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An interest is often present in knowing evolving variables that are not directly observable; this is the case in aerospace, engineering
control, medical imaging, or data assimilation. What is at hand, though, are time-varyingmeasured data, a model connecting them
to variables of interest, and amodel of how to evolve the variables over time. However, bothmodels are only approximation and the
observed data are taintedwith noise.This is an ill-posed inverse problem.Methods, such as Kalman filter (KF), have been devised to
extract the time-varying quantities of interest. These methods applied to this inverse problem, nonetheless, are slow, computation
wise, since they require large matrices multiplications and even matrix inversion. Furthermore, these methods are not usually
suitable to impose some constraints. This article introduces a new iterative filtering algorithm based on alternating projections.
Experimentswere runwith simulatedmoving projectiles andwere comparedwith results usingKF.Thenewoptimization algorithm
proves to be slightly more accurate than KF, but, more to the point, it is much faster in terms of CPU time.

1. Introduction

Tracking moving objects or a substance is a common opti-
mization and control problem [1] in various fields such as
aerospace [2, 3], medical imaging [4–6], data assimilation [7–
9], and video surveillance [10–12]. Methods, such as Kalman
filter, have been devised to solve this problem.However, these
methods comewith a price, for large systems, of being slow in
computation since they involve matrix-matrix multiplication
and even matrix inversion. Remedies, such as Expectation
Maximization Filter (EMF) algorithm, have been proposed
including when nonnegative results are desired [13–16]. A
new remedy is yet introduced here.

The novel filtering algorithm presented in this article
aims, as does KF, to find an estimate 𝑥𝑘, 𝑘 = 1, . . . , 𝐾, to the
unknown 𝑥𝑘 of the problemmodeled by the two linear space-
state equations,

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝜇𝑘,
𝑧𝑘 = 𝐻𝑘𝑥𝑘 + ]𝑘. (1)

The error vector 𝜇𝑘 has E(𝜇𝑘) = 0 and E(𝜇𝑘𝜇⊤𝑘 ) = 𝑄𝑘; the
latter is the covariance of the error in modeling the transition

from 𝑥𝑘−1 to 𝑥𝑘. E(]𝑘) = 0 and E(]𝑘]⊤𝑘 ) = 𝑅𝑘 are the
mean and covariance, respectively, of the noise vector ]𝑘. The
assumption is that the error and noise are white so that

𝑄𝑘 = 𝜎2𝑘𝐼,
𝑅𝑘 = diag (𝛾𝑘) , (2)

where 𝐼 is the identity matrix with order known from context;
diag(𝑎) denotes the square matrix that has the 𝑎𝑖 > 0 in
its main diagonal and 0 otherwise. Both matrices 𝑄𝑘 and𝑅𝑘 are assumed to be diagonal. The new algorithm is then
numerically tested to solve a reconstruction problem arising
in object tracking.

Tracking a moving object (or moving objects) with large
unknown variables and few given data, as in aerospace,
medical imaging, or data assimilation, is an ill-posed inverse
problem. This ill-posedness is further inflated by physical
degradation of the acquired data causing noise. Filtering
algorithms, as the one presented in this article, are therefore
very suitable tools.

The remainder of the paper is organized as follows.
Section 2 describes the stochastic modeling of the state
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evolution and projection in space. The state evolution and
space linear models are the basis to apply the new method.
Then Section 3 reviews KF and introduces the new filtering
algorithm. The application of the new filter to tracking
moving objects is covered in Section 5. Section 6 details the
simulations and numerical experiments of moving tracking
objects using both KF and the new filter; these corrob-
orate the effectiveness of this new algorithm in terms of
convergence and CPU time. Section 7 closes the paper by
summarizing the findings.

2. Problem Formulation

2.1. A Stochastic Model of Moving Objects. A new filtering
algorithm is introduced. Without loss of generality, it is
illustrated, with an example of tracking moving objects. It
could be applied to any instance where KF was and is used
when modeled by the two linear state-space equations (3)
and (9). For instance, the number of photons in [4, 6] is the
unknown 𝑥𝑘 of both these equations.

To illustrate the new algorithm, tracking moving objects
is studied here where detectors, such as radars or cameras,
measure their positions over time.Thegoal is to estimate their
positions, velocities, and/or acceleration, all at once, given
a few noisy measurements of their positions. Kalman filter
can average out the noise of the measured data and gives
somehow smooth tracks of these over time moving objects in
space [11, 17]. Filtering is a widely usedmethod in engineering
where a filtering algorithm, such asKF, reduces the noise from
signals while keeping the utile information. As in the case
of KF, both a process/evolution model and a measurement
equation are used to estimate the unknowns. Note that the
unknown vectors 𝑥𝑘 of both state-space equations (3) and (9)
in this illustrating example include the positions, velocities,
and acceleration of the moving objects.

Velocity and acceleration can be easily derived from the
position. Someone could be interested in finding only the
positions and can easily derive the velocities and acceleration
therefrom; however, having velocities and acceleration helps
to build the state evolution of (3). In addition, having more
than the positions in the unknown 𝑥𝑘 adds more to their
components, therefore increasing the size of the problem to
illustrate the algorithm.

