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SOME VARIANTS OF MACAULAY’S
AND MAX NOETHER’S THEOREMS

ELIZABETH WULCAN

Dedicated to Ralf Froberg on the occasion of his 65th birthday

ABSTRACT. We use residue currents on toric varieties
to obtain bounds on the support of solutions to polynomial
ideal membership problems. Our bounds depend on the
Newton polytopes of the polynomial systems and are therefore
well adjusted to sparse systems of polynomials. We present
variants of classical results due to Macaulay and Max Noether.

1. Introduction. Let Fy,...,F,,, and ¢ be polynomials in C”.
Assume that ® vanishes on the common zero set of the Fj. Then
Hilbert’s Nullstellensatz asserts that there are polynomials Gy,... ,Gmn
such that
(1.1) > FG =9

j=1

for some integer v large enough. The following bound of the degrees of
the F; and v was obtained by Kolldr, [19], for d # 2, and by Jelonek,
[18], for d =2 and m < n:

Assume that deg F; < d. Then one can find G; so that (1.1) holds for
some v < dmin(m.n) gng

(1.2) deg (F;G;) < (1 + deg ®)gmin(mm),

For d = 2 and m > n + 1 the best bound is due to Sombra [26]:
the factor d™*(™") in (1.2) should then be replaced by 2"*!. Kollar’s
and Jelonek’s bounds are sharp; the original formulations also take
into account different degrees of the F};. In many cases, however, one
can do much better. Classical results due to Max Noether, [23], and
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Macaulay, [22], show that the bounds can be substantially improved if
(the homogenizations of) the F; have no zeros at infinity. The aim of
this note is to use multidimensional residues on toric varieties to obtain
some variants of these results.

Multidimensional residues have been used as a tool to solve polyno-
mial ideal membership problems by several authors, see for example [7].
In [2] Andersson used residue currents on manifolds to obtain effective
solutions; in particular, Macaulay’s and Max Noether’s results follow
by applying his methods to complex projective space.

Recall that the support supp F' of a polynomial F' = ) 5. ca2® =
Y wczn CaZl o zym in C™ is defined as supp F = {a € Z" such that
co # 0} and that the Newton polytope N'P(F1y,... ,Fy,) of polyno-
mials Fi,...,Fy, is the convex hull of Ujsupp F; in R". In particu-
lar, a polynomial of degree d has support in dX", where X" is the n-
dimensional simplex in R™ with the origin and the unit lattice points
er = (1,0,...,0),e2 = (0,1,0,...,0),...,e, = (0,...,0,1) as ver-
tices.

Using techniques from toric geometry Sombra [26] obtained a sparse
effective Nullstellensatz, which improves Kollar’s result when the sys-
tem of polynomials is sparse, meaning that NP (Fy,... , F,,) is small
compared to dX". In [28] the author used the residue current tech-
niques developed in [2] applied to toric varieties in order to obtain cer-
tain sparse effective versions of polynomial ideal membership problems.
This note, in which we focus on the case when F}; have no common ze-
ros at infinity, can be seen as an addendum to [28]. We will specify in
Section 4 how no common zeros at infinity should be interpreted.

We work on toric varieties associated with the Newton polytopes or
the support of the F;. Given a lattice polytope P, i.e., a polytope in
R™ with vertices in Z", one can construct a toric variety Xp and a line
bundle O(Dp) on Xp whose global sections correspond to polynomials
with support in P, see Section 3. The toric variety Xp is smooth if for
each vertex v of P the smallest integer normal directions of the facets
of P containing v form a base for Z", see [16, page 29]. We then say
that the lattice polytope P is smooth (or Delzant) with respect to the
lattice Z".
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The following sparse version of Macaulay’s theorem is due to Castryck-
Denef-Vercauteren, [10].

