.d.

The second family of SO(3) principle bundles in the above proof are
the principal bundles of the vector bundle of anti-self dual two forms,
which the proof shows are also smooth. We note that in the case of
k = 3 one obtains the slopes for the exceptional manifold B7 and in the
case of k = 4 the ones for R.

We note that in order for the cohomogeneity group diagram on the
frame bundle or the principle bundle Hk to be consistent, K+ ∼= O(2)
for k odd, and K+ ∼= O(2) × Z2 for k even. This also determines the
embedding of K+ into SO(3)SO(3) and hence the orbifold group diagram
for the Hitchin metrics. The manifolds Hk are two-fold subcovers of Pk

and Qk. In the case of Pk we divide by the full center and in the case of
Qk we add another component to all three isotropy groups (see Lemma
1.7). We also point out that for k = 2ℓ the total space of the Konishi
bundle associated to the lifted orbifold metric on CP2 is equal to Qℓ.

There is another interesting connection between self-dual Einstein
metrics and positive curvature. O. Dearricott [De1] proved that if one
allows to scale the 3-Sasakian metric on a 7-manifold with arbitrarily
small scale in the direction of the SU(2) orbits, then the metric on the
total space has positive sectional curvature if and only if the base self
dual Einstein metric does. One can apply this to the Boyer-Galicki-
Mann 3-Sasakian metrics [BGM] on the Eschenburg spaces Ea,b,c =

diag(za, zb, zc)\ SU(3)/diag(1, 1, z̄a+b+c) whose self dual Einstein orb-
ifold quotient is a weighted projective space CP2[a + b, a + c, b + c].
O. Dearricott showed in [De2] that many (but not all) of the weighted
projective spaces have positive sectional curvature. The total space also
admits an Eschenburg metric with positive curvature, but the Dearricott
metrics are different in that the projection is a Riemannian submersion
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with totally geodesic fibers, whereas in the Eschenburg metric the fibers
are not totally geodesic. It is hence natural to ask if the Hitchin metrics
have positive sectional curvature for some k besides the values k = 1, 2
where this is true by construction. Hitchin gave an explicit formula for
the functions describing his metrics for k = 4, 6 in [Hi1] and for k = 3
in [Hi2], which are simply rational functions of a parameter t along the
geodesic in the first two cases and algebraic functions in the third case.
One can now compute the sectional curvatures of the self dual Einstein
metrics in these special cases and one shows, surprisingly, that the cur-
vatures near the non-smooth singular orbit are all positive, but some
become negative near the smooth singular orbit. On the other hand, it
is not hard to construct 4-dimensional positively curved orbifold metrics
with these prescribed orbifold singularities. Nevertheless, it is natural
to suggest that there could be some significance in the existence of the
3-Sasakian metrics on Pk and Qk and the question whether these spaces
have a metric where all sectional curvatures are positive.

13. Topology of the Exceptional Examples

In order to prove Theorem C, we study the corresponding larger
classes of cohomogeneity one manifolds with arbitrary slopes.

The class containing Pk consists of the cohomogeneity one man-
ifolds M = M(p−,q−),(p+,q+) where H ⊂ {K−,K+} ⊂ G is given by

G = S3 ×S3, {K−,K+} = {Ci
(p−,q−) · H,Cj

(p+,q+) · H} and H = Q =

{±1,±i,±j,±k}, where (p−, q−) as well as (p+, q+) are relatively prime
odd integers, and Ck

(p,q)
⊂S3×S3 is the subgroup of elements {(ekpθ, ekqθ)}

as in Section 7. It follows that K±/K±

0 = Z2, where the second com-
ponent is generated by (j, j) on the left and (i, i) on the right, up to
signs (of both coordinates). The embedding of Q is determined by the
slopes and is ∆Q, up to sign changes in both coordinates. All coho-
mology groups, unless otherwise stated, are understood to be with Z
coefficients.

Theorem 13.1. The manifolds M=M(p−,q−),(p+,q+) are 2-connected.

If
p−
q−

6= ±p+

q+
their cohomology is determined by π3(M) = Zk with k =

(p2
−q

2
+ − p2

+q
2
−)/8. Otherwise H3(M) = H4(M) = Z.

Proof. We will use the same method as in [GZ, Poposition 3.3] al-
though the details will be significantly more difficult. In order to show
that M is simply connected, one uses Van Kampen on the cover U± =
D(B±) = G×K±Dℓ±+1, which deformation retract to B± = G /K±, and
U− ∩ U+ = G /H. We denote the projections of the sphere bundles by
π± : G /H = G×K±Sℓ± = ∂D(B±) → B± = G /K±. For a homogeneous
space G /L with G simply connected, the fundamental group is given by
the group of components L/L0 . This determines the homomorphisms



92 K. GROVE, B. WILKING & W. ZILLER

π± : π1(G /H) → π1(G /K
±) and it follows that π1(M) = 0. For the

cohomology groups, we use the Mayer-Vietoris sequence on the same
decomposition, which gives a long exact sequence

(13.2) → H i−1(B−) ⊕H i−1(B+)
π∗
−
−π∗

+
−−−−→ H i−1(G /H)

→ H i(M) → H i(B−) ⊕H i(B+) →

We first determine the cohomology groups of the singular and regular
orbits. Denote by µ± : B0

± = G /K±

0 → B± the natural projections,
which are two fold covers. One knows that B0

± are diffeomorphic to
S3 × S2, independent of the slopes, see e.g., [WZ, Proposition 2.3]. For
B± we will show that it has the same cohomology as that of S3 × RP2,
although we do not know if they are diffeomorphic.

Lemma 13.3. The cohomology of the G orbits are given by

(a) B± is non-orientable with π1(B±) = Z2, H
0(B±) = H3(B±) =

Z , H1(B±) = H4(B±) = 0 and H2(B±) = H5(B±) = Z2. Fur-

thermore, µ∗± : H3(B±) → H3(B0
±) are isomorphisms.

(b) The principal orbit is orientable with π1(G /H) = Q, H0(G /H)
= H6(G /H) = Z , H1(G /H) = H4(G /H) = 0 , H2(G /H) =
H5(G /H) = Z2 ⊕ Z2 and H3(G /H) = Z ⊕ Z.

