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Abstract

We describe a new method to estimate the trilinear period on
automorphic representations of PGL2(R). Such a period gives rise
to a special value of the triple L-function. We prove a bound for
the triple period which amounts to a subconvexity bound for the
corresponding special value. Our method is based on the study of
the analytic structure of the corresponding unique trilinear func-
tional on unitary representations of PGL2(R).

1. Introduction

1.1. Maass forms. Let H denote the upper half plane equipped with
the standard Riemannian metric of constant curvature −1. We de-
note by dv the associated volume element and by ∆ the corresponding
Laplace–Beltrami operator on H.

Fix a discrete group Γ of motions of H and consider the Riemann sur-
face Y = Γ\H. For simplicity, we assume that Y is compact (the case of
Y of finite volume is discussed at the end of the introduction). According
to the uniformization theorem, any compact Riemann surface Y with
the metric of constant curvature −1 is a special case of this construction.

Consider the spectral decomposition of the operator ∆ in the space
L2(Y, dv) of functions on Y . It is known that the operator ∆ is non-
negative and has purely discrete spectrum; we will denote by 0 = µ0 <
µ1 ≤ µ2 ≤ . . . the eigenvalues of ∆. For these eigenvalues, we always use
a natural form representation-theoretic point of view parametrization
µi = 1−λ2

i
4 , where λi ∈ C. We denote by φi = φλi

, the corresponding
eigenfunctions (normalized to have L2-norm one).

In the theory of automorphic forms, the functions φλi
are called au-

tomorphic functions or Maass forms (after Maass, [8]). The study of
Maass forms plays an important role in analytic number theory, analysis
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and geometry. We are interested in their analytic properties and will
present a new method of bounding some important quantities arising
from the φi.

A particular problem we are going to address in this paper belongs
to an active area of research in the theory of automorphic functions
studying an interplay between periods, special values of automorphic
L-functions and representation theory. One of the central features of
this interplay is the uniqueness of invariant functionals associated with
corresponding periods. The discovery of this interplay goes back to
classical works of Hecke and Maass.

It is well-known that the uniqueness principle plays a central role in
the modern theory of automorphic functions (see [11]). The impact
uniqueness has on the analytic behavior of periods and L-functions is
yet another manifestation of this principle.
1.2. Triple products. For any three Maass forms φi, φj , φk, we define
the following triple product or triple period:

cijk =
∫

Y
φiφjφkdv.(1.1)

We would like to estimate the coefficient cijk as a function of para-
meters λi, λj, λk. In particular, we would like to find bounds for these
coefficients as one or more of the indices i, j, k tend to infinity.

The bounds on the coefficient cijk are related to bounds on automor-
phic L-functions as can be seen from the following beautiful formula of
Watson (see [15]):∣∣∣∣

∫
Y

φiφjφkdv

∣∣∣∣
2

=
Λ(1/2, φi ⊗ φj ⊗ φk)

Λ(1, φi, Ad)Λ(1, φj , Ad)Λ(1, φk , Ad)
.(1.2)

Here, the φt are the so-called cuspidal Hecke–Maass functions of norm
one on the Riemann surface Y = Γ \ H arising from the full modular
group Γ = SL2(Z) or from the group of units of a quaternion alge-
bra. The functions Λ(s, φi ⊗ φj ⊗ φk) and Λ(s, φ,Ad) are appropriate
completed automorphic L-functions.

It was first discovered by Rankin and Selberg that the special cases of
triple products as above give rise to automorphic L-functions (namely,
they considered the case where one of Maass forms is replaced by an
Eisenstein series). That allowed them to obtain analytic continuation
and effective bounds for these L-functions and, as an application, to
obtain first non-trivial bounds for Fourier coefficients of cusp forms to-
wards Ramanujan conjecture. The relation (1.2) can be viewed as a
far reaching generalization of the original Rankin–Selberg formula. The
relation (1.2) was motivated by the work [4] by Harris and Kudla on a
conjecture of Jacquet.
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1.3. Results. In this paper, we consider the following problem. We
fix two Maass forms φ = φτ and φ′ = φτ ′ as above and consider the
coefficients defined by the triple period:

ci =
∫

Y
φφ′φidv(1.3)

as the φi run over an orthonormal basis of Maass forms.
Thus, we see from (1.2) that the estimates of the coefficients ci are

essentially equivalent to the estimates of the corresponding L-functions.
One would like to have a general method of estimating the coefficients
ci and similar quantities. This problem was raised by Selberg in his
celebrated paper [13].

