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In this paper we elaborate an algorithm to estimate p-order Random Coefficient Autoregressive Model (RCA(p)) parameters.
This algorithm combines quasi-maximum likelihood method, the Kalman filter, and the simulated annealing method. In the aim
to generalize the results found for RCA(1), we have integrated a subalgorithm which calculate the theoretical autocorrelation.
Simulation results demonstrate that the algorithm is viable and promising.

1. Introduction

Random Coefficient Autoregressive (𝑅𝐶𝐴) processes have
been widely studied in the literature for modeling time
series exhibiting nonlinear behavior. The 𝑅𝐶𝐴 process was
introduced by Andel (1976) who also studied its properties.
He had obtained conditions for the existence of a singly
infinite process which is second-order stationary satisfying:𝑋 (𝑡) = 𝑝∑

𝑘=1

(𝜙𝑘 + 𝛽𝑘 (𝑡))𝑋 (𝑡 − 𝑘) + 𝜀 (𝑡) (1)

where 𝜙𝑘’s are fixed coefficients, (𝛽𝑘(𝑡), 𝑡 = 1, . . . , 𝑝)is
a sequence of i.i.d. random vectors with mean zero and
constant covariance matrix 𝐶 = (𝜎𝑖,𝑗), 𝜀(𝑡) is a white noise
process with mean zero and variance 𝜎𝜖, and 𝛽𝑘(𝑡) and 𝜀(𝑡)
are assumed to be mutually independent.

Multiple studies have emerged after Conlisk (1974, 1976)
has derived conditions for the stability of RCA models,
Robinson (1978) has considered statistical inference for the
RCA model, and Nicholls and Quinn [1] have extended the
results of Andel to the multivariate RCA model.

Many authors have investigated the estimation of param-
eters in the random coefficient autoregressive. Among them,
we cite Nicholls and Quinn who obtained the least squares
and the maximum likelihood estimates. Under certain
assumptions, they established the strong consistency as well

as the asymptotic normality for both estimates. For a detailed
early study, we refer to Nicholls and Quinn [1]. On their side,
Thavaneswaran and Abraham [2] apply Godambe’s theorem
(1985) to obtain optimal estimates for 𝑅𝐶𝐴models.

Recently several authors are interested in the𝑅𝐶𝐴model.
Aue and Horvath (2011) propose a unified quasi-likelihood
procedure for the estimation of the unknown parameters of
RCA(1) models that works for both stationary and nonsta-
tionary processes. They also establish the weak consistency
and the asymptotic normality for this procedure.

Liang et al. (2012) have described moment properties
for 𝑅𝐶𝐴 processes and the corresponding squared processes;
they have given also a joint prediction study of the mean and
volatility.

A new algorithmwas proposed by Allal and Benmoumen
[3] to estimate first-order RCA’s parameters. This algorithm
combines quasi-maximum likelihood method, the Kalman
filter, and the Powell’s method. Our contribution aims to
extend previous method to higher-order of RCA process.

As we shall see, the proposed algorithm exacts initial
values. To provide the concerned values we are obliged to
calculate the theoretical autocorrelation of 𝑝-order RCA
models. To ward off tedious computation we implement
an algorithm, more details in Section 4, who calculate the
autocorrelations in numerical way.

This paper is organized as follows. In Section 2, we
present definition and some basic properties of RCAmodels.
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In Section 3 we recall Kalman’s algorithm and apply it to
calculate likelihood function for RCA models. In Section 4,
we describe our estimating algorithm. The performance of
this algorithm is examined by Monte Carlo simulations
and compared to the quasi-maximum likelihood method, in
Section 5. Finally, we achieve with a conclusion.

2. Stationarity and Moment Properties

Let (𝑋(𝑡), 𝑡 ∈ Z) be a 𝑅𝐶𝐴(𝑝) model. In order to derive
stationarity conditions for the processes 𝑋(𝑡), Nicholls and
Quinn proposed the following vectorial presentation.

