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HILBERT FUNCTIONS OF MULTIGRADED ALGEBRAS,
MIXED MULTIPLICITIES OF IDEALS
AND THEIR APPLICATIONS

N.V. TRUNG AND J.K. VERMA

ABSTRACT. This paper is a survey on major results on
Hilbert functions of multigraded algebras and mixed multiplic-
ities of ideals, including their applications to the computation
of Milnor numbers of complex analytic hypersurfaces with iso-
lated singularity, multiplicities of blowup algebras and mixed
volumes of polytopes.

1. Introduction. Let R = @, , R, be a Noetherian graded
algebra over a field k = Ry. Then R, is a finite dimensional k-vector
space. Consider the generating function

H(R,z) := Z Hpg(n)z"

of the sequence Hg(n) := dimgR,,. By using Hilbert’s Syzygy theorem,
it can be proved that if R = Ek[fi, f2,...,fs] where f; € Ry, for
i=1,2,...,s, then there exists a polynomial h(z) € Z[z] such that

h(z)
(1 —2zd)(1 —zd2)-- (1 —24)°

H(R,z) =

We say that R is standard if R is generated over Ry by elements
of degree 1. In this case the Hilbert function Hg(n) is given by a
polynomial Pgr(z) € Q[z] such that Hr(n) = Pgr(n) for all n large
enough. Lasker [37] showed that the Krull dimension of R, denoted by
dim R, is deg Pr(z)+1. In the same paper, Lasker indicated that these
results could be generalized to Hilbert functions of N"-graded algebras.
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The ideas of Lasker and Noether were presented by Van der Waerden
in a detailed exposition [79].

Let X and Y be two sets of m + 1 and n + 1 indeterminates, respec-
tively. A polynomial in k[X, Y] is bihomogeneous if it is homogeneous
in X and Y separately. An ideal I is called bihomogeneous if it is
generated by bihomogeneous polynomials. Let V' C P™ x P" be the
zero set of a collection of bihomogeneous polynomials. Then the ideal
I(V) of polynomials in k[X,Y] which vanish on V is bihomogeneous.
Therefore, the coordinate ring k[X,Y]/I(V) is a bigraded algebra of

the form
R= @ Ruw,
(u,v)EN?Z

where R(, ) is a finite dimensional k-vector space.

Van der Waerden showed that Hp(u,v) := dimgR(, ) is given by
a polynomial Pg(u,v) with rational coefficients for all large values of
u,v. The degree of Pr(u,v) is at most dim R—2. Let r = deg Pg(u, v).
Write Pg(u,v) in the form

Pr(u,v)= > ey(R) <1;> <”>

it+j<r J

We call Pg(u,v) the Hilbert polynomial and the numbers e;;(R) with
t + j = r the mized multiplicities of R. The mixed multiplicities have
geometrical significance.

Theorem [79]. Let P be a bihomogeneous prime ideal of k[X,Y] and
R =Kk[X,Y]/P. Then e;;(R) is the number of points of intersection of
the variety

V(P)={aeP™ xP"| f(a) =0 forall f € P}

with a linear space defined by i general linear equations in X and j
general linear equations in Y.

The Hilbert polynomial Pg(u,v) and the mixed multiplicities e;;(R)
can be defined for any Noetherian bigraded algebra R over an Artinian
local ring which is standard in the sense that it is generated by elements
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of degree (1,0) and (0,1). These objects were not so well studied until
recently. The total degree of Pgr(u,v) was characterized independently
by Schiffels [52] and Verma-Katz-Mandal [75]. They showed that
deg Pr(u,v) + 2 is the maximal dimension of the relevant prime ideals
of R. Verma-Katz-Mandal also showed that the mixed multiplicities
eij(R) can be any sequence of non-negative integers with at least a
positive entry. Recently, Trung was able to characterize the degrees in
u and v of Pg(u,v) and the positive mixed multiplicities in [65]. In
particular, he showed that the range of the positive mixed multiplicities
is rigid if R is a domain or a Cohen-Macaulay ring, thereby solving an
open question of Verma-Katz-Mandal. See Section 3 for the definition
of rigidity.

An important case of mixed multiplicities of a bigraded algebra is the
mixed multiplicities of two ideals. Let (A, m) be a local ring. For any
pair of m-primary ideals I and J, one can consider the length function
£(A/I*J") which is the sum transform of the Hilbert function of the
standard bigraded algebra

R(I|J) = € 1*J° /1" J°

u,v>0

over the quotient ring A/I. Bhattacharya [5] showed that this function
is given by a polynomial P(u,v) of degree d = dim A and that it can

be written as
u+i\ v+

i+j<d J

for certain integers a;;(I|J). We set e;(I|J) := a;;(I|J) for i + j = d.
These integers were named later as mixed multiplicities by Teissier in
[68] where he found significant applications of e;(I|J) in the study
of singularities of complex analytic hypersurfaces. In particular, the
Milnor numbers of linear sections of a complex analytic hypersurface
at an isolated singularity are exactly the mixed multiplicities of the
maximal ideal and the Jacobian ideal of the hypersurface.

Teissier found several interesting properties of mixed multiplicities
of ideals which have inspired subsequent works substantially. His
characterization of mixed multiplicities as Samuel’s multiplicities of
general elements led Rees [47] to the introduction of joint reductions of
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ideals which generalize the important concept of reduction of an ideal
in multiplicity theory. Another instance is the inequalities

ej(I17)" < e(I)*e(J)
for 7 =0,...,d, which implies the Minkowski inequality
e(IN)V4 < e(I)V? 4 e(J)Y/4.

Teissier raised it as a conjecture and showed it for reduced Cohen-
Macaulay complex analytic algebras [60]. This conjecture was settled
in the affirmative by Rees and Sharp in [48].

Mixed multiplicities are also defined if I is an m-primary ideal and J
an arbitrary ideal by using the standard graded algebra R(I|J). Katz-
Verma [34] and Verma [70, 74] studied first the mixed multiplicities
in these cases. They showed that these mixed multiplicities can be
used to compute the multiplicity of the Rees algebra and the extended
Rees algebra. D’Cruz [16] obtained a multiplicity formula for multi-
graded extended Rees algebra. Herzog-Trung-Ulrich [24] have devised
an effective method to compute the multiplicity of the Rees algebras
which is similar to that of Grébner bases. This method has been ex-
ploited by Hoang [26, 27] and Raghavan-Verma [43] to compute mixed
multiplicities of ideals generated by d-sequences, quadratic sequences
and filter-regular sequences of homogeneous elements of non-decreasing
degrees.

A systematic study of mixed multiplicities of two ideals in the general
case was carried out by Trung in [65]. He characterized the positive
mixed multiplicities and showed how to compute them by means of
general elements. As a consequence, the range of the positive mixed
multiplicities is rigid and depends only on the ideal J.

Mixed multiplicities are also defined for an m-primary ideal and a
sequence of ideals of A. To handle the complexity of this case Trung and
Verma [67] used a multigraded version of the associated graded ring
in order to introduce superficial sequences for a collection of ideals.
Using this notion they obtained similar results as in the case of two
ideals. These results can be applied to describe mixed volumes of lattice
polytopes as mixed multiplicities, thereby giving a purely algebraic
proof of Bernstein’s theorem which asserts that the number of common
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zeros of a system of m Laurent polynomials in n indeterminates with
finitely many zeroes in the torus (C*)™ is bounded above by the mixed
volume of their Newton polytopes.

Another interesting instance of mixed multiplicities is the multiplicity
sequence of an ideal introduced by Achilles and Manaresi in [2]. Let I
be an arbitrary ideal in a local ring (A, m). The associated graded ring

R= @ (muIU + IU+1/mu+IIU + IU—.—I)’

(u,v)EN?
is a standard bigraded algebra over the residue field A/m. The sum
transform w v
HE Y (w,0) = 303 Hali )
i=0 j=0
of the Hilbert function of R is given by a polynomial P}(%l’l)(u,v) of

degree d for u,v large enough. If we write this polynomial in the form

d
ii(R) 5 asi
Pg’l)(u, v) = Z ,'c]#u’vd*’ + lower-degree terms,
£~

—)!

—il(d —1)!
then ¢;(I) := ¢; 4—i(R) are non-negative integers for ¢ = 0,...,d.
Achilles and Manaresi call co(I),...,cq(I) the multiplicity sequence

of I. The multiplicity sequence can be considered as a generalization
of the multiplicity of an m-primary ideal. In fact, if I is an m-primary
ideal, then ¢o(I) = e(I) and ¢;(I) = 0 for i > 0. In particular, ¢o(I) > 0
if and only if the analytic spread of I, s(I), equals d. In this case,
co(I) is called the j-multiplicity of I [1]. Flenner-Manaresi [18] used
j-multiplicity to give a numerical criterion for reduction of ideals. The
multiplicity sequence can be computed by means of the intersection
algorithm which was introduced by Stiickrad-Vogel [55] in order to
prove a refined version of Bezout’s theorem.

In general, the Hilbert function Hg(u,v) of a finitely generated bi-
graded algebra R over a field k is not a polynomial for large u,v. How-
ever, if R is generated by elements of bidegrees (1,0), (d,1),..., (d., 1),
where dy, ... ,d, are non-negative integers, then there exist integers c
and vg such that Hg(u,v) is equal to a polynomial Pg(u,v) for u > cv
and v > vy. This case was considered first by Roberts in [49] and then
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by Hoang-Trung in [28]. Hilbert polynomials of bigraded algebras of
the above type appear in Gabber’s proof of Serre’s non-negativity con-
jecture [50] for intersection multiplicities and that the positivity of
certain coefficient of such a Hilbert polynomial is strongly related to
Serre’s positivity conjecture on intersection multiplicities [51].

An instance of such non-standard bigraded algebra is the Rees algebra
of a homogeneous ideal I in a standard graded algebra A. The existence
of the Hilbert polynomial in this case allows us to study the behavior of
the Hilbert polynomials of the quotient rings A/I" for v large enough
[23]. We can also use the mixed multiplicities of the Rees algebra of
I to compute the degree of the embedded varieties of the blow-ups of
Proj A along 1.

