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ON TENSOR PRODUCTS OF RINGS
AND EXTENSION CONJECTURES

DAVID A. JORGENSEN

ABSTRACT. We show that a commutative local version of
a conjecture of Tachikawa holds over a Cohen-Macaulay tensor
product of rings provided it holds over the rings themselves.

1. Introduction. The purpose of this note is to broaden the context
in which some homological conjectures hold.

The following commutative local version of a conjecture of Tachikawa
has been of interest recently (see [4, 9]).

Conjecture (Tachikawa). Let A be a Cohen-Macaulay local ring. If
A has a canonical module w and Ext,(w, A) = 0 for all i > 0, then A
is Gorenstein, i.e., w = A.

Implying this conjecture of Tachikawa is another conjecture, which is
a commutative local version of one of Auslander and Reiten, and which
has also been of interest (see [1, 2, 8, 9]).

Conjecture (Auslander-Reiten). Let A be a commutative Noetherian
local ring, and let M be a finitely generated A-module. If Exty, (M, M ®
A) =0 for all i > 0, then M is free.

Suppose that (Ry,m;) and (Rg2,m2) are commutative local rings
which are essentially of finite type over the same field k. We also
assume that k is the common residue field of both Ry and Ry. In
this note we are concerned with what we call the local tensor R of R
and Ry, this being the localization of R; ®j Rs at the maximal ideal
m:=my; ® Ry + R; ®; ma. The main point here is that properties of
vanishing homology and cohomology for modules over the local tensor
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R are often inherited from those properties for modules over R; and
R,. In particular, we show that the Tachikawa’s conjecture holds over
R assuming that it holds over both R; and R,. This result follows
from our proof that the Auslander and Reiten’s conjecture holds for a
certain class of modules over R provided it holds for modules over R
and Rg.

Throughout the remainder of the paper we assume that (R;, m;) and
(R2, my) are essentially of finite type over the same field k, and sharing
k as the common residue field. We will usually be assuming that both
R; and R, are Cohen-Macaulay. We also assume throughout that our
modules are finitely generated.

What makes our results interesting is that the hypotheses placed
on the rings in [4, 7, 8, 9, 13] for proving the conjectures, like
Artinian with radical cube zero, or codimension < 3, or Golod, are
relaxed considerably after taking local tensors of such rings. Since
local tensors are again essentially of finite type over k, and having k as
the residue field, one may iterate the process to obtain a larger class of
rings satisfying Tachikawa’s conjecture.

2. Preliminaries. We assume that (R;,m;) and (Rg,mz), m =
my ®k Ro + Ry ® ma, and R = (R; ®g R2)m are as described in the
introduction. The results of this paper rely on the following Kiinneth
relation.

2.1. Suppose that Cy is a complex of R1-modules and Cq is a complex
of Ry-modules. Then Cy ®y Cs is a complex of Ry Qi Rs-modules with

H;(C1 ®: C2) = €D Hy(C1) @1 Hy(Co)

ptg=i

for all 1.
(See, for example, [6, Theorem 3.1, in V.3].)

2.2. Let F; and G; be complexes of free Ri-modules, and let Fq
and Gg be complexes of free Ry-modules. Then one may check that

(F1 ®r, G1) ® (F2 ®g, G2)
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and
(F1 ®% F2) ®r,0,r, (G1 ®% G2)

are isomorphic complexes (as R; ®j Ra-modules).

2.3. Suppose M7y, Ny are R;-modules and M3, Ny are Ro-modules. If
F, is an R;-free resolution of M; and F is an Rs-free resolution of M,
then F; ®; Fs is an Ry ®j Ra-free resolution of My ® Mo. Similarly,
if Gy is an R;-free resolution of N; and Gs is an Rs-free resolution
of Ny, then G; ®; G is an R; ®p Ra-free resolution of Ny ®; Ns.
Therefore, from the isomorphism of complexes in 2.2 we have that
H;((F1 ®g, G1) ® (F2 ®r, G2)) = Tor/*® (M, @), Ma, Ny ®j Na),
and thus the Kiinneth relation 2.1 becomes

Tor; @2 (M ®) Ma, N1 @), No) = @ Tory™* (My, N1)®x Tork? (My, Ns).
p+q=i

2.4. Suppose that M; is an R;-module and M is an Rs-module.
Then M; ® My = 0 if and only if (M; ® M3)n = 0. From 2.3 this
means that

Tor[*®+ 2 (M @) My, Ny ®), Na) =0

if and only if

TOT?((Ml Ok Ma)m, (N1 @k N2)m) = 0.

