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Abstract
In this paper, we study the holomorphic de Rham cohomology of a compact
strongly pseudoconvex CR manifold X in CN with a transversal holomor-
phic S1-action. The holomorphic de Rham cohomology is derived from the
Kohn-Rossi cohomology and is particularly interesting when X is of real
dimension three and the Kohn-Rossi cohomology is infinite dimensional. In
Theorem A, we relate the holomorphic de Rham cohomology Hk

h(X) to the
punctured local holomorphic de Rham cohomology at the singularity in the
variety V which X bounds. In case X is of real codimension three in Cn+1,
we prove that Hn−1

h (X) and Hn
h (X) have the same dimension while all

other Hk
h(X), k > 0, vanish (Theorem B). If X is three-dimensional and V

has at most rational singularities, we prove that H1
h(X) and H2

h(X) vanish
(Theorem C). In case X is three-dimensional and N = 3, we obtain in The-
orem D a complete characterization of the vanishing of the holomorphic de
Rham cohomology of X.

1. Introduction

LetM be a complex manifold. The k-th holomorphic de Rham coho-
mology Hk

h(M) of M is defined to be the d-closed holomorphic k-forms
quotient by the d-exact holomorphic k-forms. It is well-known that if
M is a Stein manifold, then the holomorphic de Rham cohomology co-
incides with the ordinary de Rham cohomology. For any CR manifold
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X, one can define the holomorphic de Rham cohomology group Hk
h(X).

One may regard the holomorphic de Rham cohomology as derived from
the Kohn-Rossi cohomology, in the sense, following Tanaka [9], that the
Kohn-Rossi cohomology groups are the Ep,q

1 (X) terms and the holomor-
phic de Rham cohomology groups are the Ek,0

2 (X) terms of a natural
spectral sequence Ep,q

r (X) on X.
Let X be a compact connected strongly pseudoconvex CR manifold

which admits a transversal holomorphic S1-action ϕt. Suppose thatX is
of dimension 2n−1 (n � 2) and is CR embeddable in complex Euclidean
space. Then it is known [5] that X bounds a compact complex analytic
variety V and ϕt extends to a weakly holomorphic �∗-action Φt on V
with a single fixed point x where �∗ = {z ∈ C : 0 < |z| � 1}. Further,
V has at most a singularity at x. Thus a natural problem is to study
how the holomorphic de Rham cohomology of X is related to invariants
at the point x.

In [3], we introduce the punctured local holomorphic de Rham coho-
mology Hk

h(V, x) at any point x in a complex analytic space V with only
isolated singularities. The punctured local holomorphic de Rham coho-
mology vanishes at regular points. It turns out that the punctured local
holomorphic de Rham cohomology is an important local invariant which
can be used to tell when an isolated singularity is quasi-homogeneous.
Our first main result in this paper is the following theorem.

Theorem A. Let X be a compact connected (2n− 1)-dimensional
(n � 2) strongly pseudoconvex CR manifold with a transversal holomor-
phic S1-action. Suppose that X bounds a complex analytic variety V
in C

N with x as the only singular point of V . Then the holomorphic
de Rham cohomology of X is naturally isomorphic to the punctured lo-
cal holomorphic de Rham cohomology of V at x. That is, Hk

h(X) ∼=
Hk

h(V, x) for all k � 0.

Theorem A is proved by a homotopy argument, which works also
when the fixed point x of the extended �∗-action Φt is a regular point
of V , showing thatHk

h(X) = 0 for all k � 1 in such cases. By Theorem A
and results in [3] on punctured local holomorphic de Rham cohomology,
we get

Theorem B. Let X be a compact connected (2n− 1)-dimensional
(n � 2) strongly pseudoconvex CR manifold with a transversal holo-
morphic S1-action. Suppose that X bounds a compact complex analytic
hypersurface V in C

n+1. Then:
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(1) dimHk
h(X) = 0 1 � k � n− 2.

(2) dimHn−1
h (X) = dimHn

h (X).

The holomorphic de Rham cohomology is particularly interesting
when X is three dimensional, in which case the Kohn-Rossi cohomology
is infinite dimensional. The simplest singularities that a three dimen-
sional X may bound in C

3 are the rational singularities of types An,
Dn, E6, E7, E8 and we prove the following theorem.

Theorem C. Let X be a compact connected three dimensional
strongly pseudoconvex CR manifold with transversal holomorphic S1-
action. Suppose that X bounds a compact complex analytic variety
V in C

N with at most rational singularities. Then H1
h(X) = 0 and

H2
h(X) = 0.

We would like to remark that in the statement of Theorem C, X
is not required to be in C

3 and the singularity in V may not be of
types An, Dn, E6, E7 and E8. If X is in C

3, then the following theorem
gives a complete characterization of when the holomorphic de Rham
cohomology groups of X vanish.