The above development of the theory of Hilbert functions of multi-
graded algebras and of mixed multiplicities of ideals will be discussed
in more detail in subsequent sections.

Illustrating examples and open problems for further study will be
given throughout the paper. The results discussed in this paper merely
reflect our interests and do not cover all the developments due to lack
of space and time and also due to our ignorance.

2. Hilbert functions of multigraded algebras. Let R =
@(uﬂ))eNz R(y4,») be a Noetherian bigraded algebra over an Artinian
local ring Ry = k. We define the Hilbert function of R by
Hp(u,v) := €(R(y,)), where £ denotes the length.

If R is standard graded, Hg(u,v) is given by a polynomial Pg(u,v)
for all u,v large enough. In order to determine the total degree of
Pg(u,v) we need the following notions.

We say that a bihomogeneous ideal I of R is irrelevant if I, ) =
Ry, for all u,v large. We say that I is relevant if it is not irrelevant.
Let Proj R denote the set of all bihomogeneous relevant prime ideals of
R. The relevant dimension rdim R of R is defined by

rdim R = max{dim R/P | P € Proj R}.

The total degree of Pr(u,v) was found independently by Schiffels [52]
and Katz-Mandal-Verma [75].

Theorem 2.1. deg Pg(u,v) = rdim R — 2.
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Let r = rdim R — 2. As in the case k is a field, if we write Pg(u,v)

in the form
u+1t\ v+
PR(U,’U): Z e”(R)< Z )( ] ),

i+j<r

then the numbers e;;(R) are non-negative integers for all ,j with
t + 7 = r. These numbers are called the mized multiplicities of R.

Example 2.2. Let R = k[z1,... ,Zm,Y1,--. ,Yn) with degz; = (1,0)
and degy; = (0,1). Then

Hp(u,v) = Pr(u,v) = <U+m1> <v+n1>

m—1 n—1
for all (u,v) € N2. Therefore, deg Pr(u,v) =m +n — 2 and

1 ifi=m-1,j=n-1,
%‘(R)Z{ J

0 otherwise.

The computation of mixed multiplicities can be reduced to the case
of a bigraded domain by using the following associativity formula (see,

e.g., [28]).

Proposition 2.3. Let A(R) be the set of the prime ideals P € Proj R
with dim R/P = rdim R. Then

eij(R) = > URp)es(R/P).

PEA(R)

Katz, Mandal and Verma [75] showed that the mixed multiplicities
can be any sequence of non-negative integers with at least a positive
entry.

Example 2.4. Let ag,...,a, be an arbitrary sequence of non-
negative integers with at least a positive entry. Let S = k[zo, ... ,Zn, Yo
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Y1,--- ,Yn] be a bigraded polynomial ring with degz; = (1,0) and
degy] = (07 ]-) Let Qt = (mgtamla"' »Tn—t—1,Y0,Y1,--- aytfl)a t =
0,...,m. Set R =5/QoNQ1N--NQEp Then rdimR = n and
A(R) = {P07 EE 7Pn}7 where P, = (CUO,CU]_, s Tp—t—1,Y1,- - - 7yt71)'
We have ¢{(Rp,) = a; and

1 ifi=t,
0 otherwise.

con-s(R/P) = {
By the associativity formula we get e;, ; = a; for i =0,... ,n.

A standard way to make a standard bigraded algebra R into an N-
graded algebra is by defining R; = @, ,—; R(u,v)- This algebra is
obviously standard graded.

For any Noetherian standard graded N-graded algebra R over an
Artinian local ring, we have rdim R = dim R. Let d = dim R. If we
write Pg(t) in the form

e = Zoim(21),

then e(R) := ag(R) is called the multiplicity of R.
The relationship between multiplicity and mixed multiplicities was

found independently in the unpublished thesis of Dade [17] and in
[75].

Theorem 2.5. ([17, 75]). Let R be a Noetherian bigraded algebra
over an Artinian local ring. Assume that the ideals (R(1 o)) and (Ro,1))
have positive height. Then

B(R) = Z 6,']' (R)

i+j=dim R—2

The above results for bigraded algebras have been extended to multi-
graded modules by Herrmann-Hyry-Ribbe-Tang in the paper [22]. To
summarize their results we fix some notations.
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Let s be any non-negative integer. Let R = @,ens R, be a Noetherian
standard IN®-graded algebra over an Artinian local ring k, where
‘standard’ means R is generated by homogeneous elements of degrees
0,...,1,...,0), where 1 occurs only as the ith component, i =
1,...,s.

For a = (a1,... ,as) and 8 = (B1,...,0s) we write a > S if a; > 5;

foralli=1,...,s. Let
Ry = P Ra.

a>0

We define Proj R to be the set of all N®-graded prime ideals which do
not contain R, . It is easy to see that P € Proj R if and only if P, # R,
for all u € N*®.

Let M = @,cz- My be a finitely generated Z*-graded module over
R. Then M, is a k-module of finite length. We call Hys(u) := ¢(M,,)
the Hilbert function of M. Moreover, we define the relevant dimension
of R to be the number

rdim M := max{dim R/P | P € Proj R and Mp # 0}.

Theorem 2.6 [22]. For u > 0, Hp(u) is given by a polynomial
Py (u) with rational coefficients having total degree rdim M — s.

Let r = rdim R — s. If we write Py(u) in the form

1
Py(u) = Z NG (M)u® + terms of degree < r,

a€eN*®
fal=r
where a = (a1, ..., a;) with
ol ==a1 4+ +as, al:=al---ay, and u®:=uf*---ufs,
then ey(M) are non-negative integers if || = r. We call these

coefficients the mized multiplicities of M.

Now we consider the difference of the Hilbert function and the Hilbert
polynomial.
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Let R be a Noetherian standard N-graded algebra over an Artinian
loqal ring. Let M = D, M; be a finite Z-graded module over R. Let
H;h(M ) denote the ith local cohomology module of M with respect
to Ry. Then, for all n € Z,

Hy(n) — Py (n) = (—1)"(Hy, (M)n),
i>0
which is known as the Grothendieck-Serre formula.

A similar formula for the bigraded case was proved by Jayanthan and
Verma [32].

Theorem 2.7 [32]. Let R be a Noetherian standard bigraded algebra
over an Artinian local ring. Let M be a finite bigraded module over R.
Then, for all u,v € Z,

Ho (u,0) = Prr(u,v) = Z(_l)ig(H;hr(M)(u,v))‘

3. Positivity of mixed multiplicities. Let R be a Noetherian
standard bigraded algebra over an Artinian local ring. Can we say
which mixed multiplicities of R are positive? To give an answer to this
question let us first express the total degree of the Hilbert polynomial
Pg(u,v) in another way. For any pair of ideals a, b let

a:b% :={z € S| there is a positive integer n such that zb"™ C a}.
It is easy to see that rdim R = dim R/0 : RY® and therefore

deg Pg(u,v) = dimR/0 : RT® — 2.

Similarly, one can also compute the partial degrees of the Hilbert
polynomial Pg(u,v) [66].
Theorem 3.1 [66].

degyPr(u,v) = dimR/(0: RY + (R,1))) — 1,
deg, Pr(u,v) = dim R/(0 : R + (R(1,0))) — 1.
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For simplicity we set

ri= dimR/O : Rio -2,
ri:=dimR/(0: RT + (Ro,1))) — 1,
ro :=dim R/(0: Rf + (R(1,0))) - L

Corollary 3.2. ¢;;(R) =0 fori>ry orj > ry.

To characterize the positive mixed multiplicities we shall need the
concept of a filter regular sequence which originates from the theory

of generalized Cohen-Macaulay rings [13]. A sequence zi,...,zs of
homogeneous elements in R is called filter-regularif fori =1,... s, we
have

[(Zla s 7Zi—1) : Zi](u,v) = (zla s azi—l)(u,v)
for u and v large enough. It is easy to see that zy,...,z, is filter-
regular if and only if z; ¢ P for all associated prime ideals P 2 R, of
(z1,.-.y2i—1), 1 =1,...,5s (see, e.g., [64] for basic properties).

The following result gives an effective criterion for the positivity of
a mixed multiplicity e;;(R) and shows how to compute e;;(R) as the
multiplicity of an N-graded algebra [66].

Theorem 3.3 [66]. Let i,j be non-negative integers with i + j = r.
Let x1,...,x; be a filter-reqular sequence of homogeneous elements of
degree (1,0). Then e;j(R) > 0 if and only if

dim R/((z1,...,2:) : RY + (R,1))) =j + L.

In this case, if we choose homogeneous elements yi,...,y; of de-
gree (0,1) such that x1,...,%;,Y1,...,Y; is a filter-reqular sequence,
then

eij(R) =e(R/(x1,...,Ti,y1,-..,¥;) : RY).

If the residue field of Ry is infinite, one can always find homogeneous
elements 1, ... ,z; of degrees (1,0) and y1, ... ,y; of degree (0, 1) such
that z1,... ,2;,91,...,y; is a filter-regular sequence.
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For i = 0 we get the condition o + 1 = r which yields the following
criterion for the positivity of eg,.

Corollary 3.4. ey.(R) > 0 (eqo(R) > 0) if and only if ra +1 =7
(7"1 +1= 7").

In spite of Corollary 3.2 one might ask whether e;,. ;(R) > 0 for
t = r1,7 — 9. Using Theorem 3.3 one can easily construct examples
with e; .—;(R) =0 for i = rq,r — ra.

Example 3.5. Let R = k[X,Y]/(z1,y1) N (21,22, 23) N (Y1, Y2, Y3)
with X = {I1,$2,$3,$4}, Y = {y17y27y37y4} and degZL'i = (170 )
degyi = (0, 1), 1= 1,2,3,4. Then R/(R(l,O)) = k[Y] and R/(R(O,l)) =
k[X]. Since 0: R = 0, we get

r=dimR—2=4,
T = dlmR/(R(Lo)) —1= 3,
To = dlmR/(R(OJ)) —-1=3.

