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MAPS ON DIVISOR CLASS GROUPS
INDUCED BY RING HOMOMORPHISMS

OF FINITE FLAT DIMENSION

SEAN SATHER-WAGSTAFF AND SANDRA SPIROFF

ABSTRACT. Let ϕ : A → B be a ring homomorphism
between Noetherian normal integral domains. We estab-
lish a general criterion for ϕ to induce a homomorphism
Cl(ϕ) : Cl(A) → Cl(B) on divisor class groups. For instance,
this criterion applies whenever ϕ has finite flat dimension; this
special case generalizes the more classical situations where ϕ
is flat or is surjective with kernel generated by an A-regular
element. We extend some of Spiroff’s work on the kernels of
induced maps to this more general setting.

Introduction

The divisor class group of a Noetherian normal integral domain A,
denoted Cl(A), measures certain aspects of the factorization-theory of
A. For instance, it is well-known that A is a unique factorization
domain if and only if Cl(A) is trivial. For definitions and notation,
consult the beginning of Section 1.

It is natural to investigate the transfer of such factorization properties
between rings that are connected by a ring homomorphism. As part
of such an investigation, one should find nontrivial classes of ring
homomorphisms ϕ :A→ B of Noetherian normal integral domains that
induce group homomorphisms Cl(ϕ) : Cl(A) → Cl(B). For instance, the
flat ring homomorphisms have this property. Danilov [7, Prop. 1.1]
shows that the natural surjection B[[T ]] → B also has this property,
and Lipman [14, §0] extended this to any surjection of the form
A → A/fA, assuming that A and A/fA are both Noetherian normal
integral domains.
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In this paper, we establish a general criterion guaranteeing that a
ring homomorphism ϕ :A→ B of Noetherian normal integral domains
induces a group homomorphism Cl(ϕ) : Cl(A) → Cl(B); see Theorem
1.10. This was established, with extra assumptions, by Spiroff in her
dissertation [18], but the details cannot be found in any of the current
literature. We include a complete proof here because this criterion
has been used without proof by several authors, including Griffith and
Weston [13], Sather-Wagstaff [17], and Spiroff [19], and because we
require the general statement for our own investigation. As a special
case of this we have the following result, proved in (1.11), which shows
that our criterion encompasses the cases described in the previous
paragraph:

Theorem A. Let ϕ :A → B be a ring homomorphism of finite flat
dimension between Noetherian normal integral domains. Then there
is a well-defined group homomorphism Cl(ϕ) : Cl(A) → Cl(B) given by
[a] �→ [

(a ⊗A B)BB
]
, where (−)BB is the double-dual with respect to B.

The injectivity of the map Cl(ϕ) has been studied by several authors,
including Danilov [5, 6, 7], Griffith and Weston [13], and Spiroff [19].
The work in [19] is guided by the following principle: When A is a
local Noetherian normal integral domain, the pathological behavior
exhibited by maps of the form Cl(ϕ) : Cl(A) → Cl(A/In) lies near the
“top” of the maximal ideal. In the current paper, we extend this idea
to the more general setting of induced maps guaranteed to exist by
Theorem A. The outcome is the next result which is proved in (2.12).

Theorem B. Let (A,m, k) be an excellent normal local integral
domain and let I1, I2, . . . be a sequence of nonzero prime ideals in A
of finite projective dimension such that limn→∞ In = 0 in the m-adic
topology and such that A/In is a normal integral domain for each n.
If πn:A → A/In is the natural surjection, then

⋂∞
n=1 Ker(Cl(πn)) is

trivial.

Here we summarize the contents of this paper. Section 1 begins
with requisite background information and contains the proof of our
criterion for the existence of induced homomorphisms of divisor class
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groups. It concludes with a discussion of the functorial behavior of our
construction. Section 2 contains an investigation of the injectivity of
our induced maps. We end the paper with Section 3, which contains
examples of ideals satisfying the hypotheses of Theorem B.

Assumptions. In this paper, the term “normal integral domain”
is short for “Noetherian integral domain that is integrally closed in its
field of fractions”. We assume without reference results from the texts
of Matsumura [15] and Nagata [16].

1. Divisor Class Groups and Induced Homomorphisms

In this section, we show how certain homomorphisms of normal
integral domains induce homomorphisms on the corresponding divisor
class groups. We begin with our working definition of the divisor class
group of a normal integral domain. It can be found in Lipman [14,
§0] and is equivalent to the classical additive definition of the divisor
class group appearing in Bourbaki [3, Ch. VII] and Fossum [10, §6];
see, e.g., Sather-Wagstaff [17, 2.10] for a discussion of this equivalence.

Definition 1.1. Let A be a normal integral domain and M a
finitely generated A-module . The dual of M is MA = HomA(M,A)
and the double dual of M is MAA = (MA)A. The natural biduality map
σA

M :M →MAA is the A-module homomorphism given by σA
M (m)(g) =

g(m) for all m ∈M and all g ∈MA. We say that M is reflexive if σA
M

is an isomorphism.

Remark 1.2. In much of the literature, the dual of an A-module M
is denoted M∗. We have chosen the notation MA in order to avoid
ambiguity when we work with two or more rings simultaneously, as in
the proof of Lemma 1.8.

Definition 1.3. Let A be a normal integral domain. The divisor
class group of A, denoted Cl(A), is the group of isomorphism classes
of reflexive A-modules of rank one, or equivalently, reflexive ideals of
A. An element [a] ∈ Cl(A) is called a divisor class, and multiplication
is defined by [a] · [b] = [(a ⊗A b)AA]. The identity element is [A], and



570 S. SATHER-WAGSTAFF AND S. SPIROFF

[a]−1 = [aA].