Detectors are exploited to register the positions of the
moving objects. The problem is then modeled as follows. Let𝑡𝑘, 𝑘 = 1, . . . , 𝐾 be an index of a sequence of acquisition times,𝐽 the total number of unknowns, and 𝐼 the total number
of detectors during the time 𝑡𝑘. The variables 𝑥𝑘 ∈ R𝐽 and𝑧𝑘 ∈ R𝐼 denote the state vector containing the unknowns of
the moving objects and the measured data during the 𝑡𝑘 =(Δ𝑡)𝑘 time, respectively. The unknowns include the 2D or
3D components of positions, velocities, and/or acceleration.
The 𝑗𝑡ℎ entry in the vector 𝑥𝑘 has a component of either the
position, velocity, and/or acceleration during the time 𝑡𝑘.The
observations 𝑧1, 𝑧2 . . . , 𝑧𝐾 are random vectors. The 𝑖𝑡ℎ entry
in the vector 𝑧𝑘 measures the component of position of a
moving object registered at the 𝑖𝑡ℎ detector during the time𝑡𝑘. Furthermore, each observation 𝑧𝑘 depends on 𝑥𝑘 only.

The sequence 𝑥1, 𝑥2 . . . , 𝑥𝐾 satisfies Markov property with
unknown time-varying transition matrix 𝐴𝑘 ∈ R𝐽×𝐽. That is
to say, the present state 𝑥𝑘 depends only on the previous one𝑥𝑘−1 according to the following linear equation:

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝜇𝑘, (3)

where 𝜇𝑘 is the error random vector in modeling the transi-
tion from 𝑥𝑘−1 to 𝑥𝑘 with E(𝜇𝑘) equal to zero and covariance
matrix E(𝜇𝑘𝜇⊤𝑘 ) = 𝑄𝑘.
2.2. Example. To make sense of this linear evolution model,
consider the following basic 2D example with a constant time
increment (Δ𝑡)𝑘 = Δ𝑡. Assume that the state of a moving
object is the vector

𝑥𝑘 = [𝑠𝑘,𝑥 𝑠𝑘,𝑦 V𝑘,𝑥 V𝑘,𝑦 𝑎𝑘,𝑥 𝑎𝑘,𝑦]⊤ , (4)

where 𝑠𝑘,𝑥 and 𝑠𝑘,𝑦 are the horizontal and vertical components
of position, respectively, with corresponding velocity com-
ponents V𝑘,𝑥 and V𝑘,𝑦 and acceleration components 𝑎𝑘,𝑥 and𝑎𝑘,𝑦. That is, 𝑠𝑘 = [𝑠𝑘,𝑥 𝑠𝑘,𝑦]⊤, V𝑘 = [V𝑘,𝑥 V𝑘,𝑦]⊤, and 𝑎𝑘 =[𝑎𝑘,𝑥 𝑎𝑘,𝑦]⊤ . The basic kinematic equations with constant
acceleration are

𝑠𝑘 = 𝑠𝑘−1 + V𝑘−1Δ𝑡 + 0.5𝑎𝑘−1Δ𝑡2, (5)

V𝑘 = V𝑘−1 + 𝑎𝑘−1Δ𝑡, (6)

𝑎𝑘 = 𝑎𝑘−1. (7)

Equations (5)-(7) can be written in a matrix form,

[[[[[[[[[[[
[

𝑠𝑘,𝑥𝑠𝑘,𝑦
V𝑘,𝑥
V𝑘,𝑦𝑎𝑘,𝑥𝑎𝑘,𝑦

]]]]]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥𝑘

=
[[[[[[[[[[[
[

1 0 Δ𝑡 0 0.5Δ𝑡2 0
0 1 0 Δ𝑡 0 0.5Δ𝑡2
0 0 1 0 Δ𝑡 0
0 0 0 1 0 Δ𝑡
0 0 0 0 1 0
0 0 0 0 0 1

]]]]]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴𝑘

[[[[[[[[[[[
[

𝑠𝑘−1,𝑥𝑠𝑘−1,𝑦
V𝑘−1,𝑥
V𝑘−1,𝑦𝑎𝑘−1,𝑥𝑎𝑘−1,𝑦

]]]]]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥𝑘−1

. (8)

2.3. Assumptions. Let (ℎ𝑘)𝑖𝑗 be the quantity that links the
unknown in position 𝑗 during the acquisition time 𝑡𝑘 to
detector 𝑖. The time-varying matrix defined by 𝐻𝑘 =[(ℎ𝑘)𝑖𝑗] is called projection or observation matrix. This
matrix 𝐻𝑘 accounts for the relationship between the mea-
surement vector 𝑧𝑘 and the state vector 𝑥𝑘. The observa-
tions/measurements and state vectors are related by the linear
equation

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + ]𝑘, (9)

where E(]𝑘) = 0 and E(]𝑘]⊤𝑘 ) = 𝑅𝑘 are the mean and
covariance, respectively, of the noise vector ]𝑘.