It is clear that x4 is a non-zerodivisor in R. Since 4R : RY +(R(1,0)) =
(z1,x2, 3, x4,y1)R, we have

dlmR/(a:4R : Rio + (R(I,O)) = dim k[yz, y3,y4] =3<3+1

Hence e13(R) = 0. By symmetry we also have ez1(R) = 0. Now we
want to compute the only non-vanishing mixed multiplicity eza(R) of
R. It is easy to check that 4,2, y4,y2 is a filter-regular sequence in
R. Put Q = (z4,%2,Ys,y2). Then

R/Q: RY = k[X,Y]/(x1, 2, 4, Y1,Y2,Ya) = k[z3,y3].

Hence ez (R) = e(R/Q : RY) = ((k).

We say that the sequence of positive mixed multiplicities is rigid if
there are integers a,b such that e;,. ;(R) > 0 for a < 7 < b and
e; r—i(R) = 0 otherwise. Obviously, that is the case if e; ,_;(R) > 0 for
r—ry <1< rg.
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Katz, Mandal and Verma [75] raised the question whether the se-
quence of positive mixed multiplicities is rigid if R is a domain or
Cohen-Macaulay. We shall see that this question has a positive answer
by showing that e; »_;(R) > 0 for r — ro < i < ry in these cases.

Recall that a commutative Noetherian ring S is said to be connected
in codimension 1 if the minimal dimension of closed subsets Z C
Spec (S) for which Spec (S) \ Z is disconnected is equal to dim .S — 1.

Using a version of Grothendieck’s connectedness theorem due to
Brodmann and Rung [9] one can prove the following sufficient condition
for the rigidity of mixed multiplicities.

Theorem 3.6 [66]. Assume that all mazimal chains of prime ideals
in R/0 : RY have the same length. Then e; ,_;(R) > 0 fori =r—ra,ry.
IfR/0 : R is moreover connected in codimension 1, then e; ,_i(R) > 0
forr—ry <@ <ry.

If R is a domain or a Cohen-Macaulay ring with ht Ry > 1, then R
is connected in codimension 1 by Hartshorne’s connectedness theorem.
Hence the sequence of positive mixed multiplicities is rigid in these
cases.

Corollary 3.7. Let R be a domain or a Cohen-Macaulay ring with
ht Ry > 1. Thene;, ;(R) >0 forr—re <i<ry.

4. Mixed multiplicities of ideals: the m-primary -case.
Throughout this section (A4, m) will denote the Noetherian local ring of
positive dimension d with infinite residue field.

Let I be an m-primary ideal. Then A/I™ is of finite length for
all n > 0. It is well known that the function ¢(A/I™) is given by a
polynomial Py(z) for large n, called the Hilbert-Samuel polynomial of
I. The degree of Pr(z) is d, and we write Pr(z) in terms of binomial
coeflicients as:

Pi(z) = eol(]) <$ +;l* 1) —ei(]) <”” ;f; 2) 4ot (=1)eq (D).

The coefficients ey(I),e;(I),...,eq(I) are integers. The coefficient
eo(I) is a positive integer called the (Samuel’s) multiplicity of I and it
will be denoted by e(I).
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Let J be an m-primary ideal (not necessarily different from I).
Bhattacharya [6] showed a similar property for the bivariate function

B(u,v) :==L(A/I*J").

Theorem 4.1 [6]. There exists a polynomial P(u,v) of total degree d
in u and v with rational coefficients so that B(u,v) = P(u,v) for all
large u,v. The terms of total degree d in P(u,v) have the form

1 d .
a {eo(IJ)rd +-o <i>ei(I|J)udw +-F ed(I|J)sd} ,

where eg(I|J),... ,eq(I|J) are certain positive integers.

The numbers eo(I|J),...,ei(I|J),...,eq(I|J) were termed as the
mized multiplicities of I and J by Teissier [58]. We have the following
relationship between mixed multiplicities and multiplicity.

Proposition 4.2 [44]. eo(I|J) = e(I) and eq(I|J) = e(J).

For all positive numbers u, v we have Pru v (t) = P(ut, vt). Therefore,

d o
e(I*JY) = ep(I|J)ud + - - + <i>ei(IJ)ud_’vl 4o 4 eq(I1T)ve.

This is perhaps the reason why Teissier defined eq(I]J),... ,eq(I|J) to
be the mixed multiplicities of ideals I and J.

We shall see later that mixed multiplicities can always be expressed
as Samuel’s multiplicities. There are numerous ways of computing
multiplicity of an m-primary ideal. We refer the reader to [57, Chapter
11]. In particular, if A is a Cohen-Macaulay ring and I is a parameter
ideal, then e(I) = £(A/I).

An effective way for the computation of multiplicity was discovered
by Northcott and Rees [40] by using the following notion: An ideal
J C I is called a reduction of I if there exists an integer n such that
JI" = I"*1, They showed that any minimal reduction of an m-primary
ideal I is a parameter ideal if R/m is infinite. It is easy to check that
if J is a reduction of I then e(I) = e(J).
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There is a deep connection between reductions and multiplicity [44].

Theorem 4.3 [44]. Let A be a quasi-unmized local ring. Let
J C I be m-primary ideals. Then J is a reduction of I if and only

if e(I) = e(J).

Recall that A is called a quasi-unmized local ring if dim fl/ p=dimR
for each minimal prime p of A where the m-adic completion of A is
denoted by A.

To generalize the Rees multiplicity theorem for mixed multiplicities
we need to consider a sequence of ideals.

Theorem 4.4 [58]. Let I =1I,...,1I; be a sequence of m-primary
ideals. For any u = (uy,...,us) € N°, let I* = I}*---I%. Then the
function L(A/I") is given by a polynomial P(u) of total degree d for
all w > 0. The polynomial P(u) can be written in terms of binomial
coefficients as

P(u)= 3 eall) (u;a) <u;a> <u;a>

a€eN?
la|<d

where ey (I) are integers which are positive if |a| = d.

The integers e, (I) with |a| = d are called the mized multiplicities of
the sequence I [58].

Teissier showed that each mixed multiplicity of I is the multiplicity
of certain ideals generated by systems of parameters.

Let I = (c1,...,¢r) be an arbitrary ideal in A. We say that a
given property holds for a sufficiently general element a € I if there
exists a non empty Zariski-open subset U C k" such that whenever
a =3 7_; ajc; and the image of (a1,... ,a;) in k" belongs to U, then
the given property holds for a.

Theorem [58]. Let o = (aq,...,0s) with | = d. Let J be a
parameter ideal generated by oy general elements in Iy, ... ,as general
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elements in Is. Then

This result was then generalized by Rees for joint reductions [47]. A
sequence of elements aq, ... ,as is called a joint reduction of the ideals
Ii,...,I,in Aif a; € I; for i = 1,2,...,s and the ideal

Zaijl RN /Y IR R
i-1

is a reduction of I;---I;. The existence of joint reductions was
established first for a set of d m-primary ideals by Rees and for any
number of arbitrary ideals by O’Carroll [41].

The next theorem is one of the fundamental results relating joint
reductions with mixed multiplicities.

Theorem 4.6 [45]. Let I be a sequence of d m-primary ideals. Let
J be an ideal generated by a joint reduction of I. Put1 = (1,1,...,1).
Then

e1(I) =e(J).

It is now natural to ask for the converse of the Rees mixed multiplicity
theorem. This was done for two dimensional quasi-unmixed local rings
by Verma [69] and in any dimension by Swanson [56].

Theorem 4.7 [56]. Let A be a quasi-unmized local ring. Let
I=1,...,1s be a sequence of ideals of A. Leta; € I; forj=1,...,s.
Suppose the ideals (ay,az,...,as) and Iy,...,I; have equal radicals
and their common height is s. Suppose that

e((a1,...,as)Ap) = e1(liAg, ... , I;Ap)

for each minimal prime o of (a1,...,as). Then ay,...,as is a joint
reduction of I,... , L.

5. Mixed multiplicities of two ideals: the general case. Now
we are going to extend the notion of mixed multiplicities of two m-
primary ideals I, J to the case when I is an m-primary ideal and J is
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an arbitrary ideal of a local ring (A, m). To this end we associate with
I, J the standard bigraded algebra

R(I|J):= @ 1*J° /1",

u,v>0

over the quotient ring A/I.

Let R = R(I|J). Since A/I is an Artinian ring, R has a Hilbert
polynomial Pg(u,v). We call the mixed multiplicities e;;(R) the mized
multiplicities of the ideals I and J.

This notion coincides with the mixed multiplicities of the last section
if J is an m-primary ideal. In fact, we have

u—1
CA/THTY) =) (I /T T)
t=0
for all u,v > 0. From this it follows that e;(I|J) = e;;(R) for j < d.

For this reason we will set
ej({|J) = es;(R)

for any m-primary ideal I and any ideal J in A.

Katz and Verma [34] showed if htJ > 1, then degPgr(u,v) =
dim A —1 and ey(I|J) = e(I). This result can be generalized as follows
[66].

Lemma 5.1. Let J be an ideal. Then deg Pr(u,v) = dimA/O :
J*® —1 and ey(I|J) = e(I,A/0: J>®).

We shall denote by e(I, A/Q) the multiplicity of the ideal (I +Q)/Q
in the quotient ring A/Q for any ideal Q of A.

The positivity of the mixed multiplicities e;(I|J) is closely related
to the dimension of the fiber ring of I, which is defined as the graded
algebra

F(I) =@ 1" /mI".

n>0
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It can be shown that J is a reduction of I if and only if the ideal of
F(I) generated by the initial forms of generators of J in F(I); = I/mI
is a primary ideal of the maximal graded ideal of F(I). From this it
follows that if the residue field of A is infinite, the minimal number of
generators of any minimal reduction J of I is equal to dim F(I). For
this reason, dim F'(I) is termed the analytic spread of I and denoted
by s(I). If I is an m-primary ideal, we have s(I) = dim A. We refer
the reader to [40] for more details.