Theorem D. Let X in C
3 be a compact connected 3-dimensional

strongly pseudoconvex CR manifold with transversal holomorphic S1-
action. Then X bounds a compact complex analytic variety V in C

3

with at most one singularity. Let M be a resolution of V with A as
exceptional set. Then H1

h(X) = 0 and H2
h(X) = 0 if and only if

H1(A,C) = 0.

Our assumption of the existence of a transversal holomorphic S1-
action on the CR manifold is a natural assumption arising from the work
of Lawson and Yau [5]. Such CR manifolds include the intersection of
any quasihomogeneous hypersurface in C

n+1 with a sphere centered at
the origin.

In Section 2, we recall the intrinsic definition of the holomorphic de
Rham cohomology of CR manifolds and clarify the extrinsic formula-
tion in the boundary case (Theorem 2.7). Theorems A, B, C and D
are proved in Section 3. We prove Theorem C using a proposition of
Campana and Flenner [2].

Part of this work was done while the second author was a Ze Jiang
Visiting Professor at East China Normal University.
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2. Holomorphic de Rham cohomology of CR manifolds

Kohn-Rossi cohomology was first introduced by Kohn-Rossi [4]. Fol-
lowing Tanaka [9], we reformulate the definition in a way independent of
the interior manifold and derive the holomorphic de Rham cohomology
from the Kohn-Rossi cohomology.

Definition 2.1. Let X be a connected orientable manifold of real
dimension 2n−1, n � 2. A CR structure on X is a rank n−1 subbundle
S of the complexified tangent bundle CT (X) such that:

(1) S ∩ S = {0}.
(2) If L,L′ are local sections of S, then so is [L,L′].

A manifold with a CR structure is called a CR manifold. Then
there is a unique subbundle H of T (X) and a unique homomorphism
J : H −→ H such that CH = S⊕S, J2 = −1 and S = {v−iJv : v ∈ H}.

For any C∞ function u, there is a section ∂bu ∈ Γ(S∗) defined by
(∂bu)(L) = Lu for any L ∈ Γ(S). This can be generalized as follows:

Definition 2.2. A complex vector bundle E over X is said to be
holomorphic if there is a differential operator ∂E : Γ(E) −→ Γ(E ⊗ S∗)
such that if Lu denotes (∂Eu)(L) for u ∈ Γ(E) and L ∈ Γ(S), then for
any L1, L2 ∈ Γ(S) and any C∞ function f on X:

(1) L(fu) = (Lf)u+ f(Lu).

(2) [L1, L2]u = L1L2u− L2L1u.

A solution u of the equation ∂Eu = 0 is called a holomorphic section.

The vector bundle T̂ (X) = CT (X)/S is holomorphic with respect to
the following ∂ = ∂T̂ (X). Let ω be the projection from CT (X) to T̂ (X).

Take any u ∈ Γ(T̂ (X)) and express it as u = ω(Z), Z ∈ Γ(CT (X)). For
any L ∈ Γ(S), define (∂u)(L) = ω([L,Z]). The section (∂u)(L) of T̂ (X)
does not depend on the choice of Z and ∂u gives a section of T̂ (X)⊗S∗.
Further the operator ∂ satisfies the conditions in Definition 2.2. The
resulting holomorphic vector bundle T̂ (X) is called the holomorphic
tangent bundle of X.

Lemma 2.3. If X is a real hypersurface in a complex manifold M ,
then the holomorphic tangent bundle T̂ (X) is naturally isomorphic to
the restriction to X of the bundle T 1,0(M) of all (1, 0) tangent vectors
to M .
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Proof. The CR structure of X is given by S = CT (X) ∩ T 1,0(M).
The inclusion CT (X) −→ CT (M) induces a vector bundle isomorphism
CT (X)/S −→ CT (M)/T 0,1(M), which we write as Φ : T̂ (X) −→
T 1,0(M)|X . T 1,0(M)|X is a holomorphic vector bundle with respect to
the following natural ∂ operator. For L ∈ Γ(S) and Y ∈ Γ(T 1,0(M)|X),
(∂Y )(L) = L(Y ) is defined to be the (1, 0) component of [L, Y ]. If

Y =
∑
yi ∂

∂zj
in local coordinates of M , then L(Y ) =

∑
(Lyj)

∂

∂zj
. It

follows that Φ is an isomorphism of holomorphic vector bundles in the
obvious sense that LΦu = ΦLu for any u ∈ Γ(T̂ (X)). q.e.d.

For a holomorphic vector bundle E over X, set

Cq(X,E) = E ⊗
∧q

S
∗
, Cq(X,E) = Γ(Cq(X,E)).