Theorem 1.1. Let Fy,... ,F,,, and ® be polynomials in C™. As-
sume that the F; have no common zeros even at infinity, and that
supp® C eN'P(Fy,...,Fy), where eN'P(Fy,...,Fy) is a lattice poly-
tope. Then there are polynomials G; that satisfy

(1.3) Y FiGj=2

and
supp (F;G;) C max(n + 1,e)NP(F,...,F,).

In particular, one can find polynomials G; that satisfy

(1.4) Y FiG=1
j=1
and
(1.5) supp (F;G;) C (n+ 1)NP(F1,... ,Fyp).

Macaulay’s theorem, [22], corresponds to the case when P = dX", i.e.,
deg F; < d. Then (1.5) reads deg (F;G;) < (n + 1)d, which is slightly
worse that Macaulay’s original result:

Assume that F; have no common zeros even at infinity (in P™). Then
one can find G; that satisfy (1.4) and deg (F;G;) < (n+ 1)d — n.

Theorem 1.1 can be seen as a special case of the following sparse
version of Max Noether’s theorem, [23]. Let (F) denote the ideal
generated by Fy, ..., F,,.

Theorem 1.2. Let Fy,... ,F,, be polynomials in C™, and let P be a
smooth lattice polytope that contains the origin and the support of the
F; and the coordinate functions z1,...,2,. Assume that the F; have
no common zeros at infinity. Then there is a number vg, such that if
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® € (F) satisfies that supp ® C eP, where €P is a lattice polytope, then
there are polynomials G that satisfy (1.3) and

(1.6) supp (F;G;) C max(vp,e)P.

In fact, Theorem 1.2 is a sparse version of a result in the forthcoming
paper [6]. As Theorem 1.2 is stated above the common zero set
of the F; has to be discrete. It is, however, possible to replace
the assumption that the F; lack common zeros at infinity by a less
restrictive assumption, see Remark 4.2.

The reason that we require P to be smooth in Theorem 1.2 is
that we need a certain line bundle to be ample, see Section 4. For
example, P = dX" is smooth; with this choice (1.6) reads deg (F;G;) <
max(vpd, deg ®).

Theorem 1.2 is a variant of Max Noether’s theorem, [23], in the
sense that ® is assumed to be in (F) and the F; are assumed to
have no zeros at infinity. In the original formulation, Fi,... , F,, are
moreover assumed to form a complete intersection, i.e., the codimension
of {Fi=...=F, =0}ism:

Assume that the zero-set of Fy,...,F, is discrete and contained in
C" and that ® € (F). Then there are G; that satisfy (1.3) and
deg (FG;) < deg ®.

Note that if supp ® (or deg ®) is large enough, then the bound (1.6)
coincides with Max Noether’s bound; indeed vp only depends on
the F;. In [28, Theorem 1.2] a sparse version of Noether’s theorem
was presented, which essentially says that if the F; form a complete
intersection, then Theorem 1.2 holds with vz = 0. To be precise, the
polytope eP has to satisfy an additional condition.

If the F} lack common zeros, then Theorem 1.1 says that we can
choose v = n + 1. In general, we do not have an explicit description
of vr, see the discussion after the proof of Theorem 1.2.

Recall that the polynomial ® lies in the integral closure of (F) if ®
satisfies a monic equation ®"+H;®" '+ ..+ H, = 0, where H; € (F)’
for 1 < j < r or, equivalently, if ® locally satisfies |®| < C|F|, where
|F|?> = |F1]* 4+ --- + |F,,|?. If @ is in the integral closure of (F), then
the Briangon-Skoda theorem, [9], asserts that one can solve (1.1) with
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v = min(m,n). Our next result is a sparse effective Briangon-Skoda
theorem, which also can be seen as a generalization of Macaulay’s
theorem. Indeed, when the F; have no common zeros, the assumption
below that P contains the origin is automatically satisfied and then
any polynomial ® is in the integral closure of (F).