Katz and Verma [34] proved that e;(I|J) = 0 for ¢ > s(J). This is a
consequence of the following bound for the partial degree deg, Pg(u,v)
of Pr(u,v) [66].

Proposition 5.2. deg, Pg(u,v) < s(J).
Question 5.3. Can one express deg, Pr(u,v) in terms of I and J?

To test the positivity of a mixed multiplicity e;(I|J) we have the
following criterion, which also shows how to compute e;(I]J) as a
Samuel multiplicity [66].

Theorem 5.4 [66]. Let J be an arbitrary ideal of A and 0 < i < s(J).
Letay,... ,a; be elements in J such that their images in J/IJ and J/J?
form filter-reqular sequences in R(I|J) and R(J|I), respectively. Then
e;(I|J) > 0 if and only if

dim A/(a1,...,a;): J*® =dim A/0: J* —i.
In this case, we have

ei(I|J) =e(I,A/(a1,...,a;): J®).

Theorem 5.4 requires the existence of elements in J with special
properties. However, if the residue field of A is infinite, such elements
always exist. In fact, any sequence of general elements aq,...,a; in J
satisfies the assumption.

As a consequence of Theorem 5.4 we obtain the rigidity of mixed
multiplicities and the independence of their positivity from the ideal 1.
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Corollary 5.5. Let p = max{i| e;(I|J) > 0}. Then
() htJ —1<p<s(J) -1,
(ii) e;(I|J) > 0 for 0 <i < p,
(iii) max{i| e;(I'|J) > 0} = p for any m-primary ideal I' of A.

Since p doesn’t depend on I, we set p(J) := p. In general we don’t
have the equality p(J) = s(J) — 1.

Example 5.6. Let A = k[[z1, x2, z3, x4]]/(21) N (22, x3). Let I be the
maximal ideal of A and J = (x1,24)A. Then F(J) = k[z1, z4]. Hence
s(J) = dim F(J) = 2. One can verify that the images of x4 in J/I.J
and J/J? are filter-regular elements in R(I|J) and R(J|I). We have
0:J° =0and 44 : J® = (x2,23,24)A. Hence dim A/z4A : J>® =
1<dimA/0:J*® —1=2. By Theorem 5.4 this implies ey (I|J) = 0.

We have the following sufficient condition for p(J) = s(J) — 1.

Corollary 5.7. Suppose all mazximal chains of prime ideals in
A/0: J*® have the same length. Then e;(I|J) >0 for 0 <4 < s(J)—1.

Question 5.8. Can one express p(J) in terms of J?

For the computation of e;(I|J) we may replace I and J by their
reductions. That means e;(I|J) = e;(I'|J’) for arbitrary reductions I’
and J’ of I and J, respectively.

Using reductions one obtains the following simple formula for the
mixed multiplicities e;(I|J), ¢ < htJ — 1 [66].

Proposition 5.9. Let 0 < ¢ < htJ — 1. Let ay,...,a; and
b1,...,bq_; be sufficiently general elements in J and I, respectively.
Then

61(I|J) = G(I,A/((Ll,. .. ,ai)) = 6(((11,.. . ,ai,bl, e 7bd—i))-

As a consequence we obtain the following interpretation of e;(m|J)
which was proved by Katz and Verma [35]. For any ideal J of A we
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denote by o(J) the m-adic order of J, that is, the largest integer n such
that J C m™,

Corollary 5.10. Let (A,m) be a regular local ring and J an ideal
with ht J > 2. Then
er(m]J) = o(J).

For ¢ > ht J we couldn’t find a simple formula for e;(I|J) except in
the following case [66].

Recall that J is called generically a complete intersection if htp =
d —dim A/J and J, is generated by ht p elements for every associated
prime ideal p of J with dim A/p = dim A4/J.

Proposition 5.11. Let J be an ideal of A with 0 < s =ht J < s(J).

Assume that J is generically a complete intersection. Letay,... ,as and
b1,...,bq_s be sufficiently general elements in J and I, respectively.
Then

es(I|J) =e(I,A/(a,...,as)) —e(I,A]J).

6. Milnor numbers and mixed multiplicities. A geometric
interpretation of the mixed multiplicities was found by Teissier in the
Cargese paper [58] in 1973. Teissier was interested in Milnor numbers
of isolated singularities of complex analytic hypersurfaces. We will
now recall the concept of Milnor number and point out some of its
basic properties found in [38].

Let f : U Cc C*"!' — C be an analytic function in an open
neighborhood U of C"™!. Put S. = {z € C""! : ||z|| = ¢}. Define
the map ¢(2) : S- \ {f = 0} — S' by ¢.(2) = f(2)/[If(2)]. Let
[z, = 0f/0z; denote the partial derivative of f with respect to z;.

Milnor and Palamodov proved the following

Theorem 6.1 [38]. If the origin is an isolated singularity of f(2),
then the fibers of ¢. for small € have the homotopy type of a bouquet of
W spheres of dimension n having a single common point where

C{20,21,-+- ,2n}
(fz0r--- > fzr)

p = dimg
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The number p is called the Milnor number of the isolated singularity.
Therefore, the Milnor number is nothing but the multiplicity of the
Jacobian ideal

J(f) = (Fzor- - f2n)
of f. The Milnor number is a very useful invariant to detect the
topology of a singularity.

Let (X,z) and (Y,y) be two germs of reduced complex analytic
hypersurfaces of the same dimension n. Then they are called topo-
logically equivalent if there exist representatives (X,z) C (U,z) and
(Y,y) C (V,y) where U and V are open in C™*! and a homeomor-
phism of pairs between (U, z) and (V,y) which carries X to Y.

The basic result relating the Milnor number with the topology of the
singularity is the following:

Theorem 6.2 [38]. Let (X,z) and (Y,y) be two germs of hypersur-
faces with isolated singularity having the same topological type. Then

pa(X) = py(Y).
Teissier [58] refined the notion of Milnor number.

Theorem 6.3 [58]. Let (X, ) be a germ of a hypersurface in C**!
with an isolated singularity. Let E be an t-dimensional affine subspace
of C™*! passing through x. If E is chosen sufficiently general then the
Milnor number of X N E at x ts independent of E.

The Milnor number of X N E, as in the above theorem, is denoted by
/v‘(i)(X ) ).

Note that p(»*t1)(X,z) is the Milnor number of the isolated singu-
larity. Moreover, ugl)(X) = m;(X) — 1 where m,(X) denotes the
multiplicity of the hypersurface X at x. Put

pr (X, z) = (l”(n-‘rl)(X: x)vﬁ‘(n) (X,z),... 7“(0)(X7 z))-

Teissier’s conjecture (cf. [58]). If (X, z) and (Y,y) have the same
topological type, then

pip (X) = iy (V).
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The above conjecture contains Zariski’s conjecture [81] to the effect
that m4(X) = m,(Y") for topologically equivalent isolated singularities
of hypersurfaces, as a special case. Zariski’s conjecture is still open.

Suppose fi(z0,21,. .. ,2,) is an analytic family of n-dimensional hy-
persurfaces with isolated singularity at the origin. Suppose all these
singularities have the same Milnor number. Hironaka conjectured that
under these hypotheses the singularities have same topological type
when n = 1. This conjecture and the case of n # 2 were settled in the
affirmative by Trang and Ramanujam [63].

A counterexample to Teissier’s conjecture was given in 1975 by
Briancon and Speder by constructing a family of quasi-homogeneous
surfaces with constant Milnor number which is topologically trivial.

It is now known that the constancy of the sequence p* in a family
F(t;x1,...,z,) = 0 of hypersurfaces with isolated singularities at the
origin is equivalent to the topological triviality of general nonsingular
sections of all dimensions through the t-axis; this follows from [8, 58].

Teissier devised a way to calculate the sequence p*(X,z). It turns
out that the sequence p*(X,z) is identical to the sequence of mixed
multiplicities of the Jacobian ideal J(f) and m. More precisely the
following result was proved by Teissier [58].

Let A = C{zp,21,...,2,} denote the ring of convergent power series.
Let f € A be the equation of a hypersurface singularity (X,0). If
(X,0) is an isolated singularity, J(f) is an m-primary ideal. Hence the
function ¢(A/J(f)*m?) is given by a polynomial P(u,v) of total degree
n + 1 for large v and wv.

Theorem 6.4 [58]. Let (X,0) be a germ of a hypersurface in C™*!
with an isolated singularity. Put p» = p)(X,0). Then the terms of
total degree n + 1 in P(u,v) have the form

1 n+1

N+ 1\ (ng1-i) (ne1-i)
(n+1)!§( i >“ “ v

If (X,0) is not an isolated singularity, using mixed multiplicities in
the general case we can also compute the Milnor number of general
hyperplane sections of (X, 0).
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Let s be the codimension of the singular locus of X. Let E be a
general i-plane in C™ passing through the origin, i < s. Then (XNE,0)
is an isolated singularity. Let u(X N E,0) denote its Milnor number.

Let ay,...,a; be general elements in J(f). Let by,...,b,—; be the
defining equation of E. It is easily seen that
/J,(X ﬂE,O) = E(A/(al,.. - ,ai,bl,.. - ,bn,i))
= 6((@1, cee 5 Qg bl, e ;bn—i))-

On the other hand, by Proposition 5.9 we have
ei(m | J(f)) = 6((&1, s 7ai7b17 v 7bn—i))

for ¢ = 0,...,s — 1. Hence we obtain the following formula for
uw(X NE,0) [66].

Theorem 6.5. Let (X,0) be a germ of a complex analytic hypersur-
face. With the above notations we have

(X N E,0) = e;(m | J(f).