∂E induces a differential operator ∂q
E : Cq(X,E) −→ Cq+1(X,E) as

follows. For any ψ ∈ Cq(X,E), (∂q
Eψ)(L1, . . . , Lq+1) =

∑
i(−1)i+1

Li(ψ(L1, . . . , L̂i, . . . , Lq+1)) +
∑

i<j(−1)i+j ψ([Li, Lj ], L1, . . . , L̂i, . . . ,

L̂j , . . . , Lq+1), for all L1, . . . , Lq+1 ∈ Γ(S), defines an element ∂q
Eψ ∈

Cq+1(X,E). Further ∂q+1
E ∂

q
E = 0. The cohomology groups of the re-

sulting complex {Cq(X,E), ∂q
E} are denoted by Hq(X,E).

The CR structure S on X induces a natural filtration of the de
Rham complex {Ak(X), d} with complex coefficients: Let Ak(X) =∧k

CT (X)∗ and denote by F p(Ak(X)) the subbundle of Ak(X) consist-
ing of all φ satisfying φ(Y1, . . . , Yp−1, Z1, . . . , Zk−p+1) = 0 for all Y ’s in
CT (X) and Z’s in S. Then Ak(X) = F 0(Ak(X)) ⊃ F 1(Ak(X)) ⊃ · · · ⊃
F k(Ak(X)) ⊃ F k+1(Ak(X)) = 0. Set F p(Ak(X)) = Γ(F p(Ak(X)).
Since dF p(Ak(X)) ⊂ F p(Ak+1(X)), the collection {F p(Ak(X))} gives
a filtration of the de Rham complex.

Consider the spectral sequence {Ep,q
r (X), dr} associated with the

filtration {F p(A(X))}. Let

Ap,q(X) = F p(Ap+q(X)), Ap,q(X) = Γ(Ap,q(X)),

Cp,q(X) = Ap,q(X)/Ap+1,q−1(X), Cp,q(X) = Γ(Cp,q(X)).

First, Ep,q
0 (X) = Cp,q(X) and d0 : Cp,q(X) −→ Cp,q+1(X) is the map

induced by d. Note that Ek,0
0 (X) = Ck,0(X) = Ak,0(X) ⊂ Ak(X).

Next, Ep,q
1 (X) =

Ker(d0 : Cp,q(X) −→ Cp,q+1(X))
Im(d0 : Cp,q−1(X) −→ Cp,q(X))

and d1 : Ep,q
1 (X)

−→ Ep+1,q
1 (X) is the naturally induced map.
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In particular,

Ek,0
1 (X) = Ker(d0 : Ck,0(X) −→ Ck,1(X))

= {ϕ ∈ Ak,0(X) : dϕ ∈ Ak+1,0(X)}

and d1 is just d on Ek,0
1 (X) ⊂ Ak(X).

Ek,0
1 (X) is called the space of holomorphic k-forms on X. Denot-

ing Ek,0
1 (X) by Sk(X), we have the holomorphic de Rham complex

{Sk(X), d}.
Then,

Ek,0
2 (X) =

Ker(d : Sk(X) −→ Sk+1(X))
Im(d : Sk−1(X) −→ Sk(X))

=
{closed holomorphic k-forms on X}
{exact holomorphic k-forms on X} .

The groups Ep,q
1 (X) and Ek,0

2 (X) will be denoted by Hp,q
KR(X) and

Hk
h(X) respectively. The former are the Kohn-Rossi cohomology groups

and the latter are the holomorphic de Rham cohomology groups.
For computations, we need a more explicit description of Hp,q

KR(X)
andHk

h(X) in caseX is a real hypersurface in a complex manifoldM . In
this case, the proof of Lemma 2.3 provides an isomorphism Φ : T̂ (X) −→
T 1,0(M)|X of holomorphic vector bundles over X. For any holomorphic
vector bundle E over X,

∧pE∗ is naturally a holomorphic vector bundle
over X with respect to the following ∂ : Γ(

∧pE∗) −→ Γ(
∧pE∗ ⊗ S∗).

Let θ ∈ Γ(
∧pE∗) and L ∈ Γ(S). (∂θ)(L) = Lθ is defined by

(Lθ)(u1, . . . , up) = L(θ(u1, . . . , up))−
p∑

i=1

θ(u1, . . . , Lui, . . . , up)

for all u1, . . . , up ∈ Γ(E). Let both
∧p T̂ (X)∗ and

∧p T 1,0(M)|∗X be
made holomorphic vector bundles overX in this way. Then Φ induces an
isomorphism Φ∗ :

∧p T 1,0(M)|∗X −→
∧p T̂ (X)∗ of holomorphic vector

bundles over X, where (Φ∗ξ)(u1, . . . , up) = ξ(Φu1, . . . ,Φup) for ξ ∈∧p T 1,0(M)|∗X , u1, . . . , up ∈ T̂ (X). It is useful to write down the ∂
operator of

∧p T 1,0(M)|∗X in local holomorphic coordinates z1, . . . , zn of
M . Any ξ ∈ Γ(

∧p T 1,0(M)|∗X) can be written as ξ =
∑
ξi1...ipdz

i1∧· · ·∧
dzip , ξi1...ip being local functions on X. For any L ∈ Γ(S), one checks
that Lξ =

∑
(Lξi1...ip)dzi1 ∧ · · · ∧ dzip .



holomorphic de rham cohomology 161

Lemma 2.4. Let X be a real hypersurface in a complex manifold
M .

