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In this paper we elaborate an algorithm to estimate p-order Random Coefficient Autoregressive Model (RCA(p)) parameters.
This algorithm combines quasi-maximum likelihood method, the Kalman filter, and the simulated annealing method. In the aim
to generalize the results found for RCA(1), we have integrated a subalgorithm which calculate the theoretical autocorrelation.
Simulation results demonstrate that the algorithm is viable and promising.

1. Introduction

Random Coeflicient Autoregressive (RCA) processes have
been widely studied in the literature for modeling time
series exhibiting nonlinear behavior. The RCA process was
introduced by Andel (1976) who also studied its properties.
He had obtained conditions for the existence of a singly
infinite process which is second-order stationary satisfying:

P
X (@) =) (¢ + B (1) X (¢ —k) + () ()
k=1
where ¢,’s are fixed coefficients, (B (t),t = 1,...,p)is

a sequence of iid. random vectors with mean zero and
constant covariance matrix C = (o; j), &(t) is a white noise
process with mean zero and variance o,, and S (t) and &(t)
are assumed to be mutually independent.

Multiple studies have emerged after Conlisk (1974, 1976)
has derived conditions for the stability of RCA models,
Robinson (1978) has considered statistical inference for the
RCA model, and Nicholls and Quinn [1] have extended the
results of Andel to the multivariate RCA model.

Many authors have investigated the estimation of param-
eters in the random coefficient autoregressive. Among them,
we cite Nicholls and Quinn who obtained the least squares
and the maximum likelihood estimates. Under certain
assumptions, they established the strong consistency as well

as the asymptotic normality for both estimates. For a detailed
early study, we refer to Nicholls and Quinn [1]. On their side,
Thavaneswaran and Abraham [2] apply Godambe’s theorem
(1985) to obtain optimal estimates for RCA models.

Recently several authors are interested in the RCA model.
Aue and Horvath (2011) propose a unified quasi-likelihood
procedure for the estimation of the unknown parameters of
RCA(1) models that works for both stationary and nonsta-
tionary processes. They also establish the weak consistency
and the asymptotic normality for this procedure.

Liang et al. (2012) have described moment properties
for RCA processes and the corresponding squared processes;
they have given also a joint prediction study of the mean and
volatility.

A new algorithm was proposed by Allal and Benmoumen
[3] to estimate first-order RCA’s parameters. This algorithm
combines quasi-maximum likelihood method, the Kalman
filter, and the Powell's method. Our contribution aims to
extend previous method to higher-order of RCA process.

As we shall see, the proposed algorithm exacts initial
values. To provide the concerned values we are obliged to
calculate the theoretical autocorrelation of p-order RCA
models. To ward off tedious computation we implement
an algorithm, more details in Section 4, who calculate the
autocorrelations in numerical way.

This paper is organized as follows. In Section 2, we
present definition and some basic properties of RCA models.
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In Section 3 we recall Kalman’s algorithm and apply it to
calculate likelihood function for RCA models. In Section 4,
we describe our estimating algorithm. The performance of
this algorithm is examined by Monte Carlo simulations
and compared to the quasi-maximum likelihood method, in
Section 5. Finally, we achieve with a conclusion.

2. Stationarity and Moment Properties

Let (X(¢),t € Z) be a RCA(p) model. In order to derive
stationarity conditions for the processes X(t), Nicholls and
Quinn proposed the following vectorial presentation.

Define the p random vector Y(¢) by Y(¢) = [X(t + 1 -
P X 71, equation (1) may be rewritten in terms of Y (¢)

by
)
0
1)
«sl
L =

Theorem 1. If &, is the o—field generated by (e(s), f(s)),s < t
and C > 0 then there exists a unique & ,—measurable second-
order stationary solution to (1) if and only if M has all its
eigenvalues within the unit circle and (vec C)A < 1, where
C = E[B(t)B'(t)] and A is the last column of the matrix

(Id-MQ M)~ (see Andel (1976) or Nicholls and Quinn [1)).

Y({#)=M+D(@)Y (t-1)+n(t)

where the p x p matrix M is given by M = (

ﬂl(t)

‘_"Vo =

D(t) = L' ® B(t), where B(t) = [B,(1),...
[0,...,0,1] € ‘%P,l and 5(t) = L' ®&(t).