Lemma 2.5. We have the following.

(1) If Ry and Rs are Cohen-Macaulay with canonical modules wy
and we, respectively, then R is a Cohen-Macaulay ring with canonical
module

w = (w1 ®k W2)m-

(2) If Ry and R» are both Gorenstein, then so is R.

Proof. That R is Cohen-Macaulay is proved in [14]. Write R; =
Q1/I; and Ry = Q2/I, with @ and Qs regular local rings, and set
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n:=1n; ®k Q2+ Q1 ®kna, where n; in Spec (Q);) denotes the preimage of
m;, 2 = 1,2. Let Q denote the regular local ring (Q1 ®%Q2)n (paragraph
2.3 shows that a finite minimal free resolution of k over @ is obtained
from those over Q; and Q2. Thus @ is regular).

We have w; = Extgi (R;,Q;), where s; denotes the projective dimen-
sion of R; over Q;, ¢ = 1,2. Let F; be a minimal @;-free resolution of
R;. Thenw; = H* (Homg, (F;,Q;)), and there is a natural isomorphism
of complexes

Homg, g, q,(F1®1F2, Q1 ®rQ2) = Homg, (F1, Q1) ® Homg, (F2, Q2).

From 2.1 we have

H' (Homg, @, @, (F1 ®% F2, Q1 ®% Q1))

= @ Ethél (Rl, Ql) ®k EXtZ)Z (RQ, QQ)
ptgq=i

Thus,

H*'**2 (Homg, g, 0, (F1 ®k F2, Q1 @k Q2))
= Ext‘zj1 (R1,Q1) ®% Ethf2 (R2,Q2).

Since (by 2.3) (F1 ®;F2)y is a minimal Q-free resolution of R of length
s1 + s2, we see that pdgR = s; + s2, and

w= Ext‘zfrs2 (R,Q) = (w1 ®f w2)m-
Property (2) is obvious given part (1) (cf. also [14]). o
The main result of this section requires the following lemma.

Lemma 2.6. Let A be a Cohen-Macaulay local ring with canonical
module w, M a mazimal Cohen-Macaulay module and x a non zerodi-
visor on A, w, and M. Then

Hom4 (M, w)/z Homa(M,w) = Hom 4 /(o) (M /zM,w/zw).
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Proof. We let —V = Hom(—,w). Consider the short exact sequence
00— M3 M- M/xM — 0. Applying —, we obtain the exact
sequence

0 — (M/zM)" — MY = MY — Ext!y(M/zM,w) — 0.
Thus, MV/zM"V = Extli(M/zxM,w). Now Rees’s formula says
that Ext (M/xM,w) = Homy () (M/xM,w/zw) (see [11, page 140,
Lemma 2(i)]), and this establishes the lemma. u]

The main result of this section allows us to prove statements involving
cohomology by proving a corresponding statement for homology.

Theorem 2.7. Let A be a Cohen-Macaulay local ring with canonical
module w. Then for mazimal Cohen-Macaulay A-modules M and N
the following are equivalent:

(1) Ext4, (M, N) =0 for all i > 0;

(2) TorA(M,Hom4(N,w)) =0 for all i > 0, and M ® 4 Hom (N, w)
is maximal Cohen-Macaulay.

Proof. We let —¥ = Hom 4 (—,w) and induct on d, the dimension of A.
When d = 0 the canonical module w is the injective hull of the residue
field k of A, and therefore Extl,(M,N)V = Tor{(M,NV) (see [12,
11.57]). Matlis duality (see [5, 3.2.13]) shows that Ext}, (M, N)¥ = 0
if and only if Exty (M, N) = 0, and this takes care of the d = 0 case.
Now assume that d > 0.

(1) = (2). Let = be a non zerodivisor on M, N, NV and A. From
0—+ N5 N — N/zN — 0, we get the long exact sequence

(2.7.1) .- — Ext’y(M,N) = ExtYy, (M, N)
— Ext’y(M,N/zN) — Ext'/'(M,N) — --.

