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COMMUTING NILPOTENT MATRICES
AND ARTINIAN ALGEBRAS

ROBERTA BASILI, ANTHONY IARROBINO AND LEILA KHATAMI

ABSTRACT. Fix an n X n nilpotent matrix B whose Jordan
blocks are given by the partition P of n. Consider the
ring Cg C Matn(K) of n X n matrices with entries in an
algebraically closed field K that commute with B, and its
subset, the variety Np C Cp of those that are nilpotent.
Then Np is an irreducible algebraic variety: so there is a
Jordan block partition Q(P) of the generic matrix A € N,
that is greater than any other Jordan partition occurring for
elements of Ng. What is Q(P)? We here introduce an algebra
Ep whose radical is U{p, a maximal nilpotent subalgebra of
NB. We study the poset Dp, related to the digraph used by
Oblak and Kosir [13]. Using our results, we give new, simpler
proofs for much of what is known about Q(P), often clarifying
or reducing the assumptions needed.

1. Introduction. We denote by k an algebraically closed field,
and by R = k{z,y} the completed regular local ring—the power series
ring—in two variables. We fix an n-dimensional k-vector space V', and
consider the ring Endy (V') of k-endomorphisms of V. We denote by
P — n a partition P = (p1,...,pt),p1 > -+ > pr of n = |P| = > p;.
We will use the alternate notation P = {n;} = (np,,...,n1) where
n; = # parts equal to i, ¢t = > n; and n = > in;. The notation
P = (42,2%) denotes ng = 2,ny = 3, so P = (4,4,2,2,2). We denote
by Sp = {i | n; > 0}. We denote by Jp a nilpotent endomorphism of
V whose Jordan decomposition has blocks given by the partition P: we
will fix later a particular basis V of V, in which Jp has Jordan block
matrix B. We denote by Cp the centralizer of B in the matrix ring
Mat,, (k), and by Jp the Jacobson radical of Cg. We denote by N the

2010 AMS Mathematics subject classification. Primary 15A27, Secondary

05E40, 06A11,13E10, 15A21, 16S50.
Keywords and phrases. Nilpotent matrix, commute, Artin algebra, weighted

poset, centralizer, almost rectangular partition, quiver.
The first author had support from J. Weyman’s NSF grant and the Mathematics

Department of Northeastern University, while a Visiting Scholar there in summer,

2008.
Received by the editors on March 1, 2010, and in revised form on July 1, 2010.

DOI:10.1216/JCA-2010-2-3-295 Copyright ©2010 Rocky Mountain Mathematics Consortium

295



296 R. BASILI, A. TARROBINO AND L. KHATAMI

algebraic subset of Cp comprised of the nilpotent matrices commuting
with B, and by Up a maximal nilpotent subalgebra of Ng, as follows.
There is a natural projection

(1].) m:Cp —)03/33 = Mp gHiES’PNIa'tni(k)

with kernel Jg onto the semisimple quotient M p; since the field k is
algebraically closed, Mg is the product of matrix rings (Lemma 2.2).
We will choose a maximal nilpotent subalgebra 7 C M pg comprised of
products whose components are strictly upper triangular matrices (see
Remark 2.1 ff. below), and we set Up = 7 *(7) C Np. Then Up is a
maximal nilpotent subalgebra of Cg. Up to isomorphism Up depends
only on the partition P. We will, however, describe Up explicitly in
terms of the basis V (Theorem 2.3).

For a nilpotent matrix A, we denote by P4 the partition given by
the sizes of the blocks of its Jordan form. It is well known that Az is
an irreducible algebraic subvariety of affine n2-space ([3, Lemma 2.3],
[4, Lemma 1.5]); also any element of N is conjugate to one in Up by
a unit of Cp (Lemma 2.2). It follows that there is a partition Q(P)
giving the Jordan block decomposition P4 of the generic element A of
N, and for this purpose we may assume A is a generic element of Up.
Here for any A € N, Q(P) > P4 in the orbit closure partial order
(3.13).

Problem. Given P, determine Q(P).

The map: P — Q(P) has been studied in [4, 6, 13, 15, 16].
Previously, the study of pairs of commuting nilpotent n xn matrices had
been connected to that of the punctual Hilbert scheme parametrizing
length-n Artinian algebra quotients of k[z, y] by Baranovsky, Basili and
Premet [2, 3, 18].

We introduce an algebra £p that we consider fundamental in under-
standing this problem. We then derive many of the previously shown
results about the problem using this algebra and its properties, includ-
ing its relation to a poset Dp whose vertices correspond to a basis V
of V. The algebra £p is the path algebra of Dp mod relations. We
give new combinatorial results about Dp and its relation to a certain
weighted poset Bp. We use these to give new, simpler proofs of some
known results, often reducing the assumptions needed. We introduce
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an involution 7 on Dp, £p and Bp, and use it to reprove Theorem 3.1
and Theorem 3.3 of Oblak: that the largest part—the index—of Q(P),
is the maximum length of certain U shaped chains of Dp. For the
proof we work within Bp. We end with a brief discussion of Q(P) and
sequences of chains in Dp.

2. The algebra £ C Cp and the poset Dp. We define an
algebra £g with radical Ug. Given the nilpotent Jordan block matrix
B of partition P, we have the B-module decomposition

(2.1) V=0aVix, i€S, 1<k<n,
into B-invariant subspaces
(2.2) Vi = k[B]/(B").

Specifying the identification of the space V; x, with k[B]/(B*), we choose
a B-generator (1,1,k) of Vj i, and let

(2.3) (u,i k) = B 1(1,i,k), u=1,...,i.
We define the basis V of V:
(2.4) V={(u,i,k)|i€Sp, 1 <u<i, 1<k<n;}.

Remark 2.1 (Projection 7 : Cg — Mp). Let C € Cp, the centralizer
of B. Let {W} = U;es,{W;}, where

Evidently, {W} is a minimal set of k[B] generators of V. Denote by
W;, W, respectively, the spans of {WW;}, {WW}. Denote by m; the projec-
tion Cp — End) W;, the endomorphism ring, obtained by restricting C
to W; then projecting to W;. The following lemma is a result of Basili
and others [3, 19]. Compare also [11, Theorem 6].

Lemma 2.2. The canonical homomorphism © : Cg — Mp =
IIMaty, (k) of (1.1) to the semisimple quotient satisfies:

(2.6) = Hm.

For each A € N, there is a unit C of Cg such that CAC™! € Up.
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Proof. The second statement follows directly from (2.6) and that
a nilpotent matrix in the image of m; is conjugate to another that is
strictly upper triangular. o

When n; > 1 we order the elements of {W;}, by (1,¢,1) < (1,4,2) <
-+» < (1,4,n;).} We have from (2.6) the following result.

Theorem 2.3 [3, Lemma 2.3]. A. The nilpotent commutator Np is
the set of C € Cp for which each w;(C) | i € Sp is nilpotent.

B. The maximal nilpotent subalgebra Up C Cp is comprised of those
elements C' € Np for which ;(C) | n; > 1, is strictly upper triangular.

