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In this work, we study the statistical properties of molecular systems of admixtures, which are placed in nanoscale volumes like
cube or parallelepipedwith impermeable surfaces on their walls.We simulate interactions of freemotion ofmolecules of admixtures
with molecules on the surfaces of walls: we modeled them in the form of atomic structure grid using SiO2 as a material. This type
of substance allows us to take into account the manifestation of one of the important quantum effects: Casimir force. We used
its general expression in terms of interaction energy, with the assumption of dependence on distance and projected area between
atoms of the wall and atoms of the admixtures. To model surface roughness we used uniform random distribution function for
surface heights (z coordinates). The results of computational experiments can be used to estimate the distribution of chemical
bond lengths, valence, and dihedral angles lengths deviations in polyatomic molecules. Our model can be useful to determine the
stable configuration properties of the system, to solve practical problems in the conditions of physical limitations of nanoscale
devices, filtration of admixtures in highly dispersed systems, in the development of mechanisms in structures that have parallel
plates or membranes, including porous structures. Also we compute radial distribution function for multicomponent admixtures
including atoms of inert gases, water vapor, and ethanol. Andwe took into account the influence of Casimir force on admixtures for
cube and parallelepiped type volumes. In results, we showed distributions of deviations of lengths from their equilibrium values.

1. Introduction

One of the most relevant studies of dynamic systems in the
nanoscale is modeling of properties of molecular structures
that are necessary for the production of materials with
new or improved characteristics as well as determining
equilibrium states and defining deviation intervals that are
critical parameters in medicine and biotechnology related to
gene modification of proteins and viruses. In technological
sphere that could be engines for nanoscale robots, filtration
of admixtures for air purification systems, adsorption of bac-
teria, and other applications of natural science and technical
disciplines, where there exists production of highly efficient
nanoscale systems, resistant to environmental influences are
of importance.

In particular, there is class of problems related to the
modeling of molecular structures [1, 2]; clusters, admixtures,
agglomerates in technical systems [3–5], comparative analysis
of models [6] and calculation of the distribution of important
parameters [7] are of fundamental interest. Due to use of
mathematicalmodelswith high parallelization calculations, it
becomes possible to carry out intensive computer work with
taking into account many features of physical systems with
constraints. Methods of numerical simulation had a great
influence in the development and solutions of such problems.
However, there are a number of technical difficulties when
distances between surfaces in real systems are considered less
than ten nanometers. This leads to the need of additional
consideration of quantum effects contributions and strong
interactions. Thus, flat parallel surfaces produce activation of
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the Casimir force that generates an additional contribution
to the net interaction energy. It can cause deformations,
structural surface instabilities [8].

In our work, we consider the use of Casimir force as
an additional term in the processes of molecular admixtures
transfer in nanoscale volumes [9, 10]. And we consider the
effect of volumes produced on statistical properties of the
system, in particular, the distribution of equilibrium values
of chemical bonds in polyatomic molecules. In the existing
mathematical models the main types of boundary conditions
are periodic [11–13], for example, in film models [14] and in
the sphere-plate interactions [15], and that cannot be used in
our case to solve problems in confined volumes [16–21]. We
propose amodel based on interaction potentials, like AMBER
and CHARMM.

2. Mathematical Model

Casimir force plays an important role in our model. As noted
earlier, it has a quantum nature, but it can also be represented
in the classical approximation in the form of the interaction
energy potential [22–24]. Description of the evolution of the
system is based on the classical system of Newton’s equations.
Solution is based on the method of molecular dynamics,
which allows us to describe system under the assumption of
additivity of potential energy terms in force field. The initial
conditions for the model are velocities and coordinates of
all atoms of admixture’s molecules, the initial temperature
of the system, the size and type of the simulated volume,
and the functional description of interactions with system’s
boundaries. We do not consider any special conditions for
the distribution of velocities and coordinates for the atoms
of admixtures; therefore, their values at initial time t=0 are
determined by the quantiles of the normal distribution with
the most probable value of the speed corresponding to the
preset temperature. The coordinates of the atoms inside the
volume can be set in free intersections of inner volume grid
with a step of 0.5 nm, or by getting real coordinates from
measurements of surfaces using the atomic force microscope
[25, 26].Wewill set the admixturesmolecules on virtual inner
volume’s grid randomly and distributed uniformly, taking
into account the physical constraints and conditions imposed
on the distances of intermolecular interaction to eliminate
bursts of energy values and instabilities of the numerical
simulation. This makes possible to get a minimum of net
potential energy at the initial time. If necessary, a preliminary
relaxation of the system can be carried out by methods of
mathematical optimization.