Therefore, Ext%, (M, N) = 0 for all i > 0 implies Ext}, (M, N/zN) = 0
for all i > 0. The isomorphisms (see [11, page 140, Lemma 2(ii)])

(2.7.2) Ext’y (M, N/xN) = Ext’y ), (M/xM, N/xN)
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for all ¢ imply that Eth‘l/(w) (M/xM,N/zN) = 0 for all i > 0. Now
induction, and the isomorphism Hom 4 /() (N/xN,w/zw) = NV /xNY
of 2.6 yields Tor ™) (M/xM,NY/zNV) = 0 for all i > 0, and that
M/xM ® /() NY/xNY is a maximal Cohen-Macaulay A/(x)-module.
The isomorphisms (see [11, page 140, Lemma 2(iii)])

(2.7.3) Tor (M, NV /zNV) = Tor ) (M/xM, NV JzNV)

for all 4 show that Tor(M, NV /zN") = 0 for all i > 0. Consider the
long exact sequence

(2.7.4)

oo —Tor? (M, NY) - Tor* (M, NV) — Tor{ (M, NV /aN") — - .-

Z

derived from the short exact sequence 0 - NV = NY — NY/zNV —
0. It follows that Tor{!(M, N¥) = 0 for all i > 0, and we have the short
exact sequence 0 = M @4 NV 5 M @4 NV — M ®4 NY/zNY — 0.
Thus z is a non zerodivisor on M ® 4 NV. Since (M ®4 NY)/x(M ®4
NY) =2 M ®4 (NY/zNY) =2 M/zM ®4/) NY/xzNV is a maximal
Cohen-Macaulay module over A/(x), we see that M ® 4 NV is a maximal
Cohen-Macaulay module over A.

(2) = (1). Let z be a non zerodivisor on M, N, NV, M ®4 N" and
A. The long exact sequence 2.7.4 induced by the short exact sequence
0+ NV 5 NV - NV/zNY — 0, and the hypothesis shows that
Tor (M, NV /zNV) = 0 for all i > 0 (that Tor{!{(M,NV/zN") = 0
follows since z is a non zerodivisor on M ® 4 NV). The isomorphisms
2.7.3 for all 7 show that Torf/(z)(M/:L'M, NY/zNY) =0 for all i > 0.
Since (M @4 NY)/x(M @4 NY) =M @4 (NY/xNV) = M/xM @ a/(z)
NV /zNV is a maximal Cohen-Macaulay module over A/(z), induction
yields Exth/(z)(M/:L'M, N/xN) = 0 for all ¢ > 0. The isomorphisms
2.7.2 show that Ext% (M, N/zN) = 0 for all ¢ > 0. Finally, the long
exact sequence 2.7.1 implies that Ext’ (M, N) = 0 for all i > 0. o

Lemma 2.8. Suppose M = (M; ® M2)y and that Ry and Ry are
Cohen-Macaulay. Then M is a mazimal Cohen-Macaulay R-module if
and only if My is a mazximal Cohen-Macaulay Ry-module and Ms is a
mazimal Cohen-Macaulay Rs-module.

Proof. Let R; = Q;/I; with (Q;,n;) regular local rings i = 1,2, and
set @ = (Q1 ®r Q2)n with n = n; ® Q2 + Q1 ®% n2. By 2.1 and
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2.4 we see that pdgR = pdg, Ry + pdg,R> and pdoM = pdg, M; +
pdg, M>. Thus from the Auslander-Buchsbaum-Serre formula we have
depthrR = depthgR = depthg, R, + depthg,R; = depthg, R; +
depthg, R, and depthg M = depthg M = depthg, M; + depthg, My =
depthg, M; + depthg, Ms. Therefore depthgM = depthgrR if and only
if both depthg, M; = depthg, R; and depthg, My = depthg, R». o

Definition. Let C; and C; denote classes of Rj-modules and Rs-
modules, respectively. Then we define LT (C1,C3) to be the class of
all R-modules which are finite direct sums of modules of the form
(M1 (g Mz)m, with M; € C;, i =1,2.

Let mod (R;) denote the category of finitely generated modules over
R;. The Kiinneth relation 2.1 says that if M and N are R-modules
belonging to LT (mod (R;), mod (R3)), then computing Torf(M, N)
amounts to computing Tors over R; and R;. In Section 5 we
give a simple example illustrating that an R-module may not be in
LT (mod (R;),mod (R3)), although one of its syzygies is. This mo-
tivates the hypothesis in the theorem of the next section. Note that
every module is the Oth syzygy of itself.

5. On the conjecture of Auslander and Reiten. We assume
that (Rl,ml) and (RQ,mg), m = m; ® Ry + R ® mo, and R =
(R1 ®k R2)m are as described in the introduction.

