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FOLIATIONS OF ASYMPTOTICALLY FLAT

3-MANIFOLDS BY 2-SURFACES OF PRESCRIBED

MEAN CURVATURE

Jan Metzger

Abstract

We construct 2-surfaces of prescribed mean curvature in 3-
manifolds carrying asymptotically flat initial data for an isolated
gravitating system with rather general decay conditions. The sur-
faces in question form a regular foliation of the asymptotic region
of such a manifold. We recover physically relevant data, especially
the ADM-momentum, from the geometry of the foliation.

For a given set of data (M, g,K), with a three dimensional
manifold M , its Riemannian metric g, and the second fundamental
form K in the surrounding four dimensional Lorentz space time
manifold, the equation we solve is H+P = const or H−P = const.
Here H is the mean curvature, and P = trK is the 2-trace of K
along the solution surface. This is a degenerate elliptic equation
for the position of the surface. It prescribes the mean curvature
anisotropically, since P depends on the direction of the normal.

1. Introduction and Statement of Results

Surfaces with prescribed mean curvature play an important role for
example in the field of general relativity. Slicings are frequently used to
find canonic objects simplifying the treatment of the four dimensional
space-time. A prominent setting is the ADM 3+1 decomposition [1]
of a four dimensional manifold into three dimensional spacelike slices.
Such slices are often chosen by prescribing their mean curvature in the
four geometry. In contrast, we consider the subsequent slicing of a three
dimensional spacelike slice by two dimensional spheres with prescribed
mean curvature in the three geometry.

To be more precise, let (M, g, K) be a set of initial data. That is,
(M, g) is a three dimensional Riemannian manifold and K is a sym-
metric bilinear form on M . This can be interpreted as the extrinsic
curvature of M in the surrounding four dimensional space time. We
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consider 2-surfaces Σ satisfying one of the quasilinear degenerate ellip-
tic equations H ± P = const, where H is the mean curvature of Σ in
(M, g) and P = trΣK is the two dimensional trace of K.

In the case where K ≡ 0 this equation particularizes to H = const,
which is the Euler-Lagrange equation of the isoperimetric problem. This
means that surfaces satisfying H = const are stationary points of the
area functional with respect to volume preserving variations. Yau sug-
gested to use such surfaces to describe physical information in terms of
geometrically defined objects. Indeed, Huisken and Yau [9] have shown
that the asymptotic end of an asymptotically flat manifold, with ap-
propriate decay conditions on the metric, is uniquely foliated by such
surfaces which are stable with respect to the isoperimetric problem. The
Hawking mass

mH(Σ) =
|Σ|1/2

(16π)3/2

(

16π −

∫

Σ
H2 dµ

)

of such a surface Σ is monotone on this foliation and converges to the
ADM-mass. This foliation can also be used to define the center of
mass of an isolated system since for a growing radius, the surfaces ap-
proach Euclidean spheres with a converging center. Therefore, the static
physics of an isolated system considered as point mass is contained in
the geometry of the H = const foliation. However, these surfaces are de-
fined independently of K, such that no dynamical physics can be found
in their geometry. A different proof of the existence of CMC surfaces is
due to Ye [16].

The goal of this paper is to generalize the CMC foliations to include
the dynamical information into the definition of the foliation. The equa-
tion H±P = const was chosen since apparent horizons satisfying H = 0
in the case K ≡ 0 generalize to surfaces satisfying H ± P = 0 when K
does not necessarily vanish. We made this choice with the Penrose in-
equality [11] in mind. This inequality estimates the ADM-mass of an
isolated system by the area of a black hole horizon Σ

mADM ≥

√

|Σ|

16π
.

In the case K ≡ 0 this becomes the Riemannian Penrose inequality,
which says that if Σ is an outermost minimal surface then the above
inequality is valid. It was proved by Huisken and Ilmanen [8] and Bray
[3], both using prescribed mean curvature surfaces. The proof of Bray
generalizes the situation in which an outermost minimal surface is part
of the stable CMC foliation from [9], in that it shows that the Hawking
mass is monotone on isoperimetric surfaces when their enclosed volume
and area increase even though they may not form a foliation. While
a fully general apparent horizon Penrose inequality does not seem to



PRESCRIBED MEAN CURVATURE FOLIATIONS 203

be true [2], generalizing this picture is of interest as it may help to
investigate whether a replacement is still true.

We consider asymptotically flat data describing isolated gravitating
systems. For constants m > 0, δ ≥ 0, σ ≥ 0, and η ≥ 0 data (M, g, K)
will be called (m, δ, σ, η)-asymptotically flat if there exists a compact set
B ⊂ M and a diffeomorphism x : M \B → R3\Bσ(0) such that in these
coordinates g is asymptotic to the conformally flat spatial Schwarzschild
metric gS representing a static black hole of mass m. Here, gS = φ4ge,
where φ = 1 + m

2r , ge is the Euclidean metric, and r is the Euclidean
radius. The asymptotics we require for g and K are

sup
R3\Bσ(0)

(

r1+δ|g − gS | + r2+δ|∇g −∇S | + r3+δ|Rcg − RcS |
)

< η,

(1.1)

sup
R3\Bσ(0)

(

r2+δ|K| + r3+δ|∇gK|
)

< η.

(1.2)

Here ∇g and ∇S denote the Levi-Civita connections of g and gS on
TM , such that ∇g − ∇S is a (1, 2)-tensor. Furthermore, Rcg and RcS

denote the respective Ricci tensors of g and gS . That is, we consider
data arising from a perturbation of the Schwarzschild data (gS , 0).

The main theorem will be proved for δ = 0 and η = η(m) small com-
pared to m > 0. These conditions are optimal in the sense that we only
impose conditions on geometric quantities, not on partial derivatives.
They include far more general data than similar results. Huisken and
Yau [9], for example, demand that g − gS decays like r−2 with corre-
sponding conditions on the decay of the derivatives up to fourth order,
while we only need derivatives up to second order. Christodoulou and
Klainerman [4] use asymptotics with g − gS decaying like r−3/2 with

decay conditions on the derivatives up to fourth order, and K like r−5/2

with decay conditions on derivatives up to third order, whereas our re-
sult needs two levels of differentiability less. In addition, we allow data
with nonzero ADM-momentum. For such data with δ = 0 we can prove
the following:

Theorem 1.1. Given m > 0 there is η0 = η0(m) > 0, such that if

the data (M, g, K) are (m, 0, σ, η0)-asymptotically flat for some σ > 0,
there is h0 = h0(m, σ) and a differentiable map

F : (0, h0) × S2 → M : (h, p) 7→ F (h, p)

satisfying the following statements.

(i) The map F (h, ·) : S2 → M is an embedding. The surface Σh =
F (h, S2) satisfies H + P = h with respect to (g, K). Each Σh is

convex, that is |A|2 ≤ 4 det A.

(ii) There is a compact set B̄ ⊂ M , such that F ((0, h0), S
2) = M \ B̄.
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(iii) The surfaces F (h, S2) form a regular foliation.

(iv) There is a constant C such that for all h the surfaces Σh satisfy

‖∇
◦

A‖2
L2(Σh) + |Σh|

−1‖
◦

A‖2
L2(Σh) ≤ Cη2|Σh|

−2,

where
◦

A is the traceless part of the second fundamental form of

Σh.

(v) There are sup-estimates for all curvature quantities on Σh; in par-

ticular, these quatities are asypmtotic to their values on centered

spheres in Schwarzschild, cf. Section 4.
(vi) If the data is (m, δ, σ′, η′)-asymptotically flat for some δ > 0, σ′ >

0 and η′ > 0, then for small enough h ≪ h1(m, δ, σ′, η′), then every

convex surface Σ with H+P = h contained in R3\Bh−2/3(0) equals

Σh. Hence, the foliation is unique in the class of convex foliations.

An analogous theorem holds for foliations with H − P = const.
This theorem does not need that (M, g, K) satisfy the constraint

equations. It can be generalized to give the existence of a foliation
satisfying H +P0(ν) = const, where P0 : SM → R3 is a function on the
sphere bundle of M with the same decay as K.

Our result includes the existence results for constant mean curvature
foliations from Huisken and Yau [9]. Their uniqueness result for individ-
ual surfaces can be proved in a larger class, while the global uniqueness
result holds in the general case (cf. Remark 4.2).

By rescaling (g, K), the dependence of η0 and h0 on m can be exposed.
Consider the map Fσ : x 7→ σx, and let gσ := σ−2F ∗

σgS and Kσ :=
σ−1F ∗

σK. If (g, K) is (m, 0, σ, η)-asymptotically flat, then (gm, Km) is
(1, 0, mσ, m−1η)-asymptotically flat. Therefore η0(m) = mη0(1), and
h0(σ, m) = mh0(mσ, 1).

Section 2 introduces some notation. In Sections 3 and 4 we carry
out the a priori estimates for the geometric quantities, first in Sobolev
norms and then in the sup-norm. Using these estimates we examine
the linearization of the operator H ± P in Section 5 and show that it
is invertible. This is used in Section 6 to prove Theorem 1.1. Finally,
in Section 7 we use special asymptotics of (g, K) to investigate the
connection between the foliation and the linear momentum of these
data.

2. Preliminaries

2.1. Notation. Let M be a three dimensional manifold. We will denote
a Riemannian metric on M by g, or in coordinates by gij . Its inverse is
written as g−1 = {gij}. The Levi-Civita connection of g is denoted by
∇, the Riemannian curvature tensor by R, the Ricci tensor by Rc, and
the scalar curvature by Sc.

Let Σ be a hypersurface in M . Let γg denote the metric on Σ induced
by g, and let νg denote its normal. The second fundamental form of Σ
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is denoted by Ag, its mean curvature by Hg, and the traceless part of

Ag by
◦

Ag = Ag − 1
2Hgγg.

We follow the Einstein summation convention and sum over Latin
indices from 1 to 3 and over Greek indices from 1 to 2.

We use the usual function spaces on compact surfaces with their usual
norms. The Lp-norm of an (s, t)-tensor T with respect to the metric γ
on Σ is denoted by

‖T‖p
Lp

(s,t)
(Σ,γ)

=

∫

Σ
|T |pγ dµγ .

The space Lp
(s,t)(Σ) of (s, t)-tensors is the completion of the space of

smooth (s, t)-tensors with respect to this norm. In the sequel we will
drop the subscripts (s, t), since norms will be used unambiguously. The
Sobolev-norm W k,p(Σ) is defined as

‖T‖p
W k,p(Σ)

= ‖T‖p
Lp(Σ) + . . . + ‖∇kT‖p

Lp(Σ),

where ∇KT is the k-th covariant derivative of T . Again, the space
W k,p(Σ) is the completion of the smooth tensors with respect to this
norm.

For a smooth tensor T , define the Hölder semi-norm by

[T ]p,α := sup
p 6=q

|PqT (q) − T (p)|

dist(p, q)α
,

where Pq denotes parallel translation along the shortest geodesic from p
to q, and the supremum is taken over all p 6= q with dist(p, q) less than
the injectivity radius of Σ. Define the Hölder norm ‖T‖Ck,α(Σ) as

‖T‖
Ck,α

(s,t)
(Σ)

:= sup
Σ

|T | + sup
Σ

|∇T | + · · · + sup
Σ

|∇kT | + sup
p∈Σ

[∇kT ]p,α.

We assume in the following that (M, g, K) and all hypersurfaces are
smooth, i.e., C∞. However, to prove Theorem 1.1 it is obviously enough
to assume g to be C2 and K to be C1. The a priori estimates from
Sections 3 and 4 are valid for surfaces of class W 3,p, when p is large
enough.