Remark 1.4. Let A be a normal integral domain. For each homo-
morphism of finitely generatedA-modules ψ :M → N , the functoriality
of HomA(−, A) yields A-module homomorphisms ψA :NA → MA and
ψAA :MAA → NAA. Also, the naturality of the biduality map mani-
fests itself in the next commutative diagram.

M �

ψ

�
σA

M

N

�
σA

N

MAA
�

ψAA

NAA

We use the following result of Auslander and Buchsbaum in several
key places.

Lemma 1.5. ([1, Prop. 3.4]) Let A be a normal integral domain.
If M is a reflexive A-module, N is a torsion-free A-module, and
ψ :M → N is an A-module homomorphism, then ψ is an isomorphism
if and only if, for each prime ideal p ∈ Spec(A) of height at most one,
the induced homomorphism ψp :Mp → Np is an isomorphism.

The next three lemmas are for use in the proof of Theorem 1.10.

Lemma 1.6. Let ϕ :A → B be a ring homomorphism of integral
domains and set q = Ker(ϕ). If M is a finitely generated A-module
such that Mq

∼= Ar
q, then M ⊗A B is a finitely generated B-module of

rank r.

Proof. We need to show that (M ⊗A B) ⊗B L ∼= Lr where L is the
field of fractions of B. Using the natural commutative diagram of ring
homomorphisms

A ��

�

�

A/q � �

ϕ′

�

�

B
�

�

Aq �� (A/q)q � �

(ϕ′)q
Bq � � L
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we have the following isomorphisms

(M ⊗A B) ⊗B L ∼= (M ⊗A Aq) ⊗Aq L
∼= Mq ⊗Aq L

∼= Ar
q ⊗Aq L

∼= Lr

which yield the desired conclusion.

Lemma 1.7. Let B be a normal integral domain, and let M and
N be finitely generated B-modules. Assume that, for each prime ideal
P ∈ Spec(B) of height at most one, the localizations MP and NP are
reflexive BP -modules. Then there is an isomorphism (M ⊗B N)BB ∼=
(MBB ⊗B NBB)BB.

Proof. Fix a prime ideal P ∈ Spec(B) of height at most one.
By assumption MP is a reflexive BP -module. Using the natural
commutative diagram

MP �

σBP

MP∼=�
�
�
���(σB

M )P

(MP )BP BP

�

∼=

(MBB)P

it follows that the map (σB
M )P is an isomorphism. Similarly, we deduce

that the map (σB
N )P is an isomorphism. From this we conclude that

the tensor product

(σB
M )P ⊗BP (σB

N )P :MP ⊗BP NP →MBP BP

P ⊗BP N
BP BP

P

is an isomorphism. Using the commutative diagram

MP ⊗BP NP �

(σB
M )P ⊗BP (σB

N )P

∼=

�

∼=

MBP BP

P ⊗BP N
BP BP

P

�

∼=

(M ⊗B N)P �

(σB
M ⊗B σB

N )P (MBB ⊗B NBB)P

it follows that the map (σB
M ⊗B σB

N )P is an isomorphism. From this,
we conclude that the top row of the next commutative diagram is an
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isomorphism

[(M ⊗B N)P ]BP BP
�

[(σB
M ⊗B σB

N )P ]BP BP

∼=

�

∼=

[(MBB ⊗B NBB)P ]BP BP

�

∼=

[(M ⊗B N)BB]P �

[(σB
M ⊗B σB

N )BB ]P [(MBB ⊗B NBB)BB]P

and so the map [(σB
M ⊗B σB

N )BB ]P is an isomorphism.

Since the ring B is a normal integral domain and the modules
(MBB⊗BN

BB)BB and (M⊗BN)BB are each of the form HomB(U,B)
for some finitely generated B-module U , each of these B-modules is
reflexive. Since the homomorphism

(σB
M ⊗B σB

N )BB : (M ⊗B N)BB → (MBB ⊗B NBB)BB

localizes to an isomorphism at each prime ideal of height at most one,
Lemma 1.5 implies that it is an isomorphism, yielding the desired
conclusion.

Lemma 1.8. Let ϕ :A → B be a ring homomorphism of integral
domains such that B is normal. Let M be a finitely generated A-module
such that, for each prime ideal P ∈ Spec(B) of height at most one,
the Ap-module Mp is reflexive, where p = ϕ−1(P ). Then there is an
isomorphism (M ⊗A B)BB ∼= (MAA ⊗A B)BB .

Proof. As in the proof of Lemma 1.7, it suffices to construct a B-
module homomorphism ψ : (M ⊗AB)BB → (MAA ⊗AB)BB such that,
for each prime ideal P ∈ Spec(B) of height at most one, the localization
ψP is an isomorphism. We show that the map ψ = (σA

M ⊗A B)BB

satisfies the desired property.

Fix a prime ideal P ∈ Spec(B) of height at most one, and set
p = ϕ−1(P ). The Ap-module Mp is reflexive by assumption, so the
biduality map σ

Ap

Mp
:Mp → (Mp)ApAp is an isomorphism. It follows

that the induced map

(σAp

Mp
⊗Ap BP )BP BP : (Mp ⊗Ap BP )BP BP → ((Mp)ApAp ⊗Ap BP )BP BP
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is an isomorphism as well. From the natural commutative diagram

(Mp ⊗Ap BP )BP BP
�

(σAp

Mp
⊗Ap BP )BP BP

∼=

�

∼=

((Mp)ApAp ⊗Ap BP )BP BP

�

∼=

[(M ⊗A B)BB]P �

[(σA
M ⊗A B)BB ]P [(MAA ⊗A B)BB ]P

it follows that [(σA
M ⊗A B)BB]P is an isomorphism as desired.

