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We prove the polynomial analogues of some Liouville identities from elementary number theory. Consequently several sums
defined over the finite fields F𝑞[𝑡] are evaluated by combining the results obtained and some of the results from sums of reciprocals
of polynomials over F𝑞[𝑡].

1. Introduction and Background

Let 𝑝 be a prime number, 𝑞 = 𝑝𝑒 for some positive integer𝑒 and F𝑞 the finite field with 𝑞 elements. It is well known
that F𝑞[𝑡] and the set of all integers Z share many similar-
ities. Analogue of many results on Z has been proven for
F𝑞[𝑡]. Both rings are principal ideal domains, both have the
property that the residue class ring of any nonzero ideal is
finite, both rings have infinitely many prime elements, and
both rings have finitely many units. For the ring Z, the
units are ±1 and every nonzero integer is a multiple by a
unit of a positive integer. Similarly, the units of F𝑞[𝑡] are the
nonzero scalars F∗𝑞 , and every nonzero polynomial in F𝑞[𝑡]
is a multiple by a unit of a monic polynomial. Thus, one
may think that many other results, which hold for Z, have
their analogues in the ring F𝑞[𝑡]. This is indeed the case. For
example, analogues of the little theorem of Fermat and Euler,
Wilsons theorem, quadratic (and higher) reciprocity, the
prime number theorem, andDirichlet’s theorem on primes in
arithmetic progression andmanymorewell-known theorems
from elementary number theory have been proven true for
F𝑞[𝑡], see [1].

In the nineteenth century, Joseph Liouville introduced a
powerful new method into elementary number theory that
allowed him to get many interesting identities. His approach
was also used to solve well-known problems such as sums of
squares, sums of triangular numbers, recurrence relations for
divisor functions, convolution sums, and many others. Most
of these problems are still today a subject of mathematical
research.

In this present paper, we propose to study the polynomial
analogue of some identities of Liouville in Williams [2, chap-
ter 3]. More precisely, if 𝑑(𝑛) and 𝜎(𝑛) represent respectively
the number of divisors and the sum of divisors of 𝑛, and𝑑𝑘,𝑚 (𝑔) fl ∑

𝑑∈N
𝑑|𝑔

𝑑≡𝑘(mod𝑚)

1, 𝑛 ∈ N,
(1)

Liouville proved the following.

�eorem 1 (Liouville). Let 𝑎 ∈ Z∗, 𝑏 ∈ Z,𝑚 ∈ N, and 𝑛 ∈ N.
Set 𝑔 fl gcd (𝑎,𝑚) ,𝑎1 fl 𝑎𝑔 ,

𝑚1 fl 𝑚𝑔 . (2)

If 𝑎2 ∈ 1, 2, . . . , 𝑚1 − 1 satisfies𝑎1𝑎2 ≡ 1 (mod𝑚1) , (3)
then ∑

𝑑∈N
𝑑|𝑛

[𝑎𝑑 + 𝑏𝑚 ] = 𝑎𝑚𝜎 (𝑛) + 𝑏𝑚𝑑 (𝑛)
− 1𝑚 𝑚−1∑

𝑙=1
𝑙≡𝑏(mod𝑚)

𝑙𝑑𝑎2(𝑙−𝑏)/𝑔,𝑚1 (𝑛) , (4)

where [𝑥] represents the integer n satisfying 𝑛 ≤ 𝑥 < 𝑛 + 1.
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He also proved many other results related toTheorem 1.
The main goal of this paper is to evaluate some sums of

polynomials over F𝑞 involving the polynomial analogue of
Theorem 1. We also evaluate the average of some functions
defined on the set of all monic polynomials over F𝑞.

Throughout this paper, we let 𝐴 = F𝑞[𝑡]. We define 𝑀,𝑀𝑛, and 𝑀<𝑛 to be the subset of all monic polynomials in𝐴, the subset of all monic polynomials in 𝐴 of degree 𝑛, and
the subset of all monic polynomials in 𝐴 of degree less than𝑛, respectively. We also let 𝑃𝑛 and 𝑃<𝑛 to be respectively the
subset of all monic irreducible polynomials in 𝐴 of degree 𝑛
and the subset of all monic irreducible polynomials in 𝐴 of
degree less than 𝑛.

