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SOLVABLE INFINITE FILIFORM LIE ALGEBRAS

CLAS LOFWALL

ABSTRACT. An infinite filiform Lie algebra L is residually
nilpotent and it is graded associated with respect to the lower
central series, has smallest possible dimension in each degree,
but is still infinite. This means that gr (L) is of dimension
two in degree one and of dimension one in all higher degrees.
We prove that if L is solvable, then already [L, L] is abelian.
The isomorphism classes in this case are given in [1], but
the proof is incomplete. We make the necessary additional
computations and restate the result in [1] when the ground
field is the complex numbers.

1. Introduction. Infinite filiform Lie algebras have been stud-
ied among others by Fialowski [2], Millionshchikov [4] and Shalev-
Zelmanov [5]. They may be seen as projective limits of finite dimen-
sional filiform Lie algebras introduced by Vergne [6] as nilpotent Lie
algebras with maximal degree of nilpotency among all nilpotent Lie
algebras of a certain dimension. One result is that there is only one
infinite filiform naturally graded Lie algebra L, where naturally graded
means that L is isomorphic to its graded associated with respect to the
filtration defined by the lower central series (L' = L, L‘*! = [L, L],
¢ > 1). This Lie algebra, denoted My, has a basis a,e1,es,... with
[a,e;] = eit1 and [e;, e;] = 0 for all ¢ and j. We have that M is gener-
ated by a, e; which is a basis for the component of degree 1, and ¢; is a
basis for the component of degree i for 7 > 2. A general infinite filiform
Lie algebra L may be seen as a (filtered) deformation of My such that
gr (L) = My. Thus we have the following definition:

Definition 1.1. An infinite filiform Lie algebra is a Lie algebra L
with a basis a, ey, €3, ... satisfying

o0
[a,ej] = €j+1 and [ej,€j+1] = Z)\jsezj+1+s for allj Z 1

s=1

for some Ajs, j, s > 1 such that for each j, Ajs =0 for s > 1.
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The missing products in the definition above are determined by the
Jacobi identity, more precisely, for 1 < k < m we have

CRAED DR (i [y
s>1
0<j—k<m—j—1
Moreover, the Jacobi identity imposes conditions on (Ajs). This is
nicely described in [4], where an explicit list of quadratic polynomials
is given with common zero-set equal to the set of (\;,) that deter-
mines a deformation. The polynomials are obtained by considering a
deformation as above as a cochain 3 of degree two in the standard
complex C*(My, My). The condition on 3 making the new structure
defined by ¥ to a Lie algebra is in general that i satisfies the “de-
formation equation,” di + [1,]/2 = 0, where [,] is the Nijenhuis-
Richardson Lie superalgebra structure on C*(My, Mp). It is proved in
[4] that in this special situation, the deformation equation is equivalent
to dp = [¢,9] = 0 and that all possible infinite filiform Lie algebras
may be seen as the set of elements ¢ € ®;~0H>*(My, Mp) such that

[, 9] = 0.

The solutions are known in two extreme cases. If A\j; = 0 for j > 1,
then there are no conditions on (\5) to be a solution. This gives rise
to infinite filiform Lie algebras L satisfying [L, L] abelian, ie., L is
solvable and next to abelian. We will prove in the next section that
these Lie algebras consist of all solvable infinite filiform Lie algebras.
The isomorphism classes, which are parametrized by infinitely many
parameters, have been given by Bratzlavsky [1], but the proof there is
incomplete. We perform the necessary extra computations in the last
section and restate Bratzlavsky’s theorem.

The other extreme case where the solutions are known is when A\;, =0
for s > 1. In contrast to the first case, there are only two Lie algebras
in this case, denoted M> and L; in the literature. Together with M,
these Lie algebras are the only infinite filiform Lie algebras which are
N-graded and one-dimensional in each degree ([2, 5]). The Lie algebra
M, belongs to both extreme cases; it has Aj; = 0 for j,s > 1. The Lie
algebra L is the subalgebra of the Witt algebra generated by z*19/0x
fori > 1.

The subalgebra of the Witt algebra generated by 22d/dz and x**'d/dz
for ¢ > k, where k > 1, is also infinite filiform and defined by a defor-
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mation of My satisfying A\j; = 0 for s # k — 1. It is conjectured in
[4] that this gives all solutions in the case when A;; = 0 for s # s
(together with the solution when only A5, # 0).

We do not know if there are other infinite filiform Lie algebras than
those described above. In other words, does there exist a non-solvable
infinite filiform Lie algebra which is not a subalgebra of the Witt
algebra?