The next definition is our final preparation for Theorem 1.10.

Definition 1.9. For each normal integral domain A, we set

UFD(A) = {p ∈ Spec(A) | Ap is a unique factorization domain}.

We now state and prove the main result of this section.

Theorem 1.10. Let ϕ :A → B be a ring homomorphism of
normal integral domains such that, for each prime ideal P ∈ Spec(B)
of height at most one, we have ϕ−1(P ) ∈ UFD(A). Then there is
a well-defined group homomorphism Cl(ϕ) : Cl(A) → Cl(B) given by
[a] �→ [(a ⊗A B)BB ].

Proof. Let K and L denote the fields of fractions of A and B,
respectively. Set q = Ker(ϕ), which is a prime ideal of A.

To show that Cl(ϕ) is well-defined, it suffices to fix a reflexive A-
module a of rank one and verify that (a ⊗A B)BB is a reflexive B-
module of rank one. The reflexivity follows from the fact that B is
normal and (a ⊗A B)BB is of the form HomB(U,B) for some finitely
generated B-module U . Lemma 1.6 shows that the B-module a ⊗A B
has rank one, that is, there is an isomorphism (a⊗AB)⊗BL ∼= L. This
yields the second isomorphism in the next sequence

(a ⊗A B)BB ⊗B L ∼= ((a ⊗A B) ⊗B L)LL ∼= (L)LL ∼= L.

The first isomorphism follows from the fact that L is flat as a B-module,
since a ⊗A B is finitely generated. The third isomorphism is routine.
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This shows that (a⊗A B)BB has rank one, and it follows that Cl(ϕ) is
well-defined.

To complete the proof, we show that Cl(ϕ) respects the group
structures of Cl(A) and Cl(B). To this end, fix two rank-one reflexive
A-modules a and b. The cancellation isomorphism

(a ⊗A B) ⊗B (b ⊗A B) ∼= (a ⊗A b) ⊗A B

yields the unlabeled isomorphism in the following sequence:

[(a ⊗A b)AA ⊗A B]BB
(1)∼= [(a ⊗A b) ⊗A B]BB

∼= [(a ⊗A B) ⊗B (b ⊗A B)]BB

(2)∼= [(a ⊗A B)BB ⊗B (b ⊗A B)BB]BB .

To justify isomorphism (1), we show that the hypotheses of Lemma
1.8 are satisfied with the module M = a ⊗A b. Let P ∈ Spec(B) be a
prime ideal of height at most one, and set p = ϕ−1(P ). By assumption,
the group Cl(Ap) is trivial. The fact that ap and bp are reflexive Ap-
modules of rank one implies ap

∼= Ap
∼= bp and so

(a ⊗A b)p
∼= ap ⊗Ap bp

∼= Ap ⊗Ap Ap
∼= Ap.

In particular, this is a reflexive Ap-module, so Lemma 1.8 yields
isomorphism (1).

For isomorphism (2), we show that the hypotheses of Lemma 1.7 are
satisfied with the module M = a⊗AB and N = b⊗AB. It suffices (by
symmetry) to show that, for each prime ideal P ∈ Spec(B) of height
at most one, the BP -module (a ⊗A B)P is reflexive. Set p = ϕ−1(P ).
In the following sequence of isomorphisms

(a ⊗A B)P
∼= (a ⊗A B) ⊗B BP

∼= (a ⊗A Ap) ⊗Ap BP

∼= ap ⊗Ap BP
∼= Ap ⊗Ap BP

∼= BP

the second isomorphism comes from the following commutative diagram
of ring homomorphisms

A �

ϕ

�

B

�

Ap �

ϕP BP



INDUCED MAPS ON DIVISOR CLASS GROUPS 575

and the remaining isomorphisms are straightforward. The BP -module
(a ⊗A B)P

∼= BP is reflexive, thus completing the proof.

We next show how Theorem A follows from Theorem 1.10.

1.11. Proof of Theorem A. Let P ∈ Spec(B) be a prime ideal of
height at most one, and set p = ϕ−1(P ). The localized homomorphism
ϕP :Ap → BP has finite flat dimension. Since B is normal and
ht(P ) ≤ 1, the ring BP is regular. It follows from [2, Thm. 6.1.1]
that Ap is regular, and hence p ∈ UFD(A). Hence, the desired result
follows from Theorem 1.10.

Remark 1.12. Theorem A unifies two classical situations of induced
maps on divisor class groups. The first situation is when ϕ is flat,
and the second situation is when ϕ is surjective with kernel generated
by an A-regular element; see [14, §0]. Indeed, in each of these
situations, the map ϕ has finite flat dimension. Another classical
case is covered by Theorem 1.10, namely, the case where ϕ is injective
and integral. In this case, the Cohen-Seidenberg Theorems imply that
ht(P ) = ht(ϕ−1(P )) for every prime ideal of B. In particular, when
ht(P ) ≤ 1 we have ht(ϕ−1(P )) ≤ 1; this implies that Aϕ−1(P ) is regular
and hence ϕ−1(P ) ∈ UFD(A). Corollary 1.15 shows how to combine
these classical situations.

Remark 1.13. Continue with the notation of Theorem 1.10. For each
divisor class [a] ∈ Cl(A), we have

Cl(ϕ)([a]−1) = Cl(ϕ)([a])−1 = [(a ⊗A B)BB ]−1

= [(a ⊗A B)BBB ] = [(a ⊗A B)B ].