Proof. For the principal orbits, we observe that a normal subgroup
S3 ⊂ G acts freely and hence give rise to a principal S3 bundle G /H →
S3 /Q. This bundle must be trivial since the classifying space HP∞ is
4-connected. Hence G /H ∼= S3 × (S3/Q) and the cohomology groups of
G /H easily follow.

We first note that a singular orbit B = G /K with K = Ci
(p,q) H is

non-orientable. This follows since the action of K/K0 on the tangent
space of G /K does not preserve orientation. Considering the projection

onto the second factor in S3 ×S3, we obtain fibrations Lq → B
σ

−→ RP2

and Lq → B0
σ0−→ S2 where the fibers of these homogeneous fibrations

are lens spaces, since they are of the form ((S3 ×S1)H)/K = S3 /{zp}
with zq = 1. It is well known that H∗(B,Zp′) = H∗(B0,Zp′)

ρ for p′

a prime different from 2, where ρ is the deck transformation of the
two fold cover µ : B0 → B. The spectral sequence for σ0 implies that
σ∗

0
: H2(S2,Z) → H2(B0,Z) is an isomorphism. Since the deck groups

of B0 → B and S2 → RP2 are compatible with the fibrations σ and σ0 ,
it follows that ρ∗ = −Id on H2(B0,Z). Since ρ reverses orientation,
ρ∗ = +Id on H3(B0,Z) = Z. Thus H i(B,Zp) = Zp for i = 0, 3 and
0 otherwise. Since q is odd, H∗(Lq,Z2) = H∗(S3,Z2) and hence in the
spectral sequence for σ with Z2 coefficients all differentials necessarily
vanish. Thus H i(B,Z2) = Z2 for every i. This, together with the
universal coefficient theorem, easily determines the cohomology of B±.
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We finally show that µ∗ : H3(B) = Z → H3(B0) = Z is an isomor-
phism. By the universal coefficient theorem, it suffices to show that
µ∗ : H3(B,Zp′) → H3(B0,Zp′) is an isomorphism for every prime p′. If
p′ is odd, this is clearly the case by what we proved above. For p′ = 2
we use the observation that all differentials in the spectral sequence
for σ with Z2 coefficients vanish. This implies that the edge homo-
morphism H3(B,Z2) = Z2 → H3(Lq,Z2) = Z2 is onto and hence an
isomorphism. The same argument applies to the fibration σ0 and hence
µ∗ : H3(B,Z2) → H3(B0,Z2) is an isomorphism as well. q.e.d.

The homomorphisms π∗± : π1(G /H)→π1(B±) determine π∗± : H2(B±)
= Z2 → H2(G /H) = Z2 ⊕Z2 via the universal coefficient theorem, and
show that H2(B−) ⊕ H2(B+) → H2(G /H) is an isomorphism. Hence
H2(M) = 0 and M is 2-connected. Since we also have H4(B±) = 0, the
Mayer Vietoris sequence implies that H3(M) is the kernel and H4(M)
the cokernel of π∗− − π∗+ : H3(B−) ⊕ H3(B+) = Z ⊕ Z → H3(G /H) =
Z ⊕ Z.

To determine π∗±, we consider the commutative diagram, dropping
the signs for the moment:

S3 ×S3 τ //

η

��

S3 ×S3 /K0

µ

��

S3 ×S3 /H
π // S3 ×S3 /K

(13.4)

where all arrows are given by their natural projections. In [GZ, (3.6)]
it was shown that the image of a generator in H3(G /K0) = Z is equal
to (−q2, p2), using the natural basis in H3(G) = Z ⊕ Z. Since µ∗ is
an isomorphism in degree 3, π∗ is determined as soon as we know the
integral lattice Im(η)∗ ⊂ H3(S3 ×S3). Since S3 ×S3 /H ∼= S3 × (S3 /Q)
and S3 → S3 /Q is an 8-fold cover, this sublattice must have index 8.
Using (13.4) for the slopes (1, 1) and (1, 3), we see that (−1, 1) and
(−9, 1) lie in the lattice and must be a basis, since the element (1, 0)
has order 8 in the quotient group. Using the basis (−1, 1) and (4, 4) the
matrix of π∗− − π∗+ becomes:

(

1
2(p2

− + q2−) −1
2(p2

+ + q2+)

1
8(p2

− − q2−) −1
8(p2

+ − q2+)

)

.

Since (p−, q−) are relatively prime, one easily sees that (1
2(p2

± +

q2±), 1
8(p2

± − q2±)) are relatively prime as well, which implies that the
cokernel of π∗− − π∗+ is a cyclic group. If we assume that p−

q−
6= ±p+

q+
,

the kernel is 0 and the cokernel is cyclic with order det(π∗− − π∗+) =
((p2

−q
2
+ − p2

+q
2
−)/8. Otherwise kernel and cokernel are equal to Z. q.e.d.
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Next we consider the extension N = N(p−,q−),(p+,q+) of the Q family,

given by H = {(±1,±1), (±i,±i)}⊂ {K−,K+} = {Ci
(p−,q−) H,Cj

(p+,q+) H}

⊂ G = S3 ×S3 with (p−, q−) as well as (p+, q+) relatively prime, p+

even and p−, q−, q+ odd. Notice that the component groups K±/K±

0 are
determined by the fact that (i, i) ∈ K−

0 and (1,−1) ∈ K+
0 .

Theorem 13.5. The manifolds N = N(p−,q−),(p+,q+) are simply con-

nected with H2(N) = Z , H3(N) = 0 and H4(N) = Zk with k =
p2
−q

2
+ − p2

+q
2
−.

Proof. We indicate the changes in the proof which are necessary, and
start with the cohomology of the orbits. They contain torsion groups
S, T and integers c, d which are to be determined later.

Lemma 13.6. The cohomology of the G orbits are given by

(a) B− is orientable with π1(B−)= Z2, H
0(B−) = H3(B−) = H5(B−)

= Z , H1(B−) = 0 , H2(B−) = Z ⊕ Z2 and H4(B−) = Z2. Fur-

thermore, µ∗− : H3(B−) → H3(B0
−) is multiplication by c, a power

of 2.
(b) B+ is non-orientable with π1(B+) = Z4 , H

0(B+) = Z , H1(B+) =
H4(B+) = 0 , H2(B+) = Z4 , H

3(B+) = Z⊕S and H5(B+) = Z2.

Furthermore, µ∗+ : H3(B+) → H3(B0
+) is multiplication by d, a

power of 2, on the free part.