3. Criterion for solvability.

Lemma 2.1. Let L be an infinite filiform Lie algebra. Then

L is solvable <= LF is abelian for some k.

Proof. Let L) = L and L% = [L*®) L(#)]. Then by induction
and Jacobi identity L(?*) c L?* and hence the implication to the left
follows.

To prove the implication in the other direction, suppose L is solvable
and L? = [L, L] # 0. Then there is a non-zero abelian ideal I contained
in L2. Let e, +r € I, where r € LFt1,

Claim: for all j > k for all N, e; € I+ L".

Proof of Claim: By applying ad’ ™ to e +r € I one gets ej+mr €1,
where 7y € L', Suppose r; = Xejy1 + 1/, where ' € LiT2. Since
Xeji1+ A[a,71] € I, we get ej +12 € I for some 72 € L/T2, Continuing
in this manner, the claim follows. Now, let ¢, > k. Then for all N > 1

leivej] € [I,I] + LN = LY.

But ﬂNZlLN = 0. Hence LF is abelian. O

Theorem 2.2. Let L be a solvable infinite filiform Lie algebra over
a field of characteristic zero. Then [L, L] is abelian.

Proof. According to the lemma, we may suppose that L™ is abelian
and n > 2. We will prove that L™ is abelian. This gives the theorem
by induction.



432 CLAS LOFWALL

We know that L has a basis {a,eq,eq,...} such that [a,e;] = e;y1
and [e;, e;] € span{ex; k> i+ j+1}. We have L' = span{ej; j > i}.
Hence, by assumption

leie;] =0 fori,j>n+1.

Let
[en—1,€n] = Ao€2n + Me2pt1 + -

[€ns€nt1] = Mo€2n+2 + M1€2n43 + - - -

For j > n+1, we get
[ena e]] = [ern [a’7 ejfl]] = _[en+17 ejfl] + [a7 [ena ej*l]] = [a’7 [en7 ejfl]]'
Hence, by induction

len, €] = poenyjr1 + pr€nipjya+ 0,
for all j > n + 1. Moreover,

[enflv en+1] = [enflv [av €n]] = _[e’m en] + [aa [enflv en]]
= Ao€2n+1 + AM€anya + - .
Suppose
[en—1,€ntj] = (Ao — (J — Dpo)ezn+j + (A1 — (J — Dpa)eantjrr +--- -
Then,
[enfla en+j+1] = _[ena en+j] + [a7 [enfla en+j]]
= (Ao — jpo)ezntj+1 + (M — jur)eantjra + -0,

and hence, by induction, the last formula holds for all j > 0. Since
L™t is abelian, we have

0= [[en—la en]a en-l—l]
= jlen-1,€ant245] = Y Ailen, €an g1l
>0 k>0
= 1 Y (k= (n 45+ Dpr)esnt ot
i>0 k>0

— D Akbjesnikias
Gk>0

== > (n+j+ Dpjpresntopshe
Gk>0
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Suppose i > 0 and p; = 0 for j < 4 — 1. Then from the above

—(n+1i+ 1)u? = 0. Hence, p; = 0 and by induction it follows that
p; =0 for all ¢ > 0. Hence L" is abelian. O

Corollary 2.3. Suppose a set (\js) of parameters determines a
deformation L of My as in the introduction and suppose \js = 0 for all
but finitely many j,s. Then A\js =0 for j > 1.

Proof. The assumption gives that L* is abelian for some k. Hence,
by Lemma 2.1 and Theorem 2.2, it follows that [L, L] is abelian which
implies that A;s = 0 for j > 1, since [L, L] has a basis {ez,e3,...} and
lej, ej+1] = 2521 Ajs€2j+1+s- o

3. The solvable case. Suppose (A\) = (As)s>1 is an arbitrary
sequence of constants. We define a Lie algebra L(y) as follows. Ly
has basis {a, 1, €2, ...} and multiplication

[a, €i] = €41 for 7 Z 1

[61,€i] = Z)\j61+i+j for 7 Z 2
i>1

lei,ej] =0 fori,j>2.