7. Multiplicities of blow-up algebras. In this section we will
discuss how mixed multiplicities arise naturally in the calculation of
multiplicity of various blowup algebras. Let (A, m) be a Noetherian
local ring and d = dim A. Let I be an ideal of A. The Rees algebra of
I is the graded A-algebra

Allt] = é i
n=0

where ¢ is an indeterminate. This graded algebra has a unique maximal
homogeneous ideal M = (m,It). To compute the multiplicity of the
local ring A[It]as we recall the following fact.

For any ideal @ of a commutative ring S we define the associated
graded ring of ) as the standard graded algebra

Go(S) = e/t

n>0
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over the quotient ring S/Q. If @) is a maximal ideal of S, then G¢(S)
has the Hilbert function £(Q™/Q™*1). It is easy to check that

e(Sq) = e(Gq(9)).

Huneke and Sally [30] observed that

E(Mn/Mn+1) — Ze(mnfi_[i/mnfi+lli)‘
i=0
They calculated this function for integrally closed m-primary ideals in
a two-dimensional regular local ring and obtained the formula

e(A[It]p) = 1+ o(1),

where o(I) denotes the m-adic order of I.

On the other hand, we know by Corollary 5.10 that e;(m|I) = o(I).
Therefore, the above formula can be rewritten as

e(A[It]pr) = eo(m|I) + ex(m|I).
That raises the natural question whether such a formula holds for an

arbitrary ideal I.

This question was answered by Verma in 1988 for m-primary ideals
[70] and in 1992 for the general case [74].

Theorem 7.1 [74]. Let (A, m) be a local ring of dimension d. Let I
be an arbitrary ideal of positive height. Then

e(A[It]p) = eo(mI) + ex(m|I) + ea(m|I) + - - - + eg_1(m|]).

As a consequence, the above result of Huneke and Sally also holds for
an arbitrary m-primary ideal in a two dimensional regular local ring.

A similar formula for the multiplicity of the extended Rees algebra

Allt,t ') .= @ I" (I" = A for n < 0)
nez

was found by Katz and Verma [34].
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Theorem 7.2 [34]. Let (A, m) be a local ring of dimension d. Let I
be an ideal of positive height. Let N = (m, It,t=1) C A[It,t"']. Then

d—1
e(AlIt,t ) = 2% [e(mz +I)+ ) 2ej(m? + I|I)].

Similarly the multiplicity of the fiber ring F(I) can be expressed
in terms of a mixed multiplicity of m and I [31]. Furthermore, this
knowledge also helps in detecting the Cohen-Macaulay property of F(I)
for certain classes of ideals.

Though we have a well-developed theory of mixed multiplicities when
I is an m-primary ideal [44, 58], there have been a few cases where the
mixed multiplicities can be computed in terms of well-known invariants
of m and I when I is not an m-primary ideal.

The first explicit computation of mixed multiplicities for a non-trivial
case was done by Katz and Verma in [35] for height 2 almost complete
intersection prime ideals in a polynomial ring in three variables.

In 1992, Herzog, Trung and Ulrich [24] computed the multiplicity of
Rees algebras of homogeneous ideals generated by a d-sequence. Recall

that a sequence of elements x1,... ,z, is said to be a d-sequence if
(].) €T; ¢ (1171, “e 7mi—17xi+17 “ee ,iL’n),
(2) (z1y... @) : Tip12k = (T1,... ,2) : g for all k > i+ 1 and all
1> 0.

Examples of d-sequences are regular sequences, the maximal minors
of an nx (n+1) matrix of indeterminates or the generators of an almost
complete intersection [29].

Let A be a standard graded ring over a field £ and m the maximal
graded ideal of A. Let I = (x1,...,,) be an ideal generated by a d-
sequence of homogeneous elements in R with deg (z1) < --- < deg ().
Herzog, Trung and Ulrich calculated the multiplicity of the Rees algebra
A[It] in terms of the multiplicities of A/I; where

Ij:($17-.-7mj71)2$j’ ]:1,,n

They used a technique which is similar to that of Grobner bases and
which does not involve mixed multiplicities.
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Theorem 7.3 [24]. Let I be an ideal generated by a homogeneous

d-sequence xy,...,T, of A with degxy < ... < degz,. Then
Z;Zl e(A/I;) if dim A/I; = dim A,
e(Alltln) = ¢ Y5, e(A/Ij) + e(A) if dim A/T; = dim A — 1,
e(A) ifdmA/I; <dim A — 2.

On the other hand, using essentially the same technique, Hoang
[26] was able to compute the mixed multiplicities e;(m|I) in this case;
namely,

A/l if0<i<s-—1,
cilm | 1) = { e/ T O =050
0 if i > s,
where s = max{i|dim A/I; = dim A/I; — i+ 1}. Combining this with
Theorem 7.1 he could recover the result of Herzog, Trung and Ulrich.

Using the same technique Raghavan and Verma [43] computed the
Hilbert series of the associated graded ring Gr(A[It]).

Theorem 7.4 [43]. Let I be a graded ideal generated by a d-sequence
as above. Let R = Gpr(A[It]). Then

H(R; A, h0) = H(A M) +X2)

s=1

H(A/Isa )\1)
(1 — )\2)5

Inspired by the work of Raghavan and Simis [42], Raghavan and
Verma also computed the Hilbert series of the associated graded ring of
homogeneous ideals generated by quadratic sequences, a generalization
of d-sequences. As a consequence, they obtained the following concrete
formula for determinantal ideals.

Theorem 7.5 [43]. Let A be the polynomial ring in mn indeter-
minates over a field where m < n. Let X be an m X n matric of
these indeterminates. Let I denote the ideal of A generated by the
mazimal minors of X. Then the Hilbert series of the bigraded algebra
R = Gp(A[It]) is given by the formula:

H(R; A1, Ao) = H(A M) + Ao Y H(A/(TI*), M) H(Fy, A2)
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where

II = poset of all minors of all sizes of the matriz X
Q = ideal of II consisting of maximal minors of X
¥ ={rell:m #w}
(II¥) = ideal of A generated by 11
E,, = the face ring over k of I, :={mr € I : 7 < w}.

The techniques of Herzog, Trung and Ulrich were also used to com-
pute the multiplicity of Rees algebras of ideals generated by filter-
regular sequences of homogeneous elements [64].

Recall that a sequence x1,...,x, of elements of A is called filter-
reqular with respect to I if z; ¢ p for all associated prime ideal p 2 I
of (1‘1,... ,xi_l), 1= ]., , .

If A is a generalized Cohen-Macaulay ring, that is, A, is Cohen-
Macaulay and dim A/p + htp = dim A for all prime ideals p # m,
then every ideal generated by a subsystem of parameters x1,... ,x, is
filter-regular with respect to I = (z1,... ,x,).

Theorem 7.6 [64]. Let I be a homogeneous ideal of A generated by
a subsystem of parameters x1,... ,x, which is a filter-reqular sequence
with respect to I with degx; = a1 < ... <degx, = a,. Then

e (A[It]y) = (1 + Z ap--- a,->e(A),

e (A[It,t™y) = (1 + Z ap--- ai>e(A),

where [ is the largest integer for whicha; =1, =0and ay...a; =1 if
a; >1 forallt=1,... ,n.

Comparing the first formula with Theorem 7.1 one might ask whether,
in the above case,

ei(m|I)_{

ay---ae(Ad) f0<i<n-1,
0 if i > n.
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This has been proved by Hoang in [26].

Question 7.7. Can one drop the condition a; < ... < a, in
Theorem 7.67

Note that the proof for a positive answer to this question in [77] is
not correct.

Finally we report a formula for the multiplicity of the local ring
A[It]marry- This is useful in finding when certain symmetric algebras
are Cohen-Macaulay with minimal multiplicity.

Proposition 7.8 [80]. Let (R, m) be a quasi-unmized local ring. Let
I be an ideal of positive height in R with u(I) = s(I) =n. Then

e (AlItlmarry) = €n—1(m | I).

8. Mixed multiplicities of a sequence of ideals: The general
case. For some applications we need to extend the notion of mixed mul-
tiplicities to a sequence of ideals which are not necessarily m-primary.
This can be done in the same manner as for mixed multiplicities of two
ideals.

Let (A, m) be a local ring (or a standard graded algebra over a field
with maximal graded ideal m). Let I be an m-primary ideal and
J = Ji,...,Js a sequence of ideals of A. One can define the N*+1-
graded algebra

R(I|J):= &y Tvo g, Jue /[uott e | U

(uoyu1ye yus) ENSFL

This algebra can be viewed as the associated graded ring of the ideal
(I) of the multi-Rees algebra

Alltg, Jit1,. .. ,Jsts] := P TUo g Jusglogin | s,

(wo,ut,... ,us) ENSFL

In short, set R = R(I | J). Then R is a standard N**!-graded
algebra. Hence it has a Hilbert polynomial Pg(u). For any o € N**1



HILBERT FUNCTIONS AND MIXED MULTIPLICITIES 543

with |a| = deg Pgr(u) we will set

ea(I]Jd) :=eq(R).

If Jy,...,Js are m-primary ideals, e, (I | J) coincides with the mixed
multiplicities defined by using the function ¢(A/I*0J{* ... J¥). How-
ever, the techniques used in the m-primary case are not applicable for
non m-primary ideals. For instance, mixed multiplicities of m-primary
ideals are always positive, whereas they may be zero in the general
case. We have to develop new techniques to prove the following gen-
eral result which allows us to test the positivity of mixed multiplicities
and to compute them by means of Samuel’s multiplicity [67].

Throughout this section let J :=J;...Js and d := dim A/0 : J°°.

Theorem 8.1 [67]. Let d > 1. Then deg Pr(u) =d — 1 and

€(d—1,0,... ,0)(1 | J) = e(Ia A/O : JOO)-

We shall need the following notation for the computation of mixed
multiplicities. A sequence of homogeneous elements z1,...,z, in a
multigraded algebra S is called filter-regular if

[(217 v wzifl) . zi]u = (zla e 7zi71)u
foru>0,i=1,...,m. It is easy to see that this is equivalent to the

condition z; ¢ P for any associated prime P 2 Sy of S/(z1,...,%i-1).
We will work now in the Z**!-graded algebra

Si= @ Ivegpr. g ettt et

u€Zs+1

which is the associated graded ring of the algebra A[Ity, Jity,. .. , Jsts]
with respect to the ideal (IJ).