C. Let C € Ng. Then C € Up if and only if C satisfies
(2.7) Co(1,i, k)| (1,4,k") =0, fork' <k<mn;,

that is, C acting on (1,1, k) has zero component on each such (1,i,k').

Proof. (A), (B) is Basili’s result. (C) translates (B) to the restriction
of C' to W;. O

We define the idempotent ¢; , € Cp projecting V to V; 1, and let

(2.8) (E}Y={eirx|i€Sp,1<k<n}, E=({E}.

Definition 2.4 (Algebra £p). Given the basis V of V, we let
(2.9) Eg=E®dUp CCp.
We denote by ® p the quiver associated to the algebra £p.
Note that Up = radEp, and that {E} = {e; 1} are a complete

set of primitive orthogonal idempotents of €. We similarly label
{(i,k),i € Sp,1 < k < n;} the t vertices of the quiver D p.

Basis for L{B/Z/IBQ. For each pair (V;k, Vir i), @ > ¢ denote by f3; ;s
the canonical B—module surjection

2.10 ﬂz il . ‘/ik —» V;I 1% satisfyin ﬂz I l,i,k = l,i/,kl .
: ; ; g Pi,
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and for ¢ < ¢’ denote by «; ;» the canonical B-module inclusion
(211) [e7R1a V;,k — ‘/i’,k:’ Satisfying az;i/(l,i, k) = (]. + ’i, — i,i/, k‘/)

Evidently
(2.12)

i xEpev e C Hom (K[B]/(B"), KIB]/(B")) = K[B]/(B™"),
and we have
(2.13) Up Up® = @ei Up JUE i b
By definition the quiver ® p has
dimy, (g, x(Up/UB)?)eir 1)

arrows from (i,k) — (i', k") (see [1, Definition 3.1]).

For i € Sp we denote by it the next larger element of Sp, and by i~
the next smaller element, if they exist. We say that i is isolated in Sp
if both i~ # 4 —1 and ™ # ¢ + 1. Thus 4 is isolated in Sp = {4,2,1}
for P = (4,4,2,1).

In the following theorem, a homomorphism specified from V;; to
Vit ks is zero on the other direct summand components of V in (2.1).
The homomorphism J;: V;,, — V;1 corresponds to multiplication
by the Jordan ¢ x ¢ single block matrix J;; we may regard this after
identifications, as multiplication by B on the vector space k[B]/(B?):

(2.14) Ji=mp: Vin, = Kk[B]/(B") — Vi, =k[B]/(B).

Theorem 2.5 [5, Lemma 1.29, Section 3.1 and Lemma 3.4, Theorem
3.13] (Basis for Up/UE). The vector space (g, Up/UE cir 1) is zero
or has dimension one. When non-zero it has as a basis the class in
Ug U} of the following homomorphism in Up:

i. When ' =i~ , the homomorphism B; i from V;,, — Vir 1.

iil. When i’ =it the homomorphism ;i from Vi p, — Vir 1.

ili. When i’ =i, and n; > 1, the identity homomorphism e; y from
‘/iyk — Vi,k+1,k‘ = l,...ni —1.
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iv. When i' = i, and i is isolated, the homomorphism J; (Jordan
nilpotent block) from Vi n, — V1.

We define the representation M p of © p, by mapping the t vertices
of ®p to the corresponding vector spaces V; 1, and the arrows given in
(i)—(iv) above to the corresponding homomorphisms from V; j to Vis x.

For i € Sp we let j; = max(n; +n;41,n; +n;_1). Thus j; =n; if i is

isolated.

Corollary 2.6. The dimension ofL{B/U32 satisfies

(2.15) dim Up/Up =t + 2(#Sp — 1) — #{i € Sp | ji > n;}.

Proof. The dimension count from iii. and iv. of Theorem 2.5 is

(2.16) > (n; — 1) + #{ isolated i in Sp} =t — #{i € Sp | ji > ni};

i

the dimension count from i. and ii. is 2(#Sp — 1). o

Example 2.7. When P = (3,3) the quiver ©p has two vertices,
labeled (3,1) and (3,2) and two arrows, corresponding to the identity I
from V31 to V32 and J3 from V3 5 to V3 1. We have J3ol = ToJs = J3,
hence?

(2.17) (Jz0I)3 = (IoJs5)®=0.

Example 2.8. For P = (3,1,1), the quiver ©p has a loop on the
vertex (3,1). See Figure 1.
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(L) s

FIGURE 1. Quiver ©p for P = (3,1,1).

(1,3,1) w (2,3,1) W 3.3,
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4 id
(LL,1) 2,11
(1,3,1) w 2,3,1) w (3,3,1)

1,3

.1,1)
.dT

(LL,1)
FIGURE 2. Poset Dp and maps for P = (3,1,1).

2.1. The k[B] module V and the poset Dp. Recall from (2.1)
that V=@V, | 1 € Sp, 1 <k < n, and V;; (the kth copy of V;) has
cyclic vector (1,4,k) and basis {(u,i,k) = B*1(1,i,k),| 1 < u < i},
the whole comprising the basis V for V. For v’ € V denote by v |, the
component of v on v’, in this basis. We now define a poset Dp whose
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vertices are these basis elements, and such that
(2.18) v <v' <= JA € Ug such that Av|, # 0.

We restrict §;,; to the context of Theorem 2.5. Thus, from (2.10) the
map ;. for ¢ > i’ maps (u,i,n;) to (u,4',1),1 < u < ¢, and is zero
on (u, j, k) for j # i or k # n;. Similarly, from (2.11) «a;,, ¢ < i’ maps
(u,i,m1) to (w+14" —4,i¢',1) | u < i and is zero on other summands of
(2.1), and €; 4 : (u,i,k) = (u,i,k+1), 1 <k < n;, and is zero on all
other summands.

Definition 2.9 (Maps and poset Dp associated to P). a. Vertices
Dp? of Dp: For each pair (u,i) | i € Sp, 1 < u < 1, there is a column
of n; vertices (u,%,k), 1 < k < n;. The vertices in the column are
simply ordered so that (u,i,1) is least (at the bottom), and (u,i,n;) is
maximum (at the top).

b. The adjacent vertices v < v’ and edges ’Dp1 of Dp are determined
by the following maps.3

i. B;;— from the top vertex (u,i,n;) of any column in the ¢ row to
the bottom vertex (u,i7,1) in the next reachable position in the i~
row;

ii. a;;y from the top vertex (u,i,n;) of any column in the i row to
the bottom vertex (u+ 4" —4,i",1) in the next reachable position in
the i+ row;

ili. identity mapping e, ;  upward from (u,i,k) to (u,4,k+1),1 <
k < n;.

iv. When i is isolated (when both i —1 ¢ Sp and i + 1 ¢ Sp), and
1 < u < i, the map w; corresponding to the Jordan block J;, from the
top vertex (u,i,n;) of the u column in the i row to the bottom vertex
(u+1,17,1) of the next column in that row.