It follows that [a, [e1, e;]] = [e1, €;41] for ¢ > 2. From this it is easy to
see that Jacobi identity holds, so L(y) is indeed an infinite filiform Lie
algebra such that L%A) is abelian and any infinite filiform Lie algebra
L such that [L, L] is abelian is obtained in this way. Moreover, L)
is obtained from Mj by performing the deformation defined by (A;s),
where A\js =0 for j > 1 and Ajs = A,

In order to investigate when L(y) and L,/ are isomorphic, we will
study automorphisms ¢ of L) and determine the structure vector (\')
in the new basis {¢(a), ¢(e1), p(ez), ... }. Such a map is determined by

#(a) = coa + crer + caea + - - -
d(e1) = doa + dyey +dgez + -+,

since then ¢(e;+1) = é([a,ei]) = [P(a),d(e;)] is determined induc-
tively. It is easily seen that cy # 0 and [¢(e1), ¢(e2)] = ¢y “dog(es) +
Hence, {¢(a),d(e1), p(ez),...} is a basis of the same kind as
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{a,e1,es,...} (ie., [e1,e2] € L*) only if dy = 0. Then ¢ is an automor-
phism if and only if ¢yd; # 0. Following [3] we may decompose any
automorphism as a composition of three types of automorphisms:

v(co,c1,d1) : ¢(a) = coa + creq
¢(e1) = dies
o(d,k), k>2: ¢(a) =a
p(e1) = e1 + dey,
(e, k), k>2: ¢(a) = a+ cep
pler) = e1.

The proof of the fact that the automorphisms of type ¢ and 7 do not
change () is missing in [1]. The following lemma completes the proof
in [1].

Lemma 3.1. Two Lie algebras L(xy and Ly are isomorphic if and
only if (X') is obtained from () by performing an automorphism of
type v.

Proof. Consider first the case o(d, k), k > 2. Then

d(e2) = [a, e1 + deg] = e2 + degt1
¢(€3) = [aa ez + dek+1] =e3 + deg+2,

and in general, by induction
d(ei) = [a,e;—1 + depqi2] = €; + degyi1.
Hence,

[p(e1), p(e2)] = [e1 + dek, e2 + dek11]

= Z Niesyi +d Z Ai€k+2+4i

i>1 i>1
=Y Nilessi+deryari) = Y Aid(esri)-
i>1 i>1

It follows that the automorphism of type o(d, k), & > 2, does not change
the vector (Ajs).
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Now, consider the case 7(c, k), k > 2. Then

¢(€2) - [a + cek, 61] =€2 — CZ >\i€k+1+i

i>1
d(es) = [a + cex,ea — CZ Xi€k+1+4)
i>1
=e3 — CZ Ai€kt2ti,

i>1

and in general, by induction

dle;) = la+cer i1 — €Y A€ot =€ — €D Ar€rij_1ir

r>1 r>1
Hence,
[p(e1), p(e2)] = [61,62 - CZ)\iek+1+i:|
i>1
= Z >\i€3+i - CZ i Z /\r€k+2+i+r
i>1 i>1  r>l1
= Z Ai <63+i —c Z )\rek+2+i+r> = Z Aig(esyi). o
i>1 r>1 i>1

It is easy to see that an automorphism of type v(co, 0, d;) transforms
the sequence (A1, Az,...) into the sequence (co_2d1)\1,c0_3d1)\2, e )
This gives the possibility to choose the first two non-zero \; : s to
be 1.

Suppose that A; = 0 for ¢ < t and \; = 1, and consider an
automorphism ¢ of type v(0,c,0). Then it is easy to see that
[#(e1), d(e2)] = d(es+t) + Aer10(e3+t+1) + Aegod(estiqa) + -
+ (A2t — (1 + t)e)p(esqa:) + higher terms.

Hence, if ¢ = Ag¢/(1 + ¢t) then (\) is transformed to (A') where A, =0
for i <t, A} =1 and A}, = 0. In all, any (\) may be transformed to a
sequence (u) with the following properties

pi=p; =1 forsomel<i<j, j#2i
e =0 forr<j, r#i
p2i = 0.
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Also, if (u) and (p') are two sequences of this kind, such that an
automorphism of type v(cp,c1,d;) transforms (u) to (u'), then this
forces co = 1,¢; = 0,d; = 1 and hence u = p'.

Hence, we get the following version of Bratzlavsky’s theorem (in
combination with Theorem 2.2) in the case when the ground field is
the complex numbers.

Theorem 3.2. Suppose L is a solvable infinite filiform Lie algebra
over the complex numbers. Then there are unique integers 1 < r < s,
s # 2r and complex numbers A\¢, t > s, t # 2r such that L is isomorphic
to the infinite filiform Lie algebra given by the equations

[a,e;] = eit1 fori>1
ler, €] = eryipr + €1pivs + D Meryipe fori>2
t>s,
t;ZQr
[ei, €] =0 fori,j=2.
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