In the next theorem, Lian et al. [4] give us autocorrelation
structure and marginal variance of RCA(p) models.

Theorem 2. Consider the stationary RCA(p) in (1).

(i) The processes have the same autocorrelation structure

as the AR(p) processes:
p
pe= D Py k=1 3)
=1
(ii) The marginal variance of a stationary RCA(p) process
is given by
vo = 7 ()
o =
L2 X (459 + o) i

In practice, this theorem will enable us to deduce the
starting conditions for Kalman filter. Hence, we develop in
Section 3 a recursive algorithm called variance to calculate
the autocovariance function for RCA models.

3. Quasi-Maximum Likelihood and
Kalman Filter

Assuming the joint normality of (e(t),t € Z) and (B(f),t €
Z), the conditional log-likelihood is given by
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1s0) = log T/ G 1 1)) = 3 log () ®

where 0 is the vector of unknown parameters, y, =
(x;,...,x,) is a sample of observations att = 1,...,n, and
f(x; | x,—;) indicate the normal density function of x, given
Xi-1> with mean X, ; = E[X, | x,_;] and variance ]\7ﬂH =
E[(x; = X )*]. The quasi-maximum likelihood may be put
in the following form:

L(x;6) = ——1og(zn)——Zlog( 1)
(6)

- 2
t xtlt—l)

t=1 Mtlt—l

1 (x
2

Given this formula the quasi-maximum likelihood can be
calculated using the Kalman filter; see Hamilton [5].

In order to apply Kalman filter, we consider the appropri-
ate state-space representation for RCA model in (1).

Z,,, =FZ, +Gv, +e; state equation,

7)
X, =HZ,;; observation equation
where Z, = (Xt""’Xt—pH)l € ﬂp’l(lR), H =
(1,0,...,0) € M,,R), e = (0,...,0) € M,,(R),
Ve = (X1 (0 Xy p B (1) € M, 1 (R)
(/51 ¢2 ! ¢p—1 ‘/’p
1 0 - 0 O
F=lo oo [ ®)
0 0 - 1 0
1 -1
0---0
0---0
200
0---0
~ N (0,Q) where Q=
00--0

We should point out that the previous representation was
proposed by Benmoumen in his M.Sc. Thesis [6].

Now, we describe the Kalman filter in the aim to build
the log-likelihood function. The Kalman filter is a recursive
algorithm derived by Kalman [7] to provide an optimal
forecast ZHW = ElZ,, | X....X,] of Z,,, given
Xys..., X, with the mean square error P, = V[Z,,; -
Z+1|t],t = 1,-,n. Given starting values Zuo and P;, which
are derived from Theorem 2, the recursive procedure is as
follows:



Journal of Applied Mathematics

(i) Calculate the forecasting }A(HH of the observation X,,
and the error Mt|t_1 of this forecast.

(ii) Update the state vector Zﬂt. Compute Py, the MSE of
this updated projection.

(iii) Calculate the forecasting Zt +1;¢ and the MSE P, of
this forecast.

Thus, we could construct the log-likelihood function
using Kalman filter, so as to obtain the maximum likelihood
estimators and in order to avoid the fastidious computation of
partial derivatives of L(x; 0) we used the simulated annealing
method (see Corana et al. [8]) which is a global optimization
algorithm.

4. Estimating Algorithm for p-Order
Random Coefficient Autoregressive
Model parameters

The algorithm proposed here is a generalization of a proce-
dure developed by Benmoumen and al. (2013) to estimate
first-order RCA’s parameters.

Recently, the same idea has been developed for param-
eters estimation in GARCH(1,1), ARCH(1), and ARCH(p)
models by Benmoumen et al. (2011, 2014, and 2015).

Before describing our algorithm MLKF (quasi-maximum
likelihood and Kalman filter estimation), it is worthwhile
to provide a subalgorithm which tests if parameters fulfill
the conditions of stationarity; we will denote it by Test. The
second subalgorithm, which we must provide, concerns the
computation of L(x;0) by Kalman filter; we will denote it
by KE These two subalgorithms will be implemented in our
global estimating algorithm.