Theorem 1.3. Let Fy,... ,F,,, and ® be polynomials in C™, and let
P be a lattice polytope that contains the origin and the support of the
F;. Assume that the F; have no common zeros at infinity. Moreover,
assume that ® is in the integral closure of (F') and that supp® C eP,
where €P is a lattice polytope. Then there are polynomials G; that
satisfy

(1.7) > FGj=o"
j=1
and
(1.8) supp (F;G;) € max(n + 1, ne)P.

The assumption that the F; have no common zeros at infinity could be
replaced by a less restrictive assumption, see Remark 4.2. If P = dX",
then (1.8) reads deg (F;G;) < max((n + 1)d, ndeg ®).

Morally, Theorems 1.2 and 1.3 say that when the F}; have no zeros
at infinity and supp @ is large enough compared to supp F}, then the
bounds on supp (F;G;) in (1.3) and (1.7) are as good as possible; in
fact, supp (F;G;) is then bounded by supp ® and supp ®", respectively.
Andersson-Gétmark [3, Theorem 1.3] and Hickel [17, Theorem 1.1]
proved effective Max Noether’s and Briangon-Skoda theorem’s, respec-
tively, in which they allow common zeros at infinity. Then typically
terms of size d" appear, cf. (1.2).

Let us sketch the idea of the proofs of our results. A standard way of
reformulating the kind of division problems we consider is the following.
There are polynomials G; that satisfy (1.1) and supp (F;G;) C cP if
and only if there are sections g; of line bundles O(D(._1)p) over Xp
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such that
(1.9) > figi =,
j=1

where f; and ¢ are sections of line bundles O(Dp) and O(D.p) over
Xp corresponding to F; and ®, respectively. Now there is a local
solution to (1.9) on Xp if ¢ annihilates a certain residue current, see
Section 2. To obtain a global solution to (1.9) the constant ¢ has to
be large enough so that certain Dolbeault cohomology on Xp vanishes.
By analyzing when these conditions are satisfied we obtain our results.

The proofs of Theorems 1.1-1.3 occupy Section 4. In Sections 2 and
3 we provide some necessary background on residue currents and toric
varieties, respectively.

2. Residue currents. Let fi,..., fn be holomorphic functions
whose common zero set Vy = {f; =... = fn, = 0} has codimension m.
Then the Coleff-Herrera product, introduced in [11],

=27 | 0oy )

represents the ideal (f) generated by the f; in the sense that it has
support on Vy and moreover a holomorphic function % is in (f) if and

only if the current 1/1Ré 5 Vanishes, see [13, 24].

When codim V¢ < m, there is no such canonical residue current asso-
ciated with fi,..., fm,. Passare-Tsikh-Yger, [25], constructed residue
currents by means of the Bochner-Martinelli kernel that generalize the
Coleff-Herrera product to when the codimension of V; is arbitrary.
Their construction was later developed by Andersson, [1], and by An-
dersson and the author, [4].

Theorem 2.1. Assume that Fy, Fy,... ,EN are Hermitian holo-
morphic vector bundles over a complexr manifold X of dimension n,
and assume that Ey has rank 1. Moreover, assume that the complex

N 12 £? f!
(2.1) 00— FEy —...— FEy— E{ — Ej
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is exact outside an analytic set Z of positive codimension. Then one
can construct an End (&4 Ey)-valued residue current R on X, which
has support on Z and satisfies the following:

(a) If ¥ is a holomorphic section of Ey that annihilates R, i.e., the
current Ry vanishes, then v is in the ideal sheaf Im f' generated by
the image of f*.

(b) If the associated complex of locally free sheaves of O-modules of
sections of Ej

(2.2) 0-— 0EN) 5. o) 15 ok

is exact, then ¢ € Im f* if and only if Ry = 0.

(c) Assume that f is a holomorphic section of a Hermitian vector
bundle E of rank m over X and that (2.1) is the Koszul complez of f,
i.e., By = AKE* and f* is contraction (interior multiplication) with f.
Moreover assume that ¥ locally satisfies that

Y| < C|f[mintmm)

for some constant C. Then Ry = 0.