The first non-trivial observation is that the coefficients ci have expo-
nential decay in |λi| as i → ∞. Namely, as we have shown in [2], it is
natural to introduce normalized coefficients

di = γ(λi)|ci|2.(1.4)

Here, γ(λ) is given by an explicit rational expression in terms of the
standard Euler Γ-function (see [2]) and, for purely imaginary λ, it has
an asymptotic γ(λ) ∼ β|λ|2 exp(π

2 |λ|) when |λ| → ∞ with some explicit
β > 0. It turns out that the normalized coefficients di have at most poly-
nomial growth in |λi|, and hence the coefficients ci decay exponentially.
This is consistent with (1.2) and general experience from the analytic
theory of automorphic L-functions (see [2], [15]).

In [2], we proved the following mean value bound∑
|λi|≤T

di ≤ AT 2,(1.5)

for arbitrary T > 1 and some effectively computable constant A.
According to Weyl’s law, the number of terms in this sum is of or-

der CT 2. So this formula says that on average, the coefficients di are
bounded by some constant.

More precisely, let us we fix an interval I ⊂ R around point T and
consider the finite set of all Maass forms φi with parameter |λi| inside
this interval. Then, the average value of coefficients di in this set is
bounded by a constant provided the interval I is long enough (i.e., of
size ≈ T ).

Note that the best individual bound which we can get from this for-
mula is di ≤ A|λi|2. For Hecke–Maass forms, this bound corresponds
to the convexity bound for the corresponding L-function via Watson
formula (1.2).

In this paper, we outline the proof of the following bound.
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Theorem 1.1. There exist effectively computable constants B, b > 0
such that, for an arbitrary T > 1, we have the following bound∑

|λi|∈IT

di ≤ BT 5/3,(1.6)

where IT is the interval of size bT 1/3 centered at T .

Note that this theorem gives an individual bound di ≤ B|λi|5/3 (for
|λi| > 1). Thanks to the Watson formula (1.2) and a lower bound
of Iwaniec [5] on L(1, φλi

, Ad) this leads to the following subconvexity
bound for the triple L-function (for an exact relation between triple
period and special values of L-functions, see [15]).

Corollary 1.2. Let φ and φ′ be fixed Hecke–Maass cusp forms. For
any ε > 0, there exists Cε > 0 such that the bound

L( 1
2

, φ ⊗ φ′ ⊗ φλi
) ≤ Cε|λi|5/3+ε(1.7)

holds for any Hecke–Maass form φλi
.

The convexity bound for the triple L-function corresponds to (1.7)
with the exponent 5/3 replaced by 2. We refer to [6] for a discussion
of the subconvexity problem which is in the core of modern analytic
number theory. We note that the above bound is the first subconvexity
bound for an L-function of degree 8. All previous subconvexity results
were obtained for L-functions of degree at most 4.

Recently, using ergodic theory methods, Venkatesh [14] obtained a
subconvexity bound for the triple L-function in the level aspect (i.e.,
with respect to a tower of congruence subgroups Γ(N) as N → ∞).

We formulate a natural

Conjecture 1.3. For any ε > 0, we have di 	 |λi|ε.
For Hecke–Maass forms on congruence subgroups, this conjecture is

consistent with the Lindelöf conjecture for the triple L-functions (for
more details, see [2] and [15]).

1.4. Remarks.
(1) Our results can be generalized to the case of a general finite

co-volume lattice Γ ⊂ G. In this case, the spectral decomposition of
the Laplace–Beltrami operator on Y = Γ\H is given by a collection
of eigenfunctions φs (including the Eisenstein series) where the para-
meter s runs through some set S with the Plancherel measure dµ; for
any function u ∈ C∞

c (Y ) the spectral decomposition takes the form∫
S | < u, φs > |2dµ = ||u||2L2(Y ).
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Let us fix two Maass cusp forms φ and φ′ on Y . For every s ∈ S, we
define the parameter λs ∈ C and the coefficient ds in the same way as
before. In this case, we can prove the bound∫

ST

ds dµ ≤ BT 5/3+ε, where ST = {s ∈ S | |λs| ∈ IT }.

(2) First results on the exact exponential decay of triple products for
a general lattice Γ were obtained by Good [3] and Sarnak [12] using
ingenious analytic continuation of Maass form to the complexification
of the Riemann surface Y (for representation-theoretic approach to this
method and generalizations see [1] and [7]). Our present method seems
to be completely different and avoids analytic continuation.