2.2. Extrinsic Geometry. Let Σ ⊂ (M, g) be a hypersurface. The
second fundamental form Aαβ and the Riemannian curvature tensor
Rαβγδ of Σ are connected to the curvature Rmijkl of M via the Gauss
and Codazzi equations

Rαβδε = Rmαβδε + AαδAβε − AαεAβδ(2.1)

Rmiαβδν
i = ∇δAαβ −∇βAαδ.(2.2)

Together, these imply the Simons identity [14, 12]

∆ΣAαβ = ∇Σ
α∇

Σ
β H + HAδ

αAδβ − |A|2Aαβ + Aδ
αRmεβεδ

+ AδεRmδαβε + ∇Σ
β (Rcαkν

k) + ∇Σδ(Rmkαβδν
k).

(2.3)
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Note that the last two terms were not differentiated with the Leibniz
rule. Equation (2.3), therefore, differs slightly from how the Simons
identity is usually stated.
2.3. Round surfaces in Euclidean space. The key tool in obtaining
a priori estimates for the surfaces in question is the following theorem
by DeLellis and Müller [6, Theorem 1].

Theorem 2.1. There exists a universal constant C such that for

each compact connected surface without boundary Σ ⊂ R3, with area

|Σ| = 4π, the following estimate holds:

‖A − γ‖L2(Σ) ≤ C‖
◦

A‖L2(Σ).

If in addition ‖
◦

A‖L2(Σ) ≤ 8π, then Σ is a sphere, and there exists a

conformal map ψ : S2 → Σ ⊂ R3 such that

‖ψ − (a + idS2)‖W 2,2(S2) ≤ C‖
◦

A‖L2(Σ),

where idS2 is the standard embedding of S2 onto the sphere S1(0) in R3,

and a = |Σ|−1
∫

Σ idΣ dµ is the center of gravity of Σ.

DeLellis and Müller [6, 3,6.1,6.3] also prove the following useful esti-
mates for the normal ν and the conformal factor h2 of such surfaces:

C−1 ≤ h ≤ C,

‖h − 1‖W 1,2(S2) ≤ C‖
◦

A‖L2(Σ),

‖N − ν ◦ ψ‖W 1,2(S2) ≤ C‖
◦

A‖L2(Σ).

Here, N is the normal of S1(a), and h2 is the conformal factor of ψ,
such that if γS denotes the metric on S1(a) and γ the metric on Σ, then
we have ψ∗γ = h2γS .

To translate these inequalities into a scale invariant form for surfaces
which do not necessarily have area |Σ| = 4π, we introduce the Euclidean

area radius Re =
√

|Σ|/4π. The first part of Theorem 2.1 implies that
for a general surface Σ,

(2.4) ‖A − R−1
e γ‖L2(Σ) ≤ C‖

◦
A‖L2(Σ).

In the case ‖
◦

A‖L2(Σ) ≤ 8π, the second part of Theorem 2.1 gives that

there exist ae := |Σ|−1
∫

Σ idΣ dµ ∈ R3 and a conformal parameterization

ψ : SRe(ae) → Σ. By the Sobolev embedding on S2 we obtain the
following estimates for ψ, its conformal factor h2, and the difference of
the normal N of SRe(ae) and the normal ν of Σ:

supSRe (ae)

∣

∣

∣
ψ − idSRe (ae)

∣

∣

∣
≤ CRe‖

◦
A‖L2(Σ),(2.5)

‖h2 − 1‖L2(SRe (ae)) ≤ CRe‖
◦

A‖L2(Σ),(2.6)

‖N ◦ idSRe (ae) − ν ◦ ψ‖L2(SRe (ae)) ≤ CRe‖
◦

A‖L2(Σ).(2.7)
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2.4. Asymptotically flat metrics. Let gS be the spatial, conformally
flat Schwarzschild metric on R3 \ {0}. Namely, let gS

ij = φ4ge
ij with

φ = 1+ m
2r , where ge

ij = δij is the Euclidean metric, and r the Euclidean

radius on R3. Here and in the sequel we will suppress the dependence
of gS on the mass parameter m. However, we will restrict ourselves to
the case m > 0. The Ricci curvature of gS is given by

(2.8) RcS
ij =

m

r3
φ−2 (δij − 3ρiρj) ,

where ρ = x/r is the radial vector field on R3, whence ScS = 0.
Omiting K and saying that data (M, g) are (m, δ, σ, η)-asymptotically

flat, we mean that K ≡ 0 and (M, g, K ≡ 0) is (m, δ, σ, η)-asymptotically
flat. Recall that then there exists a compact set B ⊂ M and a diffeo-
morphism x : M \ B → R3 \ Bσ(0), such that in these coordinates the
following “norm”

‖g − gS‖C2
−1−δ(R3\Bσ(0))

:= sup
R3\Bσ(0)

(r1+δ|g − gS | + r2+δ|∇g −∇S | + r3+δ|Rcg − RcS |)
(2.9)

satisfies ‖g − gS‖C2
−1−δ

< η. We let O(η) denote a constant for which

O(η) ≤ Cη if η < η0 is bounded.
The volume element dV of g is a scalar multiple of the volume element

dV S of gS , that is dV = hdV S . The asymptotics (2.9) imply that
|h| ≤ O(η)r−1−δ. In addition, the scalar curvature Sc of g satisfies
|Sc| ≤ O(η)r−3−δ.

Consider a surface Σ ⊂ R3 \ Bσ(0). Let γe, γS , and γ be the first
fundamental forms of Σ induced by ge, gS , and g, respectively, Ae, AS ,
and A the corresponding second fundamental forms, He, HS , and H

the mean curvatures and
◦

Ae,
◦

AS , and
◦

A the respective trace free parts
of the second fundamental form.

From the well known transformation behavior for the following geo-
metric quantities under conformal transformations, and the asymptotics
(2.9), we see:

Lemma 2.2. The normals νe, νS, and ν of Σ in the metrics ge, gS,

and g satisfy

νS = φ−2νe,

|νS − ν| ≤ O(η)r−1−δ,

|∇gνS −∇gν| ≤ O(η)r−2−δ.

The area elements dµe, dµS, and dµ satisfy

dµS = φ4dµe,

dµ − dµS = hdµ with |h| ≤ O(η)r−1−δ.
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The trace free parts
◦

Ae,
◦

AS, and
◦

A of the second fundamental forms

satisfy

◦
AS = φ−2 ◦

Ae,

|
◦

A −
◦

AS | ≤ O(η)r−2−δ + O(η)r1−δ|A|.

The mean curvatures He, HS, and H are related via

HS = φ−2He + 4φ−3∂νφ,

|H − HS | ≤ O(η)r−2−δ + O(η)r1−δ|A|.

To obtain integral estimates for asymptotically decaying quantities,
we cite the following lemma from [9, Lemma 5.2].

Lemma 2.3. Let (M, g) be (m, 0, σ, η)-asymptotically flat, and let

p0 > 2 be fixed. Then there exists c(p0), and r0 = r0(m, η, σ), such

that for every hypersurface Σ ⊂ R3 \ Brmin(0), and every p > p0, the

following estimate holds:
∫

Σ
r−p dµ ≤ c(p0)r

2−p
min

∫

Σ
H2 dµ.

Integration and mean curvature refer to g, and r is the Euclidean radius.

Using Lemma 2.2 to compare the L2-norms of
◦

A in the g-metric and
◦

AS in the gS-metric, and using the conformal invariance of ‖
◦

AS‖L2(Σ,gS),
we obtain

Lemma 2.4. Let (M, g) be (m, δ, σ, η)-asymptotically flat. Then

there exists r1 = r1(η, σ), such that for every surface Σ ⊂ R3 \Brmin(0)
with rmin > r1, we have

∣

∣

∣
‖

◦
Ae‖2

L2(Σ,ge) − ‖
◦

A‖2
L2(Σ,g)

∣

∣

∣

≤ O(η)r−1−δ
min

(

‖
◦

A‖2
L2(Σ,g) + ‖H‖L2(Σ)‖

◦
A‖L2(Σ) + r−1−δ

min ‖H‖2
L2(Σ)

)

.

Corollary 2.5. Let M , g, r1 and Σ be as in the previous lemma.

Assume in addition that ‖H‖L2(Σ) ≤ C ′; then

‖
◦

Ae‖L2(Σ) ≤ C(r1)‖
◦

A‖L2(Σ,g) + C(r1, C0, C
′)O(η)r−1−δ

min .

Next, we quote a Sobolev-inequality for surfaces contained in asymp-
totically flat manifolds. It can be found in [9, Proposition 5.4]. The
proof uses the well known Michael-Simon-Sobolev inequality in Eu-
clidean space [10].

Proposition 2.6. Let (M, g) be (m, 0, σ, η)-asymptotically flat. Then

there is r0 = r0(m, η, σ), and an absolute constant Csob, such that each
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surface Σ ⊂ M \ Br0(0) and each Lipschitz function f on Σ satisfy

(
∫

Σ
|f |2 dµ

)1/2

≤ Csob

∫

Σ
|∇f | + |Hf |dµ.

Using Hölder’s inequality, this implies that for all q ≥ 2

(2.10)

∫

Σ
|f |q dµ ≤ Csob

(
∫

Σ
|∇f |

2q
2+q + |fH|

2q
2+q

)
2+q
2

,

and for all p ≥ 1

(2.11)

(
∫

Σ
|f |2p dµ

)1/p

≤ Csob p2 |suppf |1/p

∫

Σ
|∇f |2 + H2f2 dµ.

3. A priori estimates I

We begin by stating rather general a priori estimates for the geometry
of surfaces. For this, let Σ ⊂ R3 \ Bσ(0) be a surface, and let g be
(m, 0, σ, η)-asymptotically flat. Let rmin := minΣ r be the minimum
of the Euclidean radius on Σ. Assume that on Σ the following two
conditions are satisfied:

∫

Σ
|∇H|2 dµ ≤ CK

∫

Σ
r−4|A|2 + r−6 dµ,(3.1)

∫

Σ
u |A|2 dµ ≤ CB

0

∫

Σ
u det A dµ for all 0 ≤ u ∈ C∞(Σ).(3.2)

Remark 3.1.

(i) The first condition states that in a certain sense the mean curva-
ture is nearly constant. This condition will later be implied by the
equation by which the mean curvature is prescribed.

(ii) The second condition means that the surfaces are convex. Indeed,
on smooth surfaces (3.2) implies that |A|2 ≤ CB

0 detA pointwise.
However, we will need that condition (3.2) is preserved under
W 2,p-convergence of surfaces. Huisken and Yau [9] are able to
replace this condition by requiring stability of their CMC sur-
faces. In the present case similar reasoning would work; however,
stability is not a natural condition for our surfaces.

Condition (3.2) implies topological restrictions, and an estimate on
the L2-norm of the mean curvature.

Lemma 3.2. There is r0 = r0(m, η, σ, CB
0 ), such that every compact

closed surface Σ satisfying (3.2) and rmin > r0 is diffeomorphic to S2

and satisfies

(3.3)

∫

Σ
H2 dµ ≤ C(m, η, CB

0 ).
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Proof. The Gauss equation (2.1) implies that the Gauss curvature G
of Σ is given by G = detA + Rc(ν, ν) − 1

2Sc. Inserting u ≡ 1 into (3.2)
and applying Lemmas 2.2 and 2.3, we obtain

∫

Σ
H2 dµ ≤ CB

0

∫

Σ
G dµ + CB

0

∫

Σ
|Rc|dµ

≤ CB
0 χ(Σ) + CB

0 r−1
min

∫

Σ
H2 dµ.