(c) The principal orbit is orientable with π1(G /H)=Z2⊕Z4, H
0(G /H)

= H6(G /H) = Z , H1(G /H) = 0 , H2(G /H) = H5(G /H) =
Z2 ⊕ Z4 , H

3(G /H) = Z ⊕ Z ⊕ T and H4(G /H) = T,

where S and T are torsion groups of the form (Z2)
m.

Proof. For B = B− = S3 ×S3 /Ci
(p,q) H one has (i, i) ∈ K−

0 and (1,−1)

generates the second component. Hence B− is orientable with π1 = Z2.
Projection onto the second coordinate in S3 ×S3 gives rise to fibrations

L2q → B
σ

−→ S2 and Lq → B0
σ0−→ S2. Notice that the fiber for

the first fibration is ((S3 ×S1)H)/K = S3 /{zp,−1} with zq = 1, which
is S3 /Z2q since p and q are odd. As before, one now shows that for
any prime p′ different from 2, H i(B,Zp′) = Zp′ for i = 0, 2, 3, 5 and 0

otherwise. Since H∗(L2q,Z2) = H∗(RP3,Z2) and H1(B,Z2) = Z2 it
follows that all differentials vanish in the spectral sequence for σ with
Z2 coefficients. This determines H∗(B,Z2) and the cohomology groups
of B easily follow. Since µ∗ : H3(B,Zp′) = Zp′ → H3(B0,Zp′) = Zp′ is
an isomorphism for every prime p′ 6= 2, it must be multiplication by a
power of two over the integers.

For B = B+ = S3 ×S3 /Ci
(p,q) H with p even q odd, the element

(i, i) generates the 4 components of K. Hence B is non-orientable with

π1(B) = Z4. We now also consider the fibrations L2q → B
σ

−→ RP2
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and Lq → B0
σ0−→ S2. Using the 4-fold cover µ : B0 → B, it follows as

before that for any prime p′ 6= 2 we have H i(B,Zp′) = Zp′ for i = 0, 3
and 0 otherwise.

We now consider the spectral sequence of the fibration σ with Z2

coefficients. Since H1(B,Z2) = Z2, it follows that d2 : E0,1
2 = Z2 →

E2,0
2 = Z2 is an isomorphism and hence d2 : E0,2

2 = Z2 → E2,1
2 = Z2

vanishes and d2 : E0,3
2 = Z2 → E2,2

2 = Z2 is an isomorphism as well. This
determines H∗(B,Z2) and one easily derives the cohomology of B, up to
a non-zero torsion group S = (Z2)

k in dimension three. It also follows
that µ∗ : H3(B,Zp′) = Zp′ → H3(B0,Zp′) = Zp′ is an isomorphism
for p′ 6= 2, and hence µ∗ : H3(B,Z) = Z ⊕ S → H3(B0,Z) = Z is
multiplication by a power of two on the free part.

G /H is clearly orientable with π1(G /H) = Z2 ⊕Z4. Using the 8-fold
cover η : S3 ×S3 → G /H and the fact that the deck transformations
are homotopic to the identity, it follows that the non-zero groups in
H i(B,Zp) for p 6= 2 are Zp for i = 0, 6 and Zp ⊕ Zp for i = 3. In the

spectral sequence for the fibration S1 ×S1 → G /H → S2 × S2 with Z2

coefficients, all differentials must be 0 since H1(G /H,Z2) = Z2 ⊕ Z2.
This determines H∗(G /H,Z2) and hence H∗(G /H,Z), up to a non-zero
torsion group T = (Z2)

k in dimensions three and four. q.e.d.

The homomorphisms on the group of components again show that N
is simply connected and that the homomorphism H2(B−)⊕H2(B+) =
Z4 ⊕ Z ⊕ Z2 → H2(G /H) = Z4 ⊕ Z2 is an isomorphism on the torsion
part, since it is determined by the corresponding homomorphisms on the
fundamental groups. Therefore Mayer Vietoris implies thatH2(N) = Z.
By Poincare duality H5(N) = Z → H5(B−) = Z is an isomorphism,
which means that the homomorphism H4(B−) ⊕ H4(B+) = Z2 →
H4(G /H) = T is onto and hence an isomorphism with T = Z2. Since
the universal coefficient theorem for N implies that H3(N) cannot have
any torsion, π∗− − π∗+ : H3(B−) ⊕H3(B+) = Z ⊕ Z ⊕ S → H3(G /H) =
Z⊕Z⊕T is injective on its torsion part, and hence an isomorphism with
S = T = Z2. Thus H3(N) is the kernel on the free part and H4(N) its
cokernel.

We next determine the lattice generated by the image of η∗ inH3(S3×
S3). In the spectral sequence for the fibration S3 ×S3 → S3 ×S3 /Z2 ⊕
Z4 → BZ2×BZ4 the fundamental group Z2⊕Z4 of the base acts trivially
in homology and hence the local coefficients become ordinary Z coef-
ficients. The only non-zero differential is d2 : E0,3

2 = Z ⊕ Z → E4,0
2 =

H4(BZ2 × BZ4 ,Z) = Z2 ⊕ Z4 ⊕ Z2, whose kernel is equal to the image
of the edge homomorphism, which can be viewed as η∗. Clearly, (−2, 2)
and (2, 2) lie in this kernel and must be a basis of the lattice since the
spectral sequence also implies that its quotient group has order 8. In



96 K. GROVE, B. WILKING & W. ZILLER

this basis, the matrix of π∗− − π∗+ on the free part is given by
(

c
4(p2

− + q2−) −d
4(p2

+ + q2+)

c
4(p2

− − q2−) −d
4(p2

+ − q2+)

)

where c, d are the integers from Lemma 13.6, which we showed are
powers of two. We now claim that c = 2 and d = 4, which then implies
(13.5) as before.

If this were not the case, the order of H4(N,Z) would be even since
(p2

− + q2−, p
2
− − q2−) = 2 and (p2

+ + q2+, p
2
+ − q2+) = 1, and we now show

that it must in fact be odd. To see this, we repeat the above Mayer
Vietoris argument for cohomology with Z2 coefficients. First observe
that in the Gysin sequence of S1 → G /H → B± one has

· · · → H3(B±) = Z2
2

π∗
±

−→ H3(G /H) = Z4
2 → H2(B±) = Z2

2 → · · ·

and hence π∗± are injective. Thus from the Mayer Vietoris sequence

0 → H3(N) → H3(B−) ⊕H3(B+) = Z4
2

π∗
−
−π∗

+
−−−−→

H3(G /H) = Z4
2 → H4(N) → 0

it follows that H3(N,Z2) = H4(N,Z2) = 0 which completes the proof.
q.e.d.