Define the 𝑝 random vector 𝑌(𝑡) by 𝑌(𝑡) = [𝑋(𝑡 + 1 −𝑝), . . . , 𝑋(𝑡)]󸀠, equation (1) may be rewritten in terms of 𝑌(𝑡)
by 𝑌 (𝑡) = (𝑀 + 𝐷 (𝑡)) 𝑌 (𝑡 − 1) + 𝜂 (𝑡) (2)

where the 𝑝 × 𝑝 matrix𝑀 is given by𝑀 = ( 0 1 ⋅⋅⋅ 00 0 d 0
... 0 ⋅⋅⋅ 1
𝜙𝑝 𝜙𝑝−1 ⋅⋅⋅ 𝜙1

),𝐷(𝑡) = 𝐿󸀠 ⊗ 𝐵(𝑡), where 𝐵(𝑡) = [𝛽𝑝(𝑡), . . . , 𝛽1(𝑡)] and 𝐿 =[0, . . . , 0, 1] ∈M𝑝,1 and 𝜂(𝑡) = 𝐿󸀠 ⊗ 𝜀(𝑡).
Theorem 1. IfF𝑡 is the 𝜎−field generated by (𝜖(𝑠), 𝛽(𝑠)), 𝑠 ≤ 𝑡
and 𝐶 > 0 then there exists a unique F𝑡−measurable second-
order stationary solution to (1) if and only if 𝑀 has all its
eigenvalues within the unit circle and (vec𝐶)󸀠𝐴 < 1, where𝐶 = 𝐸[𝐵(𝑡)𝐵󸀠(𝑡)] and 𝐴 is the last column of the matrix(𝐼𝑑−𝑀⨂𝑀)−1 (see Andel (1976) or Nicholls and Quinn [1]).

In the next theorem, Lian et al. [4] give us autocorrelation
structure and marginal variance of RCA(p) models.

Theorem 2. Consider the stationary 𝑅𝐶𝐴(𝑝) in (1).

(i) The processes have the same autocorrelation structure
as the 𝐴𝑅(𝑝) processes:𝜌𝑘 = 𝑝∑

𝑗=1

𝜙𝑗𝜌𝑘−𝑗, 𝑘 ≥ 1 (3)

(ii) The marginal variance of a stationary 𝑅𝐶𝐴(𝑝) process
is given by𝛾0 = 𝜎2𝜀1 − ∑𝑝𝑗=1∑𝑝𝑘=1 (𝜙𝑗𝜙𝑘 + 𝜎𝑗𝑘) 𝜌𝑗−𝑘 (4)

In practice, this theorem will enable us to deduce the
starting conditions for Kalman filter. Hence, we develop in
Section 3 a recursive algorithm called variance to calculate
the autocovariance function for RCA models.

3. Quasi-Maximum Likelihood and
Kalman Filter

Assuming the joint normality of (𝜖(𝑡), 𝑡 ∈ Z) and (𝐵(𝑡), 𝑡 ∈
Z), the conditional log-likelihood is given by

𝐿 (𝑥; 𝜃) = log( 𝑛∏
𝑡=1

𝑓 (𝑥𝑡 | 𝜒𝑡−1)) = 𝑛∑
𝑡=1

log (𝑓 (𝑥𝑡𝜒𝑡−1)) (5)

where 𝜃 is the vector of unknown parameters, 𝜒𝑡 =(𝑥𝑡, . . . , 𝑥𝑡) is a sample of observations at 𝑡 = 1, . . . , 𝑛, and𝑓(𝑥𝑡 | 𝜒𝑡−1) indicate the normal density function of 𝑥𝑡 given𝜒𝑡−1, with mean 𝑥𝑡|𝑡−1 = 𝐸[𝑋𝑡 | 𝜒𝑡−1] and variance 𝑀̂𝑡|𝑡−1 =𝐸[(𝑥𝑡 − 𝑥𝑡|𝑡−1)2]. The quasi-maximum likelihood may be put
in the following form:𝐿 (𝑥; 𝜃) = −𝑛2 log (2𝜋) − 12 𝑛∑𝑡=1 log (𝑀̂𝑡|𝑡−1)− 12 𝑛∑𝑡=1 (𝑥𝑡 − 𝑥𝑡|𝑡−1)2𝑀̂𝑡|𝑡−1 (6)

Given this formula the quasi-maximum likelihood can be
calculated using the Kalman filter; see Hamilton [5].