The first equality follows from the fact that Cl(ϕ) is a homomorphism of
multiplicative groups. The second and third equalities are by definition.
To verify the fourth equality, it suffices to show that the biduality
morphism

σB
(a⊗AB)B : (a ⊗A B)B → (a ⊗A B)BBB

is an isomorphism. As in the proof of Lemma 1.8, it is straightforward
to show that, for each prime ideal P ∈ Spec(B) of height at most one,
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the induced map

(σB
(a⊗AB)B )P : ((a ⊗A B)B)P → ((a ⊗A B)BBB)P

is an isomorphism. The B-modules (a ⊗A B)B and (a ⊗A B)BBB are
both reflexive because B is a normal integral domain and each of the
modules is of the form HomB(U,B) for some finitely generated B-
module U . Hence, Lemma 1.5 implies that σB

(a⊗AB)B is an isomorphism.

In the final results of this section, we analyze the functoriality of the
operator Cl(−).

Theorem 1.14. Let ϕ :A → B and ψ :B → C be ring homomor-
phisms of normal integral domains. If each of the maps ϕ, ψ and ψ ◦ϕ
satisfies the hypotheses of Theorem 1.10, then Cl(ψ◦ϕ) = Cl(ψ)◦Cl(ϕ).

Proof. Fix an element [a] ∈ Cl(A). To show that Cl(ψ ◦ ϕ)([a]) =
Cl(ψ)(Cl(ϕ)([a])), we need to exhibit an isomorphism of C-modules

(a ⊗A C)CC ∼= [(a ⊗A B)BB ⊗B C]CC .

We start with the biduality map

σB
a⊗AB : a ⊗A B → (a ⊗A B)BB

and apply the functor −⊗B C to yield the C-module homomorphism

σB
a⊗AB ⊗B C : (a ⊗A B) ⊗B C → (a ⊗A B)BB ⊗B C.

Let Υ : a⊗AC → (a⊗AB)⊗B C denote the natural tensor-cancellation
isomorphism and set

δ = (σB
a⊗AB ⊗B C) ◦ Υ : a ⊗A C → (a ⊗A B)BB ⊗B C.

We claim that the double-dual

δCC : (a ⊗A C)CC → [(a ⊗A B)BB ⊗B C]CC

is an isomorphism. Lemma 1.5 says that we need only show that
the induced map (δCC)P is an isomorphism for each prime ideal
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P ∈ Spec(C) such that ht(P) ≤ 1. Fix such a prime P and set
P = ψ−1(P) and p = ϕ−1(P ).

Our assumptions imply that p ∈ UFD(A), and so there is an Ap-
module isomorphism ap

∼= Ap. It follows that we have a BP -module
isomorphism ap ⊗Ap BP

∼= BP . In particular, this BP -module is
reflexive, so the map

σBP

ap⊗ApBP
: ap ⊗Ap BP → (ap ⊗Ap BP )BP BP

is an isomorphism. From the following commutative diagram

(a ⊗A B)P �

(σB
a⊗AB)P

�

∼=

((a ⊗A B)BB)P

�

∼=

ap ⊗Ap BP �

σBP

ap⊗Ap BP

∼= (ap ⊗Ap BP )BP BP

we conclude that (σB
a⊗AB)P is also an isomorphism. Hence, the induced

map

(σB
a⊗AB)P ⊗BP CP : (a ⊗A B)P ⊗BP CP → [(a ⊗A B)BB]P ⊗BP CP

is an isomorphism as well. Therefore, the next commutative diagram

[(a ⊗A B) ⊗B C]P �

(σB
a⊗AB ⊗B C)P

�

∼=

[(a ⊗A B)BB ⊗B C]P

�

∼=

(a ⊗A B)P ⊗BP CP �

(σB
a⊗AB)P ⊗BP CP

∼= [(a ⊗A B)BB]P ⊗BP CP

shows that the map (σB
a⊗AB ⊗B C)P is an isomorphism.

Since Υ is an isomorphism, the same is true of ΥP. It follows that
the map

δP = [(σB
a⊗AB ⊗B C) ◦ Υ]P = (σB

a⊗AB ⊗B C)P ◦ ΥP

is an isomorphism as well. From this, we conclude that the double-dual

(δP)CPCP : [(a ⊗A C)P]CPCP → [((a ⊗A B)BB ⊗B C)P]CPCP
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is an isomorphism. Finally, the commutative diagram

[(a ⊗A C)CC ]P �

(δCC)P

�

∼=

[[(a ⊗A B)BB ⊗B C]CC ]P

�

∼=

[(a ⊗A C)P]CPCP
�

(δP)CPCP

∼= [((a ⊗A B)BB ⊗B C)P]CPCP

shows that (δCC)P is an isomorphism, as desired.

Corollary 1.15. Let ϕ :A → B and ψ :B → C be ring homo-
morphisms of normal integral domains. Assume that ϕ has finite flat
dimension and that ψ either has finite flat dimension or is injective and
integral. Then each of the maps ϕ, ψ and ψ ◦ϕ satisfies the hypotheses
of Theorem 1.10 and Cl(ψ ◦ ϕ) = Cl(ψ) ◦ Cl(ϕ).

Proof. Our assumptions imply that ϕ and ψ both satisfy the
hypotheses of Theorem 1.10; see Theorem A and Remark 1.12. In
light of Theorem 1.14, it suffices to show that the composition ψ ◦ ϕ
satisfies the hypotheses of Theorem 1.10.

If ϕ and ψ both have finite flat dimension, then the composition ψ◦ϕ
also has finite flat dimension and therefore satisfies the hypotheses
of Theorem 1.10. Assume now that ψ is injective and integral. For
each prime ideal P ∈ Spec(C) of height at most one, the Cohen-
Seidenberg Theorems imply that the prime P = ψ−1(P) ∈ Spec(B)
has ht(P ) = ht(P) ≤ 1. Since ϕ has finite flat dimension, the prime
p = ϕ−1(P ) = (ψ◦ϕ)−1(P) ∈ Spec(A) is in UFD(A), as desired.