𝜕2𝜕𝑡2𝑚𝑖󳨀→𝑟 𝑖 = −󳨀→∇ [
[
∑
𝑝𝑎𝑖𝑟𝑠

𝑈𝑏 + ∑
𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑈𝑎 + ∑
𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒𝑠

𝑈𝑑
+∑
𝑖<𝑗

(𝑈𝐿𝐽𝑖𝑗 + 𝑈𝑐𝑜𝑙𝑖𝑗 + 𝑈𝑐𝑖𝑗) + ∑
𝑤𝑎𝑙𝑙

𝑈𝑤]]
(1)

with initial conditions: 󳨀→𝑟 𝑖 (0) = 󳨀→𝑟 0𝑖 ;𝜕𝜕𝑡󳨀→𝑟 𝑖 (0) = 󳨀̇→𝑟 0𝑖 ; (2)

Figure 1: Atom-atommodel of Casimir energy interaction of water
molecule with the four atoms, covered by the projection of molecule
on the surface of the upper and lower bases.

2.1. Casimir Force and Interactionswith InnerWalls ofModeled
Volume. Casimir force (not for the case of quantum calcula-
tions) is regarded as a type of van der Waals interaction [19–
21] without dipole moment fluctuation. This is a semiclassical
approach. To use Casimir force in our model we integrated
a well-known expression for the force [28] that can be
used as an approximation function of potential energy and
depends on distance and interacting area of corresponding
atoms (wall-admixtures). Since the surfaces of the box are
modeled as molecular structures, we used the same type
of “atom-atom” interaction for the calculations for every
atom in molecules of admixtures. Further assumption we
made is that we consider average of four neighbor atoms
that covers projection of admixture’s atoms on the wall
surface. As atoms projections are much smaller than the area
of the walls and taking into account orthogonal direction
of the Casimir force vector, the energy of the interaction
is conveniently represented schematically and is shown on
Figure 1.

We took an average of four neighbor atoms on the corre-
sponding walls that have the shortest distances to interacting
atoms of the admixtures.

𝑈𝑐 (𝑟𝑖𝑗) = −14 ∑
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝜋2ℏ𝑐720𝑟3𝑖𝑗 (3)

Any other non-Casimir types of interactions, in order to
describe nonperiodic boundary conditions of admixture’s
atoms with atoms on the walls, are set as terms of Lennard-
Jones and Coulomb potential. Together with the Casimir



Journal of Applied Mathematics 3

Table 1: Force field specification.

Admixtures Bond-bond Angle-Bending Dihedral Van der Waals Electrostatic Boundary
H - - - LJ Coulomb Uw+ Ecas
O - - - LJ Coulomb Uw + Ecas

N - - - LJ Coulomb Uw + Ecas

H2O P2 P2 - LJ Coulomb Uw + Ecas

C2H5OH P2 P2 P5 LJ Coulomb Uw + Ecas

Note: Pn is the polynomial of order n, LJ stands for Lenard Jones potential, Coulomb is electrostatic potential,Uw is a boundary interaction potential, and Ecas
is Casimir energy. The basic units are set as follows: mass (m= 1.66 ⋅ 10−27 kg), velocity (v=1000m/sec), time (t=10−12 sec), and energy (e= 1.38 ⋅ 10−26 kJ/mol).
The parameters for the potentials are taken from the reference data [11, 12, 18, 27].

energy we have the following expression (last column in
Table 1):

𝑈𝑤 = ((𝜎𝑖𝑗𝑟𝑖𝑗 )
12 − (𝜎𝑖𝑗𝑟𝑖𝑗 )