2. The method

We describe now the general ideas behind our proof. It is based on
ideas from representation theory (for a detailed account of the corre-
sponding setting, see [2]). In what follows, we sketch the method of the
proof with the complete details appearing elsewhere.

2.1. Automorphic representations. Let G denote the group of all
motions of H. This group is naturally isomorphic to PGL2(R) and as
a G-space, H is naturally isomorphic to G/K, where K = PO(2) is the
standard maximal compact subgroup of G.

By definition, Γ is a subgroup of G. The space X = Γ\G with the
natural right action of G called an automorphic space. We will identify
the Riemann surface Y = Γ\H with X/K.

We start with the fact that every automorphic function φ (e.g., a
Maass form) generates an automorphic representation of the group G;
this means that, starting from φ, we produce a smooth irreducible pre-
unitary representation of the group G in a space V and its isometric
realization ν : V → C∞(X) in the space of smooth functions on X. If
a Maass form φ has the eigenvalue µ = 1−λ2

4 , then the corresponding
representation V is isomorphic to the representation of the principal
series Vλ when λ ∈ iR, to the representation of complementary series
Vλ when λ ∈ [0, 1) and to the trivial representation when λ = 1.

This means that we have a very explicit model of the abstract sub-
space V ⊂ C∞(X) as the space of smooth even homogeneous functions
on R

2 \ 0 of homogeneous degree λ − 1. Restricting to the unit circle
S1 ⊂ R

2, we get realization of V as the space of smooth even functions
on the circle S1 (see details in [2]). We will use this model to make
explicit computations.
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The triple product ci =
∫
Y φφ′φidv extends to a G-equivariant trilin-

ear functional on the corresponding automorphic representations laut
i :

V ⊗ V ′ ⊗ Vi → C, where V = Vτ , V
′ = Vτ ′ and Vi = Vλi

.
Next, we use a general result from representation theory that such G-

equivariant trilinear functional is unique up to a scalar ([9], [10]). This
implies that the automorphic functional laut

i is proportional to some ex-
plicit model functional lmod

λi
. In [2], we gave a description of such model

functional lmod
λ : V ⊗ V ′ ⊗ Vλ → C for any λ using explicit realizations

of representations V , V ′ and Vλ of the group G in spaces of homoge-
neous functions; it is important that the model functional knows nothing
about automorphic picture and carries no arithmetic information.

Thus, we can write laut
i = ai · lmod

λi
for some constant ai, and hence

ci = laut
i (eτ ⊗ eτ ′ ⊗ eλi

) = ai · lmod
λi

(eτ ⊗ eτ ′ ⊗ eλi
),(2.1)

where eτ , eτ ′ , eλi
are K-invariant unit vectors in representations V, V ′

and Vλi
corresponding to the automorphic forms φ, φ′ and φi.

It turns out that the proportionality coefficient ai in (2.1) carries an
important “automorphic” information while the second factor carries
no arithmetic information and can be computed in terms of Γ-functions
using explicit realizations of representations Vτ , Vτ ′ and Vλ (see Appen-
dix in [2] where this computation is carried out). This second factor
is responsible for the exponential decay, while the first factor ai has a
polynomial behavior in parameter λi. An explicit computation shows
that |ci|2 = 1

γ(λi)
|ai|2, and hence di = |ai|2 (where γ(λ) was described

in Section 1.3).

2.2. Hermitian forms. In order to estimate the quantities di, we con-
sider the space E = Vτ ⊗ Vτ ′ and use the fact that the coefficients di

appear in the spectral decomposition of the following geometrically de-
fined non-negative Hermitian form H∆ on E (for a detailed discussion,
see [2]).

Consider the space C∞(X × X). The diagonal ∆ : X → X × X
gives rise to the restriction morphism r∆ : C∞(X × X) → C∞(X). We
define a non-negative Hermitian form H∆ on C∞(X × X) by setting
H∆ = (r∆)∗(PX), where PX is the standard L2 Hermitian form on
C∞(X) i.e.,

H∆(w) = PX(r∆(w)) =
∫

X
|r∆(w)|2dµX

for any w ∈ C∞(X ×X). We call the restriction of the Hermitian form
H∆ to the subspace E ⊂ C∞(X ×X) the diagonal Hermitian form and
denote it by the same letter.
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We will describe the spectral decomposition of the Hermitian form
H∆ in terms of Hermitian forms corresponding to trilinear functionals.
Namely, if L is a pre-unitary representation of G with G-invariant norm
|| ||L, then every G-invariant trilinear functional l : V ⊗ V ′ ⊗ L → C,
defines a Hermitian form H l on E by H l(w) = sup

||u||L=1
|l(w ⊗ u)|2.