In order to apply Kalman filter, we consider the appropri-
ate state-space representation for 𝑅𝐶𝐴model in (1).𝑍𝑡+1 = 𝐹𝑍𝑡 + 𝐺]𝑡 + 𝑒𝑡; state equation,𝑋𝑡 = 𝐻𝑍𝑡; observation equation

(7)

where 𝑍𝑡 = (𝑋𝑡, . . . , 𝑋𝑡−𝑝+1)󸀠 ∈ M𝑝,1(R), 𝐻 =(1, 0, . . . , 0) ∈ M1,𝑝(R), 𝑒𝑡 = (𝜀𝑡, 0, . . . , 0)󸀠 ∈ M𝑝,1(R),
]𝑡−1 = (𝑋𝑡−1𝛽1(𝑡), . . . , 𝑋𝑡−𝑝𝛽𝑝(𝑡)) ∈M𝑝,1(R)

𝐹 =(𝜙1 𝜙2 ⋅ ⋅ ⋅ 𝜙𝑝−1 𝜙𝑝1 0 ⋅ ⋅ ⋅ 0 0... ... d
... ...0 0 ⋅ ⋅ ⋅ 1 0) ∈M𝑝,𝑝 (R) ,

𝐺 =(1 ⋅ ⋅ ⋅ 10 ⋅ ⋅ ⋅ 0... d
...0 ⋅ ⋅ ⋅ 0) ∈M𝑝,𝑝 (R) ,

𝑒𝑡 ∼N (0, 𝑄) where 𝑄 =(
(
𝜎2𝜖 0 ⋅ ⋅ ⋅ 00 0 ⋅ ⋅ ⋅ 0... ... d

...0 0 ⋅ ⋅ ⋅ 0))

(8)

We should point out that the previous representation was
proposed by Benmoumen in his M.Sc. Thesis [6].

Now, we describe the Kalman filter in the aim to build
the log-likelihood function. The Kalman filter is a recursive
algorithm derived by Kalman [7] to provide an optimal
forecast 𝑍𝑡+1|𝑡 = 𝐸[𝑍𝑡+1 | 𝑋1, . . . , 𝑋𝑡] of 𝑍𝑡+1 given𝑋1, . . . , 𝑋𝑡, with the mean square error 𝑃𝑡+1|𝑡 = 𝑉[𝑍𝑡+1 −𝑍𝑡+1|𝑡], 𝑡 = 1, ⋅, 𝑛. Given starting values 𝑍1|0 and 𝑃1|0 which
are derived from Theorem 2, the recursive procedure is as
follows:
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(i) Calculate the forecasting𝑋𝑡|𝑡−1 of the observation𝑋𝑡,
and the error 𝑀̂𝑡|𝑡−1 of this forecast.

(ii) Update the state vector 𝑍𝑡|𝑡. Compute 𝑃𝑡|𝑡 the MSE of
this updated projection.

(iii) Calculate the forecasting 𝑍𝑡+1|𝑡 and the MSE 𝑃𝑡+1|𝑡 of
this forecast.

Thus, we could construct the log-likelihood function
using Kalman filter, so as to obtain the maximum likelihood
estimators and in order to avoid the fastidious computation of
partial derivatives of 𝐿(𝑥; 𝜃) we used the simulated annealing
method (see Corana et al. [8]) which is a global optimization
algorithm.

4. Estimating Algorithm for p-Order
Random Coefficient Autoregressive
Model parameters

The algorithm proposed here is a generalization of a proce-
dure developed by Benmoumen and al. (2013) to estimate
first-order RCA’s parameters.

Recently, the same idea has been developed for param-
eters estimation in GARCH(1,1), ARCH(1), and ARCH(p)
models by Benmoumen et al. (2011, 2014, and 2015).

Before describing our algorithmMLKF (quasi-maximum
likelihood and Kalman filter estimation), it is worthwhile
to provide a subalgorithm which tests if parameters fulfill
the conditions of stationarity; we will denote it by Test. The
second subalgorithm, which we must provide, concerns the
computation of 𝐿(𝑥; 𝜃) by Kalman filter; we will denote it
by KF. These two subalgorithms will be implemented in our
global estimating algorithm.