14. Appendix I: Classification in Even Dimensions

In this appendix we give a relatively short proof of Verdiani’s theorem
based on the obstructions, ideas and strategy presented here to handle
the odd dimensional case.

Theorem 14.1 (Verdiani). Suppose G acts on an even dimensional

positively curved simply connected compact manifold M with cohomo-

geneity one. Then M is equivariantly diffeomorphic to a rank 1 sym-

metric space.

One of the reasons that make the even dimensional case less involved
is that one of the groups K− or K+ has the same rank as G, and thus
rk(G)− rk(H) = 1 as we saw in the Rank Lemma. Moreover, the Upper
Weyl Group Bound now says that |W | = 2 or 4, and |W | = 2 if H is
connected and l− and l+ are both odd. This becomes especially powerful
if combined with the Lower Weyl Group Bound. Another noteworthy
difference is that the main body of work is confined to the case of simple
groups, and that induction is only used occasionally.

In [Iw1, Iw2, Uc1] it was shown that any cohomogeneity one man-
ifold whose rational cohomology ring is like that of CPn , HPn or CaP2

is equivariantly diffeomorphic to one of the known linear cohomogeneity
one actions. Hence it is again sufficient to recover M up to homotopy
type.
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We treat the cases G simple, or not separately. For G simple we
distinguish among the subcases: H contains a normal simple subgroup
of rk ≥ 2, or not.

G is not simple.

Proposition 14.2. If G is not simple and acts essentially with corank

one, it is the tensor product action of SU(2)SU(k) on CP2k−1.

Proof. We can assume that G = L1×L2, and say rk(K−) = rk(G), and
hence K−

0 = K1 ·K2. Since by assumption K− does not contain a normal
subgroup of G, we see that G is semisimple and G /K−

0 is necessarily
isometric to a product. If each of the factors has dimension > 2, then
we can derive a contradiction as in the proof of the Product Lemma in
odd dimensions. Using the conventions therein, we may assume that
L2/K2 = S2, and that K1 acts transitively on the normal sphere. It
follows again that L1/K1 is isometric to a rank one projective space,
and as before, we derive a contradiction if the isotropy representation
of L1/K1 is of real type. Hence the isotropy representation is of complex
type and L1/K1 = SU(k)/U(k − 1), k ≥ 2 or L1/K1 = G2 /SU(3).

Because of primitivity K+ necessarily projects surjectively onto L2 =
S3. The projection of H0 onto L2 cannot be 3 dimensional since then
the subaction of L1 would be orbit equivalent to the G action. If the
projection is trivial, K−/H = S1 and K+/H = S3. Furthermore, H is
connected since K1 and K2 are both connected. But then the Upper
Weyl Group Bound implies that |W | = 2, which combined with the
Lower Weyl Group Bound gives dimG /H ≤ 4, a contradiction. Hence
the projection is one dimensional and K+/H = S2.

This completely determines the group picture. Indeed, if L1/K1 =
SU(k)/U(k− 1), we have K+ = L×S3 with the second factor embedded
diagonally in L1 · L2. Hence L ⊂ U(k − 2) and H = L × S1. In order for
K−/H to be a sphere, we need L = U(k − 2) and we recover the tensor
product action of SU(k) × SU(2) on CP2k−1.

In the case of L1 · L2 = G2 ×S3 we have K+ = S3 ×S3. K+ projects
onto SO(4) ⊂ G2, and the second factor of K+ projects onto L2. The
tangentspace T+ of the orbit B+ = G2 xS3 /K+ decomposes as an 8
dimensional and a 3 dimensional invariant subspace. The natural rep-
resentation in S2T+ splits into two trivial two 5-dimensional and into
subrepresentations on which G2 ∩K+ ∼= S3 ⊂ H acts nontrivially.

This in turn implies that B+ is totally geodesic, a contradiction.
q.e.d.

G is simple.

Proposition 14.3. Assume G is simple with corank 1 and all simple

factors in H have rank one. If the action is essential, then (M,G) is
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one of the following pairs: (CP6, G2), (CP9, SU(5)), (HP2, SU(3)),
(HP3,SU(4)), or (CaP2,Sp(3)), and the actions are given by Table F.

Proof. Since all normal factors in H0 are one and three dimensional,
we have l± = 1, 2, 3, 4, 5, or 7 and at least one of them is odd. The Weyl
group has order at most 4, and the order is 2 if l+ and l− are both one
of 3, 5 or 7.

We first treat the case where rk G ≤ 2. For G = S1 clearly M = S2. If
G = S3, K± ∼= S3 corresponds to M = S4, K− ∼= S3,K+ ∼= S1 corresponds
to M = CP2, and K± ∼= S1 is not primitive. In all three cases, the action
is not essential.

If G = SU(3), then H cannot be three dimensional since otherwise
G is not primitive or has a fixed point. Therefore H0 is a circle. The
Lower Weyl Group Bound implies that one of l±, say l−, is 3 and hence
K−

0 = U(2). Since U(2) is maximal, K+ and hence H are connected.
From the Upper and Lower Weyl Group Bound it now follows that
l+ = 1 or 3 is not possible. Thus K+ = SO(3) or SU(2). If K+ =
SO(3) and hence S+ = S2, we note there is only one embedding into
SU(3) and its isotropy representation is irreducible. One then easily
shows (Clebsch Gordon formula) that the representation of SO(3) in
S2T+ has no three dimensional subrepresentation, which implies that
SU(3)/SO(3) is totally geodesic, a contradiction. If K+ = SU(2), we
have recovered the group picture for HP2.