For 𝑓 ∈ 𝐴, we denote the degree of 𝑓 by deg𝑓, the
number of polynomials 𝑔 coprime to 𝑓 with deg𝑔 < deg𝑓
by 𝜙(𝑓), the number of divisors of 𝑓 by 𝑑(𝑓) and we set𝜎𝑘 (𝑓) = ∑

𝑑∈𝑀
𝑑|𝑓

|𝑑|𝑘
(5)

Finally, we set |𝑓| = 𝑞deg𝑓 if 𝑓 ̸= 0 and |𝑓| = 0 if 𝑓 = 0. It
is well known (see [1]) that every 𝑓 ∈ 𝐴, 𝑓 ̸= 0 can be written
uniquely in the form 𝑓 = 𝛼p𝑒11 ⋅ ⋅ ⋅p𝑒𝑠𝑠 , (6)

where 𝛼 is a nonzero element in F𝑞, p1, . . . ,p𝑠 are
irreducible monic polynomials, p𝑖 ̸= p𝑗 for 𝑖 ̸= 𝑗, and𝑒1, . . . , 𝑒𝑠 are nonnegative integers.

The following 2 propositions will be needed later. Their
proofs are omitted here and can be found in [1].

Proposition 2. Let 𝑓 ∈ 𝐴. If the prime decomposition of 𝑓 is
given by𝑓 = 𝛼p𝑒11 . . . p𝑒𝑠𝑠 , then

𝜙 (𝑓) = 𝑓 𝑠∏
𝑖=1

(1 − 1p𝑖) .
𝑑 (𝑓) = (𝑒1 + 1) (𝑒2 + 1) ⋅ ⋅ ⋅ (𝑒𝑠 + 1) .
𝜎 (𝑓) = p1𝑒1+1 − 1p1 − 1 p2𝑒2+1 − 1p2 − 1 ⋅ ⋅ ⋅ p𝑠𝑒𝑠+1 − 1p𝑠 − 1 .

(7)

Proposition 3. ∑
𝑓∈𝑀𝑛

𝑑 (𝑓) = (𝑛 + 1) 𝑞𝑛.
∑
𝑓∈𝑀𝑛

𝜎 (𝑓) = 𝑞2𝑛 ⋅ 1 − 𝑞−𝑛−11 − 𝑞−1 . (8)

2. Some Results about Sum of Reciprocals of
Polynomials over F𝑞[𝑡]

In this section, we give a closed formula for some sums
of reciprocals of polynomials over F𝑞[𝑡]. These results will
be used in the subsequent sections to help prove some
polynomial identities in F𝑞[𝑡].

We start with the following definitions. Letting 𝑛 ∈ N, we
define 𝑑𝑛 and 𝑙𝑛 as

𝑑𝑛 = 𝑛−1∏
𝑖=0

(𝑡𝑞𝑛 − 𝑡𝑞𝑖) ,
𝑙𝑛 = 𝑛∏
𝑖=1

(𝑡 − 𝑡𝑞𝑖) (9)

Further, we set 𝑑0 = 𝑙0 = 1, and, for an integer 𝑘, we define
𝑆𝑛 (𝑘) = ∑

𝑎∈𝑀𝑛

1𝑎𝑘 ,
𝑆<𝑛 (𝑘) = ∑

𝑎∈𝑀<𝑛

1𝑎𝑘 (10)

The next 2 theorems are due to Carlitz [3]. The first one
provides an explicit formula for 𝑆𝑛(𝑘) and 𝑆<𝑛(𝑘) if 𝑘 = ±(𝑞𝑖 −1). Details of this theorem can be also found in [4].

�eorem 4 (Carlitz [3]). For each 𝑛 ∈ N, we have

𝑆𝑛 (𝑞𝑖 − 1) = 𝑙𝑛+𝑖−1𝑙𝑖−1𝑙𝑞𝑖𝑛 ,
𝑆<𝑛 (𝑞𝑖 − 1) = 𝑙𝑛+𝑖−1𝑙𝑖𝑙𝑞𝑖𝑛−1 ,

(11)

𝑓𝑜𝑟 𝑖 ≥ 𝑛,
𝑆𝑛 (− (𝑞𝑖 − 1)) = 𝑑𝑖𝑙𝑛𝑑𝑞𝑛𝑖−𝑛 ,
𝑆<𝑛 (− (𝑞𝑖 − 1)) = 𝑑𝑞𝑖−1𝑙𝑛−1𝑑𝑞𝑛𝑖−𝑛

(12)

The next theorem is initially due to Carlitz [3], but an
alternative proof was given by Hicks et al. [5] in amost recent
paper published in 2012.