(1) The two complexes { Cp,q (X), d0 } and { Cq (X,
∧p T 1,0M |∗X),

(−1)p∂
q} can be naturally identified.

(2) Sk(X) can be identified with the subspace of Γ(
∧k T 1,0M |∗X) con-

sisting of those ξ =
∑
ξIdz

I satisfying ∂bξI = 0 for all I.

Proof. First consider the map ιp : Ap,q(X) −→ Cq(X,
∧p T̂ (X)∗) =∧p T̂ (X)∗ ⊗ ∧q S

∗ defined by (ιpφ) (ω(Z1), . . . , ω(Zp); L1, . . . , Lq) =
φ(Z1, . . . , Zp, L1, . . . , Lq) for all φ ∈ Ap,q(X), ω(Zi) ∈ T̂ (X) where Zi ∈
CT (X), and Lj ∈ S. ιp is surjective, with kernel Ap+1,q−1(X). Hence
ιp induces an isomorphism Cp,q(X) −→ Cq(X,

∧p T̂ (X)∗) which we also
denote by ιp. A careful checking shows that for any ϕ ∈ Ap,q(X), ιpdϕ =
(−1)p∂

q
ιpϕ. Thus {Cp,q(X), d0} and {Cq(X,

∧p T̂ (X)∗), (−1)p∂
q} can

be naturally identified. Since
∧p T̂ (X)∗ and

∧p T 1,0(M)|∗X are iso-
morphic as holomorphic vector bundles over X, (1) follows. By (1),
Sk(X) = Ker(d0 : Ck,0(X) −→ Ck,1(X)) can be identified with Ker(∂ :
C0(X,

∧k T 1,0(M)|∗X)−→ C1(X,
∧k T 1,0 (M)|∗X)). Then (2) follows from

the remark preceeding the lemma. q.e.d.

Definition 2.5. Let L1, . . . , Ln−1 be a local frame of the CR struc-
ture S on X, so that L1, . . . , Ln−1 is a local frame of S. Choose a
local section N of CT (X) such that L1, . . . , Ln−1, L1, . . . , Ln−1, N span
CT (X). Assuming that N is purely imaginary,

[Li, Lj ] =
∑

ak
ijLk +

∑
bkijLk + cijN

where (cij) is a Hermitian matrix called the Levi form of X. X is said
to be strongly pseudoconvex if the Levi form is definite at each point of
X. This condition is independent of the choice of L1, . . . , Ln−1, N.

Lemma 2.6. Let X be a compact connected strongly pseudoconvex
real hypersurface in a complex manifold M . If all ϕ ∈ Sk(X) can be
extended to holomorphic k-forms on a common one-sided neighborhood
U of X in M , then the complex {Sk(X), d} can be naturally identi-
fied with the complex {Γ(U,Ωk), d}, where Γ(U,Ωk) denotes the space of
holomorphic k-forms on U \ X which extend smoothly (C∞) up to the
boundary component X.

Proof. We have seen that any ϕ ∈ Sk(X) can be identified with some
ξ ∈ Γ(

∧k T 1,0(M)|∗X) such that ϕ(W1, . . . ,Wk) = ξ(W 1,0
1 , . . . ,W 1,0

k )
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where Wi ∈ Γ(CTX) and W 1,0
i denotes the (1,0) component of Wi

in CTM . Denote the holomorphic extension of ξ to U also by ξ.
One defines dξ(W1, . . . ,Wk+1), Wi ∈ Γ(CTX), in the obvious way and
checks that dϕ(W1, . . . ,Wk+1) = dξ(W1, . . . ,Wk+1), in particular when
Wk+1 = N , N as in Definition 2.5. q.e.d.

Finally, we have the following situation.

Theorem 2.7. Let X be a compact connected (2n− 1)-dimensional
(n � 2) strongly pseudoconvex CR manifold. Suppose that X is the
boundary of a compact n-dimensional strongly pseudoconvex manifold
M which is a modification of a compact Stein space V with only iso-
lated singularities. Let A be the minimal compact analytic set in M
which can be blown down to the isolated singularities. Then the complex
{Sk(X), d} can be naturally identified with the complex {Γ(M\A,Ωk), d}
(notation as in Lemma 2.6).