6) + 𝑓𝐶𝑜𝑙𝑖𝑗 𝑞𝑖𝑞𝑗4𝜌𝑤𝑟𝑖𝑗
− 14 ∑
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝜋2ℏ𝑐2880𝜌𝑤𝑟3𝑖𝑗
(4)

where parameter 𝜌𝑤 is a known value of density of wall’s
atoms and this is an alternative variant in wall-admixtures
interactions to speed up calculations, but it is less accurate.
Tomodel real atom structure we set 𝜌𝑤 = 1 (these are options
to be set before simulation begins). For further statistical
analysis, we compute the distributions of bond lengths,
valence, and dihedral angles displacements in polyatomic
admixtures and radial distribution function for admixtures:

𝑔 (𝑟) = 𝑉4𝜋𝑟2 ⟨
𝑁−1∑
𝑖=0

𝑛 (𝑟𝑖)Δ𝑟 ⟩ (5)

3. Computational Experiments

We modeled two types of the simulated geometry of com-
parable inner volume: a cube with a side of 10 nanometers
(volume of 1000 nm3) and a parallelepiped with the lower
and upper bases of 196 nm2 (14x14 nm) and a height of 5
nm (volume of 980 nm3). These volumes were filled with the
same amount of admixtures, consisting of 25 molecules of
each type of substance: nitrogen, hydrogen, oxygen, water,
and ethanol. On the upper and lower bases of cube and
parallelepiped we simulated two types of reflections: diffuse
model (roughness has amean square deviation of 5 angstroms
in z-direction) and specular reflections (atom net structure
of SiO2 with the Casimir force). A schematic illustration is
shown in Figure 2.

Numerical integration was made in increments of 𝜏 =10−15 seconds (dimensionless step size equals 10−3). Ini-
tial temperature T=300K. The experiments lasted 100 000
molecular-dynamic steps using a two-step Verlet’s algorithm.
In addition, we also implemented Biman’s algorithm formore
precise calculations. The force field functions for correspond-
ing types of admixtures we used from Table 1.

On Figure 3 there are modeled volumes with admixtures
at the initial and final step.

4. Results and Analysis

Mathematical model and numerical methods are imple-
mented by the authors in Embarcadero’s Delphi using paral-
lelization in the block of potential energies calculations. The
development of the original package was required to model
nonperiodic boundary conditions and to take into account
influence of Casimir force in terms of its energy. It should
be noted that our model does not use any truncation of
lengths of potential functions at distances of more than three
diameters of the atom-atom collisions. All interaction poten-
tials are expressed in classical approximations of quantum
mechanical calculations, which are due to the use of a quasi-
classical approach in the numerical solution of the system
(1). The results of the calculations are shown on Figures 4–7.
Initial conditions were preserved for repeated computational
experiments.

The main interests in our research are distributions
of lengths deviations in bond-bond, angle-bending, and
dihedral oscillations and their comparative analysis. We see
on Figures 4–6 the average values of the distributions of
corresponding parameters. All the graphs show characteristic
shifts in lengths relative to zero, where zero value is the
ideal situation with no external interactions and forces in
the system. In physically constrained spaces, due to constant
intermolecular interactions, random deviation has a normal
distribution with zero estimated value. General formulas we
used for calculations for parameter 𝛼 are the following:

�𝛼 = 1𝑁𝑠𝑡𝑒𝑝𝑠mod 100
𝑚∑
𝑖

(𝛼𝑖 − 𝛼𝑟𝑒𝑓)𝑚 (6)

where 𝛼𝑖 is current value (bond lengths, valence angles,
and dihedral angles for every type of admixtures where
applicable), taken every 100 steps and averaged over all such
steps. So �𝛼 is random value with distribution function that
we showed on Figures 4–6. On the y-axis there are corre-
sponding densities: dimensionless numbers of 𝛼 values that
had fallen in nonintersecting intervals covering minimum
and maximum value of 𝛼, and on x-axis are values of interval
limits in angstroms.