�eorem 5 (Carlitz [3]). For 𝑘 ∈ N, 1 ≤ 𝑘 ≤ 𝑞, we have
∑
𝑓∈𝑀𝑛

1𝑓𝑘 = 1[∏𝑛𝑖=1 (𝑡 − 𝑡𝑞𝑖)]𝑘 = 1𝑙𝑘𝑛 . (13)

More results about sum of reciprocals of polynomials can
be also found in [6]. We state here some of them. Let 𝑅𝑛 be
the subset of all monic reducible polynomials in 𝐴 of degree
less than 𝑛 and we denote by ℎ𝑛 the product of all monic
irreducible polynomials of degree 𝑛 in 𝐴, i.e.,

ℎ𝑛 = ∏
p∈𝑃𝑛

p. (14)

S. Nelson [6] in 2016 has proved the following theorem.
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�eorem 6 (Nelson [6]). With 𝑃𝑛, 𝑅𝑛, and ℎ𝑛 defined as
above, we have

∑
p∈𝑃2

1
p

= −(𝑡𝑞 − 𝑡)𝑞−3ℎ2 (𝑡) .
∑
p∈𝑃3

1
p

= (ℎ2 (𝑡))3 (𝑡𝑞2 − 𝑡)𝑞−4ℎ3 (𝑡) .
∑
𝑟∈𝑅2

1𝑟 = 1(𝑡𝑞 − 𝑡)2 .
∑
𝑟∈𝑅3

1𝑟 = − 1(𝑡𝑞2 − 𝑡) (𝑡𝑞 − 𝑡)2 .

(15)

We conclude this section with our main theorem that
states the following.

�eorem 7 (main theorem). Let 𝑚 ∈ 𝑀𝑛, 0 ̸= 𝑎 ∈ F𝑞[𝑡], and𝑏 ∈ 𝑀<𝑛. Assume 𝑎 = 𝑚𝑠1 + 𝑟1 and 𝑏𝑢 = 𝑚𝑠2 + 𝑟2, where𝑟𝑖 ∈ 𝑀<𝑛, 𝑖 = 1, 2. Define
V (𝑓) = ∑

𝑏∈𝑀<𝑛

∑
𝑑∈𝑀
𝑑|𝑓

[|𝑑| 𝑏𝑢 + 𝑎𝑚𝑘 ] ,
V1 (𝑓) = ∑

𝑏∈𝑀<𝑛

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑| 𝑏𝑢 + 𝑎𝑚𝑘 . (16)

If 𝑢 = (|𝑚| − 1)|𝑚|𝑘−1, then
∑
𝑓∈𝑀𝑛

V (𝑓) = 𝑑|𝑚|𝑘−1𝑛−1𝑚𝑘𝑙|𝑚|𝑘−1𝑛−1 𝑑|𝑚|𝑘0 𝑞2𝑛 ⋅ 1 − 𝑞−𝑛−11 − 𝑞−1 − (𝑛 + 1)
⋅ 𝑞𝑛 [[[[[

1 − |𝑚|(1 − 𝑞)𝑚𝑘 (𝑎 − 𝑟1)

− 1𝑚𝑘 ∑
𝑏∈𝑀<𝑛

∑
𝑟2∈𝑀<𝑛

𝑏|𝑚|−1=𝑚𝑠2+𝑟2

𝑟2]]]]]
,

(17)

and

∑
𝑓∈𝑀𝑛

V1 (𝑓) = 𝑎𝑚𝑘 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2
− (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑚𝑘𝑙𝑛−1 .

(18)

Theorem 7 will be used in Section 4 to establish some
polynomials identities in F𝑞.These identities are obtained by
evaluating certain sums taken over the subset of all monic
polynomials and monic irreducible polynomials.

3. Polynomial Analogue of
Some Liouville’s Identities

Let 𝑘 ∈ 𝐴 and 𝑚 ∈ 𝑀. We define the function 𝑑𝑘,𝑚(𝑔) as the
number of divisors 𝑑 of 𝑔 congruent to 𝑘 modulo𝑚, i.e.,𝑑𝑘,𝑚 (𝑔) fl ∑

𝑑∈𝑀
𝑑|𝑔

𝑑≡𝑘(mod𝑚)

1, 𝑔 ∈ 𝑀,
(19)

The following theorem is the polynomial analogue of [2,
theorem 3.8]. It describes some of the properties of 𝑑𝑘,𝑚 for
polynomials. The proof follows the same steps as the one for
integers proved by Liouville in [2].