2. Kernels of Homomorphisms Induced by Sequences of Ideals

The motivating principle for the work in this section is the idea that
the pathological behavior of induced maps on divisor class groups, at
least concerning injectivity, lies near the “top” of the maximal ideal of
a local ring. We begin by specifying some assumptions for the section.

Assumption 2.1. Throughout this section (A,m) is a local normal
integral domain. Fix a sequence I1, I2, . . . of nonzero prime ideals of A
such that limn→∞ In = 0 in the m-adic topology. In other words, for
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each integer i ≥ 1, there is an integer ni ≥ 1 such that, for all n ≥ ni

we have In ⊆ mi. We set P =
∏

n(A/In) and S =
∐

n(A/In), and we
let ι :A → P denote the natural A-module homomorphism given by
ι(a) = (a+ I1, a+ I2, . . . ). Let π :P → P/S be the natural surjection.

Lemma 2.2. With notation as in Assumption 2.1, if A is complete,
then the A-module homomorphism ι :A→ P is a split injection.

Proof. The proof is essentially the same as in [19, Lem. 2.6], but
with the principal ideals replaced by the In.

Proposition 2.3. With notation as in Assumption 2.1, if A is
complete, then the A-module homomorphism π ◦ ι :A→ P/S is a split
injection.

Proof. First, we show that π ◦ ι is an injection. If a ∈ Ker(π ◦ ι),
then

(a+ I1, a+ I2, . . . ) = ι(a) ∈ S

so there is an integer n0 ≥ 1 such that, for all n ≥ n0 we have
a+ In = In. In other words, we have a ∈ ∩∞

n=n0
In = 0.

Lemma 2.2 yields an A-module homomorphism η :P → A such that
η ◦ ι = idA. We claim that η(S) = 0. To show this, we fix an element
s ∈ S. Write s = (s1 + I1, s2 + I2, . . . ) for some elements si ∈ A. The
condition s ∈ S implies that there is an integer N ≥ 1 such that, for
all n ≥ N , we have sn + In = In. Since A is an integral domain and
each ideal In is nonzero, there is a nonzero element y ∈ I1I2 · · · IN . It
follows that yη(s) = η(ys) = 0. Since A is an integral domain and
y �= 0, this implies η(s) = 0, as claimed.

Hence, the map η :P/S → A given by η (p) = η(p) is a well-defined
A-module homomorphism. From the equality η ◦ ι = idA, it follows
readily that η ◦ (π ◦ ι) = idA, so that η is the desired splitting.

The proof of Theorem B relies on the notion of purity, which we
discuss next.
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Definition 2.4. A short exact sequence S : 0 → M1 → M2 →
M3 → 0 of A-module homomorphisms is pure exact if, for each A-
module L, the sequence S ⊗A L is exact. (When S is pure exact, we
also say that M1 is a pure submodule of M2.)

Remark 2.5. Let S be a short exact sequence of A-module homomor-
phisms. The sequence S is pure exact if and only if, for each finitely-
presented A-module L, the sequence HomA(L,S) is exact; see Field-
house [9, Cor. 7.1]. As the m-adic topology on A is Hausdorff, the
sequence S is pure exact if and only if, for each A-module L of finite
length, the sequence S ⊗A L is exact; see Griffith [12, Cor. 3.2].

Lemma 2.6. With notation as in Assumption 2.1, the following
exact sequence is pure exact: 0 → S → P

π→ P/S → 0.

Proof. Let ε :S → P be the natural inclusion. Because of Remark
2.5, we need only show that the map ε ⊗A L :S ⊗A L → P ⊗A L is
injective for each A-module L of finite length. We have two sequences
of natural isomorphisms:

S ⊗A L ∼=
[∐

n

(A/In)
]
⊗A L ∼=

∐
n

(L/InL)

P ⊗A L ∼=
[∏

n

(A/In)
]
⊗A L ∼=

∏
n

(L/InL).

The final isomorphism uses the fact that L is finitely generated; see,
e.g., [8, Thm. 3.2.22]. These isomorphisms fit into the following
commutative diagram

S ⊗A L �

ε⊗A L

�

∼=
P ⊗A L

�

∼=∐
n

(L/InL) �
ε′ ∏

n

(L/InL)

where ε′ is the natural inclusion. Since ε′ is injective, the diagram shows
that ε⊗A L is also injective, as desired.
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Proposition 2.7. With notation as in Assumption 2.1, if M is
a finitely generated A-module and HomA(M,A/In) ∼= A/In for all n,
then HomA(M,P/S) ∼= P/S.

Proof. We have two sequences of isomorphisms

HomA(M,P ) ∼= HomA

(
M,

∏
n

(A/In)
)

∼=
∏
n

HomA(M,A/In)

∼=
∏
n

(A/In) ∼= P

HomA(M,S) ∼= HomA

(
M,

∐
n

(A/In)
)

(∗)∼=
∐
n

HomA(M,A/In)

∼=
∐
n

(A/In) ∼= S.

The isomorphism (∗) uses the fact that M is finitely generated. Lemma
2.6 shows that the sequence 0 → S → P → P/S → 0 is pure exact,
so Remark 2.5 implies that the top row of the following commutative
diagram is exact:

0 � HomA(M,S) �

�

∼=

HomA(M,P ) �

�

∼=

HomA(M,P/S) � 0

0 � S � P � P/S � 0.
The vertical isomorphisms are the ones from the beginning of the
proof. Since both rows of this diagram are exact, a standard argument
shows that there is an induced isomorphism HomA(M,P/S)

∼=→ P/S,
as desired.

We require two more key notions for the proof of Theorem B.