Proof. One can take a one-convex exhaustion function ρ on the
interior of M such that ρ � 0 everywhere and ρ(y) = 0 if and only if
y ∈ A. Any ϕ ∈ Sk(X) can be extended to a one-sided neighborhood
U of X in M , where U may be taken to be M \ {ρ � r}. By Andreotti
and Grauert [1, Théorème 15], Γ(M \ {ρ � r}, Ωk

M\{ρ�r}) is isomorphic
to Γ(M \A,Ωk

M\A). The rest is as in Lemma 2.6. q.e.d.

3. Transversal holomorphic S1-action and punctured
holomorphic de Rham cohomology

In the following, we consider a compact connected strongly pseu-
doconvex CR manifold in C

N which admits a transversal holomorphic
S1-action. We recall:

Definition 3.1. Let X be a CR manifold as in Definition 2.1. A
smooth S1-action (of class C1) on X is said to be holomorphic if it
preserves the subspaces H ⊂ T (X) and commutes with J. It is said
to be transversal if, in addition, the vector field v which generates the
action, is transversal to H at all points of X.

Definition 3.2. Let ϕt be a continuous S1-action on a complex
analytic space V which preserves the regular points of V . The action
is called weakly holomorphic (resp. holomorphic) if for all t, ϕ∗

tOω
V =

Oω
V (resp. ϕ∗

tOV = OV ), where Oω
V is the sheaf of germs of weakly

holomorphic functions on V (i.e., the sheaf of germs of locally bounded



holomorphic de rham cohomology 163

holomorphic functions on the regular part of V ).

Theorem 3.3 ([5]). Let X be a compact connected CR manifold
which bounds a compact complex analytic variety V of dimension n in
C

N . Then any transversal holomorphic S1-action on X extends to a
weakly holomorphic representation Φ of the analytic semigroup �∗ =
{t ∈ C : 0 < |t| � 1} as a semigroup of analytic embeddings of V into
itself. This action has a single fixed point x and given any neighborhood
U of x in V , there is an ε > 0 so that Φt(V ) ⊂ U for all |t| < ε.

Indeed V has at most one singularity, namely at x. The following
theorem and its proof is our key to compute the holomorphic de Rham
cohomology Hk

h(X).

Theorem 3.4. Let X be a compact connected (2n− 1)-dimensional
(n � 2) strongly pseudoconvex CR manifold with transversal holomor-
phic S1-action ϕt. Suppose that X bounds a compact complex analytic
variety V in C

N with x as its only singular point. Let U be any open

neighborhood of x contained in the interior
◦
V of V such that under the

extended weakly holomorphic �∗-action, Φt(U) ⊂ U for all t ∈ �∗.
Then the holomorphic de Rham cohomology groups of the complex man-

ifolds
◦
V \{x} and U \{x} are naturally isomorphic. More precisely, the

restriction map r : Hk
h(

◦
V \ {x}) −→ Hk

h(U \ {x}) is an isomorphism,
k � 0.

Proof. By Theorem 3.3, ϕt extends to a weakly holomorphic �∗-

action Φt and there exists t0 ∈ �∗ such that
◦
V ⊃ U ⊃ Φt0(

◦
V ) ⊃ Φt0(U).

Consider the following natural maps induced by restrictions:

Hk
h(

◦
V \ {x}) r−→ Hk

h(U \ {x}) r1−→
Hk

h(Φt0(
◦
V ) \ {x}) r2−→ Hk

h(Φt0(U) \ {x}).

We first prove that the composition

Hk
h(

◦
V \ {x}) r1◦r−−−→ Hk

h(Φt0(
◦
V ) \ {x})

is equal to the map Hk
h(

◦
V \ {x})

Φ−1∗
t0−−−→ Hk

h(Φt0(
◦
V ) \ {x}) induced by

the inverse of the analytic embedding Φt0 . This can be done by means
of a chain homotopy as follows. Let �∗

t0 = {t ∈ C : |t0| � |t| � 1}. For
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each t ∈ �∗
t0 , we have

◦
V \ {x}

Φt−−−→←−−−
Φ−1

t

Φt(
◦
V ) \ {x} ⊃ Φt0(

◦
V ) \ {x}.

Write Ψt = Φ−1
t |

Φt0 (
◦
V )\{x}

and factorize it by

Φt0(
◦
V ) \ {x} λt−−−→ (Φt0(

◦
V ) \ {x})×�∗

t0

Ψ−−−→
◦
V \ {x}

z �−→ (z, t) �−→ Ψt(z).