Lemma 8. For 𝑚,𝑔 ∈ 𝑀, we have

𝑑0,𝑚 (𝑔) = 𝑑 ( 𝑔𝑚) ,
∑
𝑘∈𝑀

deg 𝑘<deg𝑚

𝑑𝑘,𝑚 (𝑔) = 𝑑 (𝑔) . (20)

Proof. Theproof is essentially the same as the integer case.We
have𝑑0,𝑚 (𝑔) = ∑

𝑑∈𝑀
𝑑|𝑔

𝑑≡0(mod𝑚)

1 = ∑
𝑒∈𝑀
𝑒𝑚|𝑔

1 = ∑
𝑒∈𝑀
𝑒|𝑔/𝑚

1 = 𝑑 ( 𝑔𝑚) .
(21)

For 𝑚 = 1, we have 𝑑0,1 (𝑔) = 𝑑 (𝑔) . (22)

For the second equality, we have∑
𝑘∈𝑀

deg 𝑘<deg𝑚

𝑑𝑘,𝑚 (𝑔) = ∑
𝑘∈𝑀

deg 𝑘<deg𝑚

∑
𝑑∈𝑀
𝑑|𝑔

𝑑≡𝑘(mod𝑚)

1 = ∑
𝑑∈𝑀
𝑑|𝑔

1
= 𝑑 (𝑔) .

(23)

Let 𝑚, 𝑎 ∈ F𝑞[𝑡]. The division algorithm theorem states
that that there exists a unique set of polynomials 𝑠, 𝑟 ∈ F𝑞[𝑡]
satisfying 𝑎 = 𝑚𝑠 + 𝑟, with 𝑟 = 0 or deg 𝑟 < deg𝑚. We define

[ 𝑎𝑚] = 𝑠. (24)

Remark 9. Since for 𝑎, 𝑏 ∈ F𝑞[𝑡], deg(𝑎 + 𝑏) is the maximum
between deg 𝑎 and deg 𝑏, for 𝑚 ∈ 𝑀, we have

[𝑎 + 𝑏𝑚 ] = [ 𝑎𝑚] + [ 𝑏𝑚] . (25)

Lemma 10 (see [2]). Let 0 ̸= 𝑎, 𝑏 ∈ F𝑞[𝑡] and 𝑓,𝑚 ∈ 𝑀. �en

∑
𝑏∈𝑀

deg 𝑏≤deg𝑚

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑| 𝑎𝑚 = (1 − |𝑚|)(1 − 𝑞)𝑚𝑎𝜎 (𝑓) . (26)
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Proof. We have

∑
𝑘∈𝑀

deg 𝑏≤deg𝑚

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑| 𝑎𝑚 = 𝑎𝑚 ∑
𝑏∈𝑀

deg 𝑏≤deg𝑚

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑|
= 𝑎𝑚 ∑

𝑏∈𝑀
deg 𝑏≤deg𝑚

𝜎 (𝑓)
= 𝑎𝑚𝜎 (𝑓) ∑

𝑏∈𝑀
deg 𝑏≤deg𝑚

1
= 𝑎𝑚𝜎 (𝑓) deg𝑚∑

𝑖=0

𝑞𝑖
= (1 − |𝑚|)(1 − 𝑞)𝑚𝑎𝜎 (𝑓) .

(27)

The next theorem is the polynomial analogue of [2,
theorem 3.9].

�eorem 11. Let 0 ̸= 𝑎, 𝑏 ∈ F𝑞[𝑡] and𝑚 ∈ 𝑀. If gcd(𝑎,𝑚) = 1
and 𝑎𝑎1 ≡ 1 mod𝑚, then

∑
𝑑∈𝑀
𝑑|𝑓

[|𝑑| 𝑎 + 𝑏𝑚 ] = 𝑎𝑚𝜎 (𝑓) + 𝑏𝑚𝑑 (𝑓)
− 1𝑚 ∑

𝑟∈𝑀
deg 𝑟<deg𝑚

𝑟𝑑𝑎1(𝑟−𝑏),𝑚. (28)

Proof. For each𝑑 ∈ 𝑀, there exist a unique set of polynomials𝑠, 𝑟 ∈ 𝑀 such that |𝑑|𝑎+𝑏 = 𝑚𝑠+𝑟,deg 𝑟 < deg𝑚.Therefore,
we have