The idea of the proof of Theorem 2.1 is that outside Z one can obtain
a local holomorphic solution to the division problem

(2.3) flg=v

by means of (2.1); here ¢ is a section of Ey and g a section of Ey. The
residue current Ri) appears as an obstruction when one tries to extend
the solution from X \ Z to X; we refer to [1, 4] for details.

The explicitness of the current R of course directly depends on the
explicitness of (2.1). If (2.1) is the Koszul complex of f, then R has
support on the zero locus Vy of f and locally the coeflicients of R are the
residue currents introduced by Passare-Tsikh-Yger, [25]. In particular,
if codim Vy = m, then R is locally a Coleff-Herrera product. Note that
in this case Im f! is the ideal sheaf J(f) generated by f.

Morally, the residue current R is the obstruction to solve (2.3) locally.
To obtain a global solution one also needs certain d-cohomology on X
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to vanish. The construction of the currents in [4] implies the following,
cf. [4, Proposition 6.1]:

Theorem 2.2. Let L be a line bundle over X. Assume that
(2.4) H"(X,L®E; ;) =0

for 1 < g <min(N —1,n). Let ¢ be a holomorphic section of L ® Ej.
If Ry = 0, then there is a global section g of L® E; that satisfies (2.3).

The current R allows for multiplication with characteristic functions
of varieties and more generally constructible sets in such a way that
ordinary calculus rules hold, see [5]. In particular, if V' C X is a
variety, then Ry = 0 if and only if (1yR)Y = 0 and (1x\yvR)y = 0.
Moreover, R is said to have the Standard Extension Property (SEP)
in the sense of Bjork, [8], if 1w R = 0 for all subvarieties W C Vy of
positive codimension.

3. Toric varieties from polytopes. For a general reference on
toric varieties, see [16]. A toric variety can be constructed from a fan
A, which is a certain collection of Z™ cones, by gluing together copies
of C™ corresponding to the n-dimensional cones of A; we denote the
resulting toric variety by Xa. Let P be a lattice polytope in R™. Then
P determines a fan Ap, the so-called normal fan of P, whose rays
correspond to the normal directions of the faces of maximal dimension
of P. The corresponding toric variety Xp = Xa, is projective, see [15,
Section VIL.3].

A toric variety X is smooth if and only if each cone in A is generated
by a part of a basis for the lattice Z™. Such a fan is said to be regular.
The fan Ap is regular precisely when P is smooth, cf. the introduction.
For each fan A there exists a refinement A of A such that X X Xais
a resolution of singularities. Also if A; and Ay are two different fans,
there exists a regular fan A that refines both A; and A,. If A is a
refinement of Ap we say that A and P are compatible.

Assume that P is compatible with A. Then P defines a divisor Dp on
X a such that the global holomorphic sections of the line bundle O(Dp)
correspond precisely to the polynomials with support in P. Moreover
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O(Dp) is generated by its sections, and if A = Ap, then O(Dp) is
ample. Also, O(Dp) ® O(Dg) = O(Dp4g).

If A is compatible with a polytope and L is a line bundle over Xa
that is generated by its sections, then H%9(Xa, L) =0 for all ¢ > 1.

In the situation of Theorems 1.2 and 1.3 we want to consider toric
varieties that are compactifications of C™. Assume that A contains
the first orthant oy as an n-dimensional cone; observe that if P C R’}
contains the origin, then one can find such a A, which is regular and
compatible with P. Then we can identify the corresponding affine chart
Uy, with C™; we refer to the complement Xa \ Uy, as the variety at
infinity and denote it by V. If P is compatible with A and moreover
contains the origin, then in local coordinates in U,, = C", a section
¥ of O(Dp) coincides with the corresponding polynomial ¥ in C", so
that 1 can really be seen as a homogenization of ¥, see [12] and also
[28, Section 3.4].