In Figure 2 we give two visualizations of the poset Dp and maps for
P =(3,1,1). All compositions of maps corresponding to chains ending
to the right of the n = 5 depicted vertices are zero. For example,

3 _ _

w- = ﬂ371 -w = 0.

Remark 2.10. Now (2.18) follows from Theorem 2.5 and Defini-
tion 2.9. The small quiver ©p has cycles (Example 2.7). The poset
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Dp is acyclic; the paths in Dp correspond to the arrows in the digraph
studied by Oblak and by Kosir and Oblak [13, 15]. A similar arrange-
ment of n vertices is discussed in [5]*, and is also found in a note by
Oblak et al., from June 2008 [7], and appears to be envisioned earlier
by Oblak and Kogsir. The two sided ideal I of the path algebra KDp
is defined by all commutativity relations on p; that is, any two paths
from a vertex (u,i,k) to another (u’,i’,k’) have difference in 1.5 This
is an admissible ideal, defining a bound quiver algebra KDp/I that is
basic: the canonical semisimple quotient E of KDp/I is a product of
fields [1, Lemma 2.10].

Lemma 2.11. We have Eg = KDp/I. The algebra Ep has the
filtration '
Eg DU DUE> D --- DUEHRW) =,

where i(Q(P)) is the indezx of Q(P).

Although KDp is naturally graded by path length, the algebra £p is
not graded: the basis—generating set—for the ideal I of relations includes
binomials corresponding to the differences of two paths from a vertex

i to a vertex j in the poset Dp: these paths in general have different
lengths. Theorem 2.5 gives the basis of Up/(Up)?, and implies

Corollary 2.12. The algebra Up is generated as k[B] algebra by the
maps

(2.19) Qi s €uyisky Bt Wiy

restricted as in Theorem 2.5 and Definition 2.9.

2.2. The action of A € /g on V and on the poset Dp. For each
i € Sp, the poset Dp has a (vertical) sheet comprised of n; rows, each
of length ¢. The kth row (counting from the bottom) of this sheet is

((l’ i? k)? te 7(u7 i’ k)’ tre (i7i’ k))'

We visualize this row as situated symmetrically about a center u =
(i +1)/2. We define the statistic v(u,i, k) = v(u,i) = 2u —i — 1.5
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Lemma 2.13. Let (u/,i',k') > (u,i,k) in Dp. Then

u > u,
v — (" +1)>u—(i+1), and
(2.20) v(u',i') > v(u,i) + |i' — i

Proof. We use (2.18). Since (u,i,k) = B*~1- (1,4, k), we have

A (uyi k) =B *A.(1,i,k) C B* 'V = > u.

Since B*17%(u, i, k) = 0 we have

B A (u,i,k) = AB™T T (u,i,k) = 0

= u - ('+1)>u—(i+1).

These imply (2.20). O

A saturated chain in a poset is a chain that is not the proper subchain
of a longer chain with the same endpoints. For p = (u,i,k) € Dp we
denote by ¢(p) = i € Sp the projection to Sp and likewise we define
the sequence ¢(C') for a chain C of Dp. A corner vertex ¢ € C' is a

vertex such that ¢(c) is a local min or local max of ¢(C').

Proposition 2.14. Let C' = (cg,c1,...,¢5),¢0 < ¢1 < -+ <
denote the corner points of a saturated chain C C Dp. Then

(2.21) v(cs) =v(eo) + Z |e(ei) = vlei1)| +e,

1<i<s

where € = 2#{c; | t(c;) = t(ciy1)} for t(c;) isolated in Sp.

Proof. This is immediate from (2.20). O

Definition 2.15. We define an involution 7 on the vertices of the

poset Dp as follows:

(2.22) T(u,i,k) = (i +1—w,i,n; +1—k).
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For an arrow p — p’ of Dp we set

(2.23) T(p—=p) =7(p) = 7(p).
We extend 7 to the algebra £p as follows: We set

(2.24)  T(asw) =Pirg, T(wi) =wi, T(€wik) = €itlouini—k-

We note that 7 is a generalized transpose:

Lemma 2.16. For A, A’ € £ we have

(2.25) (Ao A) = 7(4) o r(A).

2.3. Almost rectangular subpartitions of P. An almost
rectangular partition of n is one whose largest and smallest part differ
by at most one [4, 13]. They are the Jordan block partitions of powers
(J,.)* of nilpotent regular matrices J,,, having a single n x n block. For
example (Js5)? has Jordan blocks (3,2), and (J5)% has Jordan blocks
(2,2,1). We will show

Theorem 2.17 [3, Proposition 2.4]. The number of parts in Q(P) is
the minimum number r(P) of partitions Py, ..., P, in a decomposition
of P as union of almost rectangular subpartitions.

Example. Let P = (5,4,3,3,2,1): then P = P, U P, U P,
where P, = (5,4),P, = (3,3,2) and P; = (1) is such a minimal
decomposition, and r(P) = 3.

Recall that the number of parts in the Jordan block partition P4 for
a nilpotent matrix A is dimy ker(A).

Lemma 2.18. Let A € Ug. Then dimy ker(A) > r(P).

Proof. Let Py U---UP,,r = r(P) be a minimal length decomposition
of P into disjoint almost rectangular subpartitions, arranged so that
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the parts of P; are smaller than those of P;y;. Fora = 1,...,r, we
denote by
(2.26) Dp(a)={(i+1-a,ik), i€ Sp, 1 <k<n;}

the ath saturated chain from the right of the poset Dp, and by

(2.27) V(a) = (Dp(a)) 2 ((0: B*)/(0: B* )NV

its span. We let i, be the smaller part of P,, and we denote by
Kqa = (iq + 1 — a,i4,1) the minimum element in Dp(a) N ¢71(i,),
a=1,...,r. Let K ={v € Dp | v > Kk}, and set

V'(a) =V(a) Nk,
(2.28) Vi=y(1)u---uV(r),
V'=V —{k1,...  Kr}

We have fora=1,...,r — 1,

V(ke) =ta+1—2a, v(kat1) =tat1+1—2(a+1), so

(2.29) . )

V(kat1) — V(Ka) = a1 — Bq — 2.
The assumption that {Pj,...,P.} is a disjoint AR decomposition,
implies that for each a = 1,... ,7r — 1 we have i,41 — %, > 2. Hence,
from (2.29)
(2.30) V(kat1) > V(Ka)-

Now (2.20), (2.30) and i441 — i > 0 imply that no vector v with non-
zero component on k, can be in the image of (R, ;1) under A. Hence,

(2.31) Ao (V') C (V"),

showing that A has at least r = 7(P)-dimensional kernel. u]

Proof of Theorem 2.17. Let P;U- - -U P, be a decomposition of P into
r = r(P) almost rectangular subpartitions. The Jordan block matrix
Jp, commutes with a conjugate of Jp,, so B = Jp commutes with
a conjugate A of the nilpotent Jordan matrix with blocks of sizes
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* ¥ O DN DN
I R R e e

FIGURE 3. P = (5,4,3,2,2,1), dimker (4) > 3.

|P1l, ... ,|P:|, and rank ker (A) = r. Since kernel rank being less than
r + 1 is a Zariski open condition on {A € N}, we have that the
number of parts of a generic A € Np is no more than r(P). This and
Lemma 2.18 complete the proof of Theorem 2.17. u]

Example 2.19. Let P = (5,4,3,2,2,1), P, = (2,2,1), P, = (4,3),
P; = (5). Then the key vertices are k1 = (1,1,1), k2 = (2,3,1),
ks = (3,5,1) (o’s in Figure 3). Here V'(1) = V(1), the span of
Dp(1), the rightmost chain of Dp; V'(2) = ((2,3,1),(3,4,1), (4,5,1)),
V'(3) = ((3,5,1)), while V" is the span of the vertices labeled “1” or
“2.” Here dimy V' = 10, dim V" = 7, and AV' C V". Of course, &, is
not necessarily in ker A.