∑
𝑑∈𝑀
𝑑|𝑓

[|𝑑| 𝑎 + 𝑏𝑚 ] = ∑
𝑠∈𝑀

∑
𝑑∈𝑀
𝑑|𝑓

[(|𝑑|𝑎+𝑏)/𝑚]=𝑠

𝑠
= ∑
𝑟∈𝑀

deg 𝑟<deg𝑚

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑|𝑎+𝑏=𝑚𝑠+𝑟

|𝑑| 𝑎 + 𝑏 − 𝑟𝑚
= ∑
𝑑∈𝑀
𝑑|𝑓

|𝑑| 𝑎 + 𝑏𝑚
− ∑
𝑟∈𝑀

deg 𝑟<deg𝑚

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑|𝑎+𝑏=𝑚𝑠+𝑟

𝑟𝑚
= 𝑎𝑚 ∑
𝑑∈𝑀
𝑑|𝑓 |𝑑|

|𝑑| + 𝑘𝑚 ∑
𝑑∈𝑀
𝑑|𝑓

1

− 1𝑚 ∑
𝑟∈𝑀

deg 𝑟<deg𝑚

𝑟 ∑
𝑑∈𝑀
𝑑|𝑓

|𝑑|𝑎≡𝑟−𝑏mod𝑚

1
= 𝑎𝑚 ∑
𝑑∈𝑀
𝑑|𝑓

|𝑑| + 𝑏𝑚 ∑
𝑑∈𝑀
𝑑|𝑓

1
− 1𝑚 ∑

𝑟∈𝑀
deg 𝑟<deg𝑚

𝑟 ∑
𝑑∈𝑀
𝑑|𝑓

𝑑≡ℎ1(𝑟−𝑏)mod𝑚

1
= 𝑎𝑚𝜎 (𝑓) + 𝑏𝑚𝑑 (𝑓)

− 1𝑚 ∑
𝑟∈𝑀

deg 𝑟<deg𝑚

𝑟𝑑𝑎1(𝑟−𝑏),𝑚 (𝑓) .
(29)

Our last polynomial analogue result in this section deals
with the function 𝐹𝑑(𝑎) defined for 𝑓, 𝑑 ∈ 𝑀 as

𝐹𝑑 (𝑓) = {{{
1, if𝑑 | 𝑓0, if𝑑 ∤ 𝑓. (30)

Lemma 12. For any 𝑑1 ∈ 𝑀1,∑
𝑓∈𝑀𝑛+1

𝐹𝑑1 (𝑓) = ∑
𝑏∈𝑀<𝑛

1. (31)

Proof. We have∑
𝑓∈𝑀𝑛+1

𝐹𝑑1 (𝑓) = ∑
𝑓∈𝑀𝑛+1
𝑑1|𝑓

1 + ∑
𝑓∈𝑀𝑛+1
𝑑1∤𝑓

0
= ∑
𝑓∈𝑀1
𝑑1|𝑓

1 + ∑
𝑓∈𝑀2
𝑑1|𝑓

1 + ⋅ ⋅ ⋅ + ∑
𝑓∈𝑀𝑛+1
𝑑1|𝑓= 1 + ∑

𝑓∈𝑀2
𝑒∈𝑀1
𝑓=𝑑1×𝑒

1 + ∑
𝑓∈𝑀3
𝑒∈𝑀2
𝑓=𝑑1×𝑒

1 + ⋅ ⋅ ⋅
+ ∑
𝑓∈𝑀𝑛+1
𝑒∈𝑀𝑛
𝑓=𝑑1×𝑒

1 = 1 + 𝑞 + 𝑞2 + ⋅ ⋅ ⋅ + 𝑞𝑛
= ∑
𝑏∈𝑀<𝑛

1.

(32)

4. Proof of the Main Theorem

In this section, we prove the main Theorem 7 stated in
Section 2. Some other sums are also evaluated. We need the
following lemma.
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Lemma 13 (see [4]). Let 0 ̸= 𝑎, 𝑏 ∈ F𝑞[𝑡] and 𝑓,𝑚 ∈ 𝑀. �en

∑
𝑏∈𝑀

deg 𝑏<deg𝑚

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑| 𝑏(|𝑚|−1)|𝑚|𝑘−1𝑚𝑘
= 𝑑|𝑚|𝑘−1𝑛−1𝑙|𝑚|𝑘−1𝑛−1 𝑑|𝑚|𝑘0 (𝜎 (𝑓)𝑚𝑘 ) .