Thus Ψt = Ψ ◦ λt, where Ψ is holomorphic in z and t. An arbitrary

holomorphic k-form ω∗ on (Φt0(
◦
V ) \ {x})×�∗

t0 may be written in local

holomorphic coordinates z1, . . . , zn of Φt0(
◦
V ) \ {x} as

ω∗ =
∑

fI(z, t)dzI +
∑

gJ(z, t)dt ∧ dzJ .(3.1)

We have forms λ∗tω∗ =
∑
fI(z, t)dzI on Φt0(

◦
V )\{x}. Then on (Φt0(

◦
V )\

{x})×�∗
t0 ,

d

dt
λ∗tω

∗ =
∑ ∂fI

∂t
(z, t)dzI .(3.2)

Also,

dω∗ =
∑ ∂fI

∂zi
(z, t)dzi ∧ dzI +

∑ ∂fI

∂t
(z, t)dt ∧ dzI(3.3)

+
∑ ∂gJ

∂zi
(z, t)dzi ∧ dt ∧ dzJ

i

(
∂

∂t

)
dω∗ =

∑ ∂fI

∂t
(z, t)dzI −

∑ ∂gJ

∂zi
(z, t)dzi ∧ dzJ

λ∗t

(
i

(
∂

∂t

)
dω∗

)
=

∑ ∂fI

∂t
(z, t)dzI −

∑ ∂gJ

∂zi
(z, t)dzi ∧ dzJ .

On the other hand,

i

(
∂

∂t

)
ω∗ =

∑
gJ(z, t)dzJ(3.4)

d

(
i

(
∂

∂t

)
ω∗

)
=

∑ ∂gJ

∂zi
(z, t)dzi ∧ dzJ +

∑ ∂gJ

∂t
(z, t)dt ∧ dzJ

λ∗t

(
d

(
i

(
∂

∂t

)
ω∗

))
=

∑ ∂gJ

∂zi
(z, t)dzi ∧ dzJ .
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Treating (3.3) and (3.4) like (3.2) as equations on
(
Φt0(

◦
V ) \ {x})×�∗

t0 ,
we get

d

dt
λ∗tω

∗ = λ∗t

(
i

(
∂

∂t

)
dω∗

)
+ d

(
λ∗t

(
i

(
∂

∂t

)
ω∗

))
.(3.5)

For any holomorphic k-form ω on
◦
V \ {x}, putting ω∗ = Ψ∗ω in (3.5)

gives

d

dt
Ψ∗

tω =
(
λ∗t i

(
∂

∂t

)
Ψ∗

)
dω + d

(
λ∗t i

(
∂

∂t

)
Ψ∗

)
ω.(3.6)

Taking a smooth curve γ in �∗
t0 joining t0 to 1 and integrating (3.6)

along γ gives

Ψ∗
1ω −Ψ∗

t0ω = Hdω + dHω(3.7)

where Hη =
∫ 1
t0
λ∗t i

(
∂

∂t

)
Ψ∗ηdt provides the desired chain homotopy.

Observe that Ψ1 is the inclusion map Φt0(
◦
V ) \ {x} −→

◦
V \ {x} while

Ψt0 is the biholomorphic map Φ−1
t0

: Φt0(
◦
V )\{x} −→

◦
V \{x}. Hence Ψ∗

1

(respectively Ψ∗
t0) induces r1 ◦ r (respectively Φ−1

t0

∗) on the cohomology
level. Then (3.7) implies that r1 ◦ r = Φ−1

t0

∗.
Now, since Φ−1

t0
is a biholomorphic map, Φ−1∗

t0
is an isomorphism,

hence so is r1 ◦ r. On the other hand, if U is a strongly pseudoconvex

neighborhood of x in
◦
V satisfying U ⊃ Φt(U) for all t ∈ �∗, then we

also have U \ {x}
Φt−−−→←−−−

Φ−1
t

Φt(U) \ {x} ⊃ Φt0(U) \ {x} for all t ∈ �∗
t0 .

By repeating the above argument, we see that

r2 ◦ r1
(

= Φ−1
t0

∗) : Hk
h(U \ {x}) −−−→ Hk

h(Φt0(U) \ {x})

is an isomorphism. r1 ◦ r and r2 ◦ r1 bijective implies r1 bijective. It
follows that r is also bijective, hence an isomorphism. q.e.d.