Here χ(Σ) is the Euler characteristic of Σ. If rmin is large enough, this
gives 0 ≤ ‖H‖L2(Σ) ≤ CB

0 χ(Σ), which implies χ(Σ) ≥ 0. If χ(Σ) = 0 ,

i.e., Σ is a torus, then
∫

Σ H2 dµ = 0, whence ‖
◦

A‖L2(Σ) = 0. Using Corol-
lary 2.5 and Theorem 2.1, we obtain that Σ is a sphere, a contradiction.

q.e.d.

Proposition 3.3. Let (M, g) be (m, 0, σ, η)-asymptotically flat. Then

there exists r0 = r0(m, η, σ, CB
0 , CK), such that each closed surface Σ

satisfying (3.1), (3.2), and rmin > r0 also satisfies
∫

Σ

∣

∣

∣
∇|

◦
A|

∣

∣

∣

2
+ H2|

◦
A|2 dµ ≤ C(m, η, CB

0 , CK)r−4
min.

Proof. We begin by computing
◦

Aαβ∆
◦

Aαβ =
◦

Aαβ(∆Aαβ + γαβ∆H) =
◦

Aαβ∆Aαβ ,

since
◦

A is trace free. By

2|
◦

A|∆|
◦

A| + 2|∇|
◦

A||2 = ∆|
◦

A|2 = 2
◦

Aαβ∆
◦

Aαβ + 2|∇
◦

A|2,

and

(3.4) |∇
◦

A|2 − |∇|
◦

A||2 ≥ 0,

we obtain, using the Simons identity (2.3),

|
◦

A|∆|
◦

A| ≥
◦

Aαβ∇α∇βH + H
◦

AαβAδ
αAβδ − |A|2

◦
AαβAαβ

+
◦

AαβAδ
αRmεβεδ +

◦
AαβAδεRmδαβε

+
◦

Aαβ∇β

(

Rcαkν
k
)

+
◦

Aαβ∇δ
(

Rmkαβδν
k
)

.

(3.5)

Integration, and partial integration of |
◦

A|∆|
◦

A|, renders

∫

Σ
|∇|

◦
A||2 dµ ≤

∫

Σ
−

◦
Aαβ∇α∇βH + |A|2

◦
AαβAαβ − H

◦
AαβAδ

αAβδ dµ

−

∫

Σ

◦
AαβAδ

αRmεβεδ +
◦

AαβAδεRmδαβε dµ

−

∫

Σ

◦
Aαβ

(

∇βRcαkν
k
)

+
◦

Aαβ∇δ
(

Rmkαβδν
k
)

dµ.

(3.6)
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In the first line one computes as follows, and estimates, using convexity
(3.2)

∫

Σ
|A|2

◦
AαβAαβ − H

◦
AαβAγ

αAβγ dµ

= −2

∫

Σ
|
◦

A|2 detA dµ ≤ −
2

CB
0

∫

Σ
|
◦

A|2|A|2 dµ.

To recast the second line of (3.6), recall that in three dimensions, the
Ricci tensor determines the Riemann tensor:
(3.7)

Rmijkl = Rcikgjl − Rcilgjk − Rcjkgil + Rcjlgik −
1

2
Sc (gikgjl − gilgjk) .

This implies that the second line of (3.6) can be expressed as
◦

AαβAδ
αRmεβεδ +

◦
AαβAδεRmδαβε = 2

◦
Aαβ ◦

Aδ
αRcβδ − |

◦
A|2Rc(ν, ν).

Let ω = Rc(·, ν)T be the tangential projection of Rc(·, ν) to Σ. Then
partial integration, the Codazzi-equations (2.2) and (3.7) give for the
first term of (3.6)

−

∫

Σ

◦
Aαβ∇α∇βH dµ =

∫

Σ

(

1
2 |∇H|2 + ω(∇H)

)

dµ.

In the last line of (3.6) we compute, using partial integration, (3.7), and
the Codazzi equation (2.2)
∫

Σ

◦
Aαβ

(

∇β(Rcαkν
k) + ∇δ(Rmkαβδν

k)
)

dµ = −

∫

Σ
2|ω|2 + ω(∇H) dµ.

Combining these estimates with (3.6) and 2|ω(∇H)| ≤ |ω|2 + |∇H|2, we
infer

∫

Σ
|∇|

◦
A||2 + 2

CB
0
|A|2|

◦
A|2 dµ

≤

∫

Σ

3
2 |∇H|2 + 3|ω|2 + |

◦
A|2Rc(ν, ν) −

◦
Aαβ ◦

Aδ
αRcβδ dµ.

(3.8)

The asymptotics of g imply that |Rc|+ |ω| ≤ C(m, η)r−3. Inserting the
estimate (3.1) for

∫

Σ |∇H|2 dµ into the previous estimate, we arrive at
∫

Σ
|∇|

◦
A||2 + 2

CB
0
|A|2|

◦
A|2 dµ

≤ C(m, η, CK)

∫

Σ

(

r−4|A|2 + r−6 + r−3|
◦

A|2
)

dµ.

(3.9)

For the first term on the right we use |A|2 = |
◦

A|2 + 1
2H2 and (3.3) to

obtain
∫

Σ
r−4|A|2 dµ ≤ C(m, η, CB

0 )r−4
min +

∫

Σ
r−4|

◦
A|2 dµ.
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The third integrand of the right of (3.9) can be estimated together with
the last term of this equation by combining the Schwarz inequality with
Lemma 2.3:
∫

Σ
r−3|

◦
A|2 dµ ≤

∫

Σ

2
CB

0
|
◦

A|4+
CB

0
4r6 dµ ≤

2

CB
0

∫

Σ
|
◦

A|4 dµ+C(m, η, CB
0 )r−4

min.

Inserting these estimates into (3.9), and absorbing the first term of this
equation on the left hand side, we obtain the assertion of the proposition.

q.e.d.

From now on we use the notation R = R(Σ) =

√

|Σ|
4π , where we

compute the area with respect to the metric g.

Corollary 3.4. Under the additional assumption that

(CB
1 )−1R(Σ)−1 ≤ |H|,

the previous proposition gives an estimate for the L2-norm of
◦

A,

‖
◦

A‖L2(Σ) ≤ C(m, η, CB
0 , CB

1 , CK)R(Σ)r−2
min.

Corollary 3.5. Under the assumptions of Proposition 3.3, in fact

‖∇
◦

A‖L2(Σ) + ‖H
◦

A‖L2(Σ) ≤ C(m, η, CB
0 , CK)r−2

min.

Proof. The proof works by replacing equation (3.4) in the proof of
Proposition 3.3 by

|∇
◦

A|2 − |∇|
◦

A||2 ≥ 1
17 |∇

◦
A|2 − 16

17(|ω|2 + |∇H|2).

This inequality is proved in the same way as a similar inequality for ∇A,
which is recorded in [13, Section 2]. The right hand side introduces the

desired term |∇
◦

A|2, and the remaining terms are treated as in the proof
of Proposition 3.3. q.e.d.

Corollary 3.6. Under the assumptions of Proposition 3.3 and Corol-

lary 3.4 there are uniform estimates for the second fundamental form:

‖A‖L2(Σ) ≤ C(m, η, CB
0 , CB

1 , CK)
(

1 + r−2
minR(Σ)

)

and

‖∇A‖L2(Σ) ≤ C(m, η, CB
0 , CK)r−2

min.

We have now established that surfaces with small ∇H have very small
trace free second fundamental form. In the next section we will use this
estimate to get estimates about how close we are to centered spheres in
Schwarzschild.
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4. A priori estimates II

This section specializes on surfaces which satisfy the equation

(4.1) H ± P = const.

We will use Theorem 2.1 to derive estimates on the position of such a
surface by using the curvature estimates of the previous section.

As described in the introduction, P = trΣK = trMK − K(ν, ν) is
the trace of an extra tensor field K along Σ. We will consider data
(M, g, K) which are (m, δ, σ, η)-asymptotically flat. That is, in addition
to (2.9), we have that the weighted norm of K satisfies

‖K‖C1
−2−δ(R3\Bσ(0)) := sup

R3\Bσ(0)

(r2+δ|K| + r3+δ|∇gK|) < η.

In the sequel, we will consider either (m, δ, σ, η)-asymptotically flat data
with δ > 0 and arbitrary η < ∞, or (m, 0, σ, η)- asymptotically flat data
with small η ≪ 1.

Remark 4.1. If (M, g, K) are (m, δ, σ, η)-asymptotically flat, equa-
tion (4.1) implies condition (3.1). Indeed, |∇H|2 = |∇P |2 and

∇ΣP = ∇ΣtrMK − (∇M
· K)(ν, ν) − 2K(A(·), ν),

such that |∇P |2 ≤ |∇K|2 + |A|2|K|2. Then
∫

Σ
|∇H|2 dµ =

∫

Σ
|∇P |2 dµ

≤ ‖K‖2
C1

−2−δ

∫

Σ
r−4−2δ|A|2 + r−6−2δ dµ.

The results of this section require some additional conditions on the
surfaces:

R(Σ) ≤ CA
1 rq

min q < 3
2 for δ > 0 or q = 1 for δ = 0,(A1)

(CA
2 )−1R(Σ)−1 ≤ H ± P,(A2)

∫

Σ
u |A|2 dµ ≤ CA

3

∫

Σ
u det A dµ for all 0 ≤ u ∈ C∞(Σ),(A3)

1

4πR2
e

∣

∣

∣

∣

∫

Σ
idΣ dµe

∣

∣

∣

∣

≤ Re.(A4)

Here Re denotes the geometric radius of Σ computed with respect to
the Euclidean metric, as in the previous section. In the sequel, CA will
denote constants which depend only on CA

1 , CA
2 and CA

3 . If (M, g, K) is
(m, δ, σ, η)-asymptotically flat with δ > 0, with o(1) we denote constants
depending on m, CA, δ and η, such that o(1) → 0 for σ < rmin → ∞.
If (M, g, K) is (m, 0, σ, η)-asymptotically flat, o(1) is such that, for each
ε > 0, there is η0 and r0 such that |o(1)| < ε, provided η < η0 and
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rmin > r0. For fixed m and bounded CA, both r0 and η0 can be chosen
independent of CA.

Remark 4.2.

(i) Note that condition (A3) is the same as condition (3.2), from the
previous section. We restated it here for convenience.

(ii) Conditions (A1) and (A2) allow to compare different radius ex-
pressions, namely the Euclidean radius r, the geometric radius
R(Σ) and the curvature radius given by 2/H. This is necessary,
since the curvature estimates of the previous section improve with
growing rmin, while the estimates of DeLellis and Müller include
the geometric radius R(Σ). To balance these two radii we use
(A1). Condition (A2) will be used to apply Corollary 3.4 to ob-

tain L2-estimates on
◦

A.
(iii) Condition (A4) means that the surface is not far off center. We

will use this to conclude that the origin is contained in the ap-
proximating sphere of Theorem 2.1.

(iv) The distinction of the cases δ > 0 and δ = 0 in condition (A1) is
due to the fact that in the proof of Proposition 4.3, we can use
Lemma 2.3 only for δ > 0.

(v) To prove the uniqueness result of Huisken and Yau [9, 5.1] we do
not need conditions (A2) and (A3). Instead, if we impose stability

of the CMC surfaces, the estimates ‖
◦

A‖L2(Σ) ≤ Cr
−1/2
min and (3.3)

can be derived as in [9, 5.3]. Condition (A1) is slightly stronger
than what Huisken and Yau need; they only require q < 2. Using
stability and (A1) and (A4), only we can prove all subsequent
estimates.