4. Proofs. In Theorem 1.1 the F; are assumed to have no
common zeros even at infinity. This should be interpreted as that the
corresponding sections f; of O(Dp) lack common zeros in X, where
A is compatible with P = N'P(Fy,... , F,,). Observe that whether the
f; have common zeros in X in fact only depends on P and not on the
particular choice of A, as long as it is compatible with P. In Theorems
1.2 and 1.3, P is assumed to contain the origin. It follows that A can
be chosen compatible with P so that it contains the first orthant as a
cone. The assumption that the f; lack common zeros at infinity should
be interpreted as that, given such a A, the corresponding sections of
O(Dp) lack common zeros at Vo, in Xa.

Consider polynomials F; with support in polytopes P;. Whether
or not the F}, or rather the corresponding sections f; of line bundles
O(Dp;), have common zeros (at infinity) clearly depends on the poly-
topes P;. Assume that f; are sections of a line bundle O(Dp) over
Xa, where A is compatible with P. Then the f; do have common
zeros unless P = N'P(Fy,...,F,) and they have common zeros at
infinity unless P is the convex hull of the Newton polytope and the
origin. On the other hand, any generic choice of n + 1 sections of
O(Dp) will lack common zeros and any choice of n polynomials with
support in P will lack common zeros at V, see for example [28, Sec-
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tion 6.2] or [27, Lemma 4.1]. Thus the sparse versions of Macaulay’s
and Max Noether’s results generalize their classical counterparts in the
sense that they apply to more general situations.

Theorem 1.1 is a consequence of the following more general result,
which is due to Tuitman [27]; we include a proof for completeness.
Recall that the polytope Q is a summand of the polytope P if there
exist another a polytope S such that P = Q + S.

Theorem 4.1 [27]. Let Fi,...,F,,, and ® be polynomials in C™.
Let P; and P be polytopes that contain the support of the F; and @,
respectively. Assume that the F; have no common zeros even at infinity,
meaning that the corresponding sections of line bundles O(Dp;) over
a toric variety lack common zeros. Assume that Pj, +---+ Pj_ is a
summand of P for all 1 < ¢ < min(m,n+1) and J = {j1,... ,jq} C
{1,...,m}. Then there are polynomials G; that satisfy (1.3) and

(4.1) supp (F;G;) C P.

In particular, we can let P = ZT=1 P;. Also, if we choose P as
max(n + 1,e)N'P(Fy, ..., Fy) we get back Theorem 1.1.

Proof. Let A be a regular fan that is compatible with Py,... P,
and P, let E be the bundle O(Dp,)®---®O(Dp,,) over X, and let L
be the line bundle O(Dp). We identify polynomials with support in P;
and P with sections of O(Dyp,) and L, respectively. Accordingly, let f;,
f, and ¢ be the sections of O(Dp,), E, and Q(Dp) — L corresponding
to Fj, the tuple Fy, ..., Fy,, and ®, respectively.

Let (2.1) be the Koszul complex of f and let R be the associated
residue current. By assumption, the f; have no common zeros, and

hence R = 0.

Now

(42) L®E,=L@AE = P ODp - (Dp,, +---+ Dp, ).
|T1=q

Since for each term in the right hand side of (4.2), P;, + --- + Pj,
is a summand of P, O(DP_(pj1+...+7qu)) is generated by its sections,
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see Section 3. Hence (2.4) holds for 1 < ¢ < n, cf. (the proof of)
Theorem 4.1 in [28].

Now Theorem 2.2 asserts that we can find a section g = (g1,... , gm)
of L® E* that satisfies (2.3), and thus polynomials G; that satisfy (1.3)
and (4.1). o

The original proof by Tuitman is very similar to our proof. In fact,
the residue current does not really play a role in our proof, since it
trivially vanishes.

Theorem 1.3 is proved along the same lines as Theorem 1.1, using
residue currents constructed from the Koszul complex. It would be
possible to give a more general formulation of Theorem 1.3 that would
take into account that the F; might have different supports, as was
done in Theorem 4.1.