Here is another description of this form (see [2]). Functional l :
V ⊗ V ′ ⊗ L → C gives rise to a G-intertwining morphism T l : E → L∗
which image lies in the smooth part of L∗. Then, the form H l is just the
inverse image of the Hermitian form on L∗ corresponding to the inner
product on L.

Consider the orthogonal decomposition L2(X) = (⊕iVi) ⊕ (⊕κVκ)
where Vi correspond to Maass forms and Vκ correspond to representa-
tions of discrete series. Every subspace L ⊂ L2(X) defines a trilinear
functional l : E ⊗L → C and hence a Hermitian form H l on E. Hence,
the decomposition of L2(X) gives rise to the corresponding decomposi-
tion H∆ =

∑
Haut

i +
∑

Haut
κ of Hermitian forms (see [2]).

We denote by Hλ the model Hermitian form corresponding to the
model trilinear functional lmod

λ : V ⊗ V ′ ⊗ Vλ → C. From definition, we
see that Haut

i = diHλi
which leads us to

Basic identity

H∆ =
∑

i

diHλi
+

∑
κ

Haut
κ ,(2.2)

We will mostly use the fact that for every vector w ∈ E, this basic
identity gives us an inequality∑

i

diHλi
(w) ≤ H∆(w)(2.3)

which is an equality if the vector r∆(w) does not have projection on
discrete series representations (for example, if the vector w is invariant
with respect to the diagonal action of K on E).

We can use this inequality to bound coefficients di. Namely, for a
given vector w ∈ E, we usually can compute the values Hλ(w) by ex-
plicit computations in the model of representations V, V ′, Vλ. It is usu-
ally much more difficult to get reasonable estimates of the right-hand
side H∆(w). In cases when we manage to do this, we get some bounds
for the coefficients di.

2.3. Mean-value estimates. In [2], using the geometric properties of
the diagonal form and explicit estimates of forms Hλ, we established the
mean-value bound (1.5):

∑
|λi|≤T

di ≤ AT 2 . Roughly speaking, the proof
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of this bound is based on the fact that while the value of the form H∆

on a given vector w ∈ E is very difficult to control, we can show that for
many vectors w, the value H∆(w) can be bounded by PE(w), where PE

is the Hermitian form which defines the standard unitary structure on E.
More precisely, consider the natural representation σ = π ⊗ π′ of the

group G × G on the space E. Then, for a given compact neighborhood
U ⊂ G×G of the identity element, there exists a constant C such that
for any vector w ∈ E, the inequality H∆(σ(g)w) ≤ CPE(w) holds for
at least half of the points g ∈ U . This follows from the fact that the
average over U of the quantity H∆(σ(g)w) is bounded by CPE(w)/2.

This allows us for every T ≥ 1, to find a vector w ∈ E such that
H∆(w) ≤ CT 2 while the inequality Hλ(w) ≥ c holds for all |λ| ≤ T .

2.4. Bounds for sums over shorter intervals.
The main starting point of our approach to the subconvexity bound is

the inequality (2.3) for Hermitian forms. For a given T > 1, we construct
a test vector wT ∈ E such that the weight function λ �→ Hλ(wT ) has
a sharp peak near |λ| = T (i.e., a vector satisfying the condition (2.5)
below).

The problem is how to estimate effectively H∆(wT ). The idea is
that the Hermitian form H∆ is geometrically defined and, as a result,
satisfies some non-trivial bounds, symmetries, etc. None of the explicit
model Hermitian forms Hλ satisfies similar properties. By applying
these symmetries to the vector wT , we construct a new vector w̃T and
from the geometry of the automorphic space X, we deduce the bound
H∆(wT ) ≤ H∆(w̃T ).

On the other hand, the weight function Hλ(w̃T ) in the spectral de-
composition H∆(w̃T ) =

∑
diHλi

(w̃T ) for w̃T behaves quite differently
from the weight function Hλ(wT ) for wT . Namely, the function Hλ(w̃T )
behaves regularly (i.e., satisfies condition (2.6) below), while the weight
function Hλ(wT ) has a sharp peak near |λ| = T .

The regularity of the function Hλ(w̃T ) coupled with the mean-value
bound (1.5) allows us to prove a sharp upper bound on the value of
H∆(w̃T ) by purely spectral considerations (in cases we consider, there
is no contribution from discrete series). We do not see how to get such
sharp bound by geometric considerations.