For instance, consider example 2.2 where the state vector𝑥𝑘 is of size 6. Two noisy measurements, 𝑧𝑘 = [𝑧𝑘,𝑥, 𝑧𝑘,𝑦]⊤,
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namely, the horizontal and vertical components of the posi-
tion, are known. Then the 2 × 6matrix𝐻𝑘 is

𝐻𝑘 = [1 0 0 0 0 0
0 1 0 0 0 0] . (10)

Note that this is just an illustrating example with very
small sizes; 𝑥𝑘,𝐻𝑘, and 𝐴𝑘 have sizes 6 × 1, 2 × 6, and 6 × 6,
respectively. In practice, the sizes are of hundreds, thousands,
or even more.

The optimal 𝑥𝑘 is to be found given the data 𝑧𝑘, the
evolution matrix 𝐴𝑘, and the observation system matrix 𝐻𝑘
at each time step 𝑘. Equations (3) and (9) are the state-space
form of a particular case of a more general filtering problem
[18, 19].The actualmodel is a linear dynamic system forwhich
the analytic filtering solution is given by the KF [20].

The covariance matrices 𝑄𝑘 and 𝑅𝑘 being diagonal and
the error as well as the noise being white are three assump-
tions adopted in this paper. In case one assumption or more
are not satisfied, a prewhitening process [13] can be used to
bring a general setting to the one of this paper.

3. Filtering and Reconstruction

The index 𝑘 is droppedwhenever it is needed for convenience.
For instance, at each instance time 𝑘, the state vector 𝑥𝑘, the
data vector 𝑧𝑘, and the matrix 𝐻𝑘 are referred to as just 𝑥, 𝑧,
and𝐻, respectively. Themoving objects problem amounts to
finding 𝑥 ∈ R𝐽 solution of the linear equation

𝑧 = 𝐻𝑥 + ], (11)

where 𝑧 ∈ R𝐼,𝐻 ∈ R𝐼×𝐽 are the given observation data vector
and the observation system matrix, respectively. The vector
] ∈ R𝐼 represents the additive noise in recording the data 𝑧.
A new method, based on alternating projections over convex
sets and compared to KF, is introduced, but, first, a review of
the KF follows.

3.1. Kalman Filter. The KF update [13, 20] is the following:
Given an unbiased estimate 𝑥𝑘−1 of the state vector 𝑥𝑘−1, the
prior estimate of 𝑥𝑘 based solely on the activity dynamics is

𝑦𝑘 = 𝐴𝑘𝑥𝑘−1. (12)

The estimate 𝑥𝑘 will have the form (refer, for instance, to [6])

𝑃𝑘 = 𝐴𝑘𝑃𝑘−1𝐴⊤𝑘 + 𝑄𝑘, (13)

𝐾𝑘 = 𝑃𝑘𝐻⊤𝑘 (𝐻𝑘𝑃𝑘𝐻⊤𝑘 + 𝑅𝑘)−1 , (14)

𝑥𝑘 = 𝑦𝑘 + 𝐾𝑘 (𝑧𝑘 − 𝐻𝑘𝑦𝑘) . (15)

𝑃𝑘 and 𝑃𝑘−1 in (13) are the covariances of the estimated
activity 𝑥 at time 𝑘 and 𝑘 − 1, respectively. As mentioned
before, the matrices’ sizes involved in (13) and (14) are of
the order of hundreds, thousands, or even more. Therefore,
a major drawback of KF is the matrix-matrix multiplications
involved in (13) and (14) andmatrix inversion involved in (14).

Attempts have been made to rectify these two shortcomings;
see, for instance, [18, 19] for more details. The goal of the new
filter is manyfold, but without imposing nonnegativity as in
[13, 14]. It is intended to find a substitute algorithm to KF that
filters out errors from modeling the dynamical system and
the noise from the data. It will insure temporal regularization
and will be an optimal recursive estimate. In addition, it does
not require the storage of past measurement data, usematrix-
matrix multiplications, or necessitate any matrix inversion.
Furthermore, it does not need to calculate, update, or store
any covariance matrix. The aim is then to keep properties
of KF while ameliorating it by requesting few more. Each
recursive step in the new approach is an iterative operation
that involves only matrix-vector multiplication. This should
then handle the problems of huge number of variables, such
as the case in aerospace.

4. Alternating Projections Minimization

The approach here to solving for both linear state-space
equations (3) and (9) is by solving first, in this section, a
regularization problem (16) that involves a regularization
parameter 𝛼. Once the scheme in solving problem (16) is
developed, both (3) and (9) are put together, at each time step𝑘, in one regularization problem (30) similar to problem (16)
using a regularization parameter 𝛼𝑘 updated at each time step𝑘. As for the variable 𝑦 of problem (16), it is substituted by
the state transition in time𝐴𝑘𝑥𝑘−1 vector of (3) and (12).This
process of solving (3) and (9) using the scheme developed in
this section is done in the Section 5. Thus, a regularization
problem is introduced and solved next.