2.4. The Gorenstein property of F[A, B]. We now prove a result
implying Theorem 2.23 of Kosir and Oblak that k[A, B] is Gorenstein
for generic A [13]. Our proof of Theorem 2.20 is closely related to that
in [13]. But we show more precisely that if a certain minimal set of
entries of A over a field F are non-vanishing, then F[A, B] is Gorenstein
and has a cyclic vector.

The homomorphism A € Ug. We define an extension T of k
which we will use here, and later to state Conjecture 3.16. A maximal
consecutive subsequence (MCS) of Sp is one not properly contained in
a larger consecutive subsequence. We define the subset Sp” C Sp:
(2.32)
0e Sp" < (4,0+1,... ,0+)—1) is an MCS of Sp of odd length ;.
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For example ¢ € Sp” if £ € Sp is isolated: both ¢ — 1 ¢ Sp and
¢+ 1 ¢ Sp-then ¢ is the unique element of an MCS. The field
T = k({si,ti,tjk,2¢}) is an extension of k obtained by adjoining
variables indexed as below, and over F' =T we let

’ "
(2.33) A= Z (Siﬁi,if + tiai,,i) + th,kej,u,k + Zzlwl

1€ESp—p¢

where " is the sum over triples (u,j, k) | k < n;, and 3" denotes the
sum over indices £ € Sp”.

We fix a field F = 0(T') and work in Up over F.

Theorem 2.20. Let A € Ug, and suppose that A satisfies, when
written in the format (2.33), that for all i, for all (i,k),

(234) 0(si),9(ti),0(ti7k) 75 0.

The F[A, B]-module V' has cyclic vector the source (1,p1,1) of Dp, and
has as a cocyclic vector the sink (p1,p1,np, ). The algebra A= F[A, B]
is a length-n Gorenstein Artinian algebra over the field F'.

Proof. The vector space W of (2.5) is the span of vertices {W} on
the left side of the poset Dp. It satisfies

(2.35) V=W@a&BV =W & (BkB]-W).

Denote by C' = (co,...,ci—1),t = Y.mn; the ordered chain in Dp
whose vertices are W, and by w¢ : k[A] — Mat,(W) the projection
to Mat, (W) using the direct sum decomposition (2.35). As with any
saturated chain of Dp between two given vertices, here the source
(1,p1,1) and (1,p¢, nyp, ), the assumed nonvanishing of the s;’s and the
tik’s of (2.33)—coefficients of the 3’s and the identity maps e, ;  along
the chain C—implies that we have for each i, 0 <i </ — 1.

(236) ﬂ'c(Ai) =n;c; +€;, withn; € F, and ¢; € <Ci+1, v Cg>.

Thus, mc(A) has triangular form on the ordered basis for W given
by C. Since Bk[B]W is an A—module, this suffices to show that
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the image m¢ - k[A] D W. We conclude from k[B] - W = V that
F[A,B]-(1,p1,1) = V,so (1,p1,1) is indeed a cyclic vector for F[A, B].

Next, note that (0 : B) C V is the span of right hand endpoints of
(0: B) =V(1) = (Dp(1)) where

(2.37) Dp(1) = {(i,i,k) | i € Sp,1 < k < n;}.

That A € Up and satisfies (2.34) implies that A satisfies ADp(1) C
Dp(1) and only moves basis elements upward along the chain Dp(1).
Thus, in the .4 module V' we have

(0:4)N(0: B) = ((p1,p1,7p,)),

implying V has the cocyclic vector (0 : (4, B)) = ((p1,p1,np,)), that
is unique up to scalar, as claimed. Since V is a cyclic .A-module and
dimr A = dimpg V the socle of A has dimension one as F' vector space,
implying that A is Gorenstein. O

Remark 2.21. The two parts of the statement and proof are dual
under the action of the involution 7 on Dp and its associated objects.
The proof gives a quite weak condition for F[A, B] to be Gorenstein.
There are examples of A satisfying this condition, but such that the
Jordan block partition p4 does not have parts differing pairwise by at
least 2 (Example 3.17). It follows that in such cases P4 # P(H), the
partition associated below to the Hilbert function H(A), A = F[A, B].
However, by Theorem 2.22 a generic element of the pencil A+ AB will
have the partition P(H).

2.5. The ring k[A, B] and stability of Q(P). We resume briefly
some results of [4, 13]. We denote by I4 p the kernel of

(2.38) ¢: k{z,y} — k[A,B],z — A,y — B,
and denote by A4 = k{z,y}/I4 p the Artinian quotient algebra (when
A is understood, we will shorten this to .A). We denote by m the

maximal ideal m = (z,y) of R, or of A. The associated graded algebra

A* = G’I“m(.A) =®; A, A = mi.A/mi*l
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satisfies

Ai 2 R/, I; = (m" 01 +m™)/(m*h).
The Hilbert function of A is the sequence (here hg = 1)
(2.39) H = (ho,, ha,... ), hi = dimy A;.

We will usually list just the finite number of nonzero entries of H.
We define the partition P(H) to be the dual partition to the se-
quence of values {hg,hi,...} (see [4, Definition 1.7]). For H =
(1,2,3,2,1,1), P(H) = (6,3,1). We denote by m 4 the operator mul-
tiplication by A on the ring A = k[A, B]. The first statement below
follows from Lemma 2.2 and Theorem 2.20.

Theorem 2.22 [4, Theorem 2.21]. The partition Q(P) is the
partition giving the Jordan blocks of my on A for A generic in Up.
Assume k has characteristic zero, or chark > n. Then Q(P) = P(H),
the partition dual to the Hilbert function H(A).

Theorem 2.23 [13]. The ring A = k[A, B] for A generic in N is
Gorenstein.

We will say P is stable, or (after D.I. Panyushev) self-large if Q(P) =
P. It was known that P is stable in this sense if and only if the parts
of P differ pairwise by at least two (see [4, Theorem 1.12] or [16,
Example 2.5(a)]). We next connect Theorem 2.23 to the stability of
Q(P). Recall that the Hilbert function H = H(A) of codimension two
Artinian algebras—I4 p € m?-satisfy, with j the socle degree of A
(2.40)

H = (]_,2,... ,d,hd,hd_H,... ,hj,O), d>hg>---2> hj > hj+1 =0.