The folowing proposition formulates the position estimates.

Proposition 4.3. Let (M, g, K) be (m, δ, σ, η)-asymptotically flat and

m > 0, and let Σ be a surface which satisfies (4.1) and (A1)–(A4). Let

Re =
√

|Σ/4π denote the geometric radius of Σ and a its center of grav-

ity, both computed with respect to the Euclidean metric. Let S := SRe(a)
denote the Euclidean sphere with center a and radius Re. Then there

exists a conformal parameterization ψ : S → (Σ, γe), such that

supS |ψ − idS | ≤ C(m, CA)R(Σ)2r−2
min,(4.2)

‖h2 − 1‖L2(S) ≤ C(m, CA)R(Σ)2r−2
min and(4.3)

‖N ◦ idS − ν ◦ ψ‖L2(S) ≤ C(m, CA)R(Σ)2r−2
min.(4.4)

In addition, the center satisfies the estimate

|a|/Re ≤ o(1),(4.5)

where o(1) is as described at the beginning of this section.
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Proof. Using (4.1), Remark 4.1, and condition (A3), Corollaries 3.4
and 2.5 imply the following roundness estimates with respect to the
Euclidean metric

(4.6) ‖
◦

Ae‖L2(Σ,ge) ≤ C(m, CA)Rer
−2
min.

Therefore Theorem 2.1 and the subsequent remarks, as well as Lemma
2.2, imply Re ≤ 2R(Σ) and (4.2)–(4.4). Condition (A1) then implies

that Rer
−1
min ≤ 2CA

1 rq−1
min , from which by (4.2)

|idS | ≥ |ψ| − C(m, CA)r2q−2
min ≥ r −

1

2
rmin ≥

1

2
r ≥

1

2
rmin,

if rmin is large enough. Every convex combination with 0 ≤ λ ≤ 1 also
satisfies

(4.7) |λidSRe (a) + (1 − λ)ψ| ≥
1

2
r.

Similar to Huisken and Yau [9], we compute for a fixed vector b ∈ R3

with |b|e = 1
(4.8)

0 = (H ± P )

∫

Σ
ge(b, νe)dµe =

∫

Σ
Hge(b, νe)dµe ±

∫

Σ
Pge(b, νe)dµe.

We estimate using (A1),

(4.9)

∣

∣

∣

∣

∫

Σ
Pge(b, νe)dµe

∣

∣

∣

∣

≤ o(1)

∫

Σ
r−2−δge(b, νe)dµe ≤ o(1).

This follows from Lemma 2.3 in the case δ > 0, and by brute force and
(A1) in the case δ = 0. In the first term we express H by He. Using
Lemma 2.2 we obtain that the error is of the order o(1), such that

(4.10)

∣

∣

∣

∣

∫

Σ

(

Heφ−2 + 4φ−3∂νeφ
)

ge(b, νe) dµe

∣

∣

∣

∣

≤ o(1).

The first variation formula with respect to the Euclidean metric gives
∫

Σ
Heφ−2ge(b, νe)dµe =

∫

Σ
dive

Σ(φ−2b) dµe = −2

∫

Σ
φ−3ge(b,∇eφ) dµe.

Using ge(∇eφ, b) = ge(Dφ, b)− ge(b, νe)∂νeφ and |Dφ| ≤ C(m)r−2 gives

(4.11)

∣

∣

∣

∣

∫

Σ
6ge(b, νe)∂νeφdµe −

∫

Σ
2ge(b, Dφ) dµe

∣

∣

∣

∣

≤ o(1).

Now we will use that Σ is approximated by the sphere S as described
by (4.2)–(4.4), and replace the integrals of (4.11) by integrals over S.
For the first term estimate

∣

∣

∣

∣

∫

Σ
ge(b, Dφ) dµe −

∫

S
ge(b, Dφ) dµe

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

S
(h2 − 1)ge(b, Dφ ◦ ψ) dµe

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

S
ge(b, (Dφ) ◦ ψ − Dφ) dµe

∣

∣

∣

∣

.
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Using (4.2), (4.3), (4.7), |Dφ| ≤ C(m)r−2, |D2φ| ≤ C(m)r−3, and
Lemma 2.3 we can estimate the error terms

∣

∣

∣

∣

∫

S
(h2 − 1)ge(b, Dφ ◦ ψ) dµe

∣

∣

∣

∣

≤ ‖h2 − 1‖L2(S) ‖g
e(b, Dφ ◦ ψ)‖L2(S) ≤ C‖

◦
Ae‖L2(Σ)Rer

−1
min,

and
∣

∣

∣

∣

∫

S
ge(b, (Dφ) ◦ ψ − Dφ) dµe

∣

∣

∣

∣

≤ sup
S

|ψ − id|

∫

S

(

max
λ∈[0,1]

∣

∣D2φ (λid + (1 − λ)ψ)
∣

∣

)

dµ

≤ C‖
◦

Ae‖L2(Σ)Rer
−1
min.

The second term in (4.11) can be replaced similarly, with analogous
treatment of the error terms, additionally using (4.4). In the end the

error is also controlled by C‖
◦

Ae‖L2(Σ)Rer
−1
min. Therefore, both error

terms can be estimated by C(m, CA)R2
er

−3
min. Using (A1) gives R2

e ≤

CAr−q
min, and finally (4.11) implies that

(4.12)

∣

∣

∣

∣

∫

S
6ge(b, N)∂Nφdµe −

∫

S
2ge(b, Dφ) dµe

∣

∣

∣

∣

≤ o(1).

Set b = a
|a| , and choose coordinates ϕ and ϑ on S such that ge(b, N) =

cos ϕ. Compute Dφ = − m
2r2 ρ, N = R−1

e (x−a), and ge(N, ρ) = Rer
−1 +

r−1|a| cos ϕ, where again ρ = x/r is the radial direction of R3. Inserting
this into (4.12) gives

(4.13)

∣

∣

∣

∣

m

∫

S
3|a|r−3 cos2 ϕ + 2Rer

−3 cos ϕ − |a|r−3 dµe

∣

∣

∣

∣

≤ o(1).

From condition (A4) we conclude that |a| ≤ Re. Using the integration
formula
∫

SRe (a)
r−k cosl ϕ dµe =

πRe

|a|
(2Re|a|)

−l

∫ Re+|a|

Re−|a|
r1−k(r2 −R2

e − |a|2)l dr,

we compute the terms in (4.13) and obtain

(4.14) 8πm|a|/Re ≤ o(1).

Since m > 0 this implies the last assertion of the proposition. q.e.d.

Corollary 4.4. For each ε > 0 we can choose o(1) sufficiently small

such that instead of (A1) we have the stronger estimate

(4.15) (1 + ε)−1R(Σ) ≤ rmin ≤ (1 + ε)R(Σ).
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In addition, we have strengthened (A4) to

(4.16)
1

4πR2
e

∣

∣

∣

∣

∫

Σ
idΣ dµe

∣

∣

∣

∣

≤ εRe,

provided rmin > r0, and r0 = r0(ε, m, σ, CA) is large enough.

Proof. From the position estimates equations (4.2) and (4.5) we ob-
tain for every p ∈ S

(1 − o(1))Re ≤ Re − |a| ≤ |idS(p)| ≤ |ψ(p)| + C(m, CA)R2
er

−2
min.

The left hand side is independent of p, so we can take the minimum over
p to get rmin = minΣ |ψ(p)| on the right. By arranging that |o(1)| < ε
we obtain

(1 − ε)Re ≤ rmin + C(m, CA)R2
er

−2
min,

which implies the corollary in view of (A1). q.e.d.

Corollary 4.5. Condition (A2) holds with improved constants. In

addition the following upper bound is also true:

(4.17) (1 + ε)−1R(Σ)−1 ≤
H

2
≤ (1 + ε)R(Σ)−1,

provided η < η0 is small enough and rmin > r0 is large enough.

Proof. Using the first part of Theorem 2.1, the roundness estimates
(4.6), and |H −He| ≤ Cr−2 + Cr−1|A| from Lemma 2.2, we obtain the
following estimate for H:

‖H − 2/Re‖
2
L2(Σ) ≤ C(m, CA)r−2

min.

By equation (4.1), the mean curvature H is nearly constant, whence we
derive

(H ± P − 2/Re)
2|Σ| ≤ 2‖H − 2/Re‖

2
L2(Σ) + 2‖P‖2

L2(Σ)

≤ C(m, CA)r−2
min.

In view of |P | ≤ C(‖K‖C1
−2

)r−2, this implies

|H − 2/Re| ≤ C(m, CA)r−2
min,

which gives the assertion of the corollary. q.e.d.

We now take a closer look at those terms in the proof of Proposi-
tion 3.3 that came from the geometry of M . The Ricci tensor of the
Schwarzschild metric, when restricted to a centered coordinate sphere
for example splits orthogonally into a positive tangential part (RcS)T =
mr−3φ−6γS ≥ 0 and a negative normal part RcS(ν, ν) = −2mr−3φ−6 ≤
0, the mixed term ωS vanishes. We now combine the estimates of Propo-
sition 4.3 to estimate the analogous terms on Σ.
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Proposition 4.6. Let Σ be as in Proposition 4.3; then for rmin >
r0(m, σ, CA) large enough, we have

‖ν − φ−2ρ‖2
L2(Σ,g) ≤ o(1)r2

min + C(m, CA),

‖Rc(ν, ν) − φ−4RcS(ρ, ρ)‖2
L2(Σ,g) ≤ o(1)r−4

min + C(m, CA)r−6
min,

‖ω‖2
L2(Σ,g) ≤ o(1)r−4

min + C(m, CA)r−6
min,

‖RcT − PS
φ−2ρRcS‖2

L2(Σ,g) ≤ o(1)r−4
min + C(m, CA)r−6

min,

where ρ = x/r is the radial direction of R3, PS
φ−2ρRcS is the orthogonal

projection with respect to gS of the Ricci tensors of gS onto the subspace

of the tangential space of M which is gS-orthogonal to φ−2ρ, and o(1)
is as described at the beginning of the section.

Proof. From Lemma 2.2 and Corollary 4.4 we derive

(4.18) ‖ν − φ−2ρ‖2
L2(Σ,g) ≤ c‖νe − ρ‖2

L2(Σ,ge) + o(1).

Now we use Proposition 4.3 to obtain a sphere S = SRe(a) and a con-
formal parameterization ψ : S → Σ satisfying the estimates (4.2)–(4.5).
From the estimate on the center a, we compute for the difference of the
Euclidean normal N = (x−a)/Re and the radial direction ρ = x/r that

|N − ρ|ge ≤ (|Re − r|ge + |a|)/Re ≤ 2|a|/Re ≤ o(1).

Using (4.2)–(4.4), we estimate

|ρ ◦ ψ(x) − ρ(x)|ge ≤
(

sup
λ∈[0,1]

|Dρ(λx − (1 − λ)ψ(x))|ge

)

|ψ(x) − x|ge

≤ CA‖
◦

Ae‖L2(Σ,ge),

and
∫

Σ
|νe−ρ|2ge dµe =

∫

S
h−2|νe◦ψ−ρ◦ψ|2gedµe ≤ C

∫

S
|νe◦ψ−ρ◦ψ|2gedµe.

By the triangle inequality and the previous inequalities, we obtain

‖νe ◦ ψ − ρ ◦ ψ‖L2(S,ge)

≤ ‖νe ◦ ψ − N‖L2(S) + ‖N − ρ‖L2(S) + ‖ρ − ρ ◦ ψ‖L2(S)

≤ o(1)rmin + C(m, CA).