Let €1,...,&m be any non-decreasing sequence of indices with 1 <
e; < s. Let x1,...,z, be a sequence of elements of A with z; € J,,
i =1,...,m. We denote by z} the residue class of z; in J.,/IJJ.,.
We call zy,...,2, an (g1,... ,em)-superficial sequence for the ideals
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Ji,...,Js (with respect to I) if z7,... ,z}, is a filter-regular sequence
in S.

The above notion can be considered as a generalization of the classical
notion of a superficial element of an ideal, which plays an important
role in the theory of multiplicity. Recall that an element = € a is called
superficial with respect to an ideal a if there is an integer ¢ such that

(a":z)Na®=a"?

for n > 0. A sequence of elements z1,... ,z,, € ais called a superficial
sequence of a if the residue class of z; in A/(xy, ... ,z;—1) is a superficial
element of the ideal a/(z1,... ,2;-1), i = 1,...,m. It is known that
this is equivalent to the condition that the initial forms of x1,...,z,,
in a/a? form a filter-regular sequence in the associated graded ring
Br>0a™/a™ T (see, e.g., [64]).

We have the following criterion for the positivity of mixed multiplic-
ities (a somewhat weaker result was obtained by Viet in [76]).

Theorem 8.2 [67]. Let a = (ag,a1,...,as) be any sequence of
non-negative integers with |a| = d — 1. Let @ be any ideal generated by
an (ai,...,as)-superficial sequence of the ideals I,J1,...,Js. Then

ea(I|J)>0if and only if dim A/Q : J>® = ag + 1. In this case,

ea(I|3) = e(I, A)Q : J).

Let k£ be the residue field of A. Using the prime avoidance charac-
terization of a superficial element, we can easily see that superficial
sequences exist if k is infinite. In fact, any sequence which consists of
a; general elements in Jy, ... , o elements in Js forms an (ayq, ... , as)-
superficial sequence for the ideals Jy,... , Js.

The following result shows that the positivity of mixed multiplicities
does not depend on the ideal I and that the sequence of positive mixed
multiplicities is rigid.

Corollary 8.3. Let a = (ag,1,...,0s) be any sequence of non-
negative integers with || = d — 1. Assume that e, (I|J) > 0. Then
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(a) eq(I" | J) > 0 for any m-primary ideal I',
b) eg(I\J) > 0 for all B = (Bo,...,Bn) with |B| =d—1 and B; < o,
1,.

Mixed multiplicities of a sequence of ideals can be used to compute
the multiplicity of multi-Rees algebras.

Theorem 8.4 [74]. Let J = Jy,...,Js be a sequence of ideals of
positive height. Let M = (m, Jit1,...,Jsts) C A[Jit1,. .., Jsts] and
er = (1,0,...,0) € N1, Then

e(Ality, ..., Jatdm) = D eate,(m]J).

aeNs+1
la|=d—1

We shall see in the next section that mixed volumes of lattice poly-
topes are special cases of mixed multiplicities of ideals.

9. Mixed volume of lattice polytopes. Let us first recall the
definition of mixed volumes. Given two polytopes P, @ in R™ (which
need not to be different), their Minkowski sum is defined as the polytope

P+Q:={a+blacP beQ}

The n-dimensional mized volume of a collection of n polytopes Q1,...,
Q@ in R™ is the value

MVn(Ql;- .. 7Qn)
= Z Z (_l)n_hV"(Qil +ot Qih)7

h=11<i1<--<ip<n

where V,, denotes the n-dimensional Euclidean volume. Mixed volumes
play an important role in convex geometry [7] and elimination theory
[21].

Our interest in mixed volumes arises from the following result of
Bernstein [5, 36] which relates the number of solutions of a system of
polynomial equations to the mixed volume of their Newton polytopes.
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For a Laurent polynomial f € C[xlﬂ, .. ,zx1] we denote by Qs the
convex polytope spanned by the lattice points @ = (a1, ..., ;) such
that the monomial z{* - - - &~ appears in f. This polytope is called the

Newton polytope of f.

Theorem 9.1 [5]. Let fi,...,fn be Laurent polynomials in C[xiﬂ,
ozl with finitely many common zeros in the torus (C*)", where
C* = C\{0}. Then the number of common zeros of f1,... , fn in (C*)™
is bounded above by the mized volume MV, (Qy,,...,Qy,). Moreover,
this bound is attained for a generic choice of coefficients in f1,..., fn-

Here, a generic choice of coefficients in fi,..., f, means that the
supporting monomials of fy,..., f, remain the same while their coef-
ficients vary in a non-empty open parameter space.

Bernstein’s theorem is a generalization of Bezout’s theorem which
says that if fi,...,f, are polynomials in n variables having finitely
many common zeros, then the number of common zeros of fi,..., fn
is bounded by deg fi---deg f,. In fact, by translation we may as-
sume that the common zeros of fi,..., f, lie in (C*)". Let P; de-
note the n-simplex spanned by the origin and all points of the form
(0,...,deg fi,...,0). Then Qy, C P;. Thisimplies MV, (Qy,,..., Qys,) <

MV, (Py,...,P,). It is easy to check that MV,,(Py,...,P,) =deg fy---
deg fr-

Bernstein’s theorem is a beautiful example of the interaction between
algebra and combinatorics. The original proof in [5] has more or less a
combinatorial flavor. A geometric proof using intersection theory was
given by Teissier [62] (see also the exposition [19]). Here we sketch an
algebraic proof of Bernstein’s theorem by means of mixed multiplicities.

First of all, using homogenization we can reformulate Bernstein’s
theorem as follows.

Theorem 9.2. Let k be an algebraically closed field. Let g1, ... , gn be
homogeneous Laurent polynomials in Clzi", «i’, ... o] with finitely
many common zeros in Pg.. Then

MVn(le’ ter 7an)
it

Ho € Pg.

gi(@)=0,i=1,2,... ,n} <




HILBERT FUNCTIONS AND MIXED MULTIPLICITIES 547

Moreover, this bound is attained for a gemeric choice of coefficients in
g1,--- ,9n-

We may reduce the above theorem to the case of polynomials. In
fact, if we multiply the given Laurent polynomials with an appropriate
monomial, then we will obtain a new system of polynomials. Obviously,
the new polynomials have the same common zeros in Pg... Since their
Newton polytopes are translations of the old ones, their mixed volumes
do not change, too.

Now assume that gi,...,g, are homogeneous polynomials in the
polynomial ring A = k[zg,z1,... ,z,], where k is a field. Let M; be
the set of monomials occurring in g;. Let m be the maximal graded
ideal of A and J; the ideals of A generated by M;. Put

R=R(m|Jy,...,J).

We know by Theorem 8.1 that deg Pg(u) = n.

First, using the interpretation of mixed multiplicities as Samuel’s
multiplicity we can prove the following bound for the number of
common zeros of g1, ... ,g, in P}., where k* =k \ {0}.

Theorem 9.3 [67]. Let k be an algebraically closed field. Let
J1,--- s gn be homogeneous polynomials in klzg, 1, ... ,x,] with finitely
many common zeros in P7.. Then

Ha € Py« | gi(a) =0, i=1,2,...,n} <epq,. 1)(R).

Moreover, this bound is attained for a generic choice of coefficients in
g1,--- ,9n if k has characteristic zero.

It remains to show that

MV, (Qqg,---,Qy,
6(0,1,...,1)(R) = (jm g )

To prove that we shall need the following basic property of mixed
volumes.
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Let g9 = wo---2n and Q = (Qgp;Qg1s---,Qg,)- Let X =
(Mo, - - -, A\n) be any sequence of positive integers. We denote by AQ the
Minkowski sum A\gQo + -+ A\, @ and by Q) the multiset of Ay copies
of polytopes Qq,-.., A, copies of polytopes Q,. Minkowski showed
that the volume of the polytope AQ is a homogeneous polynomial in A
whose coefficients are mixed volumes up to constants:

0@ = 3 S MVL(Que.
Eaa

On the other hand, there is also a Minkowski formula for mixed
multiplicities, which arises in the computation of the multiplicity of

the N-graded algebra
R)\ = @ Rt)\'

t>0

One calls R* the \-diagonal subalgebra of R. This notion plays an
important role in the study of embeddings of blowups of projective
schemes [12].

It is easy to check that for all positive integers A,
1
A
e(RY) =nl! Z aea(R))\”‘.
aeN®+L

lal=n

Since R* is a ring generated by monomials of the same degree, using
Ehrhart’s theory for the number of lattice points in lattice polytopes
(see, e.g., [54]) we have

n!V,(AQ)
NES

Now we can compare the two Minkowski formulas and obtain the
following relationship between mixed multiplicities and mixed volumes.

e(RY) =

Theorem 9.4 [67]. With the above notation we have

_ MV,(Qa)
ea(R) = —\/n——|—1

for any o € N1 with |a| = n.
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As a consequence, for a = (0,1,...,1) we get

 MVa(@pro--- Q)
vn+1
which completes the proof of Bernstein’s theorem. Similarly, we can

show that Bernstein’s theorem holds for polynomials over any alge-
braically closed field of characteristic zero.

e,1,..,1)(R) =MV, (Qf,,---,Qy)s

Since any collection of n lattice polytopes in R™ can be realized as
the Newton polytopes of n polynomials, we can always express mixed
volumes of lattice polytopes as mixed multiplicities of ideals.

It is known that computing mixed volumes is a hard enumerative
problem. Instead of that we can now compute mixed multiplici-
ties of the associated graded ring of the multigraded Rees algebra
AlJit1, ... , Jntn] with respect to the ideal m. By Theorem 8.2, these
mixed multiplicities can be interpreted as Samuel multiplicities. The
computation of these multiplicities can be carried out by computer al-
gebra systems such as Cocoa, Macaulay 2 and Singular.