(Recall, the codimension of A is dimy.A;.) When A € k[B], A has
codimension one, and H(A) = (1,1,...,1). Macaulay’s lemma below
characterizes the Hilbert functions of codimension two Gorenstein
Artinian algebras as those sequences (2.40) whose successive values
drop by at most one (see [4, Lemma 2.25] for references).
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Lemma 2.24 [14]. A sequence H satisfying (2.40) is the Hilbert
function of some codimension two Gorenstein Artinian algebra if and

only if

(241) fOT‘ all 1 Z d— l, hl - hi—l—l S 1.

He also showed that A is codimension two Gorenstein if and only if
A is a complete intersection: that is, if I4 p has two generators. From
Theorems 2.22, 2.23 and Lemma 2.24 we conclude

Theorem 2.25 [13]. When chark = 0 or chark > n, Q(P) is stable:
Q(P) has parts differing pairwise by at least 2.

Example 2.26. When P = (7,5,3,1,
satisfies H = (1,2,3,4,3,2,1,1) and Q(P

), we have H = H(k[A, B])

1
)=P(H)=(8,5,3,1).

3. The index of Q(P). In [15], Oblak associated to P a digraph,
essentially the poset Dp whose vertices can be viewed as the Ferrers
graph of P (Definition 2.9). She used results of Gansner [10] in her
proof of Theorem 3.1 below. See also [9, 17] for a general discussion
of nilpotent matrices defined from a poset. The poset Dp and the
nilpotent matrices A are quite special: in particular the poset has an
involution (Definition 2.15), and the nilpotent matrices A, due to their
commuting with B are Toeplitz matrices [3].

Given an almost rectangular (AR) subpartition P’ of P, let
s(P, P') = #{parts of P greater than any part of P'}.
Oblak introduced a statistic we will term the Oblak invariant,
(3.1) Ob (P, P') = |P'| + 2s(P, P').
We let
(3.2) Ob (P) = max{Ob (P, P’) | P’ almost rectangular in P}.

The indez i(Q) of a partition @ is its largest part. Oblak showed
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Theorem 3.1 [15]. Suppose k has characteristic zero. The index
i(Q(P)) satisfies i(Q(P)) = Ob (P).

This was subsequently shown, for k algebraically closed of arbitrary
characteristic in [5]. We need a key concept introduced by Oblak, an
AR chain with two tails, which we term an “Oblak U-chain” or simply
“U chain” (for its shape). Let S be a subset of Sp. We denote by
t~1(S) the subposet of Dp comprised of all vertices of parts i € S, and
the edges among them.

Definition 3.2. Let a € S(P). An Oblak U-chain C(a) =
AR(C)UT(C) between a vertex v = (1, ,1) and its conjugate vertex
v' = 7(v) = (j,j,n;), is a saturated, symmetric chain comprised as
follows.

a. The almost rectangular portion AR(C) =+ *{a,a — 1} for some
a€Sp.

b. The tail portion T'(C) = Ty U 7(T1) is comprised of the saturated
chain T; at the left of Dp with vertices {(1,7',k) | j > ' > a}, and the
saturated chain 7(77) at the right of Dp with vertices {(¢',¢', k) | j >
i' > a}.

c. We include in C(a) the two edges connecting AR(C') to T} and to
T,.

Denote the length of a chain C by |C|. Let P(a) be the subpartition
of P comprised of all parts equal to a or a — 1. Then we have from
(3.1) and Definition 3.2

Ob (P, P(a)) = |C(a)|-

Oblak shows Theorem 3.1 as a consequence of the following graph-
theoretic result, which we state in terms of Dp.

Theorem 3.3 [15]. The mazimum length chains between a vertex
v=(1,4,1) and T7(v) = (j, j,n;) of D(P) include a U-chain.

Example. Let P = (5,4,3,3,2,1), P' = (3,3,2), s(P,P') =
2, |P'| = 8, so Ob(P,P’) = 12, which is maximal, and Q(P) =
(12,5,1). Here P" = (4, 3,3) also satisfies Ob (P, P") = 12: the almost
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rectangular subpartition P’ yielding a maximum Ob (P, P’) need not
be unique.

Lemma 3.4. Let 1 <u < j, and suppose n; > 1. The section of the
poset Dp between (1,7,1) and (u, j,n;) is isomorphic to Dp: where P’
is obtained from P by subtracting j — u from each part of P.

3.1. Weighted poset Bp. We denote by Z the integers, by N
the natural numbers, and by [a,b] the closed interval of integers ¢,
a < ¢ < b. Given positive integers p < ¢, we denote by P, , the
partition P, , = (p,p+ 1,... ,q) whose parts have multiplicity one.

Definition 3.5 (Weighted poset Bp). Fix integers p < ¢, and for
each i, p < i < q an integer n; € Z, the weight of i. This is the data
P. We denote by Bp C Z x [p,q] C Z x N a weighted poset isomorphic
as poset to Dp, .. The i row of Bp is (v(1,1),7)...(v(i,1),i), obtained
from the i-row of Dp, , so is

(3.4) (=i +1,4), (=i + 3,4), ... , (i — 1,4),

centered at « = 0. The edges of Bp are from (7,u) to (i +1,u+ 1) and
from (é,u) to (i —1,u+1). The involution 7, defined via Dp, , satisfies
7(c,1) = (—¢, 1), and

7((¢,i) = (e+ 1,0+ 1)) =(—c—L,i+ 1) = (—c¢,1).

Each vertex of the i row has weight w(u, i) = n;. The weight w(C') of a
chain C'in Bp is w(C) = >, cco w(v). We denote by vo = (—¢ +1,9),
the minimum element of Bp and 7(vp) = (¢ — 1,¢), the maximum
element.

Note that we allow zero or negative n;. We may think of Bp as a
kind of quotient of Dp, but it is closer to an avatar: when P is a
partition, so each n; > 0, the weighted poset Bp determines Dp and
vice-versa. Given a poset D we denote by C(D) the poset of saturated
chains of D under inclusion. For the weighted poset Bp we denote by
C'(Bp) C C(Bp) the subposet of chains that begin and end in a vertex
having positive weight.
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Map v : C(Dp) — C'(Bp). Fix P a partition with maximum
part ¢ and minimum part p. We denote by v the “collapsing” map
v : D% — BY from the vertices (u,i,k) € Dp for which n; > 0
to (v(u,?),7) € Bp, that has n; sheets over the i-row of Bp. We
may extend v to a map C(Dp) to C'(Bp) as follows. For those edges
of Dp corresponding to maps S, : (u,i,m;) — (u,i ,1) the image
is the unique minimal saturated chain in C'(Bp) from (v(u,i),%) to
(v(u,1),7) that includes an intermediate chain through vertices of
zero weight; and analogously for edges corresponding to maps o, ;-
The image of a map e, ; is the identity, which we suppress, since
we collapse the column {(u,i,k),1 < k < n;} to a single vertex of
Bp. When i is isolated in Sp, the image v(w) where w : (u,i,n;) —
(u+1,7,1), is the v-shaped chain

o(w) = (v(u,i),1) — (v(u,i) + 1,0 — 1) — (v(u,i) + 2,1),

unless ¢ = p, when we must take the intermediate vertex to be
(v(u,i) + 1,3 + 1) (see Example 3.7). We say a chain C C Dp is
complete if

(3.5) (u,i,k) € C = (u,i,k') e C for all K" | 1 < k' < ;.