This implies the first inequality of the proposition in view of (4.18).
The second inequality now easily follows, since

‖Rc(ν, ν) − φ−4RcS(ρ, ρ)‖2
L2(Σ)

≤ ‖RcS − Rc‖2
L2(Σ) + sup

Σ
|RcS |2‖ν − φ−2ρ‖2

L2(Σ)

≤ C(m, CA)r−6
min

(

1 + ‖ν − φ−2ρ‖2
L2(Σ)

)

.
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For the third inequality, observe that by a similar computation

‖Rc(ν, ·) − RcS(φ−2ρ, ·)‖2
L2(Σ) ≤ C(m, CA)r−6

min

(

1 + ‖ν − φ−2ρ‖2
L2(Σ)

)

,

such that only the difference of the projections of RcS(·, φ−2ρ) to the
subspaces g-orthogonal to ν and gS-orthogonal to φ−2ρ have to be es-
timated. Note that the latter projection is zero. To estimate the differ-
ence, write

P g
ν RcS(·, φ−2ρ) = RcS(·, φ−2ρ) − g(·, ν)RcS(ν, φ−2ρ),

where P g
ν is the g-orthogonal projection on the g orthogonal complement

of ν, and

PS
φ−2ρRcS(·, φ−2ρ) = RcS(·, φ−2ρ) − gS(·, φ−2ρ)RcS(φ−2ρ, φ−2ρ).

Therefore the third estimate of the proposition follows as before. The
last estimate can be obtained using a similar computation. q.e.d.

We can now improve the roundness estimates of Proposition 3.3.

Proposition 4.7. Let (M, g, K) be (m, δ, σ, η)-asymptotically flat.

Then there exists a constant C(m, CA) and r0 = r0(m, σ, CA), such that

for all surfaces Σ satisfying (4.1), conditions (A1)–(A4), and rmin > r0,

the following estimate holds
∫

Σ
|∇|

◦
A||2 + H2|

◦
A|2 dµ ≤ o(1)r−4

min + C(m, CA)r−6
min.

Proof. We use the Simons identity as in the proof of Proposition 3.3
∫

Σ
|∇|

◦
A||2 + 2

CA
0

H2|
◦

A|2 dµ

≤

∫

Σ
(3
2 |∇H|2 + 3|ω|2 + |

◦
A|2Rc(ν, ν) −

◦
Aαβ ◦

Aδ
αRcβδ) dµ.

By Remark 4.1 we have |∇H|2 ≤ o(1)(r−4|A|2 + r−6). We further
proceed as in the proof of Proposition 3.3, but now estimate the resulting
terms using Proposition 4.6. For example, with RcS(ρ, ρ) ≤ 0 and the
Schwarz inequality we derive

∫

Σ
|
◦

A|2Rc(ν, ν) dµ ≤ ‖
◦

A‖2
L4(Σ)‖Rc(ν, ν) − φ−4RcS(ρ, ρ)‖L2(Σ)

≤ o(1)r−5
min + C(m, CA)r−6

min.

Here we used the Sobolev inequality from Proposition 2.6 together with

Proposition 3.3 and Corollary 4.4, to estimate the L4-norm of
◦

A:

‖
◦

A‖4
L4(Σ) ≤ C(m, CA)|Σ|r−8

min ≤ C(m, CA)r−6
min.

The estimates for the other terms are obvious. q.e.d.
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Our next step is to prove sup-estimates for
◦

A using the Stampaccia
iteration technique.

Proposition 4.8. Let Σ be as in Proposition 3.3; then for each ε > 0
there exists r0 = r0(m, σ, CA) and a constant C(ε, m, CA), such that if

rmin ≥ r0

sup
Σ

|
◦

A| ≤ C(ε, m, CA)
(

o(1)r−2
min + r−3+ε

min

)

.

Proof. Let u := |
◦

A|, and uk := max(u − k, 0) for all k ≥ 0. Let
A(k) := {x ∈ Σ : uk > 0}. Let p > 1, and multiply equation (3.5) with
up

k and integrate. Partial integration, proceeding as in Proposition 3.3,
and using the Schwarz inequality to absorb all gradient terms on the
left hand side gives

∫

A(k)
pup−1

k u|∇u|2 + up
k|∇u|2 + CA

3 up
ku

2H2dµ

≤ c(p)

∫

A(k)
(up−1

k u + up
k)|∇H|2 + up

k|ω|
2 + up

ku
2|Rc| + up−1

k u|ω|2dµ.

(4.19)

We have the bounds |Rc|+ |ω| ≤ C(m)r−3, and Remark 4.1 and Corol-
lary 4.5 imply that |∇H|2 ≤ o(1)(r−6 + r−4u2). Equation (4.19) there-
fore gives

∫

A(k)
pup−1

k u|∇u|2 + up
k|∇u|2 + CA

3 up
ku

2H2 dµ

≤ C(m, CA)

∫

A(k)
up

kr
−6 + up−1

k ur−6 + up
ku

2r−3 dµ.

(4.20)

Using the Sobolev inequality (2.11), Proposition 3.3, uk ≤ u, and ∇uk =
∇u on A(k), we infer that for all 1 < q < ∞

∫

A(k)
up

kdµ ≤ C(q, m, CA)|A(k)|(o(1)r−2p
min + r−3p

min )

≤ C(q, m, CA)|A(k)|1−1/q|Σ|1/q(o(1)r−2p
min + r−3p

min ).

We proceed to estimate the second term on the right hand side of (4.20).
We use the Sobolev inequality (2.10) to conclude that

∫

A(k)
up−1

k u dµ =

∫

A(k)
(uku

1
p−1 )p−1

≤ C(p)

(

∫

A(k)

∣

∣∇(uku
1

p−1 )
∣

∣

2(p−1)
p+1 + |(uku

1
p−1 )H|

2(p−1)
p+1 dµ

)
p+1
2

.
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Since |∇(uku
1

p−1 )| ≤ c(p)u
1

p−1 |∇u|, we estimate the first term, using
Hölder,
∫

A(k)

∣

∣∇(uku
1

p−1 )
∣

∣

2(p−1)
p+1 dµ ≤ c(p)

∫

A(k)
|∇u|

2(p−1)
p+1 u

2
p+1 dµ

≤ c(p)

(

∫

A(k)
|∇u|2 dµ

)
p−1
p+1

(

∫

A(k)
u dµ

)
2

p+1

.

Similary, for the second term

∫

A(k)
|(uku

1
p−1 )H|

2(p−1)
p+1 dµ ≤

(

∫

A(k)
u2H2 dµ

)
p−1
p+1

(

∫

A(k)
u dµ

)
2

p+1

.

Combining these, we get that

∫

A(k)
up−1

k u dµ ≤ C(p)

(

∫

A(k)
u dµ

) (

∫

A(k)
|∇u|2 + H2u2 dµ

)
p−1
2

.

Observe that for any 0 < q < ∞, by an application of the Hölder
inequality and the Soboloev inequality (2.11),

∫

A(k)
u dµ ≤

(
∫

Σ
uq dµ

)
1
q

|A(k)|
q−1

q

≤ C(q)|A(k)|
q−1

q |Σ|
1
q

(
∫

Σ
|∇u|2 + H2u2 dµ

)
1
2

.

In view of Proposition 4.7, this yields that for all 1 < q < ∞
∫

A(k)
up−1

k u dµ ≤ C(p, q, m, CA)|A(k)|
q−1

q |Σ|
1
q (o(1)r−2p

min + r−3p
min ).

A similar treatment of the last term in equation (4.20) gives that
∫

A(k)
up

ku
2 ≤ C(p, q, m, CA)|A(k)|

q−1
q |Σ|

1
q (o(1)r−2p−2

min + r−3p−4
min ).

Thus, we infer that (4.20) yields
∫

A(k)
pup−1

k u|∇u|2 + up
k|∇u|2 + CA

3 up
ku

2H2 dµ

≤ C(p, q, m, CA)|A(k)|
q−1

q |Σ|
1
q (o(1)r−2p−6

min + r−3p−6
min ).

Let f := u
p/2+1
k ; then the above etimate is equivalent to

∫

A(k)
|∇f |2 + H2f2 dµ

≤ C(p, q, m, CA)|A(k)|
q−1

q |Σ|
1
q (o(1)r−2p−6

min + r−3p−6
min ).
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Using the Sobolev inequality (2.11) to estimate
∫

Σ f2 dµ, and reexpress-

ing this in terms of f2 = up+2
k , we obtain the iteration inequality

|h − k|p+2|A(h)| ≤

∫

A(h)
up+2

k dµ ≤

∫

A(k)
up+2

k dµ

≤ C(p, q, m, CA)|A(k)|2−
1
q |Σ|

1
q (o(1)r−2p−6

min + r−3p−6
min ).

By [15, Lemma 4.1], this iteration inequality implies that |A(d)| = 0 for
d ≥ d0 with

dp+2
0 ≤ C(p, q, m, CA)(o(1)r−2p−6

min + r−3p−6
min )|Σ|

1
q |A(0)|

1− 1
q .

As |A(0)| ≤ |Σ| we see that we can fix any 1 < q < ∞. Corollary 4.4
implies that |Σ| ≤ C(m, CA)r2

min. Therefore, we can estimate

d0 ≤ C(p, m, CA)
(

o(1)r−2
min + r

−3+2/(p+2)
min

)

.

This yields

sup
Σ

|
◦

A| ≤ C(p, m, CA)
(

o(1)r−2
min + r

−3+2/(p+2)
min

)

.

Thus the claimed estimate follows provided p is large enough. q.e.d.

We now have a sup-estimate for A = ∇ν. This can be combined
with the L2-estimates for |ν − φ−2ρ| to prove a sup-estimate for this
expression.

Proposition 4.9. Let Σ be as in Proposition 4.3 such that in par-

ticular Σ satisfies ‖ν − φ−2ρ‖L2(Σ) ≤ o(1)rmin + C(m, CA) and |A| ≤

C(m, CA)r−1
min. Then there exists r0 = r0(m, σ, CA) such that

sup |ν − φ−2ρ| ≤ o(1) + C(m, CA)r
−2/3
min

provided o(1) is small enough, and rmin > r0.

Proof. From the above assumptions, |∇(ν − φ−2ρ)| ≤ C(m, CA)r−1
min.

Therefore f := |ν − φ−2ρ|2 satisfies

|∇f | =
∣

∣g(∇(ν − φ−2ρ), ν − φ−2ρ)
∣

∣ ≤ C(m, CA)r−1
min,

provided r0 is large enough. Assume there exists p0 ∈ Σ such that for
M > 0 the inequality f(p0) ≥ 2M(o(1) + r−1

min)
2/3 holds. Let B := {p ∈

Σ : |p − p0| ≤ M(o(1) + r−1
min)

2/3C(m, CA)−1rmin}. Then for all p ∈ B

we have that f(p) ≥ M(o(1) + r−1
min)

2/3, which implies that
∫

Σ
f dµ ≥

∫

B
fdµ ≥ C

M3

C(m, CA)2
(o(1)rmin + 1)2,

where we used that |B| ≥ CM2(ε + r−1
min)

4/3C(m, CA)−2r2
min. This

follows from the estimate on the conformal factor of ψ : S → Σ from
Theorem 2.1, if ε and r−1

min are small enough. If M is large enough, this
is a contradiction. q.e.d.
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Corollary 4.10. In the same way we obtain an estimate

sup
Σ

|νe − ρ| ≤ o(1) + C(m, CA)r
−2/3
min ,

and therefore
∫

Σ
ge(νe, ρ) ≥

1

2
,

if o(1) is small enough. Hence Σ is globally a graph over S2, i.e., there

is a function u ∈ C∞(S2) such that

Σ = {u(p)p : p ∈ S2 ⊂ R3}.