Definition 2.8. Let M be an A-module and N ⊆ M an A-
submodule.

(a) We let N denote the m-adic closure of N in M , that is,

N = {x ∈M | for each integer r ≥ 1 we have (x+ mrM) ∩N �= ∅}.
(b) The A-module M is m-divisible if mM = M .
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Lemma 2.9. With notation as in Assumption 2.1, let M be an
A-module. If N is a pure A-submodule of M , then N/N is the unique
maximal element of the set of m-divisible submodules of M/N , ordered
by inclusion.

Proof. We claim that the m-adic topology on N coincides with the
subspace topology on N induced by the m-adic topology on M . To
prove this, we fix an integer n ≥ 1 and show that mnM ∩ N = mnN .
The containment mnM ∩ N ⊇ mnN is standard. For the reverse
containment, let x ∈ mnM ∩ N . Write x =

∑
i aiwi where ai ∈ mn

and wi ∈ M . Because N is pure, there exist yi ∈ N such that
x =

∑
aiyi ∈ mnN ; see [15, Thm. 7.13]. This establishes the claim.

To complete the proof, it suffices to show thatN/N = ∩∞
n=1m

n(M/N)
since it is straightforward to show that the right-hand side of this
equality is the unique maximal m-divisible submodule of M/N . To
verify the containment N/N ⊆ ∩∞

n=1m
n(M/N), we fix an element

z + N ∈ N/N . The condition z ∈ N implies that, for each integer
n ≥ 1, there exists an element vn ∈ (z + mnM) ∩ N . Since we have
vn ∈ N , we conclude that (z − vn) + N = z + N . The inclusion
z − vn ∈ mnM then implies that

z +N = (z − vn) +N ⊆ mnM +N

and so
z +N ∈ (mnM +N)/N = mn(M/N)

as desired.

For the reverse containment, let z + N ∈ ∩∞
n=1m

n(M/N). For each
n ≥ 1, there is an element wn ∈ mnM such that z + N = wn + N .
It follows that we have z − wn ∈ (z + mnM) ∩ N . In particular, we
conclude that (z+mnM)∩N �= ∅ for each n ≥ 1, and so z ∈ N .

Remark 2.10. With notation as in Assumption 2.1, consider the
Cartesian product

∏
A =

∏∞
n=1A. Given a sequence (a1, a2, . . . ) ∈∏

A, we have limn→∞ an = 0 in the m-adic topology when, for
each i ≥ 1, there exists ni ≥ 1 such that, for all n ≥ ni we have
an ∈ mi. It is routine to show that the m-adic closure of the submodule∐
A =

∐∞
n=1A ⊆ ∏

A is∐
A = {(a1, a2, . . . ) ∈

∏
A | limn→∞ an = 0 in the m-adic topology}.
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In particular, we have
∐
A �

∏
A.

Similarly, since we have assumed that limn→∞ In = 0 in the m-adic
topology, it is readily shown that

S = {(a1 + I1, a2 + I2, . . . ) ∈ P | lim
n→∞ an = 0 in the m-adic topology}.

In other words, if τ :
∏
A→ P is the natural surjection, then τ−1(S) =∐

A.

Proposition 2.11. With notation as in Assumption 2.1, the A-
module P/S is flat.

Proof. Let τ :
∏
A → P be the natural surjection. From Remark

2.10, it can be seen that (
∏
A)/

∐
A = (

∏
A)/τ−1(S) ∼= P/S. This

A-module is flat by [19, Lem. 2.5].

We are now ready for the main point of this section.

2.12. Proof of Theorem B. We first prove the result in the case
where A is complete. For each index n, set An = A/In. Each map
Cl(πn) : Cl(A) → Cl(An) is a well-defined group homomorphism by
Theorem A, given by the rule [a] �→ [(a ⊗A An)AnAn ]. Fix an element
[a] ∈ ⋂∞

n=1 Ker(Cl(πn)). To show that [a] is trivial, it suffices to show
that [a]−1 = [aA] is trivial, where aA = HomA(a, A). That is, we need
to show that aA ∼= A.

For each index n, the class [(a ⊗A An)AnAn ] is trivial in Cl(An), and
hence the class [(a⊗AAn)AnAn ]−1 = [(a⊗AAn)AnAnAn ] is also trivial.
This explains the first isomorphism in the next sequence

An
∼= (a ⊗A An)AnAnAn ∼= (a ⊗A An)An

= HomAn(a ⊗A An, An) ∼= HomA(a, An).

The second isomorphism follows from Remark 1.13, the equality is by
definition, and the final isomorphism is from Hom-tensor adjointness.
Proposition 2.7 implies that HomA(a, P/S) ∼= P/S. By Proposition 2.3
there is an A-module T such that P/S ∼= A⊕ T , and it follows that

P/S ∼= HomA(a, P/S) ∼= HomA(a, A⊕ T )
∼= HomA(a, A) ⊕ HomA(a, T ) = aA ⊕K
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where K = HomA(a, T ). The natural exact sequence 0 → S/S →
P/S → P/S → 0 then has the form

0 → S/S
f→ aA ⊕K → P/S → 0.

Lemma 2.9 implies that the module S/S is m-divisible. By Nakayama’s
Lemma, the only m-divisible submodule of aA is 0; hence, the image
of the composition S/S → aA ⊕ K → aA is zero. It follows that
Im(f) ⊆ K, and we conclude that

P/S ∼= aA ⊕K/ Im(f).

By Proposition 2.11, the A-module P/S is flat. Since aA is a direct
summand of P/S, it follows that aA is flat, that is, free as an A-module.
In other words, the class [aA] is trivial, as desired. This completes the
proof when A is complete.