If G = Sp(2) and H is three dimensional, then Table B implies that
G /H0

∼= S7 or SO(5)/SO(3). In the former case G either has a fixed
point or is not primitive. In the latter case the Chain Theorem ap-
plies. So we may assume dim(H) = 1. The Lower Weyl Group Bound
implies that l− = 2 , l+ = 3 and hence all groups are connected. If
H = {diag(zk, zl) | z ∈ S1}, the isotropy representation has weights
2k, 2l, and 2k±2l. But since Sp(2)/H by the Isotropy Lemma can have
at most two nonequivalent nontrivial subrepresentations, it follows that
H = {diag(z, z) | z ∈ S1} or {diag(1, z) | z ∈ S1}. In the former case
MH

c admits a cohomogeneity one action of N(H)/H ∼= SO(3) with triv-
ial principal isotropy group, which contradicts the Core-Weyl Lemma.
If H = {diag(1, z)}, we may assume that K− = {diag(1, g) | g ∈ S3}.
Hence K− is normalized by the normalizer of H and in particular by the
Weyl group. By Linear Primitivity, the Lie algebras of K−,K+, w+K+w+

span the Lie algebra of G, which is not possible since dimK+ = 4.
Finally, if G = G2 and H is one dimensional, we obtain a contradic-

tion to the Lower Weyl Group Bound since l± ≤ 3. The only three
dimensional spherical subgroup is H = SU(2) ⊂ SU(3) ⊂ G2, as one
easily verifies. The subgroups of G2 only allow l± = 1 or 5, and using
the Lower Weyl Group Bound, we see that K−

0 = SU(3), K+
0 = SU(2)S1

and H is not connected by the Upper Weyl Group Bound. Because of
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G2 /SU(3) ∼= S6, K− and thereby H has at most two, and hence two com-
ponents. Now all groups K±, H are determined, and we have recovered
the picture of CP6 endowed with the linear action of G2.

If the rank of G is 3 or larger, we first observe that dimH ≤ 3 rkH =
3(rkG−1) since all simple factors of H have rank one. Hence:

dim(G) − 3 rkG ≤ dim(G /H) − 3.

By the Lower Weyl Group Bound

dim(G /H) ≤ 2(7 + 4) = 22

and hence dimG−3 rk(G) ≤ 19.
First we consider the case that there is an orbit, say G /K−, of codi-

mension 8. Then Sp(2) is a normal subgroup of K− and rk(K−) = rk(G)
since rk K− − rkH = 1. The only simple Lie groups satisfying the above
dimension estimate and containing Sp(2) as a regular subgroup, besides
Sp(2) itself, are Spin(7) and Sp(3). In the case of G = Spin(7) the cen-
tral element in Sp(2) is necessarily central in Spin(7), but does not lie
in H. But then Spin(7)/K− is totally geodesic, which is not possible. In

the case of G = Sp(3), H contains an Sp(1)-block and M
Sp(1)
c admits a

cohomogeneity one action by Sp(2), whose principal isotropy group has
rank one. As we saw earlier, this isotropy group must be three dimen-
sional and hence H is 6-dimensional, which implies K−

0 = Sp(1) · Sp(2).
Since this group is maximal in Sp(3), it follows that K− and hence H are
connected. The Lower Weyl Group Bound implies that |W | = 4 and
hence, by the Upper Weyl Group Bound, one of the codimensions must
be odd. Hence K+ = Sp(2), H = Sp(1)2 ⊂ Sp(2) ⊂ Sp(3) and we have
recovered the cohomogeneity one action of Sp(3) on CaP2.

If there are no orbits of codimension 8,

dim(G /H) ≤ 2(4 + 5) = 18

and hence dim(G) − 3 rk(G) ≤ 15. We now assume that there is an
orbit, say G /K− of codimension 5. Then Sp(2) ⊂ K−. The only groups,
other than Sp(2), satisfying the above dimension estimate and contain-
ing Sp(2) are Sp(3), SU(5), Spin(7) and Spin(6).

In the case of G = Spin(6) or Spin(7), there is a unique embedding
of Sp(2) = Spin(5) in G and hence H contains a 4 × 4-block and the
Chain Theorem applies. In the case of G = Sp(3), H = Sp(1)2 ⊂ Sp(2)
and the isotropy representation of G /H contains a four dimensional
representation, which can only degenerate in an orbit of codimension 8,
which we already dealt with. Thus we may assume G = SU(5). Because
of rk(K−) = 3, we have K−

0 = Sp(2)·S1 and hence H0 = SU(2)2 ·S1. There
is a four dimensional subrepresentation of the isotropy representation
of G /H0 which is not equivalent to a subrepresentation of K−/H0. From
the Isotropy Lemma we deduce K+ = SU(3) · SU(2) · S1 and all groups
are connected. We have recovered the linear action of SU(5) on CP9.
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We are left with the case that l± = 1, 2, 3 or 5. Hence

dim(G /H) ≤ 2(2 + 5) = 14

and dim(G)− 3 rk(G) ≤ 11. The only simply connected compact simple
Lie groups satisfying this dimension estimate are S3, SU(3), Sp(2), G2,
and SU(4).

This only leaves us to consider the case G = SU(4). If H0 is abelian, we
obtain a contradiction to the Lower Weyl Group Bound. There are two
six dimensional subgroups of SU(4) = Spin(6), one from SO(4) ⊂ SO(6),
where the Chain Theorem applies, and the other from SO(3)SO(3) ⊂
SO(6) which contradicts the Isotropy Lemma.

In the case of dim(H0) = 4, Table B implies that H contains an
SU(2)-block. Since the four dimensional representation of SU(2) has to
degenerate, K− = U(3). Since U(3) is maximal in SU(4), K− and hence
also H are connected. If |W | = 2, the Lower Weyl Group Bound implies
that l+ = 7, which is not possible since Sp(2) is maximal in SU(4). Now
the Upper Weyl Group Bound implies that l+ is even. Thus l+ = 2,
K+ = SU(2)2,H = S1 SU(2), and we have recovered the action of SU(4)
on HP3. q.e.d.

For G simple it remains to consider the case where H has a higher
rank normal subgroup.

Proposition 14.4. Assume G is simple with corank 1 and H con-

tains a simple subgroup of rank ≥ 2. If the action is essential, the

pair (M,G) is one of the following: (CPn−1,SO(n)), (HPn−1,SU(n)),
(CP15,Spin(10)), (S14,Spin(7)), or (CP7,Spin(7)) with the actions given

by Table F.

Proof. By Lemma 2.4, there can be only one connected normal sub-
group of H which has rank larger than one, which we denote by H′.

G = Sp(k) or SU(k)

If G = Sp(k), Table B implies that H′ is given by an h×h block h ≥ 2,
and the Chain Theorem applies.