Corollary 4.11. Surfaces Σ as in Proposition 4.3 satisfy

|Rc(ν, ν) + 2mr−3| ≤ o(1)r−3
min + C(m, CA)r

−3−2/3
min .

This enables us to precisely compute the curvature of Σ taken with
respect to g.

Theorem 4.12. Let Σ be as in Proposition 3.3. Let Re =
√

|Σ|e/4π
be its Euclidean geometric radius, and define φ̄ = 1 + m

2Re
and H̄ =

2
φ̄2Re

− 2m
φ̄3R2

e
. Then there exist r0 = r0(m, σ, CA) and C(m, CA), such

that if rmin > r0 the following estimates hold:

sup
Σ

|H − H̄| ≤ o(1)r−2
min + C(m, CA)r

−2−2/3
min ,

sup
Σ

∣

∣det A − H̄2/4
∣

∣ ≤ o(1)r−3
min + C(m, CA)r

−3−2/3
min ,

sup
Σ

∣

∣G − H̄2/4 − 2m/R3
e

∣

∣ ≤ o(1)r−3
min + C(m, CA)r

−3−2/3
min .

Here G = det A − Rc(ν, ν) + 1
2Sc is the Gauss-curvature of Σ.

Proof. From Proposition 4.3 we obtain an approximating sphere S =
SRe(a) and a conformal map ψ : S → Σ which satisfies (4.2)–(4.5). We
compare Σ with the centered sphere S̄ = SRe(0) and consider the map
ξ : S̄ → Σ : x 7→ ψ(x + a). From (4.2) and (4.5) we obtain that

sup
Σ

|r − Re| = sup
S̄

∣

∣ |ξ(x)| − |x|
∣

∣

≤ o(1)rmin + C(m, CA),

which in particular implies that |rmin − Re| ≤ o(1)rmin + C(m, CA). In
addition, supΣ |φ̄−φ| ≤ o(1)r−1

min +C(m, CA)r−2
min as well as supΣ |φ̄−2−

φ−2|+supΣ |φ̄−3−φ−3| ≤ o(1)r−1
min+C(m, CA)r−2

min. Take a point x ∈ S̄,
and let νe be the Euclidean normal to Σ. Estimate

|Dρ(x)φ(x) − Dνe(ξ(x))φ(ξ(x))|

≤ |Dρ(x)φ(x) − Dρ(x)φ(ξ(x))| + |Dρ(x)φ(ξ(x)) − Dρ(ξ(x))φ(ξ(x))|

+ |Dρ(ξ(x))φ(ξ(x)) − Dνe(ξ(x))φ(ξ(x))|

≤ o(1)r−2
min + C(m, CA)r

−2−2/3
min .
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The L2-norm of H − H̄ can then be estimated by using Lemma 2.2 to
replace H by He, and estimating ‖He − 2/R2

e‖L2(Σ) by taking the trace
of (2.4).
∫

Σ
|H − H̄|2 dµe ≤

∫

Σ

∣

∣

∣

∣

He

φ2
+ 4

Dνeφ

φ3
−

2

φ̄2Re
+

2m

φ̄3R2
e

∣

∣

∣

∣

2

dµe + o(1)r−3
min

≤ o(1)r−2
min + C(m, CA)r

−2−4/3
min .

Proceeding as in the proof of Corollary 4.5 we obtain the asserted sup-
estimate on H − H̄ by using (4.1) and |P | ≤ o(1)r−2

min.

The sup-estimates on
◦

A of Proposition 4.8 imply that A on Σ satisfies
∣

∣

∣

∣

A −
1

2
H̄Id

∣

∣

∣

∣

≤

∣

∣

∣

∣

A −
1

2
HId

∣

∣

∣

∣

+ |H − H̄|

≤ o(1)r−2
min + C(m, CA)r

−2−2/3
min ,

(4.21)

which implies the second assertion of the theorem. Corollary 4.11 gives
that

∣

∣Rc(ν, ν) + 2m/R3
e

∣

∣ ≤ o(1)r−3
min + C(m, CA)r

−3−2/3
min ,

which, in view of |Sc| ≤ o(1)r−3
min, equation (4.21), and the Gauss equa-

tion G = detA − Rc(ν, ν) + 1
2Sc, implies the last assertion. q.e.d.

In summary, we have established that given the assumptions (A1)–
(A4), solutions to (4.1) are very close to centered spheres. We have
shown that the key geometric objects are very close to what they are
on centered spheres in Schwarzschild, and have improved the constants
in (A1)–(A4). This will give us some room for deformations of the
surfaces, while retaining the estimates. In particular, we will start with
the H = const. foliation of the centered spheres in Schwarzschild and
deform it in C2,α to retain H + P = const, while changing the data to
(g, K). This is made precise in Section 6, while the next section uses
the estimates to show that we can apply the inverse function theorem.

5. The linearization of the operator H±P

In this section we will examine the linearization of the operator H±P
which assigns the function H ± P to a surface. We will prove that this
linearization is invertible, whence we can apply the implicit function
theorem in Section 6 to find surfaces with H ± P = const. We begin
by computing the linearization. For this let Σ ⊂ M be a closed surface.
In a neighborhood of Σ we introduce Gaussian normal coordinates y :
Σ × (−ε, ε) → M , such that y(·, 0) = idΣ, and ∂y/∂t = νΣt , with
Σt = y(Σ, t). For a function f ∈ C∞(Σ) with |f | ≤ ε define the graph
of f over Σ as

graph(f) := {y(p, f(p)) : p ∈ Σ}.
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Let H : C∞(Σ) → C∞(Σ) be the operator, which assigns to a function f
the mean curvature H(f) of graph(f), and let P : C∞(Σ) → C∞(Σ) be

the operator which assigns to a function f the function P = trgraph(f)K
evaluated on graph(f). To compute the linearization of H±P at f = 0,
we need the following lemma:

Lemma 5.1. Let Σ ⊂ M be a surface, and F : Σ × (−ε, ε) → M a

variation of Σ, with F (·, 0) = idΣ. If F is normal to Σ, i.e., ∂F
∂t

∣

∣

t=0
=

fν for f ∈ C∞(Σ), then

dH

dt

∣

∣

∣

∣

t=0

= −∆Σf − f
(

|A|2 + Rc(ν, ν)
)

,

dP

dt

∣

∣

∣

∣

t=0

= f
(

∇M
ν trMK −∇M

ν K(ν, ν)
)

+ 2K(∇Σf, ν).

Here A is the second fundamental form, H the mean curvature, and ν
the normal of Σ. The covariant derivative of M is denoted by ∇M and

that of Σ by ∇Σ.

Proof. The first equation is well known. It can be found in [3, Ap-
pendix A]. The second immediately follows from P = trMK − K(ν, ν)
and dν

dt

∣

∣

t=0
= −∇Σf . q.e.d.

Lemma 5.1 implies that the linearization LH±P of H±P is given by

LH±Pf = −∆f ± 2K(∇Σf, ν)

− f
(

|A|2 + Rc(ν, ν) ±∇M
ν K(ν, ν) ∓∇M

ν trK
)

.
(5.1)

To obtain a form which is easier to handle, we multiply this by f and
integrate by parts.

Proposition 5.2. Let f ∈ C∞(Σ). Then

∫

Σ
fLH±Pf dµ

=

∫

Σ
|∇f |2 − f2

(

8π (µ ∓ J(ν)) + 1
2

∣

∣(KT )◦ ±
◦

A
∣

∣

2
+ |θ|2

)

− 1
2f2

(

1
2(H ± P )2 + (H ∓ K(ν, ν))2 − (trK)2 − 2G

)

dµ.

Here µ and J are given by the constraint equations 16πµ = Sc− |K|2g +

(trK)2 and 8πJ = ∇M trK − divMK, and (KT )◦ denotes the trace free

part of the tangential projection of K onto Σ, i.e., (KT )◦αβ = Kαβ −
1
2γεδKεδγαβ. Moreover, θ = K(·, ν)T , and G denotes the Gaussian

curvature of Σ.
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Proof. Multiply (5.1) with f and integrate to obtain
∫

Σ
fLH±Pf dµ =

∫

Σ
|∇f |2 ± 2fK(∇Σf, ν)

− f2
(

|A|2 + Rc(ν, ν) ∓∇νtrK ±∇νK(ν, ν)
)

dµ.

By the Gauss equation and the constraint equation we compute

|A|2 + Rc(ν, ν) = 8πµ +
1

2

(

|K|2 − (trK)2 + H2 + |A|2
)

− G.

Considering the term 2
∫

Σ fK(∇Σf, ν) dµ, we obtain by partial integra-
tion that

2

∫

Σ
fK(∇Σf, ν) dµ

=

∫

Σ
f2(8πJ(ν) −∇M

ν trK + ∇M
ν K(ν, ν) + HK(ν, ν) − KT · A) dµ.

This gives the asserted identity in view of |K|2 = |KT |2+2|θ|2+K(ν, ν)2.
q.e.d.

This expression can be used to prove positivity. In the sequel we will
restrict ourselves to data (M, g, K) which are (m, 0, σ, η)-asymptotically
flat. By eventually increasing σ, every set of (m, δ, σ, η̄)-asymptotically
flat data can be made (m, 0, σ, η)-asymptotically flat for any choice of
η > 0.

Proposition 5.3. For m > 0 and constants CA
1 , CA

2 , and CA
3 ,

there are η0 = η0(m, CA) and r0 = r0(m, σ, CA) such that if the data

(g, K) are (m, 0, σ, η0)-asymptotically flat and Σ satisfies (4.1), condi-

tions (A1)–(A4) as well as rmin > r0, then there is µ1 with

µ1 ≥ 6mR−3
e − o(1)R−3

e + C(m, CA)R−3−2/3
e ,

such that for all functions f ∈ C∞(Σ) with
∫

Σ f dµ = 0 the following

inequality holds

µ1

∫

Σ
f2 dµ ≤

∫

Σ
fLH±Pf dµ.

Here o(1) is as described at the beginning of Section 4.

Proof. It is a well-known fact that a lower bound on the Gauss cur-
vature G ≥ κ of a surface gives a lower bound λ1 ≥ 2κ on the first
eigenvalue of its Laplace-Beltrami operator. This bound is provided by
Theorem 4.12, such that for all f with

∫

Σ f dµ = 0 we obtain

(

1
2H̄2 + 4m

R3
e
− o(1)R−3

e + C(m, CA)R−3−2/3
e

)

∫

Σ
f2 dµ ≤

∫

Σ
|∇f |2 dµ.
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From Proposition 5.2, the asymptotics of K, the sup-estimates for
◦

A
from Proposition 4.8, and the expression for G in Theorem 4.12, we
obtain
∫

Σ
fLH±Pf dµ ≥

∫

Σ
(|∇f |2 − |

◦
A|2 − 3

4H2 + G − o(1)R−3
e )f2 dµ

≥
(

6mR−3
e − o(1)R−3

e − C(m, CA)R−3−2/3
e

)

∫

Σ
f2 dµ.

If o(1) is small enough, the factor on the right hand side is positive, and
this gives the assertion. q.e.d.

We are now able to show that solutions u of LH±Pu = const are
almost constant.