The authors in [13, 14, 21] studied a regularization prob-
lem. This paper considers the following similar problem, for0 ≤ 𝛼 ≤ 1, using the Euclidian distance instead:

min 𝐹 (𝑥) = 𝛼 ‖𝑧 − 𝐻𝑥‖2 + (1 − 𝛼) 𝑦 − 𝑥2 . (16)

The new filtering algorithm takes care of both underde-
termined and overdetermined cases. Moreover, an iterative
method, within the framework of alternating projections, is
developed.

First, two convex sets are defined of 𝐼𝐽-dimensional
vectors similar to what is done in [21–24] as

R = {{{
𝑟 = {𝑟𝑖𝑗} ∈ R

𝐼𝐽 | for all 𝑖, 𝑧𝑖 = 𝐽∑
𝑗=1

𝑟𝑖𝑗}}}
,

Q = {𝑞 = 𝑞 (𝑥) = {𝑞𝑖𝑗 = 𝐻𝑖𝑗𝑥𝑗} for some 𝑥} .
(17)

The sets R and Q are nonempty, closed, and convex in R𝐼𝐽.
Recall the function 𝐹 in (16); 𝑑(𝑟, 𝑞) is also defined as

𝑑 (𝑟, 𝑞) = 𝐹 (𝑥) = 𝛼 𝑞 − 𝑟2 + (1 − 𝛼) 𝑦 − 𝑥2 . (18)
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Expand the most right hand side of expression (18).

𝑑 (𝑟, 𝑞) = 𝛼 𝐼∑
𝑖=1

𝐽∑
𝑗=1

(𝐻𝑖𝑗𝑥𝑗 − 𝑟𝑖𝑗)2

+ (1 − 𝛼) 𝐽∑
𝑗=1

(𝑦𝑗 − 𝑥𝑗)2
(19)

The alternating projections minimization method works as
follows. First start with an initial guess 𝑥0. Then, having
obtained the ℓ𝑡ℎ iterate, set 𝑞ℓ = 𝑞(𝑥ℓ). Afterwards perform
the following two steps:

Step 1. Minimize 𝑑(𝑟, 𝑞ℓ) with respect to 𝑟 to get 𝑟ℓ+1, which
is in the convex setR.

Step 2. Minimize 𝑑(𝑟ℓ+1, 𝑞(𝑥)) with respect to 𝑥 to get 𝑥ℓ+1.
The corresponding 𝑞(𝑥ℓ+1) is in the convex set Q.

The sequence {𝑥ℓ} converges to a limit 𝑥∞, which is the
estimate 𝑥we are looking for.This iterative scheme is applied
to the problem at hand while performing step 1 using (19):

𝜕𝑑𝜕𝑟𝑖𝑗 = 0 ⇒
𝑟𝑖𝑗 = 𝐻𝑖𝑗𝑥𝑗 + 𝑐𝑖, for some 𝑐 ∈ R

𝐼.
(20)

However 𝑟𝑖𝑗 ∈ R so that ∑𝐽𝑗=1 𝑟𝑖𝑗 = 𝑧𝑖; therefore 𝑧𝑖 = (𝐻𝑥)𝑖 +𝐽𝑐𝑖, where (𝐻𝑥)𝑖 = ∑𝐽𝑗=1𝐻𝑖𝑗𝑥𝑗, which leads to

𝑐𝑖 = 1𝐽 (𝑧𝑖 − (𝐻𝑥)𝑖) ,
𝑟𝑖𝑗 = 𝐻𝑖𝑗𝑥𝑗 + 1𝐽 (𝑧𝑖 − (𝐻𝑥)𝑖) .

(21)

Starting with a guess 𝑥0, the update expression is

𝑟𝑖𝑗 = 𝑟ℓ+1𝑖𝑗 = 𝑟 (𝑥ℓ𝑗) = 𝐻𝑖𝑗𝑥ℓ𝑗 + 1𝐽 (𝑧𝑖 − (𝐻𝑥ℓ)𝑖) . (22)

Now, Step 2 is performed using (19):

𝜕𝑑𝜕𝑥𝑗 = 0 ⇒

𝛼 𝐼∑
𝑖=1

𝐻𝑖𝑗 (𝑟𝑖𝑗 − 𝐻𝑖𝑗𝑥𝑗) + (1 − 𝛼) (𝑦𝑗 − 𝑥𝑗) = 0.
(23)

Therefore,

𝛼( 𝐼∑
𝑖=1

𝐻𝑖𝑗𝑟𝑖𝑗 − 𝐼∑
𝑖=1

𝐻2𝑖𝑗𝑥𝑗) + (1 − 𝛼) 𝑦𝑗 − (1 − 𝛼) 𝑥𝑗
= 0.