Herein, we are interested in minimizing −𝐿(𝑥; 𝜃)=ℓ(𝑥; 𝜃).
Subalgorithm Test(𝜃)
if The eigenvalues of the matrix 𝑀 have modul less
than unity and 𝐶𝐴 < 1

then
Then go to next

else
Take the last point as starting point

end if
End Subalgorithm

Subalgorithm variance(𝜃)
Solve the equations: 𝐴[𝜌1, ⋅ ⋅ ⋅ , 𝜌𝑝]󸀠 = [0, ⋅ ⋅ ⋅ , 0]󸀠

Where𝐴 𝑖𝑗= {{{𝜙𝑖−1 si 𝑗 = 1; 𝑖 = 2, ⋅ ⋅ ⋅ , 𝑝 + 1,𝜙𝑖−𝑗 + 𝜙𝑖+𝑗−2 si 𝑗 = 2, ⋅ ⋅ ⋅ , 𝑝 + 1; 𝑖 = 2, ⋅ ⋅ ⋅ , 𝑝 + 1. (9)

And 𝜙𝑘 = {{{−1 𝑘 = 0,0 𝑘 > 𝑝 (10)

Calculate:𝛾0 = 𝜎2𝜀1 − ∑𝑝𝑗=1∑𝑝𝑘=1 (𝜙𝑗𝜙𝑘 + 𝜎𝑗𝑘) 𝜌𝑗−𝑘 (11)

End Subalgorithm

Subalgorithm KF(𝜃)
Given the starting conditions 𝑍0|1 and 𝑃0|1
Calculate:𝑋0|1 = 𝐻𝑍0|1 and 𝑀̂0|1 = 𝐻𝑃0|1𝐻󸀠
for 𝑡 = 1 to 𝑛 do𝐾𝑡, 𝑍𝑡|𝑡, 𝑃𝑡|𝑡, 𝑍𝑡+1|𝑡 and 𝑃𝑡+1|𝑡𝑋𝑡+1|𝑡 and 𝑀̂𝑡+1|𝑡
end for 𝑠𝑜𝑚 = 12 log (2𝜋) (12)

for 𝑡 = 1 to 𝑛 do𝑠𝑜𝑚 = 𝑠𝑜𝑚 + 12 log (𝑀̂𝑡+1|𝑡) + 12 (𝑋𝑡 − 𝑋𝑡+1|𝑡)2𝑀̂𝑡+1|𝑡 (13)

end for ℓ (𝑥; 𝜃) = 𝑠𝑜𝑚 (14)

End Subalgorithm

Indeed, as we shall see later our algorithm is an iterative
process requiring initial estimates of the parameters to com-
mence the iterations. The consistent least squares estimates
are suitable for this purpose.

MLKF Algorithm
Step 1: Initialize: the vector parameters 𝜃 the step
vector ] and the temperature 𝑇.
Step 2: Starting from the point 𝜃𝑖, generate a random
point 𝜃 along the direction ℎ: 𝜃 = 𝜃𝑖 + 𝑟]𝑚ℎ𝑒ℎ, where r
is a random number generated in the range [−1, 1] by
a pseudorandom generator; 𝑒ℎ is the vector of the hth
coordinate direction; and ]𝑚ℎ is the component of the
step vector ] along the same direction.
Step 3: Call sub algorithm 𝑇𝑒𝑠𝑡(𝜃)
Step 4: Call sub algorithm𝐾𝐹(𝜃)

Compute𝐾𝐹(𝜃𝑖) and𝐾𝐹(𝜃)
If 𝐾𝐹(𝜃) ≤ 𝐾𝐹(𝜃𝑖) accept the new point
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Else accept or reject the new point with
acceptance probability 𝑝:𝑝 = exp(𝐾𝐹 (𝜃𝑖) − 𝐾𝐹 (𝜃)𝑇 ) (15)

generate a uniformly distributed random
number 𝑝󸀠 in the range [0, 1]
If 𝑝󸀠 < 𝑝, the point is accepted otherwise it is
rejected.