Remark 3.5. For the simplest case where X is the unit sphere
and V is the closed unit ball in C

2, the S1-action ϕt(z1, z2) = (tz1, tz2)
on X extends to the �∗-action Φt(z1, z2) = (tz1, tz2) on V with fixed
point at the origin 0. In this case, if r : R+ × R+ −→ R is C∞ and
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strictly increasing in each variable, and if r(|z1|, |z2|) < 0 defines an open
neighborhood U of 0 contained in the open unit ball, then Φt(U) ⊂ U

for all t ∈ �∗. For example, for 0 < a1, a2 < 1,
|z1|2
a2

1

+
|z2|2
a2

2

< 1 defines

such a U which is biholomorphically equivalent to the open unit ball.
On the other hand, there are strongly pseudoconvex neighborhoods

U1 of 0 in V for which the condition for all t ∈ �∗, Φt(U1) ⊂ U1 fails.
For example, let U1 be defined by |z1|2 + |z2|2 + λ(z1 + z1) < 1

2 , where
λ ∈ R. If 0 < λ < 1

6 , one checks that:

(1) U1 is a strongly pseudoconvex domain contained in the open unit
ball.

(2) For (z1, z2) ∈ ∂U1, z1 = x1 + iy1 and t = cos θ+ i sin θ, x1 < 0 and
y1 sin θ < 0 implies that (tz1, tz2) �∈ U1.

A slight variation of the above proof yields the following corollary.

Corollary 3.6. Let X and (V, x) be as in Theorem 3.4. Denote

by Γ(
◦
V \ {x},Ωk) the space of holomorphic k-forms on

◦
V \ {x} and by

Γ(V \{x},Ωk) the subspace consisting of those holomorphic k-forms that
extend smoothly (C∞) up to the boundary component X. Then the two

complexes {Γ(
◦
V \ {x},Ω•), d} and {Γ(V \ {x},Ω•), d} have isomorphic

cohomology groups Hk
h(

◦
V \ {x}) and Hk

h(V \ {x}) respectively.

Proof. Consider the following chain maps

Γ(V \ {x},Ω•) r−→ Γ(
◦
V \ {x},Ω•) r1−→
Γ(Φt0(V ) \ {x},Ω•) r2−→ Γ(Φt0(

◦
V ) \ {x},Ω•)

for any |t0| < 1. Then we have the induced maps

Hk
h(V \ {x}) r−→ Hk

h(
◦
V \ {x}) r1−→

Hk
h(Φt0(V ) \ {x}) r2−→ Hk

h(Φt0(
◦
V ) \ {x}).

To prove r1 ◦ r = Φ−1
t0

∗, we consider V \ {x}
Φt−−−→←−−−

Φ−1
t

Φt(
◦
V ) \ {x}

⊃ Φt0(
◦
V ) \ {x} for all t ∈ �∗

t0 . For any ω ∈ Γ(V \ {x},Ωk), Ψ∗
1ω −
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Ψ∗
t0ω = Hdω + dHω holds with Hω ∈ Γ(V \ {x},Ωk). It follows that

r1 ◦ r = Φ−1
t0

∗, hence is an isomorphism.

The same argument for
◦
V in place of V shows that r2 ◦ r1 is an

isomorphism. As before, we conclude that r is an isomorphism. q.e.d.

It is now natural to relate to the theory of punctured local holomor-
phic de Rham cohomology developed in [3].

Definition 3.7. Let V be a complex analytic space with only iso-
lated singularities. For any x ∈ V , the punctured local holomorphic de
Rham cohomology Hk

h(V, x) is defined to be lim−→Hk
h(U \ {x}), where U

runs over strongly pseudoconvex open neighborhoods of x in V .

We are now ready to prove Theorem A.

Proof of Theorem A. By Theorem 2.7, the complexes {S•(X), d}
and {Γ(M \ A,Ω•), d} are isomorphic. The latter is clearly isomorphic
to {Γ(V \ {x},Ω•), d}. Hence Hk

h(X) is isomorphic to Hk
h(V \ {x}). By

Corollary 3.6, Hk
h(X) is isomorphic to Hk

h(
◦
V \{x}) . It suffices to check

that lim−→Hk
h(U \ {x}) = Hk

h(
◦
V \ {x}).

We shall define, for any open neighborhood U of x in
◦
V satisfying

the condition in Theorem 3.4, a homomorphism mU : Hk
h(U \ {x}) −→

Hk
h(

◦
V \ {x}), such that the following conditions hold:

(1) For any open neighborhoods U ⊃W of x in
◦
V , if

rWU : Hk
h(U \ {x})−→Hk

h(W \ {x})

is the map induced by restriction, then mW rWU = mU .

(2) If there are homomorphisms nU : Hk
h(U \ {x}) −→ N into some

group N satisfying nW rWU = nU for all open neighborhoods U ⊃
W of x in

◦
V , then there is a unique homomorphism

n : Hk
h(

◦
V \ {x}) −→ N

such that n ◦mU = nU .