If G = SU(k), Table B implies that either H′ is given by an h×h block
and the Chain Theorem applies, or H′ = Sp(2) ⊂ SU(4) ⊂ SU(k). The
latter case can be ruled out as follows. If k = 4, then clearly G has a fixed
point. If k ≥ 5, there is an eight dimensional irreducible representation
of H which can only degenerate in an isotropy group K− containing
Sp(3), and furthermore rk(K−) = rk(G). But this is impossible since
Sp(3) is not a regular subgroup of SU(k).
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G = Spin(k)

If G = Spin(k), then by Table B, either H′ is given by a block and the
Chain Theorem applies, or H′ ∼= G2,Spin(7),SU(4),Sp(2), or SU(3).

If H′ = G2 or Spin(7), we first claim that H0 = H′. Indeed, if H0 6= H′,
it follows from Table C that only one of H′ or H0/H′ can act non-trivially
on each irreducible subrepresentation of G /H. But by Lemma 2.4, this
contradicts our assumption that G is simple. If H0 = G2, the Rank
Lemma implies G = Spin(7) and G has a fixed point. If H0 = Spin(7),
then G = Spin(8) or G = Spin(9) and G /H0 is a sphere. Then G either
has a fixed point or the action is not primitive.

If H′ = SU(4) or Sp(2), then k ≥ 8. If k = 8, H′ is, up to an outer
automorphism of Spin(8), given as a 6 × 6 or a 5 × 5 block and the
Chain Theorem applies. If k ≥ 9, let ι be the order 2 central element
in H′ so that N(ι)0 = Spin(k − 8) · Spin(8) acts with cohomogeneity
one on the reduction M ι

c and the principal isotropy group contains,
up to outer automorphisms, a 5 × 5 or a 6 × 6 block. By induction
it must be induced by a tensor product action, H′ = SU(4), k = 10
and H0 = SU(4) · S1 by the Rank Lemma. Hence K−

0 = SU(5) · S1

since the 8 dimensional representation has to degenerate. The isotropy
representation of SO(10)/U(5), when restricted to U(4), contains a six
dimensional representation, which has to degenerate in K+/H and hence
K+ = Spin(7) · S1. We have recovered the action of Spin(10) on CP15.

Finally, we consider the case H′ = SU(3) ⊂ Spin(6) ⊂ Spin(k). We
first rule out k ≥ 8. In this case rk(H) ≥ 3, and by Lemma 2.4 there
exists an irreducible summand in the isotropy representation of G /H on
which both H′ and H /H′ act nontrivially. Thus not all the six dimen-
sional representations of SU(3) can degenerate in G2. Hence an isotropy
group, say K−, contains SU(4) as a normal subgroup, and we consider
the fixed point set of the central involution ι ∈ SU(4). Since it is central
in a Spin(8)-block and acts as − id on the slice, it has a homogeneous
fixed point component Spin(k − 8) · Spin(8)/(K− ∩ Spin(k − 8) · Spin(8))
which cannot have positive curvature.

In the case of k = 6, either G has a fixed point, or the action is not
primitive. Thus we may assume k = 7 and hence H0 = SU(3). The
isotropy representation of Spin(7)/SU(3) consists of the sum of a triv-
ial representation, a 6 dimensional representation corresponding to the
isotropy representation in SU(4) = Spin(6), and a second 6 dimensional
representation orthogonal to it. Thus the only connected subgroups in
between SU(3) and Spin(7) are U(3), Spin(6) and G2, and the normalizer
N(H0)/H0

∼= S1 acts transitively on the possible embeddings of Spin(6)
and G2.
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If K−

0 = SU(4) ∼= Spin(6) occurs as isotropy group, then K+
0 =

S1 ·SU(3) or K+
0 = Spin(6) and the action is not primitive. Thus H

is connected, K+ ∼= G2, and we have recovered the action on S14.
If SU(4) does not occur as isotropy group, primitivity implies that

K−

0 = G2, and K+
0 = S1 ·SU(3). As the center of Spin(7) is contained in

K+, it must be contained in H also, since otherwise Spin(7)/K+ would be
totally geodesic. This also shows that Spin(7)/K− ∼= RP6, and K− and
H have precisely two components. We have recovered the linear action
of Spin(7) on CP7.

G = F4 , E6 , E7 , E8

If G is one of F4, E6, E7, or E8, Table B implies that H′ is one of the
groups Spin(k), k ≤ 8, G2 or SU(3), where we again used the fact that
H0 = Spin(9) is not possible. If H′ 6= Spin(7), we have dim(K±/H) ≤ 8
and hence dim(G /H) ≤ 32 by the Lower Weyl Group Bound. This
implies that dimG−3 rkG ≤ 29, which is clearly not possible.

For H′ = Spin(7), it follows as before that H′ = H0 and thereby
G = F4. In one singular orbit the 8-dimensional representation of Spin(7)
has to degenerate. This implies K−

0 = Spin(9) ⊂ F4 and since Spin(9) is
maximal in F4, K− and H are connected. Since l± are one of 1, 7, 15, the
Upper Weyl Group Bound implies that |W| = 2, which contradicts the
Lower Weyl Group Bound. q.e.d.

15. Appendix II: Group Diagrams for Compact Rank One

Symmetric Spaces

In this appendix we will collect various known information that will
be used throughout the proof of Theorem A.

To describe the representations, we use the notation ρn , µn, and νn

for the defining representations of SO(n), U(n), and Sp(n) respectively.
∆n denotes the spin representation for SO(n) and ∆±

2n the half spin

representation. Also φ denotes a 2 dimensional representation of S1 and
for all others we use ψN for an N-dimensional irreducible representation.

In Table B we reproduce the list of spherical simple subgroups of the
simple Lie groups from [Wi3, Proposition 7.2-7.4] since it will be an
important tool in our classification. All embeddings are standard em-
beddings among classical groups, and Spin(7) ⊂ SO(8) is the embedding
via the spin representation. We point out that the case of a rank one
group in the exceptional Lie groups was not included in [Wi3]. But in
our proof, this case will only be needed for a rank one group in G2, where
one easily shows that SU(2) ⊂ SU(3) is the only spherical subgroup.