The following properties of v are readily verified.

Lemma 3.6. For any chain C € C'(Bp) there is a unique complete
chain preimage v~1(C) C C(Dp) satisfying [0~1(C)| = w(C), and
v(v=1(C)) = C. Each saturated complete chain C of Dp satisfies,
there is a saturated chain C' = v(C) C Bp such that v~ (C") = C and
|C| = w(C"). Every chain of Dp having mazimum length is saturated
and complete.

Example 3.7. For the partition data P = (4,2) (ny = 1,n3 =
0,n2 = 1) and the edge e corresponding to 42 = ( 1
Dp, we have

v(e) = chain (-3,4) — (-2,3) — (-1,2) C C'(Bp),

adding the zero-weight vertex (—2,3) at height three.
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For P = (6,4, 2); the edge e arising from w = Jy : (1,4,1) — (2,4,1)
of Dp has image v(e) the chain (—3,4) — (-2,3) — (—1,4) of Bp, by
definition. However C" = (-3,4) — (—2,5) — (—1,4) also satisfies
v i(C")=C.

The following generalizes the problem of finding the longest chain in
DP:

Problem 3.8. Given data P, find a chain from vy to 7(vp) in Bp of
maximum weight.

The statistic v(u, i, k) = 2u— (i+ 1) is by Lemma 2.13 nondecreasing
on any chain C of the poset Dp. It separates the vertices v of Dp
into the left where v(v) < 0, the middle where v(v) = 0, and the
right where v(v) > 0. Likewise, we define the left, middle, and right
portions L(C), M(C), R(C), respectively, of a chain C' in Dp, including
the edges within each portion. We denote by C°, D° the vertices of a
chain or poset.

Lemma 3.9. Let C € C(Dp) be a saturated chain between v =
(1,7,1) and 7(v) = (j,4,n;). Then there is a symmetric saturated
chain C' between v and 7(v) whose length is at least that of C.

Proof. The chain v(C) € C'(Bp) is between v(v) = (—j + 1,7) and
T(b(v)) = (j — 1,4). Since v(C') is saturated, it has by equation (2.20)
a unique middle vertex (0,%k). Replacing the right side of v(C) by
7(L(C)) or vice-versa, one obtains a symmetric chain B € Bp with
weight at least that of v(C). By Lemma 3.6 v=1(B) is a symmetric,
saturated, complete chain of length at least that of C. a

We will say ¢ € Sp is small in P if
(3.6) da € Sp, a > c such that ng +ng_1 > n¢ + Ne_1.
The spread S(D) D (D) of a subposet of Dp is the interval of integers

S(D) = (min{¢(D)}, max{c(D)}).
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The invariant s(D) = #S(D). Given D C Bp we define the spread
S(D) and s(D) similarly; also given S C Sp we may define t1(S) C Bp
as before, and we likewise define U-chains of Bp. The following lemma
is key.

Lemma 3.10. Let C(c) be a U-chain of Dp (respectively, of Bp)
connecting v to 7(v), and suppose that c is small in P. Then there
is a longer chain C' of Dp (respectively, higher weight chain of Bp)
connecting v and 7(v), such that C' lies on or to the right of C(c), and
it satisfies S(C") C S(C).

Assume v =vg = (1,p1,1) and that (3.6) is satisfied for some a > c.
Assume further that Theorem 3.3 is valid for partitions of largest part
a. Then there is a U-chain C(b) between v and 7(v) with a > b > ¢,
with ¢(C(b)) C «(C(c)) and such that |C(b)| > |C(c)|.

Example 3.11. Take P = (6,5'1,45,35). Then the pair c = 4,a = 6
satisfy (3.6) so 4 is small in P. However in Dp we have |C(6)] =61 <
|C(4)| = 62. Since |C(5)| = 77, we take b = 5 in Lemma 3.10.

Proof of Lemma 3.10. We work in Bp. Then C(c) has a portion

C(c) D (—a+1,a),(—a+2,a—1),(—a+3,a—2),...;
(=c+1,¢),(-c+2,c—1),(—c+3,0),...,
(c—2,c—1),(c—1,¢),(c,c+1),...,(a—1,a).

Consider ¢’ formed from C(c) by adding a jog to the right to this
portion of C(c) (see Figure 4):

¢'> (7a+17a))(7a+2aa71)7(7a+37a)a(7a+47a71)7
(ma+5,a—2),...;(—c+3,¢),(—c+4,c—1),...,
(c—2,c—1),(c—=1,¢),(c,c+1),...(a—1,a).

We have Aw = w(C") — w(C(c)) satisfies

Aw =w(-a+3,a) + w(—a+4,a—1)
(3.7) —w(—c+1,¢) —w(—c+2,¢—1)
=ng +ng—1— (¢ +ne-1) >0
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FIGURE 4. C(c) vs C'.

since ¢ is small. Then the complete saturated chain v~ (C’) evidently
satisfies the conditions of the first assertion of the lemma. One can
symmetrize C’ to a chain at least as long; using Lemma 3.4 we find
a U-chain C(b) satisfying |C(b)| > |C'|, as required in the second
assertion. O

Proof of Theorem 3.3. The proof is trivial for partitions of largest
part 1, 2 or 3. We assume it is true for partitions of largest part less
than ¢, and let P be a partition of largest part ¢. By Lemma 3.6 and
Lemma 3.9 we may assume that C’ C Dp is a T-symmetric path in Dp
and that C' = v~ 1(C) where C' C Bp is a path from vy = (—¢ + 1,q)
to 7(vg) with w(C) = |C’|. We need to find an Oblak U-chain E C Bp
between vy and 7(vg) with w(E) > w(C).

Omitting the vertices vy and 7(vy) from C we have a T-symmetric
path D C Bp between v; = (—¢+2,¢—1) and 7(v1) = (¢ — 2,9 — 1),
which may, however, return to a part q. Such a return is the main
complication, and we will use Lemma 3.10.

Case 1. Assume that D remains in parts less or equal ¢ — 1. Then
by induction, w(D) is majorized by w(D;), Dy a U-chain between v
and 7(v1). Including the vertices vy, 7(vy) and corresponding edges
give the required U-chain F in Bp.