10. Minkowski inequalities and equalities. Let (A, m) be a
local ring of dimension d. Suppose I and J are m-primary ideals. Then
e(I.J) can be computed if the mixed multiplicities of I and J are known:

e(1J) = e(I) + (‘f)el(m) +ot (?)ei(IU) +oete(J).

Teissier [58] made the following conjectures based on the comparison
of this formula with the binomial expansion
d

i>€(1)(d—i)/de(J)i/d o te(J).

(e(I)l/d + e(J)l/d)d _ 6([) 4+ (
Teissier’s first conjecture. For alli=0,1,...,d,

ei(I17)% < e(I)? te(J)".

The validity of Teissier’s first conjecture implies Minkowski’s inequal-
ity for multiplicities:

e(IT)V < e(I)Y4 + e(J)H4,
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Teissier’s second conjecture. Let d > 2. Put e;(I|J) = e; for
i1=1,...,d—1. Then

Teissier proved that the second conjecture implies the first. He
also showed the validity of the second conjecture for reduced Cohen-
Macaulay complex analytic algebras [60]. Rees and Sharp [48] inves-
tigated these conjectures for all local rings and proved:

Theorem 10.1 [48]. Teissier’s conjectures and hence Minkowski
inequality for multiplicities hold for all local rings.

It is natural to ask when equalities hold in Minkowski inequalities. It
is easy to see that if I and J are projectively equivalent, that is, there
exist positive integers r and s so that I” and J° have the same integral
closures, then

e(IN)V4 = e(I)V? + e(J)Y/4,

The converse was proved by Teissier [61] for Cohen-Macaulay normal
complex analytic algebras by using mixed multiplicities. Then Katz
[33] showed that, in quasi-unmixed local rings, Minkowski equalities
hold for m-primary ideals I and J if and only if they are projectively
equivalent.

It is interesting to note that the Rees multiplicity theorem is a con-
sequence of Minkowski equalities. We reproduce Teissier’s enlightening
proof of the converse of Rees multiplicity theorem found in [61].

Let A be a quasi-unmixed local ring. Let J C I be m-primary ideals
with e(I) = e(J) = e. Since JI C I?, e(IJ) > e(I?) = 2%(I). Hence

2el/ < e(IJ)l/d < elld 4 el/d = gel/d

which implies e(IJ)/¢ = e'/® 4 ¢'/¢, Therefore, I and J are pro-
jectively equivalent so that there exist positive integers r and s such
that I™ = Js. Tt follows that e(I") = e(J®). Since e(I") = r%e and
e(J*) = s?e, we get r = s which means that J is a reduction of I.
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We have seen in the preceding section that mixed volume is only
a special case of mixed multiplicities. Therefore, properties of mixed
volumes may predict unknown properties of mixed multiplicities. For
instance, consider the famous Alexandroff-Fenchel inequality among
mixed volumes:

MVn(Ql; 7Qn)2
Z MVn(QlanaQ37"' aQn)MVn(Q%QZaQBa"' 7Qn)

Khovanski [36] and Teissier [62] used the Hodge index theorem in
intersection theory to prove this inequality. This leads us to believe
that a similar inequality should hold for mixed multiplicities [67].

Question 10.2. Let (A, m) be a local (or standard graded) ring with
dimA =n+1> 3. Let I be an m-primary ideal and Ji,... ,J, ideals
of height n. Put o = (0,1,...,1). Is it true that

ealIlJ1s. .y Jn)?
Z €a(I|J1, Jl, J3, cee ,Jn)ea(_”Jg,Jg,Jg, cee ,Jn)?

Using Theorem 8.2 we can reduce this theorem to the case dim A = 3.
In this case, we have to prove the simpler formula:

6(0,1,1)(I|J1,J2)2 > e0,1,1)(IJ1, J1)e,1,1) (L] J2, J2).

Unfortunately, we were unable to give an answer to the above question.

The difficulty can be seen from the fact that the above inequality
does not hold if Jy,...,J, are m-primary ideals. In fact, we can even
show that the reverse inequality holds, namely,

eaI|J1, .., Jn)?
S ea(I|J1aJ17J3a"' 7Jn)ea(I‘J2aJ27J37"' 7Jn)

where o = (0,1,1,...,1). For that we only need to show the inequality
e)(J1]J2)? < e(J1, A)e(Js, A),

for a two-dimensional ring A. But this is a special case of Theorem 10.1.
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11. The multiplicity sequence. The main aim of this section is to
present another generalization of the multiplicity of an ideal by mixed
multiplicities.

Let (A, m) be a local ring of dimension d and I an ideal of A. If I is
m-primary, we can consider the Hilbert-Samuel function ¢(A/I') and
define the multiplicity e(I). Actually, e(I) is the multiplicity of the
associated graded ring G := Gy(4).

If I is not m-primary, we can replace G by the associated graded ring
of the ideal mG of G:

R:=Gne(G) = EB (m 1Y 4 17 fmet L 4 o),
(u,v)EN?Z

This is a standard bigraded algebra over the residue field A/m. Hence
we can consider the Hilbert function Hg(u,v). Since Hg(u,v) is a
polynomial for u,v large enough, the sum transform

H(11 (u,v) ZZHRz]

=0 j=0

is given by a polynomial Pg’l) (u,v) for u,v large enough. It is easy to
check that deg PI(%I’I) (u,v) = d. If we write this polynomial in the form

d
id—i(R
P}(zl,l)(u,v) — Z ;:!(Cili—(i))!uz 4=1 1 Jower-degree terms,
i=0

then ¢; 4 ;(R) are non-negative integers for i = 0,... ,d. We set
Ci(I) =C; dfi(R)-

It is easily seen that the mixed multiplicities of R belong to the
multiplicity sequence: e;;(R) = ¢;+1(I) for i +j =d — 2.

The multiplicity of the associated graded ring G with respect to the
maximal graded ideal can be expressed as the sum of the multiplicity
sequence.
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Theorem 11.1 [17]. Let M denote the mazimal graded ideal of the
associated graded ring G of I. Then

d
e(Gar) = Yo ei(D)

Achilles and Manaresi [2] call ¢o(I),...,cq(I) the multiplicity se-
quence of I. The multiplicity sequence can be considered as a gen-
eralization of the multiplicity of an m-primary ideal.

Theorem 11.2 [2]. Let s = s(I) and r =dim A/I. Then

(a) ¢;(I) =0 forj<d—sandj>r,

(b) c4—s(I) = > e(mGp)e(G/P), where P runs through all highest
associated prime ideals of mG such that dimG/P +ht P = d,

(€) er(I) = Y e(Iy)e(A/p), where p runs through all highest associ-
ated prime ideals of I such that dim A/p + ht p = d.

As a consequence, if [ is an m-primary ideal, then ¢q(I) = e(I) and
¢i(I)=0fori> 0.

In particular, co(I) > 0 if and only if s(I) = d. In this case, we set
J(I) :=co(I) and call it the j-multiplicity of I [1].

Using j-multiplicity one can extend the Rees multiplicity theorem for
arbitrary ideals as follows [18].

Theorem 11.3 [18]. Let J be an ideal in J. If J is a reduction of
I, then j(J,) = j(Iy) for all prime ideals p O I with s(I,) = dim A,,.
The converse holds if A is a quasi-unmized local ring.

The multiplicity sequence can be computed by the following formula.

Theorem 11.4 [2]. Let Q = (x1,...,2s) be a minimal reduction
of I such that the images of x1,...,xs in R,y = I/ml are a filter-
regular sequence of R with respect to the ideal (Ro,1)). Set Qo := 0
and Q; = (x1,...,x;) fori=1,...,s. Then

cami(l) =D UAp/(Qimy : I, m:))e(A]p),
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where p runs through all associated prime ideals containing I of the

ideal (Q;i—1:I®,z;).

For the computation of the multiplicity sequence we may assume
that the residue field of A is infinite. In this case we can always
find a minimal reduction @ of I which satisfies the assumption of the
above theorem. Moreover, if J is a reduction of I, then ideal J* of R
generated by the images of the elements of J in R ;) = I/mI has the
property (J*) ) = (R(0,1))(u,v) for all u,v large enough. Therefore,
we can find a minimal reduction @) of J (and hence of I') which satisfies
the assumption of the above theorem for both ideals J and I. As
an immediate consequence we obtain the following fact (a complicated
proof was given by Ciuperca in [11]):

Corollary 11.5. Let J be a reduction of I. Then ¢;(J) = ¢;(I) for
ali=0,...,d.

Inspired by the Rees multiplicity theorem we raise the following
question.

Question 11.6. Let A be a quasi-unmixed local ring and J an
ideal in T with v/J = V1. Ts J a reduction of I if ¢;(J) = ¢;(I) for
i=0,...,d?

The multiplicity sequence can be used to compute the degree of the
Stiickrad-Vogel cycles in the intersection algorithm.

Let X,Y C P} be two equidimensional subschemes. Ome can
associate with X NY certain cycles vy, ... , v, as follows [55, 78]. Let
V be the ruled join variety of X and Y in

Piy(l;)rl = PI‘Oj k(t)[wOa <o Tny Yo, - - 7yn]7

where k(t) = k(t;;| 1 <i <n+1,0 <j <n)is a pure transcendental

extension of k. Put wy = [V]. Let E be the linear subspace of
PZ’(L;)'I given by the equations g — yo = -+ = =, — y, = 0. For

1 =20,...,n—1, let h; denote the divisor of V given by the equation
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Z?:o tij(z; —y;) = 0. If w;_; is defined for some ¢ > 1, we decompose
w;_1 Nh;_1 = v; + w;, where the support of v; lies in £ and w; has no
components contained in E. Using the cycles vy, ... , v, Stiickrad and
Vogel proved that there exist a set A(X,Y") of irreducible subschemes
C of (X NY) x, k(t) and intersection numbers j(X,Y;C) such that

deg XdegY = Z J(X,Y;C)degC.
CeA(X,Y)

Algebraically, if we set A = k(t)[zo, ... ,Zn, Y0, - ,Yn]/(Ix, Iy ), where
Ix and Iy denote the defining ideals of X and Y in k[zo,... ,z,] and
klyo,--- ,yn), and I = (2o — Yo, .- - , Tn — Yn)A, then degv; = cq_;(1)
by Theorem 11.4.