In Table C we list the transitive actions on spheres and their isotropy
representation. Notice that νn⊗̂ν1 is the representation on Hn = R4n

given by left multiplication of Sp(n) and right multiplication of Sp(1) on
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G H Inclusions

SU(n) SU(2) SU(2) ⊂ SU(n) given by p (µ2) ⊕ q id

SU(n) Sp(2) Sp(2) ⊂ SU(4) ⊂ SU(n)

SU(n) SU(k) k × k block

SO(n) Sp(1) Sp(1) ⊂ SO(n) given by p ν1 ⊕ q id

SO(n) SU(3) SU(3) ⊂ SO(6) ⊂ SO(n)

SO(n) Sp(2) Sp(2) ⊂ SU(4) ⊂ SO(8) ⊂ SO(n)

SO(n) G2 G2 ⊂ SO(7) ⊂ SO(n)

SO(n) SU(4) SU(4) ⊂ SO(8) ⊂ SO(n)

SO(n) Spin(7) Spin(7) ⊂ SO(8) ⊂ SO(n)

SO(n) SO(k) k × k block

Sp(n) Sp(1) Sp(1) = {diag(q, q, . . . , q, 1, . . . , 1) | q ∈ S3}

Sp(n) Sp(k) k × k block

G2 SU(3) maximal subgroup

F4,E6 Spin(k) H ⊂ Spin(9) ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8

E7,E8 H =Spin(k), k =5, . . . , 9 standard embedding

F4,E6 · · ·E8 SU(3) SU(3)⊂ SU(4)⊂ Spin(8)⊂ F4⊂ E6⊂ E7⊂ E8

F4,E6 · · ·E8 G2 G2 ⊂ Spin(7) ⊂ Spin(8) ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8

Table B. G /H with spherical isotropy representations.

quaternionic vectors and νn⊗̂φ is the subrepresentation under U(1) ⊂
Sp(1). Notice also that for each irreducible subrepresentation m in the
isotropy representation of K/H the group H acts transitively on the
unit sphere in m, as long as dimm > 1. This elementary but important
property is used in the Isotropy Lemma 2.3.

In Table D we list the remaining simply connected homogeneous
spaces with positive curvature which will be used when one needs to
check whether a singular orbit can be totally geodesic.

Information about cohomogeneity one actions on spheres is taken
from [HL] and [St1] where the group G and the principal isotropy group
H are given. In the literature one finds only partial information about
the singular isotropy groups K±, see e.g., [Br], [HL], [MS], [St1], [St2],
[Uc2]. In our proof, the groups K± and their embeddings amusingly
are obtained along the way. In other words, once an essential action
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n K H Isotropy representation

n SO(n+ 1) SO(n) ρn

2n+ 1 SU(n+ 1) SU(n) µn ⊕ id

2n+ 1 U(n+ 1) U(n) µn ⊕ id

4n+ 3 Sp(n+ 1) Sp(n) νn ⊕ 3 id

4n+ 3 Sp(n+ 1)Sp(1) Sp(n)∆ Sp(1) νn⊗̂ν1 ⊕ id ⊗̂ρ3

4n+ 3 Sp(n+ 1)U(1) Sp(n)∆ U(1) νn⊗̂φ⊕ id ⊗̂φ⊕ id

15 Spin(9) Spin(7) ρ7 ⊕ ∆7

7 Spin(7) G2 φ7

6 G2 SU(3) µ3

Table C. Transitive actions on Sn.

n G K

2n SU(n+ 1) U(n)

4n Sp(n+ 1) Sp(n)Sp(1)

4n Sp(n+ 1) Sp(n)U(1)

16 F4 Spin(9)

6 SU(3) T2

12 Sp(3) Sp(1)3

24 F4 Spin(8)

7 SU(3) S1 = diag(zp, zq, z̄p+q)

(p, q) = 1, pq(p+ q) 6= 0

7 U(3) T2

13 SU(5) Sp(2) · S1

Table D. Homogeneous spaces Mn = G /K with posi-
tive curvature, which are not spheres.

arises in the induction proof with G and H from Straume’s list, our
obstructions leave only one possibility for K±. Moreover, all essential
actions indeed arise in the proof along the way. In Table E we describe
the essential group actions on odd dimensional spheres, where π is the
representation of G on Rn, and in Table F the ones on even dimensional
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rank one symmetric spaces. We also include the normal extensions since
these extensions will be used in the induction proof. The cohomogeneity
one actions on CPn and HPn are obtained from an action on an odd
dimensional sphere when U(1) or Sp(1) is a normal subgroup in G with
induced action given by a Hopf action. Conversely, an action on CPn

or HPn lifts to such an action on a sphere.

n G π K− K+ H (l−, l+) W

8k + 7 Sp(2) Sp(k + 1) ν2⊗̂νk+1 △ Sp(2) Sp(k − 1) Sp(1)2 Sp(k) Sp(1)2 Sp(k − 1) (4, 4k + 1) D4

4k + 7 SU(2) SU(k + 2) µ2⊗̂µk+2 △ SU(2) SU(k) S1 · SU(k + 1) S1 · SU(k) (2, 2k + 1) D4

U(2) SU(k + 2) µ2⊗̂µk+2 △U(2) SU(k) T2 · SU(k + 1) T2 · SU(k)

2k + 3 SO(2) SO(k + 2) ρ2⊗̂ρk+2 △ SO(2) SO(k) Z2 · SO(k + 1) Z2 · SO(k) (1, k) D4

15 SO(2) Spin(7) ρ2⊗̂∆7 △ SO(2) SU(3) Z2 · Spin(6) Z2 · SU(3) (1, 7) D4

13 SO(2) G2 ρ2⊗̂φ7 △ SO(2) SU(2) Z2 · SU(3) Z2 · SU(2) (1, 5) D4

7 SO(4) ν1⊗̂ν3 S(O(2) O(1)) S(O(1) O(2)) Z2 ⊕ Z2 (1, 1) D6

15 Spin(8) ρ8 ⊕ ∆±

8 Spin(7) Spin(7) G2 (7, 7) D2

13 SU(4) µ4 ⊕ ρ6 SU(3) Sp(2) SU(2) (5, 7) D2

U(4) µ4 ⊕ ρ6 S1 · SU(3) S1 · Sp(2) S1 · SU(2)

19 SU(5) Λ2µ5 Sp(2) SU(2) SU(3) SU(2)2 (4, 5) D4

U(5) Λ2µ5 S1 · Sp(2) S1 · SU(2) SU(3) S1 · SU(2)2

31 Spin(10) ∆±

10 SU(5) Spin(7) SU(4) (9, 6) D4

S1 · Spin(10) ∆±

10 ∆ S1 · SU(5) S1 · Spin(7) S1 · SU(4)

7 SU(3) ad S(U(2) U(1)) S(U(1) U(2)) T2 (2, 2) D3

9 SO(5) ad U(2) SO(3) SO(2) T2 (2, 2) D4

13 G2 ad U(2) U(2) T2 (2, 2) D6

13 Sp(3) Λ2ν3 − 1 Sp(2) Sp(1) Sp(1) Sp(2) Sp(1)3 (4, 4) D3

25 F4 ψ26 Spin(9) Spin(9) Spin(8) (8, 8) D3

Table E. Essential cohomogeneity one actions and ex-
tensions on odd dimensional spheres, k ≥ 1.