Theorem 3.1. Assume that the rings Ry and Ry are Cohen-
Macaulay, and that the Auslander-Reiten conjecture holds for classes
C; of mazimal Cohen-Macaulay modules over R;, i = 1,2. Then
the Auslander-Reiten conjecture holds for R-modules with a syzygy
belonging to LT (Cy,Cs).

Remark. In [9] it is shown that modules over an Artinian local
ring which are annihilated by the square of the maximal ideal satisfy
the Auslander-Reiten conjecture. Thus if Ry and Ry are Artinian,
M; is an R;-module with m?M; = 0, i = 1,2, then the R-module
M = (M; ® My),, satisfies the Auslander-Reiten conjecture even
though it may be that m?M # 0.
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The proof of 3.1 will require a lemma:

Lemma 3.2. Suppose that Ry and Ry are Cohen-Macaulay with
canonical modules wy and wy. Let w denote the canonical module of R,
and suppose My is a mazximal Cohen-Macaulay R,-module and Mj is
mazimal Cohen-Macaulay Ra-module. Then

HomR((M1 % Mg)m,W) o~ (Hole (My,w;1) @1 Homp, (Mg,(,ug))

m’

Proof of Theorem 3.1. Note that R is Cohen-Macaulay by 2.5. We let
—V denote the dual Hompg(—,w), where w is the canonical module of
R. Let M be an R-module with Ext’% (M, M & R) = 0 for all i > 0, and
assume that M has a syzygy N € LT (C;, C2). Following the proof of
Lemma 1.4 of [3] we have Ext% (N, N & R) = 0 for all i > 0. It suffices
to assume that N = (N1 ®g N2)m, with N; € C;, ¢ = 1,2. By 2.7 and
2.8 we have Tor®(N,(N @ R)") =0 for all i > 0, and N ®g (N & R)Y
is maximal Cohen-Macaulay. By Lemma 3.2,

(NEBR)V = (HOIHR1 (Nlawl) Rk HOmRZ(NQ,wz))m
(&) (HOII’IR1 (Rl,wl) Rk HOIIIR2 (RQ,WQ))m.

Now 2.3, 2.4 and 2.8 yield Tor,* (N;, Homp, (N; ® Ry,w;)) = 0 for all
i > 0 with N; ®g, Hompg, (N7 @ R;,w;) maximal Cohen-Macaulay
over Ry, and TorzRQ(Ng,HomRZ(NQ @ Ro,wz)) = 0 for all ¢ > 0
with Ny ® g, Hompg, (N2 @ Ra,w>) maximal Cohen-Macaulay over R.
By 2.7 again, we have Extﬂzl(Nl,Nl ® Ry) = 0 for all i > 0 and
Ex‘cﬁLzz (N2, N> ® Ry) = 0 for all ¢ > 0. Since N; and N» satisfy the
Auslander-Reiten conjecture over Ry and Rs, respectively, we have that
N; is a free R;-module, i = 1,2. Thus N is a free R-module, and M
has finite projective dimension over R. Finally, it is shown in [10] that
if M has finite projective dimension, then sup{i|Ext% (M, X) # 0}, for
any finitely generated R-module X, is equal to depthg R — depthr M.
Since Ext% (M, R) = 0 for all i > 0 we conclude that M is free, by the
Auslander-Buchsbaum formula. n]

Proof of Theorem 3.2. First note that the result is true if M; and M,
are free. In the general case, let R;"* — R;"* — M; — 0 be an R;-free
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presentation of M;, i = 1,2. Let

F:=R{" @ Ry”,
G := (R @k R3*) @ (Ry* @ R3™),
F' := Homg, (RT"*,w1) ®; Hompg, (R3"?,ws), and
G = HOle (R;nl,wl) R I‘IOI’nR2 (R;z,wg)@
Homp, (RY"*,w1) ®; Hompg, (R5", ws).

Then the horizontal maps in the commutative diagram are isomor-
phisms and the columns are exact (by 2.1)

0 0

Hompg, g, R, (M1 @k M2,w1 Q w2) Hompg, (M1,w1) ®, Hompg, (M2, w2)
Hompg, g, ko (F,w1 ®k w2) E— F'
Hompg, g, R, (G, w1 Q w2) —_— G,

and this diagram may be completed to establish the isomorphism whose
localization establishes the lemma. a

4. On the conjecture of Tachikawa. We maintain the standard
assumptions on (Ry,my), (R2,m3) and R = (R; ® Ra)m- We record
the following special case of 3.1:

Theorem 4.1. Suppose that R; and Ry are Cohen-Macaulay, and
the Tachikawa conjecture holds for both Ry and Ry. Then it also holds
for R.