Proof of Theorem 1.3. Let A be a regular fan that is compatible
with P and that contains the first orthant as cone. Moreover, let F
be the vector bundle O(Dp)®™ over Xa, and let L be the line bundle
O(Dmax(n+1,ne)yp)- Let fj, f, and 1 be the sections of O(Dp), E, and
L corresponding to Fj, the tuple Fi,... , Fy,, and ®", respectively.

Let (2.1) be the Koszul complex of f, and let R be the associated
residue current. By assumption, the f; have no common zeros at
infinity, and hence 1y, R = 0. Moreover, since ® is in the integral
closure of (F) in C", (1cnR)® = 0 by Theorem 2.1 (c) and the end of
Section 3.

By Section 3, L ® E; = L ® AYE* is a direct sum of line bundles
O(D (max(n+1,ne)—q)P), and since O(D.p) is generated by its sections if
¢ > 0, by Section 3, (2.4) holds for 1 < ¢ <n.

Now Theorem 2.2 asserts that we can find a section g = (g1,... ,gm)
of L ® E* that satisfies (2.3), and thus polynomials Gi,...,G,, in C"
that satisfy (1.7) and (1.8). O

Proof of Theorem 1.2. Let E be the vector bundle O(Dp)®™ over
Xp, and let f be the section of F corresponding to Fi,...,F,,. Let
Ey be the trivial bundle of rank 1 over Xp, let E; = E*, and let f!

1
be multiplication with f. Since Xp is projective, F; f—) Ey can be
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continued to a complex (2.1), such that the associated complex (2.2)
is exact, see for example [20, Example 1.2.21]. Since, by assumption,
P is smooth, the line bundle O(Dp) over Xp is ample and thus for
some large enough number vp, H*(Xp,O(Dp)®” @ Ey441) = 0 for
1 < ¢ <min(N —1,n) and v > vp. In particular, L = O(Dyax(vyp.e)P)
satisfies (2.4) for 1 < ¢ < min(N — 1,n).

The assumption that P contains the origin and the support of the
coordinate functions z1,... , z, implies that the first orthant in R™ is a
cone of Ap. Let R be the residue current associated with (2.1), and let
1 be the section of L corresponding to ®. By assumption, the f; have
no common zeros at infinity, and hence 1y R = 0. Moreover, since
(2.2) is exact and ® € (F') in C", (1gnR)Y = 0 by Theorem 2.1 (b)
and the end of Section 3.

Now Theorem 2.2 asserts that we can find a section g = (g1,... , gm)
of L E1 = LQE* that satisfies (2.3), and thus polynomials Gy, ... , Gy,
in C" that satisfy (1.3) and (1.6). O

The constant vg in Theorem 1.2 depends on the degrees of the
mappings in the resolution (2.1), which are closely related to the
Castelnuovo-Mumford regularity of (F'), see [14, Chapter 20.5].

Remark 4.2. Observe that the proofs of Theorems 1.2 and 1.3 only
use that R vanishes along V, i.e., 1y R = 0. In fact, this allows us
to replace the assumptions that the F; lack common zeros at infinity
by less restrictive assumptions.

Let Z; be the set where the mapping f* in (2.1) does not have
optimal rank. When (2.2) is exact R admits a decomposition R =
>k 1z,2,_, R, where 1z,\7,_ R has support on and the SEP with
respect to Z, see [5, Example 7]. Thus in Theorem 1.2 we could
replace the assumption that the F; lack common zeros at infinity by
the assumption that the Z; have no irreducible components contained
in V.

Let {V;} be the set of so-called distinguished subvarieties of J(f), see
[21, page 263], and let R be the residue current constructed from the
Koszul complex of f. It follows from the construction that R admits a
decomposition R = ) 1y, R, where 1y, R has support on and the SEP
with respect Vj, see for example [3]. Hence, in Theorem 1.3 we could
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replace the assumption that F; lack common zeros at infinity by the
assumption that J(f) has no distinguished subvarieties contained in
Vo

Acknowledgments. Thanks to the referee for many helpful sugges-
tions.
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