Case 2. Assume that D begins v; — v2 = (—¢ + 3,q). Then
consider the section B’ of Bp between vy and 7(v2). Then B’ = Bp:
where P’ is the partition with parts no greater than q — 2, satisfying
n;(P') = n;42(P). By induction, the portion D' of D from vy to 7(vs)
is a chain whose weight is majorized by the weight of a U-chain D’(c’)
in Bp from vy to 7(v2). Let ¢ = ¢/ + 2 (so we work in B’ C B).
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By Lemma 3.10 ¢’ is not small in Bp/; hence, ¢ is not small in B: in
particular n.+n._1 > ng+ng_1 for ¢ > a > c¢. The U-chain E = C(c)
in Bp from vy to 7(vp) omits the jog in C' up to level ¢ and satisfies,
analogously to (3.7),

w(C(c)) —w(C) =ne+ne_1 — (ng+ng-1) >0,
so w(E) > w(C).

Case 3. Since C is assumed symmetric, the remaining case is that
the chain D C Bp first returns to level ¢ in the left (or centerline) of
Bp, but to the right of vs, so at a vertex vs = (—q + 4 + b,¢), where
0 < b < g—4. We consider the section B’ of Bp between vz and 7(v3),
which is congruent to Bp:, where now P’ has maximum part g — 3 — b.
By the induction assumption, the portion D’ of D from vz to 7(v3) is a
chain whose weight is majorized by the weight of a U-chain D'(¢’) from
vz to 7(vs) in Bps, and we replace the former by the latter. Letting
¢ =c + b+ 3, we have by Lemma 3.10 that ¢ is not small, compared
to each a,c < a < ¢q. Here c < gq.

A similar argument can be applied to the portion of C between vy
and vs, which is isomorphic to a suitable Bp/. We may replace this
portion by a chain of equal or greater weight that is a U-chain for the
smaller poset, so C' now descends from vy to a minimum part d — 1
where d is not small with respect to each a,d < a < g, so

(3.8) Ng+ng1>nNg+ng, 1foralla, d<a<gq.

We symmetrize, so similarly replace the portion from 7(v3) to 7(v).
Here d < gq.

Thus, in Case 3 the symmetric chain C' has been replaced by one of
equal or higher weight, having a modified “UUU” shape with flats-AR
chains involving only two adjacent ¢ € Sp—at the minima and interior
maxima. The three minima are at heights d — 1, ¢ — 1 and d — 1,
respectively, and the four maxima are at height q. Denote now by
G the portion of this chain C' between the leftmost lowest point
vg = (=d,d — 1) and 7(v4). G comprises most of C, including all
minima.

Subcase 3a. If ¢ > d, then G corresponds to a chain G’ C By
where M has largest part d — 1; we may assume by induction that
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w(G) = w(G") < w(G'(a')) where G'(a’) is a U-chain for Bjs and
satisfies a’ is not small for Bj,;. Translating-inverting this—we have
replaced G by a new 7-symmetric G of equal or higher weight, coming
from G'(a’). The new G rises from vy at height d — 1 to a flat at
maximum height a > d that satisfies

(3.9) Ng + Ng—1 > Ng + Ng—1.

If a < q the new symmetric C' containing G is in Case 1. If a = ¢ we
have from (3.8) and (3.9),

(3.10) Ng+ng1=nqg+nq1>np+ny_1 forallbd <b<gq.

This and d < ¢ implies that we may replace C' by the U-chain F = C(q),
which will have weight at least that of C.

Subcase 3b. If ¢ < d denote by H the portion of C between v4 and
the vertex vs = (b+5—d,d—1). Here vs is the first vertex of C at level
d—1 on the subchain from v3 to the central minimum of C' at height c.
H comprises a single lobe of C, an inverted U. An argument similar to
that of Case 3a shows that we may replace H by an inverted U-chain,
that rises from vz to height a > d and descends to vs, and that (3.9) is
satisfied: we may symmetrize this to form a new 7-symmetric chain of
equal or higher weight than the original C'. Again, if a < g we are in
Case 1. If a = ¢ then again (3.10) is satisfied, and we may replace the
portion of C' between vg and v3 by a flat—AR chain—at maximum height
g, and symmetrize, yielding a new chain C of equal or higher weight
that is in Case 2 (it still has the dip to height ¢—1 in the middle). This
completes the induction step, and the proof. ]

Corollary 3.12. Let k be algebraically closed. Then the index
i(Q(P)) = Ob(P).

Proof. Let £ be the length of the longest chain in Dp: these chains
are from vg to 7(vg). We have

(3.11) A= > e,
{clicl=6)

where p¢ is a monomial, the product of the entries of A corresponding
to the edges of the chain C. By Theorem 3.3, £ = Ob (P); that is, there
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exists ¢ | |C(c)| = £. Denote by a the maximum such c¢. For A generic
as in (2.33), po() = per = C' = C(a). This implies that A*~1 # 0,
but evidently A* = 0, implying that the index i(Q(P)) = /. mi

We now answer Problem 3.8 for non-negative weights.

Corollary 3.13. Let Bp of data P (weights n; for p < i < q) with
non-negative weights be a weighted poset as in Definition 3.5, and let
r be an integer, p < r < q. Then the set of mazimum weight chains
between vo = (—r + 1,7) and 7(vg) = (r — 1,7) contains a U-chain or
an inverted U-chain.

Proof. We prove the Corollary by induction on the width 2r — 1 of
the relevant portion of the poset. When r = 1 or 2 the statement is
true. We may assume that a maximum weight chain C' = (cy,... ,cs)
between vy and 7(vp) is symmetric (analogue for Bp of Lemma 3.9).
Assume the Corollary for widths smaller than 2r — 1. The saturated
subchain between ¢y and 7(cg) = ¢s_1 has width 2r—3, so by induction
may be replaced by an equal or higher-weight chain C’ that is U-shaped
or inverted U-shaped. If the deformed chain C” from v to 7(v) that
includes C" is not U or inverted U shape, then after possible reflection
about a horizontal axis, the current path C” has a jog up to level r + 1
followed by a U-chain C(c). By Lemma 3.10 c is not small for P<,1,
SO Nyy1 + Ny < ne + ne—1. Thus, we may omit the jog up, making
a new path D of equal or higher weight that is a U-path from v; to
vo—with an extra sawtooth at level ¢,c — 1 on the left and on the right
of the almost rectangular part, compared to C”". This completes the
induction step, and the proof. a

Remark 3.14. The hypothesis for Corollary 3.12 could be weakened
to k an infinite field. The hypothesis for Corollary 3.13 can be changed
to arbitrary weights (including negative values) provided we restrict to
maximum weight or minimum weight chains that are assumed to be
saturated. The need to restrict to saturated chains is seen in the case
P=(2,1),n2 > 0,n; <0.

When the multiplicities n; for p < i < q alternate between two values,
then all saturated chains through these values have the same weight.
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For example, for P = (52%,43,3%) when ns = n3 = 2,n4 = 3, the
T-symmetric chain beginning

(7475) - (7374) - (72,3) - (71,4) - (0)5) e

has weight 22, as do the two U-chains C(5) and C(3).