Using this bound for H∆(w̃T ) and the inequality H∆(wT ) ≤ H∆(w̃T )
we obtain a non-trivial bound for H∆(wT ) and, as a result, the desired
bound for the coefficients di.

2.5. Formulas for test vectors. Let us describe the construction of
vectors wT , w̃T . We assume for simplicity, that V ′ 
 V̄ – the complex
conjugate representation; it is also an automorphic representation with
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the realization ν̄ : V̄ → C∞(X). It is easy to see that the upper bound
estimate that we need in the general case can be easily reduced to this
special case.

We only consider the case of representations of the principal series,
i.e., we assume that V = Vτ , V ′ = V̄ = V−τ for some τ ∈ iR; the case
of representations of the complementary series can be treated similarly.

Let {en}n∈2Z be a K-type orthonormal basis in V . We denote by
{e′n = ē−n} the complex conjugate basis in V̄ .

For a given T ≥ 1, we choose even n such that |T − 2n| ≤ 10 and set

wT = en ⊗ e′−n and w̃T = en ⊗ e′−n + en+2 ⊗ e′−n−2.

With such a choice of test vectors, we have the following bounds.

Geometric bound:

H∆(wT ) ≤ H∆(w̃T )(2.4)

Spectral bounds:

(i) There exist constants b, c > 0 such that

Hλ(wT ) ≥ c|λ|−5/3 for |λ| ∈ IT(2.5)

where IT is the interval of length bT 1/3 centered at point T .
(ii) There exists a constant c′ such that

Hλ(w̃T ) ≤
{

c′T−1(1 + |λ|)−1 for all |λ| ≤ 2T,

c′|λ|−3 for all |λ| > 2T.
(2.6)

Using the bound (2.6), we can get a sharp estimate of H∆(w̃). Namely,
from (2.2), we conclude that H∆(w̃) =

∑
diHλi

(w̃) (since vectors w̃T

are ∆K-invariant, we do not have contribution from representations of
discrete series).

The spectral bound (2.6) for Hλ(w̃) together with the mean-value
bound (1.5) for coefficients di imply that

H∆(w̃T ) ≤ D

for some explicit constant D.
Using the geometric inequality (2.4), we see that H∆(wT ) ≤ D. Using

the spectral bound (2.5), we obtain∑
|λi|∈IT

dicT
−5/3 ≤

∑
i

diHλi
(wT ) ≤ H∆(wT ) ≤ D.

From this, we deduce the bound (1.6) in Theorem 1.1.
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2.6. Proof of the geometric bound 2.4. The inequality (2.4) easily
follows from the pointwise bound on X due to the fact that, in the
automorphic realization, the vector en⊗e′−n is represented by a function
which restriction un = r∆(en ⊗ e′−n) to the diagonal is non-negative

un(x) = ν(en)(x) · ν̄(e′−n)(x) = |ν(en)(x)|2 ≥ 0.

From this, we see that

H∆(wT ) =
∫

X
|un(x)|2dµX ≤

∫
X
|un(x) + un+2(x)|2dµX = H∆(w̃T ).

2.7. Sketch of proof of the spectral bounds (2.5) and (2.6). We
will use the explicit form of the kernel defining Hermitian forms Hλ in
the model realizations of representations V , V ′ and Vλ. Namely, we use
the standard realization of these representations in the space C∞

even(S1)
of even functions on S1 (see [2] and 2.1). Under this identification, the
basis {en} becomes the standard basis of exponents {en = einθ}, where
0 ≤ θ < 2π is the standard parameter on S1.

As was shown in [2], Section 5, in such realization, the invariant
functional lmod

λ on the space V ⊗ V ′ ⊗ Vλ 
 C∞((S1)3) is given by the
following kernel on (S1)3

Lλ(θ, θ′, θ′′) = | sin(θ−θ′)|−1+λ
2 | sin(θ−θ′′)|−1+2τ−λ

2 | sin(θ′−θ′′)|−1−2τ−λ
2 ,

where V = Vτ , V ′ = V−τ with τ ∈ iR. From this, it follows that
the Hermitian forms Hλ on E 
 C∞(S1 × S1) are given by oscillatory
integrals (over (S1)4) and the verification of conditions (2.5) and (2.6)
is reduced to the stationary phase method.

In fact, we will use the values of Hλ(w) only for ∆K-invariant vectors
w ∈ E. This considerably simplifies our computations since we can
reduce them to two repeated integrations in one variable and use the
stationary phase method in one variable.