(33)

Proof. We have

∑
𝑏∈𝑀

deg 𝑏<deg𝑚

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑| 𝑏(|𝑚|−1)|𝑚|𝑘−1𝑚𝑘
= 1𝑚𝑘 ∑

𝑏∈𝑀
deg 𝑏<deg𝑚

𝑏(|𝑚|−1)|𝑚|𝑘−1 ∑
𝑑∈𝑀
𝑑|𝑓

|𝑑|
= 𝜎 (𝑓)𝑚𝑘 ∑

𝑏∈𝑀
deg 𝑏<deg𝑚

𝑏(|𝑚|−1)|𝑚|𝑘−1

= 𝜎 (𝑓)𝑚𝑘 ( ∑
𝑏∈𝑀

deg 𝑏<deg𝑚

𝑏(|𝑚|−1))
|𝑚|𝑘−1

.

(34)

Therefore, by Theorem 4 the proof is complete.

4.1. Proof of the Main�eorem

Proof. We have |𝑑|𝑏𝑢 + 𝑎 = (|𝑑|𝑠2 + 𝑠1)𝑚𝑘 + (|𝑑|𝑟2 + 𝑟1) and
[|𝑑| 𝑏𝑢 + 𝑎𝑚𝑘 ] = [|𝑑| 𝑏𝑢𝑚𝑘 ] + [ 𝑎𝑚𝑘 ] . (35)

Therefore, we have

V (𝑓) = ∑
𝑏∈𝑀<𝑛

∑
𝑑∈𝑀
𝑑|𝑓

[|𝑑| 𝑏𝑢 + 𝑎𝑚𝑘 ]
= ∑
𝑏∈𝑀<𝑛

∑
𝑑∈𝑀
𝑑|𝑓

[|𝑑| 𝑏𝑢𝑚𝑘 ] + ∑
𝑏∈𝑀<𝑛

∑
𝑑∈𝑀
𝑑|𝑓

[ 𝑎𝑚𝑘 ]
= ∑
𝑏∈𝑀<𝑛

∑
𝑠2∈𝑀

∑
𝑑∈𝑀
𝑑|𝑓

[|𝑑|𝑏𝑢/𝑚𝑘]=|𝑑|𝑠2

|𝑑| 𝑠2
+ ∑
𝑏∈𝑀<𝑛

∑
𝑠1∈𝑀

∑
𝑑∈𝑀
𝑑|𝑓

[𝑎/𝑚𝑘]=𝑠1

𝑠1

(36)

Rewriting the summation in terms of 𝑟1 and 𝑟2 yields
V (𝑓) = ∑

𝑏∈𝑀<𝑛

∑
𝑑∈𝑀
𝑑|𝑓
𝑎=𝑚𝑠1+𝑟1

𝑎 − 𝑟1𝑚𝑘
+ ∑
𝑏∈𝑀<𝑛

∑
𝑟2∈𝑀<𝑛

∑
𝑑∈𝑀
𝑑|𝑓

𝑏𝑢=𝑚𝑠2+𝑟2

|𝑑| 𝑏𝑢 − 𝑟2𝑚𝑘 . (37)

Hence Lemmas 10 and 13 imply

V (𝑓) = 1 − |𝑚|(1 − 𝑞)𝑚𝑘 (𝑎 − 𝑟1) 𝑑 (𝑓)
+ 𝑑|𝑚|𝑘−1𝑛−1𝑙|𝑚|𝑘−1𝑛−1 𝑑|𝑚|𝑘0 (𝜎 (𝑓)𝑚𝑘 ) − 𝑑 (𝑓)𝑚𝑘
⋅ ∑
𝑏∈𝑀<𝑛

∑
𝑟2∈𝑀<𝑛

𝑏|𝑚|−1=𝑚𝑠2+𝑟2

𝑟2 = 𝑑|𝑚|𝑘−1𝑛−1𝑙|𝑚|𝑘−1𝑛−1 𝑑|𝑚|𝑘0 (𝜎 (𝑓)𝑚𝑘 )

+ 𝑑 (𝑓) [[[[[
1 − |𝑚|(1 − 𝑞)𝑚𝑘 (𝑎 − 𝑟1)

− 1𝑚𝑘 ∑
𝑏∈𝑀<𝑛

∑
𝑟2∈𝑀<𝑛
𝑏|𝑚|−1=𝑚𝑠2+𝑟2

𝑟2]]]]]
.