We will also use some knowledge about non-essential actions on
spheres, apart from the extensions of essential ones. If a subaction by
L ⊂ G on Sn−1 ⊂ Rn is fixed point homogeneous, an analysis of the
submetry M/L → M/G shows that G is either a suspension action or
L is a normal subgroup of G contained in one of the singular isotropy
groups. Thus we can write G = L1L2L

′ and Rn = V1 ⊕ V2 such that G

preserves Vi and Li = {g ∈ G | g|Vj
= Id, j 6= i}, where at least one of

Li is non-trivial. We will call such actions sum actions for short. But
notice that this is not equivalent to the representation of G on Rn being
reducible, as the actions of SU(4) (and U(4)) on S13, of Spin(8) on S15,
and of Spin(7) on S14 illustrate (corresponding to both Li being trivial).
Clearly LiL

′ acts transitively on the unit sphere in Vi, which easily im-
plies that Li does so as well. The most elementary sum actions are given
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by G = G(n)G′(m) operating on V n⊕V m as fn⊗̂id⊕id⊗̂fm where G(n)
is any of the classical Lie groups with their defining representations fn.
The property we sometimes use is that the principal isotropy group is
given by G(n− 1)G′(m− 1). This also includes the case where m = 1,
i.e., G(m) = {e}, which corresponds to actions with a fixed point. Such
sum actions can be further modified by replacing the action of G(n)
on V n and G(m) on V m by any one of the other transitive actions on
spheres. The corresponding isotropy groups are given in Table C. If L′

is non-trivial, it is necessarily of rank one and Table C easily implies
that there are only three such actions:

1) (G,H) is given by (U(1)G(n)G(m) , ∆ U(1)G(n − 1)G′(m − 1))
acting via φk⊗̂fn⊗̂id ⊕ φl⊗̂id⊗̂fm with (k, l) = 1 and G(n) is
one of SU(n) or Sp(n). If G(m) = {e}, and hence V m = C, the
principal isotropy group is ∆Zl G(n− 1).

2) (G,H) is given by (Sp(1)Sp(n)Sp(m),∆ Sp(1)Sp(n−1)Sp(m−1))
acting via ν1⊗̂νn⊗̂id⊕ ν1⊗̂id⊗̂νm. If Sp(m) = {e}, and V m = H,
we have H = Sp(n− 1).

3) (G,H) is given by (Sp(1)Sp(n),∆ U(1)Sp(n−1)) acting via ν1⊗̂νn

⊕ρ3⊗̂id, which is an action on an even dimensional sphere.

G K− K+ H (l−, l+) W

S4 SO(3), π = S2ρ3 − 1 S(O(2)O(1)) S(O(1)O(2)) Z2 ⊕ Z2 (1, 1) D3

S14 Spin(7), π = ρ7 ⊕ ∆7 Spin(6) G2 SU(3) (1, 6) D2

CPk+1 SO(k + 2) SO(2)SO(k) O(k + 1) Z2 · SO(k) (1, k) D2

CP2k+3 SU(2)SU(k + 2) ∆ U(2)SU(k) T2 SU(k + 1) T2 SU(k) (2, 2k + 1) D2

CP6 G2 U(2) Z2 · SU(3) Z2 · SU(2) (1, 5) D2

CP7 Spin(7) S1 SU(3) Z2 · Spin(6) Z2 · SU(3) (1, 7) D2

CP9 SU(5) S1
· Sp(2) S(U(2)U(3)) S1

· SU(2)2 (4, 5) D2

CP15 Spin(10) S1 SU(5) S1 Spin(7) S1 SU(4) (9, 6) D2

HPk+1 SU(k + 2) SU(2)SU(k) U(k + 1) S1
· SU(k) (2, 2k + 1) D2

S1 SU(k + 2) ∆S1 SU(2)SU(k) S1 U(k + 1) T2
· SU(k)

CaP2 Sp(3) Sp(2) Sp(1)Sp(2) Sp(1)2 (11, 8) D2

S1 Sp(3) ∆ S1 Sp(2) S1 Sp(1)Sp(2) S1 Sp(1)2

Sp(1)Sp(3) ∆ Sp(1)Sp(2) Sp(1)2 Sp(2) Sp(1)3

Table F. Essential cohomogeneity one actions and ex-
tensions in even dimensions, k ≥ 1.
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For the even dimensional rank one symmetric spaces one also has
sum actions by Sp(n) Sp(m) on HPn+m−1 and by SU(n) SU(m)
or S(U(n)U(m)) on CPn+m−1, where one or both unitary groups can
also be replaced by symplectic groups. If one of the groups is absent,
they are the actions with a fixed point. Finally, in Table G we list the

symmetric spaces G /K where K and G have the same rank. They occur
as normalizers of elements ι whose square, but not ι itself, lies in the
center of G. We point out that in this table the group Spin(4k)/Z2 is
the quotient of Spin(4k) which is not isomorphic to SO(4k).

G K

SO(2n) SO(2k)SO(2n− 2k) , U(n)

SO(2n+ 1) SO(2k + 1)SO(2n− 2k)

SU(n) S(U(k)U(n− k))

Sp(n) Sp(k)Sp(n− k) , U(n)

G2 SO(4)

F4 Spin(9) , Sp(3)Sp(1)

E6 SU(6)SU(2) , Spin(10) · S1

E7 SU(8) , Spin(12)/Z2 · S
3 , E6 ·S

1

E8 Spin(16)/Z2 , E7 ·S
3

Table G. Equal rank symmetric subgroups.
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