(24)

So that,

𝛼 𝐼∑
𝑖=1

𝐻𝑖𝑗𝑟𝑖𝑗 + (1 − 𝛼) 𝑦𝑗 = 𝛼 𝐼∑
𝑖=1

𝐻2𝑖𝑗𝑥𝑗 + (1 − 𝛼) 𝑥𝑗,

𝛼 𝐼∑
𝑖=1

𝐻𝑖𝑗𝑟𝑖𝑗 + (1 − 𝛼) 𝑦𝑗 = 𝑥𝑗(𝛼 𝐼∑
𝑖=1

𝐻2𝑖𝑗 + (1 − 𝛼)) .
(25)

This leads to the update formula,

𝑥ℓ+1𝑗 = 𝛼∑𝐼𝑖=1𝐻𝑖𝑗𝑟ℓ+1𝑖𝑗 + (1 − 𝛼) 𝑦𝑗
𝛼∑𝐼𝑖=1𝐻2𝑖𝑗 + (1 − 𝛼) . (26)

Both update formulas (22) and (26) could be combined in
only one:

𝑥ℓ+1𝑗
= 𝛼∑𝐼𝑖=1 (𝐻2𝑖𝑗𝑥ℓ𝑗 + 𝑁𝐻𝑖𝑗 (𝑧𝑖 − (𝐻𝑥ℓ)𝑖)) + (1 − 𝛼) 𝑦𝑗𝛼∑𝐼𝑖=1 , 𝐻2𝑖𝑗 + (1 − 𝛼) , (27)

where 𝑁 = 1/𝐽. Starting with a guess 𝑥0, the sequence {𝑥ℓ}
converges to a limit𝑥∞ , which is the desired estimate𝑥 . Let us
apply the above update formula (27) to the tracking moving
objects problem.

5. Application to Moving Objects

The goal here is to solve for both linear state-space equations
(3) and (9) by using the finding of Section 4. It goes as
follows. The error and noise covariance matrices in tracking
themoving objects problemaremodeled as diagonalmatrices
with nonnegative entries; refer to Section 2.1. That is,

𝑄𝑘 = 𝜎2𝑘𝐼, (28)

𝑅𝑘 = 𝛾2𝑘𝐼, (29)

where 𝐼 is the identity matrix; its dimension is known from
context and 𝜎𝑘 ≥ 1. In case 0 < 𝜎𝑘 < 1, it suffices, for instance,
tomultiply matrix𝑄𝑘 by𝜎4𝑘 and use 1/𝜎2𝑘 instead of 𝜎2𝑘 . In case
when 𝑅𝑘 = diag(𝑎) in expression (29), 𝑅−1/2

𝑘
= diag(1/√𝑎) is

used instead of (1/𝛾𝑘)𝐼 (𝛾𝑘 > 0).
Recall that the aim is to find an estimate 𝑥𝑘, 𝑘 = 1, . . . , 𝐾,

to the unknown 𝑥𝑘 of the problemmodeled by the two linear
space-state equations (3) and (9).

The functional to be minimized at each recursion step 𝑘
is

𝐹 (𝑥𝑘) = 𝑧𝑘 − 𝐻𝑘𝑥𝑘2𝑅−1
𝑘

+ 𝑦𝑘 − 𝑥𝑘2𝑄−1
𝑘

= 
1𝛾𝑘 𝑧𝑘 −

1𝛾𝑘𝐻𝑘𝑥𝑘

2 + 

1𝜎𝑘𝑦𝑘 −
1𝜎𝑘 𝑥𝑘


2

= 
1𝛾𝑘 𝑧𝑘 −

1𝛾𝑘𝐻𝑘𝑥𝑘

2 + 1𝜎2
𝑘

𝑦𝑘 − 𝑥𝑘2
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= 𝜎2𝑘 − 1𝜎2
𝑘


𝜎𝑘

𝛾𝑘√𝜎2𝑘 − 1𝑧𝑘 −
𝜎𝑘

𝛾𝑘√𝜎2𝑘 − 1𝐻𝑘𝑥𝑘

2

+ 1𝜎2
𝑘

𝑦𝑘 − 𝑥𝑘2

𝐹 (𝑥𝑘) = 𝛼𝑘


𝜎𝑘
𝛾𝑘√𝜎2𝑘 − 1𝑧𝑘 −

𝜎𝑘
𝛾𝑘√𝜎2𝑘 − 1𝐻𝑘𝑥𝑘


2

+ (1 − 𝛼𝑘) 𝑦𝑘 − 𝑥𝑘2 ,
(30)

where 𝛼𝑘 = (𝜎2𝑘 − 1)/𝜎2𝑘 . Note that 0 ≤ 𝛼𝑘 ≤ 1 since 𝜎𝑘 ≥ 1,
which makes 𝐹(𝑥𝑘) the same functional to be minimized as
in (16).

It suffices now to use the change of variables, given in
step 2 of the Alternating Projections Filter (APF) algorithm
5.1 that follows, and to recall that the predicted state vector𝑦𝑘 is 𝐴𝑘𝑥𝑘−1. The iterative method, based on alternating
projections and given by the updated formulas (22) and (26),
or the combined formula (27) at each time step 𝑘, is used.The
clustering point 𝑥∞ will be the estimate state 𝑥𝑘 that is solved
for using (3) and (9). Thus the following APF algorithm is
obtained.