Step 5: Steps 2 to 4 are repeated for each coordinate
direction 𝑖, 𝑖 = 1, . . ., 𝑚 (𝑚 is the dimension of the
vector parameter).
Step 6: Steps 2 to 5 are repeated 𝑁𝑠 times (𝑁𝑠 is the
number of step variation) and the step vector ] is
adjusted.
Step 7: Steps 2 to 6 are repeated 𝑁𝑇 times (𝑁𝑇 is the
number of temperature reduction) the temperature is
reduced following the rule: 𝑇󸀠 = 𝑟𝑇𝑇 with 𝑟𝑇 ∈ [0, 1].
Step 8: Steps 2 to 7 are repeated until a termination
criterion is satisfied.
End Algorithm

5. Simulations

To examine the performance of our algorithm, we have
carried out series of simulation experiments. In this study, we
consider two examples of models RCA.

(1)𝑋 (𝑡) = 𝛽1 (𝑡) 𝑋 (𝑡 − 1) + (0.36 + 𝛽2 (𝑡))𝑋 (𝑡 − 2)+ 𝜀 (𝑡) , 𝑡 ∈ R (16)

with (𝜀(𝑡), 𝛽(𝑡))∼N((0, 0, 0), Ω), where Ω =( 1 0 0
0 0.2176 0
0 0 0.2176

).
(2)𝑋 (𝑡) = (0.8 + 𝛽1 (𝑡))𝑋 (𝑡 − 1)+ (−0.15 + 𝛽2 (𝑡))𝑋 (𝑡 − 2) + 𝜀 (𝑡) , 𝑡 ∈ R (17)

with (𝜀(𝑡), 𝛽(𝑡))∼N((0, 0, 0), Ω), where Ω =( 1 0 0
0 0.0919 0.0919
0 0.0919 0.1838

)
For the models mentioned earlier, we generated 1000

replications of sample sizes 𝑛 = 100 and 200.
The results of this experiment are displayed in Tables 1–4

where for each estimator we give the mean and MSE, where
we used notation QMLE for the quasi-maximum likelihood
estimators and MLKF for the estimation by our algorithm.

Remark 3.

(i) The least squares estimate of 𝜃 = (𝜙, 𝛾, 𝜎2𝜀 ), where 𝜙 =[𝜙1, . . . , 𝜙𝑝]󸀠 and 𝛾 = V𝑒𝑐ℎ(𝐶) is given by

Table 1: Mean andMSE of estimated parameters for Example 1; 𝑛 =100.
Parameters MLKF Mean MLKF MSE QMLE Mean QMLE MSE𝜙1 = 0 -0.00032 0.01491 -0.00051 0.03021𝜙2 = 0.36 0.32874 0.01265 0.29532 0.03127𝜎11 = 0.2176 0.20847 0.01506 0.17879 0.03414𝜎12 = 0 0.00416 0.00635 0.00631 0.00827𝜎22 = 0.2176 0.23316 0.01197 0.18413 0.03698𝜎𝜀 = 1 1.05658 0.05597 1.10734 0.07859

Table 2: Mean andMSE of estimated parameters for Example 1; 𝑛 =200.
Parameters MLKF Mean MLKF MSE QMLE Mean QMLE MSE𝜙1 = 0 0.00021 0.00523 0.00038 0.02003𝜙2 = 0.36 0.34857 0.00556 0.31857 0.02114𝜎11 = 0.2176 0.19859 0.00902 0.17016 0.02487𝜎12 = 0 0.00363 0.00412 0.00578 0.00723𝜎22 = 0.2176 0.21072 0.01041 0.19189 0.02865𝜎𝜀 = 1 1.02176 0.03397 1.09754 0.06682

Table 3: Mean andMSE of estimated parameters for Example 2; 𝑛 =100.
Parameters MLKF Mean MLKF MSE QMLE Mean QMLE MSE𝜙1 = 0.8 0.82356 0.01564 0.75590 0.03258𝜙2 = −0.15 -0.15886 0.00982 -0.18164 0.02042𝜎11 = 0.0919 0.08326 0.01013 0.13584 0.04782𝜎12 = 0.0919 0.03735 0.01126 0.02104 0.03152𝜎22 = 0.1838 0.21214 0.01342 0.24065 0.03356𝜎𝜀 = 1 0.93012 0.05263 0.89702 0.08237