Proposition 5.4. Let (M, g, K) and Σ be as in Proposition 5.3. Con-

sider a solution u of LH±Pu = f with
∫

Σ(f − f̄)2 dµ ≤ µ2
1/4ū2 where µ1

is as in Proposition 5.3, f̄ = |Σ|−1
∫

Σ f dµ is the mean value of f , and

ū is the mean value of u. Then

sup
Σ

|u − ū| ≤
(

o(1) + C(m, CA)R−2/3
e

)

ū.

Proof. We can assume that u is normalized such that ū = 1. Then

LH±P(u − 1) = f +
(

|A|2 + Rc(ν, ν) ±∇M
ν K(ν, ν) ∓∇M

ν trK
)

.

Multiplying by (u−1), integrating, and using Proposition 5.3, we obtain

µ1

∫

Σ
(u − 1)2 dµ

≤

∫

Σ
(u − 1)

(

f + |A|2 + Rc(ν, ν) ±∇M
ν K(ν, ν) ∓∇M

ν trK
)

dµ.

Using the Schwarz inequality and the assumption on f , we estimate

(5.2)

∫

Σ
(u− 1)f dµ =

∫

Σ
(u− 1)(f − f̄) dµ ≤

µ1

2

(
∫

Σ
(u − 1)2 dµ

)1/2

.

Define Re and H̄ as in Theorem 4.12; then

|
◦

A|2 + 1
2 |H

2− H̄2|+ |Rc(ν, ν)+2mR−3
e | ≤ o(1)R−3

e +C(m, CA)R−3−2/3
e .

Combining
∫

Σ(u − 1)H̄2 dµ = 0 with the Schwarz inequality gives
∣

∣

∣

∣

∫

Σ
(u − 1)

(

|A|2 + Rc(ν, ν) ±∇M
ν K(ν, ν) ∓∇M

ν trK
)

dµ

∣

∣

∣

∣

≤
(

o(1)R−2
e + C(m, CA)R−2−2/3

e

)

‖u − 1‖L2(Σ).

Inserting this into (5.2), we obtain the L2-estimate

‖u − 1‖2
L2(Σ) ≤ µ−2

1

(

o(1)R−4
e + C(m, Cg)R−4−4/3

e

)

.
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By standard estimates from the theory of linear elliptic partial differ-
ential equations of second order [7] we can obtain a sup-estimate from
this

sup
Σ

|u − 1| ≤ µ−1
1

(

o(1)R−3
e + C(m, CA)R−3−2/3

e

)

,

which implies the assertion, in view of the estimate for µ1 from Propo-
sition 5.3. q.e.d.

Corollary 5.5. Provided o(1) is small enough, and f is as in the

previous proposition, a solution of Lu = f does not change sign.

Corollary 5.6. Let u be a solution of LH±Pu = f . If
∫

Σ
(u − ū)f dµ ≤

µ1

2

(
∫

Σ
(u − ū)2 dµ

)1/2

,

with µ1 from Proposition 5.3, then

sup
Σ

|u − ū| ≤ o(1) + C(m, CA)R−2/3
e ū.

This corollary implies that LH±P is invertible in suitable Banach
spaces.

Theorem 5.7. Under the assumptions of the previous proposition,

LH±P is invertible as operator LH±P : C2,α(Σ) → C0,α(Σ) for each

0 < α < 1. Its inverse LH±P
inv

: C0,α(Σ) → C2,α(Σ) exists and is con-

tinuous. It satisfies ‖LH±P
inv

f‖L2(Σ) ≤ R3
e/3m‖f‖L2(Σ) and the Hölder

norm estimate

‖LH±P
inv

f‖C2,α(Σ) ≤ C(α,Σ) R3
e

3m‖f‖C2,α(Σ).

Proof. Assume that there exists a function u with ‖u‖L2(Σ) = 1 and

(5.3) sup
‖v‖L2(Σ)=1

∣

∣

∣

∣

∫

Σ
vLH±Pu dµ

∣

∣

∣

∣

≤
3m

R3
e

.

From Proposition 5.3 we have that ū 6= 0. Without loss of generality,
ū > 0. Choosing v = u − ū in (5.3) implies that the assumptions
of Corollary 5.6 are satisfied. If o(1) is small enough, we obtain that

ū/2 ≤ u ≤ 2ū. From ‖u‖L2(Σ) = 1 we obtain that ū ≥ 1
2 |Σ|−1/2, and

from Hölder’s inequality ū ≤ |Σ|−1/2. Using v = 1 in (5.3) gives

(5.4)

∣

∣

∣

∣

∫

Σ
LH±Pu dµ

∣

∣

∣

∣

≤
3m

R3
e

|Σ| ≤ C(m, CA)R−1
e .

On the other hand, we compute from (5.1), using partial integration,
that

∫

Σ
LH±Pu dµ = −

∫

Σ
u
(

|A|2 + Rc(ν, ν) ±∇M
ν K(ν, ν) ∓∇M

ν trK

±∇M
eα

K(eα, ν) ∓ HK(ν, ν) ± KT · A
)

dµ.
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Inserting this into the previous estimate, we infer using (5.4) that

∣

∣

∣

∣

∫

Σ
u|A|2 dµ

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Σ
LH±Pu dµ

∣

∣

∣

∣

+ C(m)R−3
e |Σ|ū ≤ C(m)R−1

e ū.

From ū ≤ 2u we obtain that
∫

Σ H2 dµ ≤ C(m)R−1
e , which contradicts

(A2) for large Re. This implies that LH±P is injective, and since it
is a linear elliptic operator, the Fredholm alternative consequently im-
plies its surjectivity. The existence of a continuous inverse LH±P

inv with
the asserted bounds follows [7, Chapter 5]. Note that by the a pri-
ori estimates of Theorem 4.12 the Gauss curvature, and therefore the
injectivity radius, are controlled. q.e.d.

Remark 5.8. The constant C(α,Σ) can be chosen uniformly by us-
ing Schauder estimates in harmonic coordinate patches on Σ. Analogous
estimates in the spaces W 2,p(Σ) can be found in [4, Chapter 2]

‖LH±P
inv f‖W 2,p(Σ) ≤ C(2, p) R3

e
3m‖f‖Lp(Σ).

The constants C(2, p) therein can be chosen uniformly since they only
depend on kmin := |Σ|−1 minΣ G, and kmax := |Σ|−1 maxΣ G, which are
controlled in our case.

6. The foliation

To prove the existence of surfaces satisfying H ± P = const, we
use the following strategy. Let (g, K) be (m, 0, σ, η)-asymptotically flat
with m > 0. Let gτ := (1 − τ)gS + τg, and Kτ := τK. Then the data
(gτ , Kτ ) is also (m, 0, σ, η)-asymptotically flat. For the initial reference
data (gS , 0) we know a lot of solutions to the equation H = const,
namely the centered spheres (note that if K ≡ 0 then P ≡ 0). The
mean curvature of a centered sphere of radius r with respect to gS can
be computed using 2.2 and equals

HS(r) =
(

1 +
m

2r

)−3
(

2

r
−

m

r2

)

.

This function is invertible for r > r1(m). The inverse function satisfies
|r − 2/h| ≤ C on (0, h1), for any C > 0 provided h1 > 0 is chosen small
enough. Let h > 0 be a constant. Then we can solve HS(r) = h with
r > r1(m), provided h < h1(m). Therefore the equation

H ± P = h

is satisfied on a sphere of radius r(h) for τ = 0. To deform this solution
for τ = 0 to a family of solutions for τ ∈ [0, 1], we introduce two classes
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of surfaces. For this consider the following conditions related to (A1)–
(A4) by appropriately choosing the constants

R(Σ) ≤ 8rmin,(B1)

R(Σ)−1 ≤ 8(H ± P ),(B2)
∫

Σ
u|A|2 dµ ≤ 8

∫

Σ
u detA dµ for all 0 ≤ u ∈ C∞(Σ),(B3)

|Σ|−1
e

∣

∣

∣

∣

∫

Σ
idΣ dµe

∣

∣

∣

∣

≤
3

4
Re.(B4)

Choose η0 so small, and r0 so large, that Corollaries 4.4, 4.5, and The-
orem 4.12 imply that these conditions hold with better constants on
surfaces Σ with rmin > r0

R(Σ) ≤ 4rmin,(C1)

R(Σ)−1 ≤ 4(H ± P ),(C2)
∫

Σ
u|A|2 dµ ≤ 4

∫

Σ
u detA dµ for all 0 ≤ u ∈ C∞(Σ),(C3)

|Σ|−1
e

∣

∣

∣

∣

∫

Σ
idΣ dµe

∣

∣

∣

∣

≤
7

8
Re.(C4)

By eventually decreasing η0 and increasing r0, we can assume that (C1) –
(C4) imply that the linearized operator LH±P from the previous section
is invertible, Corollary 4.10 guarantees that Σ is globally a graph over
S2, and ge(νe, ρ) > 1/2. Moreover, from Theorem 4.12 we can assume
that for all surfaces satisfying (B1) – (B4), also

(6.1)
1

4
rmin ≤ (H ± P )−1 ≤ 4 rmin.

Let (g, K) be data such that for fixed m > 0 the data (gτ , Kτ ) as before
all are (m, 0, σ, η0)-asymptotically flat. Define the following nested sets
of surfaces:

S1(τ) = {Σ ⊂ M : Σ satisfies rmin > r0 and (B1)–(B4) w.r.t. (gτ , Kτ )},

S2(τ) = {Σ ⊂ M : Σ satisfies rmin > 2r0 and (C1)-(C4) w.r.t. (gτ , Kτ )}.

Choose 0 < h2 ≤ h1 such that the centered spheres Sr(0) with mean
curvature H < h2 are in S2(0). Choose h0 < min{h1, h2,

1
8r−1

0 }. Let

κ : [0, 1] → (0, h0) × [0, 1] : t 7→ (h(t), τ(t))

be a continuous, piecewise smooth curve with τ(0) = 0. Denote by
(H ± P )τ the function H ± P evaluated with respect to (gτ , Kτ ). Let
Iκ ⊂ [0, 1] be the set

Iκ :=
{

t ∈ [0, 1] : ∃Σ(t) ∈ S2(τ(t)) with (H ± P )τ(t) = h(t)
}

.

Proposition 6.1. Under the assumptions of this section, Iκ = [0, 1].
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Proof. We can assume that κ is smooth. By choice of h0, 0 ∈ Iκ, so
Iκ is nonempty.

For proving that Iκ is open, let t0 ∈ Iκ, and Σ ∈ S2(τ(t0)) the surface
with (H ± P )τ(t0) = h(t0). Consider Gaussian normal coordinates y :

Σ × (−ε, ε) → M , and let B := {f ∈ C2,α(Σ) : sup |f | < ε}. Define the
operator

L : B × [0, 1] → C0,α(Σ) : (f, t) 7→ (H±P)t(f) − h(t),

where (H±P)t(f) is the function (H ±P )t on graph(f). This operator
is differentiable, and we have L(0, t0) = 0.

The differential of L with respect to the first variable is the operator
LH±P from Section 5, and is invertible since Σ ∈ S2(τ(t)). By the im-
plicit function theorem there exists δ > 0, and a differentiable function
ξ : (t0− δ, t0 + δ) → B, such that L(ξ(t), t) = 0 for all t with |t− t0| < δ.

Hence, for each such t there is a surface Σ(t) with (H ± P )τ(t) =
const. By continuity, and by eventually decreasing δ, we can assume
that Σ(t) ∈ S1(τ(t)). By choice of r0 and η0 conditions (B1)–(B4)
imply (C1)–(C4). By choice of h0 we obtain rmin > 2r0 whence Σ(t) ∈
S2(τ(t)). That is, Iκ contains a small neighborhood of t0.