For any open neighborhood U of x in
◦
V , take t0 ∈ �∗ such that U ⊃

Φt0(
◦
V ) and set mU = Φ∗

t0rΦt0 (
◦
V ),U

. To check that mU is independent
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of the choice of t0, observe that if |t1| � |t0|, then by the proof of

Theorem 3.4, Φ−1
t1
t0

∗ = r : Hk
h(Φt0(

◦
V )\{x}) −→ Hk

h(Φt1(
◦
V )\{x}), hence

Φ∗
t0rΦt0 (

◦
V ),U

= Φ∗
t1Φ

−1∗
t1
t0

r
Φt0 (

◦
V ),U

= Φ∗
t1rΦt1 (

◦
V ),U

.

To check (1), take t ∈ �∗ such that U ⊃W ⊃ Φt(
◦
V ). Then mW rWU

= Φ∗
t r

Φt(
◦
V ),W

rWU = mU . To check (2), take n = n ◦
V

. Then nmU =

n ◦
V

Φ∗
t r

Φt(
◦
V ),U

, where t ∈ �∗ and U ⊃ Φt(
◦
V ). By Theorem 3.4, Φ−1∗

t =

r
Φt(

◦
V ),

◦
V

, hence the given condition n
Φt(

◦
V )
r
Φt(

◦
V ),

◦
V

= n ◦
V

may be written

as n
Φt(

◦
V )

= n ◦
V

Φ∗
t . Then nmU = n

Φt(
◦
V )
r
Φt(

◦
V ),U

= nU . The uniqueness

of n is clear from the requirement nm ◦
V

= n ◦
V

. q.e.d.

To prove Theorem B, we use the following theorem on the punctured
local holomorphic de Rham cohomology in the hypersurface case.

Theorem 3.8 ([3]). Let (V, 0) = {(z0, . . . , zn) ∈ C
n+1 : f(z0, . . . ,

zn) = 0} be a hypersurface with the origin as an isolated singular point.
Then:

(1) dimHk
h(V, 0) = 0 for 1 � k � n− 2.

(2) dimHn
h (V, 0)− dimHn−1

h (V, 0) = µ− τ , where

µ = dim C{z0, . . . , zn}
/ (

∂f

∂z0
, . . . ,

∂f

∂zn

)

is the Milnor number and

τ = dim C{z0, . . . , zn}
/ (

f,
∂f

∂z0
, . . . ,

∂f

∂zn

)

is the Tjurina number of the singularity (V, 0) respectively.

In particular, dimHn
h (V, 0) = dimHn−1

h (V, 0) if and only if (V, 0) is a
quasi-homogeneous singularity, i.e., f is a weighted homogeneous poly-
nomial after a holomorphic change of coordinates.

Proof of Theorem B. In view of Corollary 2.7 of [5] we know that the
hypersurface singularity (V, x) is quasi-homogeneous. Then Theorem B
follows from Theorem A and Theorem 3.8. q.e.d.

Let X ⊂ C
N be a compact connected strongly pseudoconvex 3-

dimensional CR manifold with a transversal holomorphic S1-action. In
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view of Theorem 2.1 of [5], there exists a holomorphic equivariant em-
bedding X ↪→ Ṽ as a real hypersurface in a 2-dimensional algebraic
variety Ṽ ⊂ C

Ñ with a linear C
∗-action; moreover, the linear C

∗-action
has exactly one fixed point x, which is the only possible singularity of
Ṽ . We assume here that the fixed point x is a rational singularity. By
Theorem A, Hk

h(X) = Hk
h(V, x) where V is the compact subset of Ṽ

bounded by X.
We now recall the following important result of Campana and Flen-

ner.

Proposition 3.9 ([2]). If (V, 0) is rational isolated singularity of
dimension n � 2, then any closed holomorphic p-form η on V \{0} with
1 � p � 2 is exact, i.e., after shrinking V as a neighborhood of 0, there
exists a (p− 1)-form ξ on V \ {0} with d(ξ) = η.

Proof of Theorem C. By Theorem A, Hk
h(X) ∼= Hk

h(V, x), for k = 1,
2. The above proposition of Campana and Flenner says that Hk

h(V, x) =
0, k = 1, 2. q.e.d.

Proof of Theorem D. Let x be the singularity of V . Then (V, x) is
an isolated quasi-homogeneous hypersurface singularity. If H2

h(X) = 0,
then Theorem A of [6] implies that dimH2

h(M) = 0 = s, where s =
dim Γ(M \A,Ω2)/(dΓ(M \A,Ω1) + Γ(M,Ω2)) is an invariant of (V, x).
Vanishing of s implies H1(A,C) = 0 by Theorem B of [6].

Conversely if H1(A,C) = 0, then Theorem B of [6] implies s = 0
and hence H1

h(M) = 0 = H2
h(M). In view of Theorem A of [6], we have

H1
h(X) ∼= H1

h(M) = 0 and dimH2
h(X) = dimH2

h(M) + s = 0. q.e.d.
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