The process of the proof could be used to make a recursive algorithm
to create from any chain of Dp a U-chain that is at least as long.

We can apply a similar argument to obtain the analogous result to
Theorem 3.3 for weighted posets B C [—q,q] X [p — q¢,q — p] where
0 < p < q: the row of B at height 0 has g vertices, at height a has
q — |al vertices, so form a diamond shape.

3.2. The Oblak conjecture. Oblak’s beautiful recursive conjecture
concerning Q(P) is stated in [7], and is based on her index Theorem 3.1.
We state a variation. Let the field F = 6(T) with T from (2.33).

Definition 3.15. A is adequate if it has general enough (or even
generic) entries on the following pairs of vertices:

i. Each pair of vertices corresponding to an edge of Dp;
Each pair of vertices corresponding to the set S% of (2.32).

In general, in order for P4 = Q(P) we will need at least one
appropriate non-zero diagonal entry in the block matrix for A, for
each odd consecutive sequence in Sp. This can be “seen” from the
conjecture by noting that when Sp has an odd length consecutive
sequence, eventually, after removing enough successive U-chains, the
remainder partition will have an isolated part: and one needs to include
in A a corresponding w term. This is the reason for our introducing
condition (ii) above for adequate A.

Conjecture 3.16.” Let A € Up be general enough among adequate
elements of Ug. Then Py = Q(P). Furthermore, let C be any
mazimum length U-chain in Dp, and let P—C' be the partition obtained
from the vertices of Dp by removing the vertices in C. Then

(3.12) Q(P) = Q(P-C)U|C].
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In [6] we give a proof using standard bases in some quite special
cases. We rely heavily on the form of the conjecture to define the
standard basis—generators for the ideal 14, p C k{z,y} defining k[A, B].
We believe this approach will extend to a proof of Conjecture 3.16. For
references on standard bases, see [4, 8, 12].

Example 3.17.

a. Let P = (2) and A = 0. Then k[A, B] & k[z, y]/(z, y?), which is
Gorenstein. The partition P4 = (1,1), but Psi¢p = (2) for t # 0 and
Q(P) = (2). Here A is not adequate.

b. Let P = (3,2), and let A = (g g) in block matrix form, where

a=a3i83x2,0=032is2x3,and aof =Js, foa=Js, then A
has rank 4, corank one. A* = <(‘]3)2 0), A% =0s0 Py = (5) =Q(P)

0 0
and k[A, B] = k|z, z°], which is Gorenstein. Here A is adequate.
0 Qa3 4 0
c. Let P = (4,3,2), and let A = (,6’4,3 0 az,a> in block matrix
0 Bz2 O

form. Then A = k[A, B] is Gorenstein by Theorem 2.20 and H(A) =
(1,2,2,1,1,1,1); however, A is not adequate, and p4 = (7,1,1). By
Theorem 2.22 A 4+ AB for A general (here A nonzero suffices), has
partition P(H(A)) = (7,2), which is Q(P). Replacing A3 3 = 0 by
Jo gives an adequate matrix A’ with p4 = Q(P) = (7,2).

We will consider a succession € = (C1, ... , C,(p)) of maximum length
U-chains in successive P, chosen as in Conjecture 3.16. Here Cy C Dp,
P; = P and

C’uCDpu,Pu:P—(C?U...UCu,lo) foru=2,...,rp.

We will denote by Q(€) the partition (|Ci],...,|Crp]) of n. Denote
by a, the larger part arising from the AR section of C,, in the
pullback C! of the chain C, to D%. Note that C! need not be
a chain of Dp. However, at each stage one may identify chains
O01(C1y...,Cy)y... ,Oy(C4,...,Cy) by choosing for O; the outside
perimeter of Cj U---UCY, and for Oy, the k-th from outside perimeter.
We denote by #(C7 U ---UC,) the number of distinct vertices of Dp
covered by the union, equivalently the total weight of the image vertices
in Bp under v.
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Proposition 3.18. Let € be a choice of mazimum length chains in
successive Dp, as above. The set Uy_,C). = U}t_,0,(C1,...,C}) is a
union of disjoint chains in Dp, and # UY (Ok) = > p_, |Ckl.

Proof. The point of this is that the chains Oy in the original poset
Dp form a shelling of the union UCY, of original vertices contributing
to Uy_1Cy. O

Example 3.19. Let P = (6,5%,4% 3,1). Then in Bp,
Cy:(1,6) — 17 %(5,4) — (6,6).

In Bpl,Pl = (4,3,1), Cz = L_1(4,3) and Cg = (1,1) C sz, P2 =
(1). Then we have w(Cy) = 34, w(C3) = 7, w(C3) = 1 and
(a1, a2,a3) = (5,6,1), for (Cy,C3) the outside shells O; = 01(Cy, C?)
and 02 = 02(01, Cg) satisfy, in Bp

O; = (1,6) — (1,5) — ¢~ *(4,3) — (5,5) — (6,6), and
O; =(2,6) = (2,5) — (3,6) = (3,5) — (4,6) — (4,5) — (5.6).

Here Oy, 05 are chains of the original Bp having weights w(0;) = 25,
w(O2) = 16. The union O; U Oy = C] U C§ and #(0; U O3) =
#(CLUCY) =41.

Recall that for two partitions P — n, P’ — n the orbit closure partial
order is

k k
(3.13) P>P «<VkY pi>> pi

i=1 i=1

The generic matrix A of the following Corollary of Proposition 3.18
does not necessarily commute with B, i.e., does not satisfy the Toeplitz
condition, so A ¢ Up. Thus the Corollary is rather weaker than that
predicted by Conjecture 3.16 above.

Corollary 3.20. Let A be a generic n x n nilpotent matriz (not
necessarily commauting with B), whose nonzero entries correspond to
pairs of vertices v < v' in Dp. Let € be a successive choice of mazimum
length chains in successive P; as above. Then the Jordan block partition
Py > Q(C€), in the orbit closure order on partitions.
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Proof. This is a consequence of Proposition 3.18 and the Gansner
theory [9, 10], applied to the subchains Oy,... ,0, of Dp. O
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ENDNOTES

1. This is the partial order arising from Dp, see Definition 2.9.

2. The maps are in a representation M®p of ®p, and the relation
is determined by commutativity relations on a larger quiver Ap with
points corresponding to vertices of the poset Dp. We do not explore
this viewpoint further.

3. This may be also viewed as an avatar of the large quiver 2p, since
we are giving a poset and maps. We will speak of the path algebra KDp
or, equivalently of Ap.

4. See [5, pages 25ff, subsection “A lattice version of the almost
rectangular moves of [7]].”

5. This includes the stipulation that composition of maps «’s, B’s,
w;’s landing apparently outside of Dp are also in I; for example, w; € I.

6. Using the statistic we may visualize the rows as centered at x = 0;
we use v later in defining the weighted poset Bp (Definition 3.5).

7. P. Oblak’s conjecture in [7] chooses at each step the highest U-
chain C(a) giving a maximum length chain.
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