To show that Ik is closed, assume that {tn} ⊂ Iκ is a convergent
series with limn→∞ tn → t. Let Σ(tn) ∈ S2(τ(tn)) be the surface with
(H ± P )τ(tn) = h(tn). By Corollary 4.10 all Σ(tn) = graph(un) are

graphs over S2 as described in Section 5.
From the position estimates in Proposition 4.3, the uniform estimates

for the angle ge(νe, ρ), and the uniform curvature estimates from Corol-
lary 4.5 and Proposition 4.8 we obtain uniform C2(S2)-estimates for the
sequence (un). In addition, the W 1,2-estimates on the curvature imply
uniform W 3,2-estimates for (un).

We can assume that (un) converges in W 2,p(S2) to u ∈ W 2,p(S2) for
a 1 < p < ∞. Furthermore, we can assume that (un) → u in C1,α(S2)
for a fixed 0 < α < 1.

On graph(u) a weak version of the quasilinear equation (H±P )τ(t) =
h(t) is satisfied. By fixing coefficients, this can be interpreted as a
linear equation. Since u ∈ C1,α, the coefficients of this equation are
C0,α. Regularity theory for such equations [7, Chapter 8] implies that
u, and therefore Σ, are smooth. By C1,α-convergence Σ satisfies (C1),
(C4), and rmin > 2r0. By W 2,p-convergence (C2) and (C3) are satisfied,
provided p is large enough. Therefore t ∈ Iκ, and Iκ is closed. q.e.d.

This gives the following:

Theorem 6.2. Let m > 0 be fixed. Then there exist constants h0 =
h0(m, σ) and η0 = η0(m) such that for every (m, 0, σ, η0)-asymptotically

flat data set (g, K) and every curve κ : [0, 1] → (0, h0) × [0, 1] : t 7→



232 J. METZGER

(h(t), τ(t)) there exists a smooth family of surfaces Σκ(t) ∈ S2(τ(t))
satisfying H ± P = h(t) with respect to the τ(t)-data.

Remark 6.3. At first glance, the resulting H ± P = const-surface
could depend on the choice of the curve κ from κ(0) to κ(1). However,
since the range of κ is simply connected, and the solutions obtained from
the implicit function theorem are locally unique, a standard argument
using the homotopy of two curves with common endpoints shows that
the surfaces in fact only depend on the endpoints of κ.

We are now ready to prove the existence part of Theorem 1.1.

Theorem 6.4. Let m > 0 be fixed and η0 and h0 be as in Theorem

6.2. By possibly decreasing η0 and h0 we assure that Corollary 5.5 is

valid. Then the surfaces satisfying H ±P = const constructed in Theo-

rem 6.2 form a foliation. For small H±P these surfaces have arbitrarily

large radius. In addition, there is a differentiable map

F : S2 × (0, h0) × [0, 1] → M

such that the surfaces F(S2, h, τ) satisfy H ± P = h with respect to the

data (gτ , Kτ ). This foliation can therefore be obtained by deforming a

piece of the H = const foliation of (R3, gS) by centered spheres.

Proof. Choose 0 < h < h0, and define the curve κh(t) = (h, t) for
t ∈ [0, 1]. Using Theorem 6.2 we obtain a family of surfaces Σh,τ with

H ± P = h by deforming the centered sphere which has HS = h with
respect to gS along κ. The position estimates and (6.1) imply h−1 ≤
4rmin(Σh,t), such that by choosing h small, we can make rmin of Σ1(h)
large.

The map F can be constructed by setting F(S2, h, τ) = Σh,τ and
defining the parametrization of Σh,τ by the fact that Σh,τ is a graph
over S2. This implies the differentiability of F with respect to p ∈ S2

and τ ∈ [0, 1].
To show that these surfaces form a foliation, choose another curve.

Let h1 ∈ (0, h0) be fixed. The curve κh1 gives a fixed reference surface
Σh1,1. For h2 < h1 consider the curves λh2(t) = ((1 − t)h1 + th2, 1).
Concatenating κh1 and λh2 gives a family of surfaces Σ′

h,1 with h ∈

[h2, h1], as well as a differentiable map F : S2 × [h2, h1] → M such that
F (S2, h) = Σ′

h,1. Remark 6.3 implies that Σ′
h,1 = Σh,1 =: Σh. Therefore

F is differentiable with respect to h ∈ (0, h0).
Let νh denote the normal to Σh. Then the lapse αh of the family F is

defined as αh := g
(

νh, dF
dh

)

. Since H±P = const along Σh, and therefore

the tangential part of dF
dh is irrelevant for the evolution of H ± P , we

have

h1 − h2 =
d

dh
(H ± P ) = LH±Pαh
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with the operator LH±P from Section 5. By Corollary 5.5, αh does not
change sign. Therefore the family of the Σh is a foliation. q.e.d.

We can also prove the uniqueness of H ± P = const surfaces.

Theorem 6.5. For m > 0 there are constants η0(m, CA) > 0 and

h0(m, σ, CA) > 0 such that if (g, K) is (m, 0, σ, η0)-asymptotically flat,

then two surfaces Σ1 and Σ2 satisfying (A1)–(A4) and H ± P = h =
const with h ∈ (0, h0) coincide.

Proof. We prove this by reversing the process we used in the proof
of the existence result. That is, we start for the data (gτ , Kτ ) at τ = 1
with Σ1 and Σ2 and obtain surfaces Σ′

1 and Σ′
2 with H = h = const

with respect to the Schwarzschild metric gS at τ = 0. Here η0 and h0

have to be adjusted as in the beginning of this section, such that this
process works.

By the uniqueness of constant mean curvature surfaces satisfying
(A1)–(A4) in the Schwarzschild metric, as follows for example from
Huisken and Yau [9, Section 5], we infer that Σ′

1 coincides with Σ′
2.

Then by the local uniqueness of the implicit function theorem, also Σ1

and Σ2 coincide. q.e.d.

Corollary 6.6. The H ± P = const foliations from Theorem 1.1
consisting of surfaces satisfying (A1)–(A4) are unique at infinity.

7. Special data

We want to interpret the foliation of H ± P = const surfaces in a
physical manner. A foliation of surfaces satisfying H = const was inter-
preted in [9] as the center of mass of an isolated system. The definition
of this foliation does not refer to the extrinsic curvature K and therefore
cannot contain information on dynamical physics. In contrast, Proposi-
tion 7.1 shows that the H ±P = const foliation allows an interpretation
as linear momentum.

We restrict ourselves to data (g, K) with ‖g − gS‖C2
−1−δ

< ∞ with

δ > 0 and

K =
3

2r2

(

ρ ⊗ p + p ⊗ ρ − 2〈p, ρ〉(ge − ρ ⊗ ρ)
)

+ O(r−2−δ)

where p ∈ R3 is a fixed vector, ρ = x/r is the radial direction, and the
derivatives of O(r−2−δ) are of order O(r−3−δ). This structure of K was
proposed by York [17] and represents a trace free extrinsic curvature
tensor with ADM-momentum p. There exist initial data satisfying the
constraint equations with these asymptotics. Using this representation
of K, we can refine the estimates from Proposition 4.3 and obtain

Proposition 7.1. Let (g, K) be as described above. If |p| < m is

small enough, and Σ satisfies H ± P = const, assumptions (A1)–(A4),
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and rmin > r0, then there exist a vector a ∈ R3, a sphere S = SRe(a),
and a parameterization ψ : S → Σ such that

|a/Re ∓ τ(v)p̄| ≤ CR−δ
e ,

sup
S

|φ − idS | ≤ CR−δ
e ,

sup
Σ

|νe − R−1
e (rρ − a)| ≤ CR−δ

e

with p̄ = p
|p| , v = |p|

m , and τ(v) = 1−
√

1−v2

v . If 0 ≤ v ≤ 1 then 0 ≤ τ(v) ≤

1 and τ(v) = 1
2v + O(v3) for v → 0.

Proof. This proof is similar to the proof of Proposition 4.3. However,
instead of estimating like (4.9), we compute more carefully using the
asymptotics of K. For the test vector b = ā := a

|a| we obtain

(7.1)

∣

∣

∣

∣

−8πm
|a|

Re
∓ 4π

〈

p,
a

|a|

〉

|a|2 + R2
e

R2
e

∣

∣

∣

∣

≤ CR−δ
e .

Now we split p = ge(ā, p)ā + ge(q̄, p)q̄ with q̄ orthogonal to a and |q̄| =
1. Then we use q̄ as an additional test vector. This gives the second
estimate

(7.2) |〈p, q̄〉|

∣

∣

∣

∣

4π

5

5R3
e − 2|a|2Re − 3|a|2

R3
e

∣

∣

∣

∣

≤ CR−δ
e .

Proposition 4.3 gives τ := |a|/Re < 1 if p is small. Then (7.2) implies
that |ge(p, q̄)| ≤ CR−δ

e , and therefore |ge(p, ā)−|p|| = |ge(p, q̄)| ≤ CR−δ
e .

Using (7.1) we infer that
∣

∣−2mτ ∓ |p|(1 + τ2)
∣

∣ ≤ CR−δ,

which implies the proposition. q.e.d.

Remark 7.2.

(i) This means that surfaces Σ(h) satisfying H ± P = h = const are
not only increasing in size for h → 0, but that they also translate.
The magnitude of this translation can be used to compute p. The
asymptotic translation τ from the previous proposition can be
found by comparing the Euclidean center of gravity to the center
of gravity computed using the g-metric. In particular,

lim
h→0

(

|Σe|−1

∫

Σ(h)
xdµe − |Σ|−1

∫

Σ(h)
xdµ

)

=
2

3
mτp̄.

Here τ = limh→0 |a|/Re(Σ(h)) is the limit of the magnitude of the
translation vector and p̄ the unit vector pointing into its direction.
Then p can be computed from

±p =
2mτ

1 + τ2
p̄.
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(ii) Corvino and Schoen [5] also propose a standard form of the ex-
trinsic curvature tensor, namely

KCS =
2

r2
(p ⊗ ρ + ρ ⊗ p − 〈p, ρ〉ge) + O(r−3).

Contrary to the York-form this is not trace free in the terms of
highest order. Corvino and Schoen prove that data satisfying this
asymptotic condition for K and g = gS + O(r−2) are dense with
respect to suitable, weighted Sobolev norms in the set of data
(ḡ, K̄) satisfying the constraint equations and

ḡ = ge + O(r−1) and K̄ = O(r−2).

Therefore these asymptotics possess a certain universality.
For these asymptotics we can also compute the asymptotic

translation. It satisfies τ̃(v) =
1−

q

1− 16
15

v2

8
5
v

. Here τ̃(v) = 1
3v+O(v3)

for v → 0.
This is not satisfactory for two reasons. Firstly, this asymptotic

translation and the associated linear momentum formula do not
coincide with the formula obtained from the York asymptotics.
Secondly, 0 ≤ τ̃(v) ≤ 1 only for 0 < v < 15

16 , while from physical
reasons at least the interval v ∈ [0, 1] should be admitted.

On the other hand, we cannot expect to obtain a valid formula
independent of the slicing condition. For the H ± P = const
foliation, therefore, the slicing condition trK = 0 seems to be
appropriate.

(iii) Both the asymptotics of York and the asymptotics of Corvino and
Schoen allow examples of initial data satisfying the vacuum con-
straint equations. This implies that the Sobolev norm used by
Corvino and Schoen to prove density of data with their asymp-
totics is strong enough to preserve ADM-mass and -momentum,
but not strong enough to reproduce the fine structure of the H ±
P = const foliation.
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