Table 4: Mean and MSE of estimated parameters for Example 2;𝑛 = 200.
Parameters MLKF Mean MLKF MSE QMLE Mean QMLE MSE𝜙1 = 0.8 0.79036 0.00523 0.76137 0.02278𝜙2 = −0.15 -0.17777 0.00358 -0.17776 0.00935𝜎11 = 0.0919 0.10248 0.00647 0.08250 0.00838𝜎12 = 0.0919 0.06556 0.00512 0.05217 0.00912𝜎22 = 0.1838 0.21036 0.00788 0.23481 0.01014𝜎𝜀 = 1 0.97054 0.01463 0.94957 0.03327

𝜙 = 𝑁∑
𝑡=1

(𝑌 (𝑡 − 1) 𝑌󸀠 (𝑡 − 1))−1 𝑁∑
𝑡=1

𝑌 (𝑡 − 1)𝑋 (𝑡)
𝜎̂2𝜀 = 1𝑁 𝑁∑𝑡=1𝑢̂2 (𝑡) − 𝛾𝑧𝛾 = [ 𝑁∑

𝑡=1

(𝑧 (𝑡) − 𝑧) (𝑧 (𝑡) − 𝑧)󸀠]−1 𝑁∑
𝑡=1

𝑢̂2 (𝑡) (𝑧 (𝑡) − 𝑧)
(18)

where 𝑢̂(𝑡) = 𝑋(𝑡) − 𝜙󸀠𝑌(𝑡 − 1), 𝑡 = 1, . . . , 𝑁, 𝑧(𝑡) =𝐾𝑛 vec (𝑌(𝑡 − 1)𝑌󸀠(𝑡 − 1)), and 𝑧(𝑡) = (1/𝑛)∑𝑛𝑡=1 𝑧(𝑡).
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(ii) The maximum likelihood estimate of 𝜃 is defined by
minimizing the following function:

ℓ̂𝑛 (𝜃) = (1𝑛) 𝑛∑𝑡=1ln (𝜎2𝜖 + 𝛾󸀠𝑧 (𝑡))+ (1𝑛) 𝑛∑𝑡=1(𝑋 (𝑡) − 𝛽󸀠𝑌 (𝑡 − 1))2𝜎2𝜀 + 𝛾󸀠𝑧 (𝑡) (19)

Under certain assumptions, both of the estimates,
the least squares and the maximum likelihood, are
strongly consistent and obey a central limit theorem.
In fact, condition 𝐸(𝑋4(𝑡)) < ∞ is required for the
strong consistency of the least squares estimates, and𝐸(𝑋8(𝑡)) < ∞ for the asymptotic normality of these
estimators. Respectively, in order that a central limit
theorem exist for maximum likelihood estimators,
conditions 𝐸(𝜀4(𝑡)) < ∞ and 𝐸(𝛽4𝑘(𝑡)) < ∞, 𝑘 =1, . . . , 𝑝will be required. Formore details see Nicholls
and Quinn [1].

5.1. Comparison with Quasi-Maximum Likelihood Estimators.
In this series of simulation we compare our algorithm
(MLKF) versus the quasi-maximum likelihood (QMLE).
In each method we use simulated annealing algorithm for
optimization and the least squares estimators for initiation.

As is to be expected, the MLKF estimation procedure has
performed better, as is seen from the fact that the sample
mean square errors (MSE) are generally smaller than for
the quasi-maximum likelihood estimators (QMLE). Hence,
we can conclude that the performance of our estimation
procedure is promising.

6. Conclusion

In this paper, we constructed an algorithm for calculating the
covariancematrix of RCA(p)models andwe have generalized
a procedure developed by Benmoumen et al. (2013) to
estimate first-order RCA’s parameters.

The log-likelihood function is constructed using the
Kalman filter and is numerically maximized applying simu-
lated annealing method. The results of our simulation study
show that our estimation approach succeeds and it performs
better than the competitor.

Data Availability

Only computer-generated data have been used so all
researchers can find our results from the application of our
algorithms and computer-simulated data.
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