Using Theorem 5.4 we can also describe degv; in terms of the mixed
multiplicities e;(m|I) [66].

Theorem 11.7 [66]. With the above notations we have

degv; = e;—1(m|I) — e;(m|I).

Achilles and Rams [4] showed that the Segre numbers introduced by
Gaffney and Gassler [20] in singularity theory and the extended index
of intersection introduced by Tworzewski [68] in analytic intersection
theory are special cases of the multiplicity sequence. We refer the
readers to the report [3] for further applications of the multiplicity
sequence.

12. Hilbert function of non-standard bigraded algebras. In
general, the Hilbert function Hg(u,v) of a finitely generated bigraded
algebra R over a field £ is not a polynomial for large u, v.

In this section let R be generated by elements of bidegrees (1, 0),(d, 1),
..., (dy, 1), where dy, ... ,d, are non-negative integers. This case was
considered first by Roberts in [49] where it is shown that there exist
integers ¢ and vy such that Hg(u,v) is equal to a polynomial Pg(u,v)
for u > cv and v > vg. He calls Pg(u,v) the Hilbert polynomial of the
bigraded algebra R.

It is worth remarking that Hilbert polynomials of bigraded algebras
of the above type appear in Gabber’s proof of Serre’s non-negativity
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conjecture (see, e.g., [50]) and that the positivity of a certain coefficient
of such a Hilbert polynomial is strongly related to Serre’s positivity
conjecture on intersection multiplicities [51].

Roberts’ result can be made more precise as follows [28].

Theorem 12.1. Let d = max{d;,...,d.}. There exist integers
uo, Vo such that for u > dv + vy and v > vy, Hg(u,v) = Pr(u,v).

If R is a standard bigraded algebra, then d = 0. Hence, the Hilbert
function Hg(u,v) is given by a polynomial for u, v large enough. As in
the standard bigraded case, the total degree deg Pr(u,v) can also be
expressed in terms of the relevant dimension of R [28].

Theorem 12.2. deg Pr(u,v) = rdim R — 2.

The partial degree deg, Pr(u,v) can be expressed in terms of the

graded modules
RU = @R(u,v)

u>0

Note that Ry is a finitely generated standard N-graded algebra and R,
is a finitely generated graded Rp-module. Define

sdim R := dim (R/0 : RY)o.
If R is a standard bigraded algebra, then (R/0 : RY)y = R/(0 :
R + (Ro,1)))-
Theorem 12.3. Fort large enough,

deg, Pr(u,v) = dim R; — 1 = sdim R.

This result was already proved implicitly by Roberts for bigraded
algebras generated by elements of bidegree (1,0), (0,1), (1,1) [51].

By Theorem 12.2 and Theorem 12.3 we always have

rdim R = deg Pgr(u,v) > deg, Pr(u,v) = sdim R.
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Note that the inequality may be strict.
Question 12.4. Do there exist similar formulas for deg, Pr(u,v)?

Now we write the Hilbert polynomial Pg(u,v) in the form

s €; (R)

Pg(u,v) = ; muiv“i + lower-degree terms,
where s = degPgr(u,v). Following Teissier we call the numbers

ei(R) the mized multiplicities of R. One can show that the mixed
multiplicities e;(R) satisfy the associativity formula of Proposition 2.3.

Unlike the case of standard bigraded algebras, a mixed multiplicity
e;(R) may be negative.

Example 12.5. Let S = k[Xy,... , X, Y1,..., Y] (m > 1,n > 1)
be a bigraded polynomial ring with deg X; = (1,0) and degY; = (d;, 1).
We have Hg(u,v) = Pg(u,v) for v > dv with deg Ps(u,v) =m+mn —2
and

—1)mil I din if g
€imtn—2—i = { (=1) Lijitetin=m-1-i &1 i lfl N
0 if 1 > m.

We set pr := max{i| e;(R) # 0}.

Theorem 12.6 [28]. The mized multiplicities e;(R) are integers with
eprn(R) > 0.

We always have pgp < deg,Pgr(u,v). The following result gives a
sufficient condition for pg = deg, Pr(u,v). Note that this condition is
satisfied if R is a domain or a Cohen-Macaulay ring.

Proposition 12.7 [28]. Suppose dim R/P = rdim R for all minimal
prime ideals of Proj R. Let d = deg, Pr(u,v). Then e4(R) > 0.

As a consequence we obtain the following generalization of a result by
Roberts [51] if R is generated by elements of degree (1,0), (0,1),(1,1).
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That result was used to give a criterion for the positivity of Serre’s
intersection multiplicity.

Corollary 12.8. Suppose there exists an associated prime ideal P
with dim R/P = rdim R and sdimR/P = sdim R. Let s = sdim R.
Then es(R) > 0.

Question 12.9. Can one describe pg in terms of well-understood
invariants of R?

13. Hilbert function of bigraded Rees algebras. The inspira-
tion for our study on Hilbert function of non-standard bigraded algebras
comes mainly from the fact that these algebras include Rees algebras
of homogeneous ideals.

Let A be a standard graded algebra over a field k. Let I be a
homogeneous ideal of A. The Rees algebra A[It] is naturally bigraded:

A[It](uw) = (Iv)utv

for all (u,v) € N2

Let A = k[z1,...,2,], where x1,... ,2, are homogeneous elements
with degx; = 1. Let I = (f1,...,fr), where f1,..., f, are homoge-
neous elements with deg f; = d;. Put y; = f;t. Then A[It] is gener-
ated by the elements z1,... ,z, and y1,... ,y, with degz; = (1,0) and
degy; = (dj,1). Hence A[It] belongs to the class of bigraded algebras
considered in the preceding section.

Theorem 13.1 [28]. Set d = max{di,...,d,} and s = dim A/0 :
I°°—1. There exist integers wugy, vg such that for u > dv+ug and v > vy,
the Hilbert function H r(u,v) is equal to a polynomial Parry(u,v)
with

deg Pajr4)(u, v) = deguPajry(u,v) = s.

Moreover, if s > 0 and Pajrq(u,v) is written in the form
— e;(A[It])

Parrg(u,v) = Z muivs_i + lower-degree terms,
i=0
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then the coefficients e;(A[It]) are integers for all i with es(A[It]) =
e(A/0: I®).

This result has some interesting applications. First of all, the Hilbert
polynomial Py(y4(u,v) can be used to compute the Hilbert polynomial
of the quotient ring A/I”. In fact, we have

PA/Iv (u) = PA(U) — PA[”] (u,v)
for v large enough.

In particular, we can prove the following property of the function
e;(M/I*M) for any finitely generated graded A-module M [23].

Theorem 13.2 [23]. The Hilbert coefficient e;(M/I*M) as a func-
tion of k is of polynomial type of degree < n — d + i, where d =
dim M/IM.

Let V denote the blow-up of the subscheme of Proj A defined by I.
It is known that V' can be embedded into a projective space by the
linear system (I¢). for any pair of positive integers e,c with ¢ > de
[14]. Such embeddings often yield interesting rational varieties such as
the Bordiga-White surfaces, the Room surfaces and the Buchsbaum-
Eisenbud varieties. Let V.. denote the embedded variety. The ho-
mogeneous coordinate ring of V, . is the subalgebra k[(I¢).] of A. It
has been observed in [12, 53] that k[(I¢).] can be identified as the
subalgebra of A[It] along the diagonal {(cv,ev)| v € N} of N2. Since
P4rq(cv, ev) is the Hilbert polynomial of k[(1€).], we may get uniform
information on all such embeddings from Pz (u, v).

Proposition 13.3. Let s = dim A/0: I — 1. Assume that ¢ > de.

Then N
S . ,
deg V.. = . )ei(AlLt])cte® .
eg Ve, Z()e( [It])c'e

=0

If I is generated by a d-sequence we have the following formula for
the mixed multiplicities e; (A[It]), which displays a completely different
behavior of e;(A[It]) than that of e;(m|]) (see Theorem 7.3).
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Theorem 13.4 [28]. Let I be an ideal generated by a homogeneous
d-sequence fi,...,fr with degf; = d; and dy < ... < d,. Let
Io=(f1,...  fq-1) i fqg forq=1,...,r. Set

s:=dimA/I; — 1,
m :=max{q | dimA/I; + ¢ — 2 = s}.

Then deg Pa(ry(u,v) = s and

min{m,s—i+1}

e(Allt]) = Y (=) T He(A/L) > ... dis

j1+---+jq:'s_q_i+1

fort=0,...,s.

Now we will apply Theorem 13.4 to compute the mixed multiplicities
of Rees algebras of complete intersections and of determinantal ideals.

Corollary 13.5. Let f1,...fr be a homogeneous regular sequence
with degfy = dy < -+- < degf, = d. and I = (f1,...,fr). Set
s =dim A — 1. Then deg Pajry(u,v) = s, and

ei(A[It])
min{u,v—i+1}

= (_1)s—q—i+16(A) Z d]1'1+1

q=1 Ji+...+jq=s—q—i+1

oo dda L i
dq—l dq

fori=0,...,s.

Corollary 13.6. Let A = k[X], where X is an (r — 1) X r matriz of
indeterminates. Let I be the ideal of the maximal minors of X in A.
Set s = (r — 1) x 7 — 1. Then deg Par1y(u,v) = s and

ei(A[It]) = min{%iﬂ}(_l)s_q_iﬂ (7“ - 1> <s - i)rs—q—i—H

= qg—1)\¢—1

fori=0,...,s.
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Hoang [27] also computed e;(A[It]) in the case where I is the defining
ideal of a rational normal curve.

Acknowledgments. The authors thank Bernard Teissier for several
useful comments.
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