Next, we establish the general case of the result. Since A is an
excellent local normal integral domain, the m-adic completion Â is also
a local normal integral domain with maximal ideal mÂ. Each quotient
A/In is also excellent, so the ring Â/In ∼= Â/InÂ is also a local normal
integral domain. Since Â is flat over A, we have InÂ ∼= In ⊗A Â, so

pd
Â
(InÂ) = pd

Â
(In ⊗A Â) = pdA(In) <∞.

Also, the containment In ⊆ mi implies that InÂ ⊆ miÂ = (m
Â
)i, so

we have limn→∞ InÂ = 0 in the mÂ-adic topology. It follows that
the sequence I1Â, I2Â, . . . of ideals in Â satisfies the hypotheses of
the result. Let τn : Â → Â/InÂ be the natural surjection. Since Â is
complete, the first part of the proof implies that

⋂∞
n=1 Ker(Cl(τn)) is

trivial.

The next display contains the natural commutative diagram of local
ring homomorphisms and the resulting commutative diagram of divisor
class group homomorphisms.

A �

g

�

πn

Â

�

τn

A/In � Â/InÂ

Cl(A) � �

Cl(g)

�
Cl(πn)

Cl(Â)

�
Cl(τn)

Cl(A/In) � � Cl(Â/InÂ)
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Note that the commutativity of the second diagram follows from Theo-
rem 1.14, and the injectivity of the horizontal maps follows because the
corresponding ring homomorphisms are flat and local. Fix an element
[a] ∈ ⋂∞

n=1 Ker(Cl(πn)). The commutativity of the second diagram
implies that

Cl(g)([a]) ∈
∞⋂

n=1

Ker(Cl(τn)).

This intersection is trivial, so the injectivity of Cl(g) implies that [a] is
trivial.

Corollary 2.13. Let (A,m, k) be an excellent normal local integral
domain, and let I1, I2, . . . be a sequence of nonzero prime ideals in A of
finite projective dimension. Assume that limn→∞ In = 0 in the m-adic
topology and that A/In is a normal integral domain for each n. For
n = 1, 2, . . . let πn :A→ A/In be the natural surjection.

(a) For each nontrivial divisor class [a] ∈ Cl(A), there is an integer
N[a] ≥ 1 such that, for all n ≥ N[a] we have [a] /∈ Ker(Cl(πn)).

(b) If Cl(A) is finite, then there is an integer N ≥ 1 such that Cl(πn)
is injective for all n ≥ N .

Proof. (a) Suppose that no such integer exists. It follows that,
for each integer N ≥ 1, there is an integer n ≥ N such that [a] ∈
Ker(Cl(πn)). In other words, there is a strictly increasing sequence
of integers 1 ≤ n1 < n2 < · · · such that [a] ∈ Ker(Cl(πni)) for each
index i ≥ 1. However, the sequence of ideals In1 , In2 , . . . satisfies the
hypotheses of Theorem B, so we have

[a] ∈
∞⋂

i=1

Ker(Cl(πni)),

where the intersection, and hence [a], is trivial. This is a contradiction.

(b) The quantity N = max{N[a] | 0 �= [a] ∈ Cl(A)} is a well-defined
integer, since Cl(A) is finite. Fix a nontrivial divisor class [a] ∈ Cl(A).
By definition of the N[a], one concludes that, for all n ≥ N ≥ N[a], we
have [a] /∈ Ker(Cl(πn)). It follows that Cl(πn) is injective for all n ≥ N ,
as desired.
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3. Examples

In this section, we show how to construct sequences of ideals satisfying
the hypotheses of Theorem B. Since the case where the ideals In are
principal is covered by [19, Thm. 3.1], we exhibit examples that are not
principal. Moreover, the following result, in conjunction with Example
3.4, shows how to construct examples that are not generated by regular
sequences.

Proposition 3.1. Let (A,m) be an excellent local integral domain.
Assume that, for n = 1, 2, . . . and for j = 1, . . . , 6 there exist elements
fn,j ∈ m such that, for n = 1, 2, . . . we have the following:

(1) The sequence fn,1, . . . , fn,6 is A-regular and contained in mn; and

(2) The quotient A/(fn,1, . . . , fn,6)A is a normal integral domain.

For n = 1, 2, . . . let In be the ideal generated by the 2 × 2 minors of
the matrix

Fn =
(
fn,1 fn,2 fn,3

fn,4 fn,5 fn,6

)
.

Then each ideal In ⊆ A is prime and has finite projective dimension
over A, and each quotient A/In is a normal integral domain. Each ideal
In has height at most 2 and is minimally generated by 3 elements; in
particular, In is not generated by an A-regular sequence. Furthermore,
we have In ⊆ m2n for each n, and thus limn→∞ In = 0 in the m-adic
topology.

Proof. Consider the following matrix of independent polynomial
variables

X =
(
X1 X2 X3

X4 X5 X6

)
and let �2(X) ⊆ Z[X ] = Z[X1, . . . , X6] denote the ideal generated
by the 2 × 2 minors of X . Let ψn : Z[X ] → A be the unique ring
homomorphism such that Xi �→ fn,i.

From Bruns and Vetter [4, Cor. (2.8)] we conclude that the quotient
Z[X ]/�2(X) is a perfect Z[X ]-module. Since it is also a free Z-module,
it is faithfully flat over Z. (In the terminology of [4, Ch. 3], these
two conditions imply that Z[X ]/�2(X) is a generically perfect Z[X ]-
module.) It follows from [4, Thm. (3.9)] that the A-module

(3.1.1) Z[X ]/�2(X) ⊗Z[X] A ∼= A/�2(X)A = A/In
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is perfect; here we are tensoring along the homomorphism ψn. In
particular, the quotient A/In has finite projective dimension over A,
and hence so does In.