5.1. Alternating Projections Filter Algorithm

(1) To solve the linear state-space problem given by (3)
and (9), start with a 𝑥0 and set 𝑁 = 1/𝐽. For 𝑘 =1, ⋅ ⋅ ⋅ , 𝐾 execute the following steps.

(2) Assume the recursive steps up to time 𝑘 − 1 are done;
carry the change of variables

𝛼 = 𝜎2𝑘 − 1𝜎2
𝑘

,
𝑃 = 𝜎𝑘

𝛾𝑘√𝜎2𝑘 − 1𝐻𝑘 =
1𝛾𝑘√𝛼𝐻𝑘,

𝑏 = 𝜎𝑘
𝛾𝑘√𝜎2𝑘 − 1𝑧𝑘 =

1𝛾𝑘√𝛼𝑧𝑘.
(31)

(3) To get 𝑥𝑘, start with 𝑠0 = 𝑥𝑘−1.
(4) Make 𝑐 = 𝑦𝑘 = 𝐴𝑘𝑥𝑘−1.
(5) Do 𝑟ℓ+1𝑖𝑗 = 𝑃𝑖𝑗𝑠ℓ𝑗 + 𝑁(𝑏𝑖 − (𝑃𝑠ℓ)𝑖).
(6) Compute

𝑠ℓ+1𝑗 = 𝛼∑𝐼𝑖=1 𝑃𝑖𝑗𝑟ℓ+1𝑖𝑗 + (1 − 𝛼) 𝑐𝑗
𝛼∑𝐼𝑖=1 𝑃2𝑖𝑗 + (1 − 𝛼) , ℓ = 0, 1, . . . (32)

(7) The update formula for the next estimate is 𝑥𝑘 = 𝑠∞,
where 𝑠∞ is the cluster point of the sequence (𝑠ℓ)ℓ∈N.

Observe that the two steps (5) and (6) could be combined into
one step as was done before in (27).

𝑠ℓ+1𝑗 = 𝛼∑𝐼𝑖=1 (𝑃2𝑖𝑗𝑠ℓ𝑗 + 𝑁𝑃𝑖𝑗 (𝑏𝑖 − (𝑃𝑠ℓ)𝑖)) + (1 − 𝛼) 𝑐𝑗𝛼∑𝐼𝑖=1 𝑃2𝑖𝑗 + (1 − 𝛼)
= 𝛼 (𝑠ℓ𝑗 ∑𝐼𝑖=1 𝑃2𝑖𝑗 + 𝑁∑𝐼𝑖=1 𝑃𝑖𝑗 (𝑏𝑖 − (𝑃𝑠ℓ)𝑖)) + (1 − 𝛼) 𝑐𝑗𝛼∑𝐼𝑖=1 𝑃2𝑖𝑗 + (1 − 𝛼)

ℓ = 0, 1, . . .

(33)

Note how the iterate 𝑠ℓ+1𝑗 in (33) is formed as a ratio
of two convex combinations. The numerator is a convex
combination of the predicted (𝑦𝑘)𝑗, associated with the same
coefficient 1 − 𝛼 as in problem (16), relying only on the
evolution model, and of the calculated APF iterate associated
with the same coefficient 𝛼 as in problem (16) as well, relying
only on the observation model. The denominator is also a
convex combination; it is a weighting factor for the updated
vector estimate. The APF does not involve any matrix-matrix
multiplication or any matrix inversion. It is iterative, involves
only matrix-vector multiplication, and does not need to
calculate, update, or store any covariance matrix.

The temporal regularization parameter 𝛼 is well defined
and takes values between 0 and 1 when 𝜎𝑘 varies between 1
and ∞. If 𝛼 = 0 at each time step 𝑘, so that 𝜎𝑘 = 1, then𝑥𝑘 is 𝐴𝑘𝑥𝑘−1 in (33). That is, the observations are discarded
completely to the extent that only the evolution model is
relied on. This defeats the purpose of using the full power of
detectors. When 𝛼 = 1 at each time step 𝑘, the predicted 𝑦𝑘
in step (4) is not needed in step (6). Indeed using (33),

𝑠ℓ+1𝑗
= 𝛼 (𝑠ℓ𝑗 ∑𝐼𝑖=1 𝑃2𝑖𝑗 + 𝑁∑𝐼𝑖=1 𝑃𝑖𝑗 (𝑏𝑖 − (𝑃𝑠ℓ)𝑖)) + (1 − 𝛼) 𝑐𝑗𝛼∑𝐼𝑖=1 𝑃2𝑖𝑗 + (1 − 𝛼) ,

= 𝑠ℓ𝑗 ∑𝐼𝑖=1 𝑃2𝑖𝑗 + 𝑁∑𝐼𝑖=1 𝑃𝑖𝑗 (𝑏𝑖 − (𝑃𝑠ℓ)𝑖)∑𝐼𝑖=1 𝑃2𝑖𝑗 ,

𝑠ℓ+1𝑗 = 𝑠ℓ𝑗 + ∑
𝐼
𝑖=1 𝑃𝑖𝑗 (𝑏𝑖 − (𝑃𝑠ℓ)𝑖)𝐽∑𝐼𝑖=1 𝑃2𝑖𝑗 .