Herein, we are interested in minimizing —L(x; 0)=€(x; 0).

Subalgorithm Test(0)

if The eigenvalues of the matrix M have modul less
than unity and CA < 1

then

3
And
-1 k=0,
¢ = (10)
0 k>p
Calculate:
o ()
Yo =
1- ‘;:1 Zle (¢j¢k + Ujk) Pj-k
End Subalgorithm
Subalgorithm KF(9)
Given the starting conditions Zou and Py,
Calculate: X, = HZ,, and My, = HPy,H'
fort =1tondo
K, Ztlt’ Ptlt’ ZHllt and Pt+1|t
Xpere and My,
end for
1
som = 3 log (27) (12)
fort =1tondo
- 2
— X, -X
som = som + llog (MM“) + l(t,\—mlt) (13)
2 2 Mt+1|t
end for
£ (x;0) = som (14)
End Subalgorithm

Then go to next
else

Take the last point as starting point

end if
End Subalgorithm

Subalgorithm variance(0)

Solve the equations: A[p;, - - ,pp]' =1[0,---,0]
Where
Ay
¢y sij=1;i=2-,p+1, 9)
) {¢ij+¢i+]-2 sij=2,---,p+1i=2,---,p+1

Indeed, as we shall see later our algorithm is an iterative
process requiring initial estimates of the parameters to com-
mence the iterations. The consistent least squares estimates
are suitable for this purpose.

MLKEF Algorithm

Step 1: Initialize: the vector parameters 0 the step
vector v and the temperature T.

Step 2: Starting from the point 0;, generate a random
point 0 along the direction h: 0 = 0; + 1, e),, where r
is a random number generated in the range [-1, 1] by
a pseudorandom generator; ey, is the vector of the hth
coordinate direction; and v, is the component of the
step vector v along the same direction.

Step 3: Call sub algorithm Test(0)
Step 4: Call sub algorithm KF(0)
Compute KF(6;) and KF(0)
If KF(0) < KF(0;) accept the new point
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Else accept or reject the new point with TABLE 1: Mean and MSE of estimated parameters for Example 1,1 =

acceptance probability p: 100.
KF ( 61) _KF(0) Parameters MLKF Mean MLKF MSE QMLE Mean QMLE MSE

p =exp <*> (15) ¢, =0 -0.00032 0.01491 -0.00051 0.03021
¢, =0.36 0.32874 0.01265 0.29532 0.03127
. Lo o, =0.2176  0.20847 0.01506 0.17879 0.03414
iiﬁ;fre p,a mut?lforf:gé [g, lit]nbuted random 0.00416  0.00635  0.00631  0.00827
, o o 0, =02176 023316 0.01197 018413 0.03698
If p° < p, the point is accepted otherwise it is o =1 105658 0.05597 110734 0.07859

rejected.

Step 5: Steps 2 to 4 are repeated for each coordinate
direction i,i = 1, ..., m (m is the dimension of the
vector parameter).

TABLE 2: Mean and MSE of estimated parameters for Example 1; 1 =
200.

Parameters MLKF Mean MLKF MSE QMLE Mean QMLE MSE

Step 6: Steps 2 to 5 are repeated N, times (N is the

number of step variation) and the step vector v is ¢ =0 0.00021 0.00523 0.00038 0.02003
adjusted. ¢, =036 034857 000556 031857  0.02114
o, = 02176 0.19859 0.00902 0.17016 0.02487

Step 7: Steps 2 to 6 are repeated N times (N is the

number of temperature reduction) the temperature is 712 =0 0-00363 0.00412 0.00578 0.00723
reduced following the rule: T' = 7T with r € [0,1]. 0y = 02176 021072 0.01041 0.19189 0.02865
o, =1 1.02176 0.03397 1.09754 0.06682
Step 8: Steps 2 to 7 are repeated until a termination £
criterion is satisfied.
End Algorithm TABLE 3: Mean and MSE of estimated parameters for Example 2;n =
100.