For every field K, the ring Z[X ]/�2(X) ⊗Z K ∼= K[X ]/�2(X)K[X ]
is a normal integral domain by [4, Thm. (2.11)]. Using the sequence
(3.1.1), we conclude from [4, Prop. (3.13)] that A/In is a normal
integral domain.

It is straightforward to show that the ideal In is minimally generated
by the three 2×2 minors of the matrix Fn. For the height computation,
we first note that ht(�2(X)) = 2; this follows from the next sequence

2 = grade(�2(X)) ≤ ht(�2(X)) ≤ 2.

The equality in this sequence is from [4, Thm. (2.5)]; the first inequality
is standard, and the second inequality follows from [4, Thm. (2.1)].
Hence, the inequality ht(In) ≤ 2 is a consequence of [4, Thm. (3.16)].

The final conclusions of the proposition follow directly from the
definition of In and the assumption fn,1, . . . , fn,6 ∈ mn.

To conclude this section, we construct an excellent normal integral
domain A with a sequence of elements satisfying the hypotheses of
Proposition 3.1. This is accomplished in Example 3.4. For clarity,
we complete the construction over the course of the following three
examples. Note that each of the examples contains a sequence of ideals
satisfying the hypotheses of Theorem B. In Example 3.2, each ideal is
principal. In Example 3.3, the ideals are generated by regular sequences
of length 2. Finally, Example 3.4 contains ideals that are generated
by regular sequences of length 6; Proposition 3.1 then applies to this
example to yield ideals that satisfy the hypotheses of Theorem B and
are not generated by regular sequences.

Example 3.2. Let (R,mR, k) be an excellent local normal do-
main containing the field Q. Consider the polynomial ring P1 =
R[X1, X2, X3] and the maximal ideal n1 = (mR, X1, X2, X3)P1, and
set A1 = (P1)n1 with maximal ideal mA1 = n1A1. For n = 1, 2, . . .
we consider fn = Xn

1 + Xn
2 +Xn

3 and set In = (fn)A1. Each ideal In
is generated by the regular element fn and therefore has finite projec-
tive dimension over A1. Also, we have limn→∞ In = 0 in the mA1-adic
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topology because each fn ∈ mn
A1

. To show that the sequence of ideals
I1, I2, . . . satisfies the hypotheses of Theorem B, we need to show that
each ring A1/In is a normal domain.

To this end, we note that the composition of natural maps R→ A1 →
A1/In is a flat local homomorphism by the corollary to [15, Thm. 22.6].
For each prime ideal p ∈ Spec(R), we set κ(p) = (R/p)p

∼= Rp ⊗R R/p.
There is an isomorphism

κ(p) ⊗R A1/In ∼=
(
κ(p)[X1, X2, X3]
(Xn

1 +Xn
2 +Xn

3 )

)
(mR,X1,X2,X3)

so this ring is a localization of Bn = κ(p)[X1, X2, X3]/(Xn
1 +Xn

2 +Xn
3 ).

The field κ(p) has characteristic zero, so the Jacobian criterion shows
that Bn is an isolated singularity, and therefore, it satisfies (R1). It
follows that κ(p) ⊗R A1/In also satisfies (R1). Also, the ring Bn is a
hypersurface, so κ(p) ⊗R A1/In satisfies (S2).

In summary, the fibre ring κ(p)⊗RA1/In is a normal integral domain
for each prime ideal p ∈ Spec(R). Since the ring R is also a normal
integral domain, the same is true of A1/In by [15, Thm. 23.9].

Example 3.3. Continue with the assumptions and notation of
Example 3.2. Consider the polynomial ring

P2 = R[X1, X2, X3, Y1, Y2, Y3] = P1[Y1, Y2, Y3]

and the maximal ideal n2 = (mR, X1, X2, X3, Y1, Y2, Y3)P2, and set
A2 = (P2)n2 with maximal ideal mA2 = n2A2. Note that A2 is obtained
from A1 by the same procedure used to construct A1 from R. In
particular, the ring A2 is a flat A1-algebra.

For n = 1, 2, . . . we consider gn = Y n
1 + Y n

2 + Y n
3 , and we set

Jn = (fn, gn)A2. Since the polynomial fn is prime in A1, it is also
prime in A2. Since fn and gn are given in terms of independent
sets of variables, it follows that gn represents a nonzero element in
the quotient A2/(fn). This quotient is an integral domain, so gn is
A2/(fn)-regular. In summary, for n = 1, 2, . . . the sequence fn, gn

is A2-regular, so the ideal Jn has finite projective dimension over
A2. Furthermore, the quotient A2/Jn can also be constructed from
A1/In by the same procedure used to construct A1/In from R. Hence,
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Example 3.2 applied to the ring A1/In shows that each quotient A2/Jn

is a normal integral domain. Finally, we have fn, gn ∈ mn
A2

and it
follows that limn→∞ Jn = 0 in the mA2-adic topology. In conclusion,
the ring A2 and the ideals J1, J2, . . . satisfy the hypotheses of Theorem
B.

Example 3.4. Let (R,mR, k) be an excellent local normal integral
domain with char(k) = 0. Let X = (Xi,j) be a 3 × 6 matrix of
independent variables. Consider the polynomial ring P = R[X] and
the maximal ideal n = (mR,X)P , and set A = Pn with maximal ideal
m = nA. For n = 1, 2, . . . and j = 1, . . . 6 we consider the polynomial
fn,j = Xn

1,j +Xn
2,j+X

n
3,j. An induction argument based on the contents

of Example 3.3 shows that the polynomials fn,j satisfy the conditions
of Proposition 3.1.
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