(34)

Thus, with the above update (34), the Landweber iteration
[25] is retrieved in the static case. Surely, choosing 𝛼 = 1
means that (𝜎𝑘 − 1)/𝜎𝑘 = 1 or simply 𝜎𝑘 = ∞. That is, the
covariance matrix in the transition equation (3) is very huge,
which implies there is no confidence at all in the evolution
model. In other words, the evolutionary state of the variable is
discarded.Only the observations 𝑧𝑘 aremeaningful in finding
the 𝑥𝑘 = 𝑥, which is then a stationary state as it should be.

6. Numerical Experiment

Data Availability. The simulated data used to support the
findings of this study are described as follows. The APF
algorithm 5.1, presented here in the linear case, is validated
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with moving objects while modifying the setting of example
2.2 to have a fairly large size problem. To achieve this goal,
the APF algorithm is applied to an example where there are(𝐽 − 1) different moving objects starting at the same position
with the same velocity that varies over time.

The experiment is done with different large values of 𝐽,
the number of unknowns in the state vector 𝑥𝑘, to compare
results to KF for accuracy and efficiency. Indeed, the goals
of this comparison are twofold. First it makes sure that the
APF algorithm gives similar results to those of KF; this serves
to compare the quality of the outputs of both algorithms
for accuracy. Second it compares the CPU running times of
both APF and KF for efficiency. The KF algorithm is used
here in its conventional/classical formulation. Furthermore,
matrices involved in this illustrative example are quite sparse.
Both algorithms APF and KF, as they are used here, do not
use this sparsity property to decrease the running times.
Thus, this approach shows and compares the capacity of both
algorithms in a more general case, including when matrices
might not be sparse.

The 𝑡𝑘 = (Δ𝑡)𝑘 = Δ𝑡 is set and the test is done with
different values of Δ𝑡. The 𝐼 simulated camera detectors
measure only the position with some error but not the
velocity, so that 𝐼 = 𝐽 − 1. The evolution matrices are taken as𝐴𝑘 = 𝐴 of size 𝐽 × 𝐽. This matrix is

𝐴 =
[[[[[[[[[[
[

1 0 ⋅ ⋅ ⋅ 0 Δ𝑡
0 1 ⋅ ⋅ ⋅ ... ...
... ... ⋅ ⋅ ⋅ 0 ...
0 ⋅ ⋅ ⋅ 0 1 Δ𝑡
−1 0 ⋅ ⋅ ⋅ 0 1

]]]]]]]]]]
]

. (35)

The value −1 in the (𝐽, 1) position in the matrix𝐴 is arbitrary;
its sole purpose is to make sure that the velocity is changing
over time. The unknown 𝐽 × 1 state vector is represented as

𝑥𝑘 = [𝑠𝑘,1 ⋅ ⋅ ⋅ 𝑠𝑘,𝐽−1 V𝑘]⊤ , (36)

and the projection/measurements matrices 𝐻𝑘 = 𝐻, where𝐻 is of size 𝐼 × 𝐽, are

𝐻 =
[[[[[[[[
[

1 0 ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ ... ...
... ... ⋅ ⋅ ⋅ 0 ...
0 0 ⋅ ⋅ ⋅ 1 0

]]]]]]]]
]
. (37)

The experiment is run with an initial state vector of size 𝐽
where (𝑥0)1 = ⋅ ⋅ ⋅ = (𝑥0)𝐽−1 = 3 m and (𝑥0)𝐽 = V0 = 5
m/s2; both values 3 and 5 are arbitrary, so that

𝑥0 = [3 ⋅ ⋅ ⋅ 3 5]⊤ . (38)

Themeasured data is simulated with the Gaussian noise pro-
cess in (39). It counts for constant and arbitrary acceleration,

Table 1: Experiment parameters.

parameter value

𝑥0 [3 ⋅ ⋅ ⋅ 3 5]⊤

(Δ𝑡)𝑘 0.05
accel𝑘 0.6
DataNoise𝑘 10𝛼𝑘 0.7𝜎2𝑘 10/3𝛾2𝑘 100𝑄𝑘 = accel2𝑘𝜎2𝑘𝐼 1.2 𝐼𝐽 500

accel = 0.6 m/s2, to be added to each position measurement,
so that

ProcessNoise = accel ⋅ Δ𝑡22 ⋅ randn1, (39)

where randn1 is a 𝐽 × 1 random vector of the standard
normal distribution. The current velocity is updated from the
previous one V𝑘−1 = (𝑥𝑘−1)𝐽 as