Namely, let us fix a ∆K-invariant vector w ∈ E. Then, the vector
Tλ(w) ∈ V−λ is proportional to the standard K-invariant vector e0 ∈
V−λ 
 C∞

even(S1) (here, the operator Tλ : E → V−λ corresponds to the
model trilinear functional lmod

λ as described in 2.2). This implies that
Hλ(w) = |Tλ(w)(0)|2. The value Tλ(w)(0) is given by the following
oscillating integral

Tλ(w)(0) = 〈w,Kλ〉 =
∫

w(θ, θ′)Kλ(θ, θ′)dθdθ′,

where Kλ(θ, θ′) = Lλ(θ, θ′, 0). Since the vector w is ∆K-invariant, it
can be described by a function in one variable; namely, w(θ, θ′) = u(c)
for u ∈ C∞(S1) and c = (θ − θ′)/2. We have 〈w,Kλ〉 =

∫
u(c)kλ(c)dc,

where the function kλ is obtained from Kλ by averaging over ∆K. Thus,
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for a ∆K-invariant vector w, the estimates of Hλ(w) are equivalent to
estimates of the one-dimensional integral 〈u, kλ〉 =

∫
u(c)kλ(c)dc.

The function kλ(c), which is obtained from Kλ(θ, θ′) via one-dimen-
sional integration, is not an elementary function. However, using sta-
tionary phase method, we obtain the representation kλ(c) = |λ|− 1

2 mλ(c)
+rλ(c), where the main term mλ (given by contributions from non-dege-
nerate stationary points of the phase in the corresponding integral) is
an elementary function

mλ(c) = α(λ)| sin(c)|− 1
2
−λ

2 | cos(c)|− 1
2
+ λ

2 ,

with α(λ) = (π)−1e−i π
4 2−

1
2
+ λ

2 . The stationary phase method also gives
a bound for the remainder term ||rλ||L1(S1) ≤ a(1 + |λ|)−3/2 for some
constant a.

The vectors w which we consider correspond to bounded functions
u(c). For such vectors, the estimate of 〈u, kλ〉 is reduced to the estimate
of 〈u,mλ〉 =

∫
u(c)mλ(c)dc.

We deduce spectral bounds (2.5) and (2.6) by applying stationary
phase method to integrals 〈uT ,mλ〉 and 〈ũT ,mλ〉, where uT , ũT ∈
C∞(S1) are functions corresponding to vectors wT , w̃T ∈ E.

The key fact responsible for the crucial bound in (2.5) is that for
T = |λ|, the phase of the oscillating integral 〈uT ,mλ〉 corresponding to
the value Hλ(wT ) has a degenerate critical point at c = π/4 with the
non-vanishing amplitude at that point. For other values of λ, this phase
has non-degenerate critical points.

Since this critical point is degenerate, the integral 〈uT ,mλ〉 has a
sharp peak at |λ| = T . The standard technique developed to analyze
the asymptotic behavior of the Airy functions then gives the bound (2.5)
for |λ| � T .

On the other hand, for the oscillating integral 〈ũT ,mλ〉 corresponding
to the value Hλ(w̃T ), the phase is the same as for the integral 〈uT ,mλ〉,
but the amplitude has an additional factor a(c) = 1 + e4ic which was
chosen in such a way that it vanishes at the degenerate critical point
which develops at |λ| = T . As a result, this point does not give an
additional contribution to this integral.

This is a classical situation for which the uniform bounds for the
oscillating integrals are well-known (e.g., bounds on the Airy function
and its derivative). From this, we deduce the bound in (2.6). In fact,
we find that for |λ| > T , there are no critical points at all. This implies
that for |λ| > 2T , we have a stronger bound Hλ(w̃T ) 	 |λ|−N for any
N > 1 (compare to (2.6)).
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For |λ| 	 T , we also consider singularities of the amplitude in the
corresponding integrals in order to show that the low-lying spectrum
contribution is bounded. This includes the contribution from represen-
tations of the complementary series and the trivial representation (in
fact, we have to deal with the singularities of the amplitude for all values
of λ).

The above arguments also prove the following result on the L4-norm
of K-types in irreducible automorphic representations of PGL2(R). This
result is of independent interest.

Theorem 2.1. For a fixed class one automorphic representation ν :
V → C∞(X), there exists D > 0 such that ||ν(en)||L4(X) ≤ D for all n.

One would expect that a similar fact holds for representations of the
discrete series as well.
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