Proof. By 2.5 we have that R is Cohen-Macaulay. Assume that
Ext(w, R) = 0 for all i > 0. By 2.7 we have that Torf(w,w) = 0 for
all i > 0, and w ®g w is maximal Cohen-Macaulay. From 2.3, 2.4, 2.5,
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2.8 and 3.2 we obtain that Tor?j (wj,w;) = 0foralli >0, and w; g, w;
is a maximal Cohen-Macaulay R;-module, j = 1,2. By 2.7 again we
get that Ext’}z]_ (wj, Rj) =0 for all i > 0, j = 1,2. Since the conjecture
holds over Ry and Rs, wiy = R; and ws = Ry, and thus w = R. O

Remark. In [2, 9] it is proved that if A is an Artinian local ring with
radical cube zero, then it satisfies the Tachikawa conjecture; in fact,
one only needs to assume that Ext) (w4, A) = 0 to conclude that A
is Gorenstein. Thus, if R; and Rs are both of radical cube zero and
essentially of finite type over the same field k, and having k as their
common residue field, then R satisfies the Tachikawa conjecture even
though m? # 0; and we too only need to assume that Exth(w, R) = 0.
Indeed, since in this case R is Artinian, the canonical module w is
injective, and so by Matlis duality we have Extk (o, R) = 0 if and only
if Torf(w,w) = 0. Now 2.3 shows that Torl(w;,w;) = 0, i = 1,2,
which in turn implies that Torf, (w;, R;) = 0, ¢ = 1,2. The result of [9]
shows that w; =2 R;, ¢ = 1,2, and thus by 2.5, w = R.

Also proved in [2] is that the Tachikawa conjecture holds over Cohen-
Macaulay rings R in the following circumstances: (1) R is generically
Gorenstein; (2) R is the quotient of a generically Gorenstein ring
modulo a regular sequence; (3) R is in the linkage class of a complete
intersection; (4) the codimension of R is at most 3; (5) R is Golod.
Assuming rings essentially of finite type over k and having k as their
residue field, each having one of these forms, we may iteratively
form local tensors of such to get a larger class of rings satisfying the
Tachikawa conjecture.

5. Examples. In this section we give a necessary condition for an
R-module to belong to LT := LT (mod (R;), mod (R3)) and two simple
examples, one which shows that modules not in LT may have higher
syzygies which are in LT, and one which shows that some modules may
have no syzygy in LT.

5.1. Write R, = Q;/I;, where (Q;,n;) are regular local rings,
Q = (Ql R QZ)n with n := n; g Q2 + Ql R Na, and let M be an
R-module. For a local ring (A, k), denote by P4 (t) the Poincaré series
3o dimgTor (X, k)t* of an A-module X. Then M = ®f_q1(M1,; ®k
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Mj ;) has Poincaré series P$,(t) = > PCA'?IJ (t)Pfi“ (t). Write
D;p(t) for the derivative of the polynomial p(t). Since R; is a Q;-module
of rank zero, i = 1,2, and since rank is additive on exact sequences,

—1 is a zero of each of the polynomials P%}i j(t), =12, 5=1,...,r.
Thus we have that M is in LT only if DtP%[(—l) =0.

The property in 5.1 can be used to prove the module M in the
following example is not in LT.

Example 5.2. Let R; := k[z]/(2?) and Ry := k[y]/(y?). Then
R = k[z,y]/(z?,y%). Let M be the cokernel of the map R % R. Then
M is not in LT, but its first syzygy is k, which is in LT.

Example 5.3. Let R;, Ry and R be as in Example 5.2. Let M be

(y2)

the cokernel of the map R? 25" R2. Then no syzygy of M is in LT.

To see that none of the syzygy modules in the last example is in
LT, note that a minimal free resolution of M is periodic of period two
(meaning that the differentials alternate, the even ones represented by
( _zy ;y) and the odd ones represented by ( Z z )), and M is indecompos-
able. Thus if M had a syzygy in LT it would have the form (M; ®y M2)m
with M; an R;-module and M5 an Rp-module. Either M is free, or
it has a periodic minimal free resolution over R;. The same is true for
M. Now if neither M; is free, by 2.3 a minimal free resolution of the
syzygy M over R is composed of two periodic resolutions, yielding a
resolution where the ranks of the free modules grow linearly, but this
contradicts that fact that M has a periodic resolution.
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