𝐼 = max (𝛼) −min (𝛼)20 (7)

Figure 4(a) shows the normal distribution of the mean
deviation of average covalent bonds of admixtures, which



4 Journal of Applied Mathematics

(a) (b)

Silicon

Oxygen

(c)

Figure 2: (a) Specular reflection, (b) roughness, and (c) atomic structure of SiO2 on the wall surface (red denotes oxygen atoms; blue denotes
silicon atoms).

is close to the equilibrium value in the absence of the
Casimir force (blue curve). In the case of the Casimir force
(Figure 4(b), orange curve), distribution is shifted more to
negative values, which means that there is an increase in the
oscillation frequency of covalent bonds and decrease of its
amplitude. For the case of a parallelepiped (Figure 4(b)) the
same system of admixtures has an increased spread of lengths
and tends to transform the normal distribution to uniform,
due to changes in redistribution of interactions of admixtures
with the lower and upper bases of the volume.Thedecrease in

volume’s free space directly increases the variance of covalent
bond-bond oscillations, which leads to rise in their amplitude
with a lower shape in frequencies. If the Fourier transform
for amplitude-frequency analysis is carried out, the vibration
spectrum for cubic volumes will be concentrated in the high-
frequency region, and for the parallelepiped, the distribution
will be relatively uniformly filled in the middle frequency
range with decay in tails on the lower and higher frequencies.

Results that are more interesting were obtained for the
oscillations of the valence angles shown on Figure 5. This is



Journal of Applied Mathematics 5

(a) Initial configuration (left figure: cube; right figure: parallelepiped)

(b) Final configuration (left figure: cube; right figure: parallelepiped)

Figure 3
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Figure 4: (a, b) Distribution of deviations of the mean values of the covalent bond.

true for water and ethanol molecules, where the resulting
distribution has a high density of values near the equilibrium
state and a small subset of values with a gentle spread to the
right of the equilibrium value. Empirically, the distribution
consists of a superposition of the normal distribution and
the 𝜒2 distribution. In the case of the Casimir force, a
normal distribution is obtained without singularities. It can
be concluded that for polyatomic molecules the equilibrium
state corresponds to the minimum potential energy for
valence angles in asymmetric volumes. However, in both
cases (Figures 5(a) and 5(b)) there is a systematic displace-
ment, which is caused by an additional contribution to the
interaction energy.

For a parallelepiped, the distribution remains normal
and does not change. On Figure 6(a) there is distribution
of dihedral angles (for ethanol) for a cubic volume in the
equilibrium state. The state corresponds to the logarithm of
the normal distribution and with the active Casimir force
and leads to a small displacement of the curve. In the case of
a parallelepiped (Figure 6(b)) the nature of the distribution
remains normal but leads to an increase in angle fluctuations.

The radial distribution function (7) can be useful for
estimating distances between molecules in volumes.The con-
centration of molecules near the center is obtained for cubic
volume (Figure 7(a)) and for the parallelepiped (Figure 7(b)).
Molecules are evenly distributed in volume. It is worth noting
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Figure 5: (a, b) Distribution of deviations of mean values of valence angles.
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Figure 6: (a, b) Distribution of deviations of mean values of dihedral angles.
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Figure 7: (a, b) Radial distribution function.
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that these are the most likely distributions computational
experiments, but it is possible to obtain other types of concen-
trations. In particular, with increase in number of admixtures,
the highest concentration can be obtained behind the corners
of volumes.

5. Conclusion

Simulation data can be used to predict unstable states,
overheating, and deformations of materials on the walls of
mechanisms having parallel surfaces in devices of tens of
nanometers in size, as well as for the control action on
admixtures in filtration problems. The developed model can
be used in the design of mechanisms with membranes, filter
elements, and solar cells, where the occurrence of nonlinear
effects depending on the material and the reflectivity of
the surfaces is possible. In particular, the Casimir force can
significantly affect the distribution of equilibrium values of
physical and chemical characteristics of admixtures as we
showed in lengths deviations when passing through the
membranes on filtration devices [20], during adsorption
of harmful substances [21], air purification systems [22].
In this paper, computational experiments were carried out
in geometrically bounded volumes of the cube and paral-
lelepiped types, comparable in volume (about 1 𝜇m3). The
heterogeneous composition of admixtures (25 molecules of
nitrogen, hydrogen, oxygen, water, and alcohol) is consid-
ered. Modeling of microcanonical ensembles in nanoscale
volumes leads to some interesting effects of the distribution
of the molecules of admixtures, depending on their type
(Figures 4–7). Statistical regularities, including distribution
transformations, are obtained (Figures 4–6), as well as the
straightening of the normal distribution when the volume
type changes (Figures 4(b), 5(b), and 6(b)). In particular, the
displacement of equilibrium values and qualitative changes
in the normal distribution was shown. In all cases (Figures
4–7) Casimir energy had a significant impact on the growth
of energy fluctuations of interatomic bonds and creates
conditions for nonlinear contributions to potential energy
and leads to an increase in the amplitudes and frequencies
of vibrations of chemical bonds. The volume types and sizes
affect the resulting distributions and have a high correlation
depending on the values and types of deviations. As a result
of the computational experiments, the following were found:

(i) In volumes of about 1000 nm3, the Casimir force has
a significant effect on the distribution of the mean
values of covalent bond lengths, valence, and dihedral
angles deviations in polyatomic molecules. For cubic
volumes, this is expressed in the displacement of
the distribution center (Figure 4(a)) and changes
the type of distribution (Figures 5(a) and 6(a)); for
parallelepipeds distributions remain unchanged, and
lengths values are concentrated around the equilib-
rium values; however, they have biases and increased
variance.

(ii) Strong intermolecular electrostatic interactions and
the high density of the atoms of the structure of
volume’s surfaces increase the relaxation time of

the covalent bonds and valence angles, accumulat-
ing nonequilibrium processes. In particular, for the
parallelepiped we obtained increased dispersion of
average deviations of values of the equilibrium lengths
and angles of chemical bonds (Figures 5(b), 6(b),
and 7(b)); and this can lead to transformations of
the normal distribution; in particular, we got normal
distribution for valence angles in the cubic volume
(Figure 5(a)).

Data Availability

The mathematical model data used to support the findings
of this study have been deposited in the Yandex repository
(https://yadi.sk/d/nZ2-LQOy ppZHg).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the Ministry Of Education and
Science of the Russian Federation within the framework of
the state order in the field of scientific activity (Order No.
1.7706.2017/8.9).

References

[1] E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A.
Polman, “Experimental verification of 𝑛 = 0 structures for
visible light,” Physical Review Letters, vol. 110, Article ID 013902,
p. 110, 2013.

[2] L. A. Uvarova, AIP congress, 2006.
[3] M. R. Johnson, S. Rols, P. Wass et al., “Neutron diffraction and

numerical modelling investigation of methane adsorption on
bundles of carbon nanotubes,” Chemical Physics, vol. 293, no.
2, pp. 217–230, 2003.

[4] S. Furmaniak, A. P. Terzyk, P. A. Gauden, and P. Kowalczyk,
“Simulation of SF6 adsorption on the bundles of single walled
carbon nanotubes,”Microporous andMesoporous Materials, vol.
154, pp. 51–55, 2012.

[5] Y. Chiang and P.Wu, “Adsorption equilibrium of sulfur hexaflu-
oride on multi-walled carbon nanotubes,” Journal of Hazardous
Materials, vol. 178, no. 1-3, pp. 729–738, 2010.

[6] P. D. Gujrati, “Loss of temporal homogeneity and symmetry
in statistical systems: deterministic versus stochastic dynamics,”
Symmetry, vol. 2, no. 3, pp. 1201–1249, 2010.

[7] D. Chandler, Introduction to Modern Statistical Mechanics,
Oxford University Press, 1987.

[8] L. A. Uvarova and S. S. Babarin, “The movement of molecules
and nanoparticles in potential field with the Casimir force
in nano volumes with different optical boundaries,” Physica
Scripta, vol. 2014, 2014.

[9] B. Hess, K. Carsten, D. van der Spoel, and E. Lindahl, “GRO-
MACS 4: algorithms for highly efficient, load-balanced, and
scalable molecular simulation,” Journal of Chemical Theory and
Computation, vol. 4, no. 3, pp. 435–447, 2008.

[10] H. B. G. Casimir, “Proceedings of the Koninklijke Nederlandse
Akademie van Wetenschappen 51,” 793, 1948.

https://yadi.sk/d/nZ2-LQOy_ppZHg


8 Journal of Applied Mathematics

[11] D. Frenkel and B. Smit, Understanding Molecular Simulation:
from Algorithms to Applications, Academic Press, 2nd edition,
2002.

[12] A. R. Leach, Molecular Modeling. Principles and Applications,
Pearson Education Limited, 2001.

[13] K. V. Shaitan and K. B. Tereshkina,Molecular Dynamics of Pro-
teins and Peptides, Methodical textbook Moscow, 2002.
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