(38)

Therefore,

∑
𝑓∈𝑀𝑛

V (𝑓) = 𝑑|𝑚|𝑘−1𝑛−1𝑚𝑘𝑙|𝑚|𝑘−1𝑛−1 𝑑|𝑚|𝑘0 ∑
𝑓∈𝑀𝑛

𝜎 (𝑓)
− [[[[[

1 − |𝑚|(1 − 𝑞)𝑚𝑘 (𝑎 − 𝑟1) − 1𝑚𝑘 ∑
𝑏∈𝑀<𝑛

∑
𝑟2∈𝑀<𝑛
𝑏𝑢=𝑚𝑘𝑠2+𝑟2

𝑟2]]]]]
⋅ ∑
𝑓∈𝑀𝑛

𝑑 (𝑓) = 𝑑|𝑚|𝑘−1𝑛−1𝑚𝑘𝑙|𝑚|𝑘−1𝑛−1 𝑑|𝑚|𝑘0 𝑞2𝑛 ⋅ 1 − 𝑞−𝑛−11 − 𝑞−1 − (𝑛
+ 1) 𝑞𝑛 [[[[[

1 − |𝑚|(1 − 𝑞)𝑚𝑘 (𝑎 − 𝑟1)

− 1𝑚𝑘 ∑
𝑏∈𝑀<𝑛

∑
𝑟2∈𝑀<𝑛
𝑏𝑢=𝑚𝑘𝑠2+𝑟2

𝑟2]]]]]
.

(39)
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The proof of (18) is similar and is a direct consequence of
Lemma 13.

Corollary 14. If𝑚 = p ∈ Pn, then∑
𝑓∈𝑀𝑛

V (𝑓)
= 𝑑|p|k−1𝑛−1𝑙|p|k−1𝑛−1 𝑑|p|k0 pk

𝑞2𝑛 ⋅ 1 − 𝑞−𝑛−11 − 𝑞−1
− (𝑛 + 1) 𝑞𝑛 [ 1 − |p|(1 − 𝑞) pk (𝑎 − 𝑟1) − 1

pk
1 − |p|(1 − 𝑞)] .

(40)

Proof. If ∈ 𝑃𝑛, then, for each 𝑏 ∈ 𝑀<𝑛, 𝑏𝑢 = pk𝑠2 + 𝑟2, we have𝑏𝑢 = 𝑏(|p|−1)|p|k−1 ≡ 𝑟2mod pk , (41)

which forces 𝑟2 = 1 by Euler theorem for polynomial; see [1].
Therefore,

∑
𝑏∈𝑀<𝑛

∑
𝑟2∈𝑀<𝑛

𝑏|p|−1=𝑝𝑠2+𝑟2

𝑟2 = 1 − |p|(1 − 𝑞) , (42)

and the corollary follows from the main theorem.

4.2. Evaluation of Some Sums in F𝑞[𝑡]
�eorem 15. Let 𝑛 ∈ N and for 𝑘 ∈ N.

If 1 ≤ 𝑘 ≤ 𝑞, then∑
𝑚∈𝑀𝑛

∑
𝑓∈𝑀𝑛

V1 (𝑓)
= 𝑎 [𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2 − (𝑛 + 1) 𝑞𝑛𝑑𝑞𝑛−1𝑙𝑛−1 ] 1𝑙𝑘𝑛 .

(43)

Proof. Using the main theorem, we obtain

∑
𝑚∈𝑀𝑛

∑
𝑓∈𝑀𝑛

V1 (𝑓) = ∑
𝑚∈𝑀𝑛

𝑎𝑚𝑘 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2
− (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑚𝑘𝑙𝑛−1 .

(44)

Therefore, if 1 ≤ 𝑘 ≤ 𝑞, Theorem 5 implies

∑
𝑚∈𝑀𝑛

[ 𝑎𝑚𝑘 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2
− (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑚𝑘𝑙𝑛−1] = 𝑎[𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2
− (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑙𝑛−1 ] 1𝑙𝑘𝑛 .

(45)

which complete the proof of (43).