Parameters MLKF Mean MLKF MSE QMLE Mean QMLE MSE
5. Simulations ¢, =08 0.82356 0.01564 0.75590 0.03258
¢, =-015 -0.15886 0.00982 -0.18164 0.02042

To examine the performance of our algorithm, we have

xamine the perorma B, e 0, =00919 008326 001013 013584  0.04782
carried out series oI simulation experiments. 1n tnis study, we _

Concider two examples of models RCA. 0, =00919 003735 001126 002104  0.03152

0y, =0.1838 021214 001342 024065  0.03356

@ o, =1 093012 005263  0.89702  0.08237

XH=B®XE-1)+(036+p, () X(t-2)

) TABLE 4: Mean and MSE of estimated parameters for Example 2;

+e(t), teR n = 200.
with  (e(t), B(£))~A((0,0,0),Q), where Q = Parameters MLKF Mean MLKF MSE QMLE Mean QMLE MSE
((1) I ) ¢, =038 0.79036 0.00523 0.76137 0.02278
0 0 02176 ¢, =-0.15  -0.17777 0.00358 -0.17776 0.00935
(2) oy = 0.0919  0.10248 0.00647 0.08250 0.00838
X(@t)=(08+B®)X(t-1) 01, = 0.0919  0.06556 0.00512 0.05217 0.00912
17) 0y, = 0.1838  0.21036 0.00788 0.23481 0.01014
+(-015+ B, () X(t-2)+e(t), teR o, =1 0.97054 0.01463 0.94957 0.03327

with  (e(t), B(t))~A4((0,0,0), ), where Q =
0 0

1
0 0.0919 0.0919 XN N
(0 0.0919 0.1838) ¢ = Z (Y t-1Y (¢ - 1)) ! ZY t-1)X®)
For the models mentioned earlier, we generated 1000 t=1 t=1
replications of sample sizes n = 100 and 200. LN
The results of this experiment are displayed in Tables 1-4 582 = _Zaz t) -z (18)
where for each estimator we give the mean and MSE, where NiH
we used notation QMLE for the quasi-maximum likelihood .
estimators and MLKF for the estimation by our algorithm. . y _ _ .. _
youres =) cO-2En-2 | YI®(EE)-2)
Remark 3. = =
(i) The least squares estimate of 6 = (¢, y, 082), where ¢ = where #(t) = X(t) - qZ;'Y(t —-1),t=1,...,N, z(t) =

[¢rs... ,gbp]' and y = vech(C) is given by K, vec(Y(t - DY'(t-1)),and Z(¢t) = (1/n) Ztnzl z(t).
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(ii) The maximum likelihood estimate of 0 is defined by
minimizing the following function:

2, (0) = <l> Zln (oz +y'z (t))

n/7i3

(X0 -pY(E-1) "
o (X -pYye-1

()2

t=1

a2 +y'z(t)

Under certain assumptions, both of the estimates,
the least squares and the maximum likelihood, are
strongly consistent and obey a central limit theorem.
In fact, condition E(X*(t)) < oo is required for the
strong consistency of the least squares estimates, and
E(X%(t)) < oo for the asymptotic normality of these
estimators. Respectively, in order that a central limit
theorem exist for maximum likelihood estimators,
conditions E(¢*(t)) < oo and E(ﬂ;ﬁ(t)) < 00, k =
1,..., pwillbe required. For more details see Nicholls
and Quinn [1].

5.1. Comparison with Quasi-Maximum Likelihood Estimators.
In this series of simulation we compare our algorithm
(MLKF) versus the quasi-maximum likelihood (QMLE).
In each method we use simulated annealing algorithm for
optimization and the least squares estimators for initiation.

As is to be expected, the MLKF estimation procedure has
performed better, as is seen from the fact that the sample
mean square errors (MSE) are generally smaller than for
the quasi-maximum likelihood estimators (QMLE). Hence,
we can conclude that the performance of our estimation
procedure is promising.

6. Conclusion

In this paper, we constructed an algorithm for calculating the
covariance matrix of RCA(p) models and we have generalized
a procedure developed by Benmoumen et al. (2013) to
estimate first-order RCAs parameters.

The log-likelihood function is constructed using the
Kalman filter and is numerically maximized applying simu-
lated annealing method. The results of our simulation study
show that our estimation approach succeeds and it performs
better than the competitor.

Data Availability

Only computer-generated data have been used so all
researchers can find our results from the application of our
algorithms and computer-simulated data.
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