(𝑥𝑘)𝐽 = V𝑘 = (𝑥𝑘−1)𝐽 + accel ⋅ Δ𝑡. (40)

The current 𝑥𝑘 is then updated according to

𝑥𝑘 = 𝐴𝑥𝑘−1 + ProcessNoise. (41)

The state vector 𝑥𝑘 in (41) is updated with ProcessNoise as
defined in (39) and also with ProcessNoise equal to zero; no
significant change has been noticed. The data or measure-
ments 𝑧𝑘 at time 𝑡𝑘 are simulatedwith the state vector, without
the last componentwhich contains the velocity, with an added
Gaussian noise according to

𝑧𝑘 = 𝐻𝑥𝑘 + DataNoise ⋅ randn2, (42)

where DataNoise is some arbitrary value and randn2 is a𝐽 × 1 random vector of the standard normal distribution. As
for KF, the covariance matrices 𝑄𝑘 are set to be equal to 𝑄
with 𝑄 = 𝜎2𝐼 and 𝑄 = accel2𝜎2𝐼; a slight improvement
for KF in terms of accuracy is noticed. Recall that we set𝛼 = (𝜎2 − 1)/𝜎2; choosing this regularization parameter
depends on howmuch trust is put in each of both state-space
equations. The example presented in Table 1 has 𝛼 = 0.7.
The results presented in Figure 1 over 100 s are done using
parameters summarized in Table 1.

The three curves in Figure 1 are averages of their cor-
responding 𝐽 − 1 positions. The latter represent the simu-
lated moving objects, reconstructed positions using KF, and
reconstructed positions using the APF algorithm 5.1. Taking
averages of the positions is for plotting and comparing errors
purposes only. Averages are not taken over the time intervalΔ𝑡, but are rather averages of all the 𝐽 − 1 positions at every
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Figure 1: Tracking of moving objects: simulated positions in blue, noisy measurements of positions in black, Kalman filter (KF) recovering
of positions in red, and Alternating Projections Filter (APF) recovering of positions in green. Running CPU times of both algorithms depend
on the size 𝐽 and the size of time step Δ𝑡. As 𝐽 increases and/or Δ𝑡 decreases, time of both APF and KF increases; however APF is much faster
than KF. Indeed, APF is over 25 times faster than KF with size 𝐽 = 2000 of the unknown state vector and time step Δ𝑡 = 0.05 s over 100 s.

time step 𝑘. The sampling interval has no impact on the
resulting averages.

The relative error between the simulated and both recon-
structed curves has a median around 30%. Running CPU
times of both algorithms depend on the size 𝐽 and the size
of time step Δ𝑡. As 𝐽 increases and/or Δ𝑡 decreases, time of
both APF and KF increases; however APF is much faster than
KF. Indeed, APF is over 25 times faster than KF with size𝐽 = 2000 of the unknown state vector and time stepΔ𝑡 = 0.05
s, corresponding to𝐾 = 100, over 100 s.
7. Conclusion

A novel filtering algorithm APF, to be applied to the linear
case, was presented; it could be implemented in aerospace
and other fields. It could also be applied, for instance,
anytime tracking of moving objects is desired, such as in
medical imaging and data assimilation where large size
systems are involved. Experiments were run comparing
APF and KF in terms of accuracy and computer speed.
Quality of reconstructed curves is about the same in both
algorithms, although APF performs slightly better than KF.
More importantly, APF is up to 25 times faster than KF,
seconds instead of minutes. As it is the case with KF, APF
algorithm filters out errors from modeling the dynamical
system and the noise from the data. Both algorithms insure
temporal regularization and output an optimal recursive
estimate. However, APF does not use any matrix-matrix
multiplication and does not necessitate any matrix inversion.
Furthermore, APFdoes not need to calculate, update, or store
any covariance matrix. This is not the case for KF regarding
these last three properties. Indeed, these three properties
are at the heart of making APF take much less CPU time

compared to KF, so that APF is very suitable for large scale
systems such as the ones in aerospace. APF could be used in
any discipline which has used, for instance, KF or in any field
that is interested in time-varying variables such as financial
risk assessment/evaluation and forecasting or control. The
results substantiate the efficiency of this novel APF algorithm.

Nomenclature

𝑘: Time parameter𝐾: Maximum value of 𝑘𝑥𝑘: Position vector of a moving object at time𝑘𝐴𝑘: Evolution matrix from position 𝑥𝑘−1 to
position 𝑥𝑘𝑧𝑘: Measured data vector at time 𝑘𝐻𝑘: System matrix relating 𝑥𝑘 to 𝑧𝑘

E(𝑤): Expected value of a vector 𝑤
E(𝑤𝑤⊤): Covariance matrix of a vector 𝑤𝜇𝑘: Error vector in modeling the transition

from 𝑥𝑘−1 to 𝑥𝑘𝑄𝑘: Covariance of 𝜇𝑘
]𝑘: Noise vector of measured 𝑧𝑘𝑅𝑘: Covariance of ]𝑘.

Data Availability

The data used to support the findings of this study are
included within the article.
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