�eorem 16. For 𝑘 = 1, we have
∑
𝑚∈𝑃2

∑
𝑓∈𝑀𝑛

V1 (𝑓)
= 𝑎(𝑡𝑞 − 𝑡)𝑞−3ℎ2 (𝑡) 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2

+ (𝑛 + 1) 𝑞𝑛 [𝑑𝑞𝑛−1𝑙𝑛−1 (𝑡𝑞 − 𝑡)𝑞−3ℎ2 (𝑡) ] .
(46)

∑
𝑚∈𝑃3

∑
𝑓∈𝑀𝑛

V1 (𝑓)
= 𝑎(ℎ2 (𝑡))3 (𝑡𝑞2 − 𝑡)𝑞−4ℎ3 (𝑡) 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2

− (𝑛 + 1) 𝑞𝑛 [[[
𝑑𝑞𝑛−1𝑙𝑛−1 (ℎ2 (𝑡))

3 (𝑡𝑞2 − 𝑡)𝑞−4ℎ3 (𝑡) ]]] .
(47)

Proof. By the main theorem, we have

∑
𝑚∈𝑃2

∑
𝑓∈𝑀𝑛

V1 (𝑓) = ∑
𝑚∈𝑃2

𝑎𝑚𝑘 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2
− (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑚𝑘𝑙𝑛−1 .

(48)

Therefore, if 𝑘 = 1, then Theorem 6 implies

∑
𝑚∈𝑃2

[ 𝑎𝑚𝑘 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2 − (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑚𝑘𝑙𝑛−1]
= [𝑎𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2 + (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑙𝑛−1 ]
⋅ (𝑡𝑞 − 𝑡)𝑞−3ℎ2 (𝑡) .

(49)

which completes the proof of (46). The proof of (47)
is similar and follows directly from the main theorem and
Theorem 6 of Nelson.

�eorem 17. For 𝑘 = 1, we have
∑
𝑚∈𝑅2

∑
𝑓∈𝑀𝑛

V1 (𝑓)
= [𝑎𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2 − (𝑛 + 1) 𝑞𝑛𝑑𝑞𝑛−1𝑙𝑛−1 ]
⋅ 1(𝑡𝑞 − 𝑡)2 .

(50)
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∑
𝑚∈𝑅3

∑
𝑓∈𝑀𝑛

V1 (𝑓)
= [(𝑛 + 1) 𝑞𝑛𝑑𝑞𝑛−1𝑙𝑛−1 − 𝑎𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2 ]
⋅ 1((𝑡𝑞2 − 𝑡) (𝑡𝑞 − 𝑡)2 .

(51)

Proof. Using the main theorem, we obtain

∑
𝑚∈𝑅2

∑
𝑓∈𝑀𝑛

V1 (𝑓) = ∑
𝑚∈𝑅2

𝑎𝑚𝑘 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2
− (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑚𝑘𝑙𝑛−1 .

(52)

Therefore, if 𝑘 = 1, then Theorem 6 implies

∑
𝑚∈𝑀𝑛

[ 𝑎𝑚𝑘 𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2
− (𝑛 + 1) 𝑞𝑛 𝑑𝑞𝑛−1𝑚𝑘𝑙𝑛−1] = 𝑎[𝑞𝑛 (1 − 𝑞𝑛) (1 − 𝑞𝑛+1)(1 − 𝑞)2
− (𝑛 + 1) 𝑞𝑛𝑑𝑞𝑛−1𝑙𝑛−1 ] 1𝑡𝑞 − 𝑡)2 .

(53)

which complete the proof of (50). The proof of (51) is
similar and follows directly from the main theorem and
Theorem 6 of Nelson.

Example 18. In this example, we let𝑚 runs through the set of
all linear polynomials.

Let 𝑛 ∈ N and 𝑘 ∈ N. If 1 ≤ 𝑘 ≤ 𝑞 and 𝑢 = (|𝑚|− 1)|𝑚|𝑘−1,
then

∑
𝑚∈𝑀1

∑
𝑓∈𝑀𝑛

∑
𝑏∈𝑀<𝑛

∑
𝑑∈𝑀
𝑑|𝑓

|𝑑| 𝑏𝑢 + 𝑎𝑚𝑘 = 𝑎𝑞 (𝑞 − 1)(𝑡 − 𝑡𝑞)𝑘 . (54)

5. Conclusion

In this project, we prove the polynomial analogue of some
Liouville theorems involving the arithmetic polynomial divi-
sor functions. We then use the results obtained to establish
several polynomials identities over the finite fields of 𝑞
elements. As an example, we show that some complex sums of
polynomials in F𝑞[𝑡]may be reduced to very simple algebraic
expressions.
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