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We investigate the filtering problem where the borrower’s time varying credit quality process is estimated using continuous time
observation process and her (in this paper we refer to the borrower as female and the lender asmale) ego-network data.The hidden
credit quality is modeled as a hidden Gaussian mean-reverting process whilst the social network is modeled as a continuous time
latent space network model. At discrete times, the network data provides unbiased estimates of the current credit state of the
borrower and her ego-network. Combining the continuous time observed behavioral data and network information, we provide
filter equations for the hidden credit quality and show how the network information reduces information asymmetry between the
borrower and the lender. Further,we consider the case when the network information arrival times are random and solve stochastic
optimal control problem for a lender having linear quadratic utility function.

1. Introduction

In this study we consider the problem of stochastic filtering
in the presence of network generated information. Consider
a continuous time credit quality process 𝑋𝑡 which is hidden
and is only partially observed through its randomized func-
tion 𝑌𝑡. Additionally, at discrete time points the observer has
access to unbiased signals of the process 𝑋𝑡 and of nodes
directly linked to the 𝑋𝑡 node. Thus the standard stochastic
filtering is carried out before the arrival of the network
information. The unbiased signals from the network are used
to improve the estimates of the hidden true credit quality.

We assume that the nodes are individual (potential) bor-
rowers in a dynamic social network with the process 𝑋𝑡

being borrower’s true credit quality modeled as an Ornstein-
Ulehnbeck process. The hidden process 𝑋𝑡 is partially
observed through its function 𝑌𝑡 in continuous time. Thus𝑌𝑡 models the typical borrower’s behavior and financial
information available to the lender (e.g., account turnover,
periodic account balance). 𝑋𝑡 and 𝑌𝑡 are modeled as scalar
processes for simplicity, though the results apply to the vector
case too. The borrower knows her true credit quality, and
this is also visible to her direct social contacts. A social link
is formed upon mutual consent between the parties. The
probability of a link forming is influenced by the distance

between the borrowers’ credit quality. Thus links are formed
by credit type homophily. Homophily ([1]) is the idea that
individualswith similar characteristics aremore likely to have
a network tie than individuals with different characteristics.
The network is thus modeled as an undirected continuous
time latent space model. The lender is able to observe at
discrete time points the borrower’s ego-network. Hence at
time points 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑁−1 < 𝑇 the lender is able to
update his estimate of the borrower’s credit quality using the
network data.

Kalman-Bucy filtering techniques provide the estimates
for the hidden process𝑋𝑡 and the conditional variance based
on the continuous time observations 𝑌𝑡. At time 𝑡𝑘, 𝑘 =0, 1, 𝑁 ∈ N the estimates and the conditional variances
are updated using the vector Z𝑘 of network signals. The
dimension of the vector is depended on the borrower’s degree
(number of friends) 𝜂𝑡,𝑘 at time 𝑡𝑘.Thus we combine Kalman-
Bucy filtering and Bayesian updating techniques to improve
the lender’s estimate of the borrower’s credit quality. Further,
we prove that the network data leads to a lower variance
for the estimated credit quality 𝑋𝑡. In addition, we consider
the case whereby the network information arrives at random
times with intensity of a Poisson process. The dynamics of
the filtered estimates and conditional variances are the same
as in the case of discrete time information arrivals, though we
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have the conditional variance being a piecewise deterministic
stochastic process. We solve a stochastic optimization prob-
lem for a lender using the linear quadratic utility. Due to the
random times 𝑡𝑘, the problem is reduced to a linear quadratic
Gaussian utility with jumps. Our credit model can be seen
as continuous time version of the static credit scoring model
of [2]. Also related is the work of [3] who derived filtered
estimates and conditional variance of a hidden drift process
in the presence of continuous time observation and discrete
time scalar expert opinion. Our stochastic optimal control
problem is close to the optimal credit limit problem of [4]
whereby the lender optimizes the credit limit available to a
corporate entity based on the status of the entity’s surplus
process. Reference [5] solved a singular optimization problem
within a random time horizon to obtain the optimal interest
rate payable by a corporate entity. Reference [6] provides a
good account of stochastic optimization for jump diffusion
processes whilst [7] is an excellent treatment of discrete and
stochastic optimization.

Application of social network analysis and social network
data in consumer credit has become ubiquitous; see [8] for
a review. With the availability of social network data, digital
credit and mobile phone based lending have emerged as key
areas of study in finance. Some previous studies of dynamic
social network include the coevolutionmodel of [9] where the
node’s attributes and network ties influence each other. The
nodal attributes and network ties are modeled as continuous
time Markov chains. The static latent distance models of
[10] and discrete time model of [11] are able to capture
key network properties like homophily and transitivity (two
nodes connected to a common third node are likely to be
connected) and group structures. Reference [12] provides a
Bayesian dynamic model of relational structure on a latent
variable continuous time social network. Reference [13] gives
a good review of the static and dynamic latent distance and
latent space network models.

There exist two approaches in modelling credit risk:
the structural and reduced form approach, respectively. In
the structural approach, default occurs when the observed
process related to the value of the firm (or firm cash flow)
passes below a deterministic default threshold. The threshold
is chosen by the managers of the firm, with the default
time being a predictable stopping time. In the reduced form
approach, default ismodeled as an inaccessible stopping time,
with the default threshold modelled as a random variable.
Reference [14] provides a good introduction to credit risk
modelling. There have been attempts to apply the corporate
credit risk models in modelling unsecured consumer credit.
The challenge therein lies in the fact that it is hard to measure
a borrower’s assets. In addition, default in consumer loans is
related more to cash flow issues than to the borrower’s debts
exceeding her assets. Reference [15] modeled the consumer
credit risk using the structural approach of credit risk model-
ing. Treating the consumer’s behavioral score as a continuous
time jump diffusion process, the authors were able to apply
the option pricing theory to model the probability of default.
Our model is related to the structural approach of credit risk
modeling in that the credit worthiness score is seen as an asset
to the borrower. However, in the model the lender manages

credit risk through continuous updating of the credit limit
and borrower’s credit worthiness. The credit limit is affected
by the borrower’s credit worthiness, which is related to the
probability of default. In turn, the sanctioned credit limit
(credit exposure) affects the borrower’s credit worthiness.

Some existing studies on consumer credit scoring include
[16] whereby the borrower’s credit rating is modelled as a dis-
crete time Markov chain process upon incorporating a latent
variable driven by economic conditions. Reference [2] used
social network links and signals from the borrower’s ego-
network to estimate her credit quality. The model assumed
that the credit quality which is normally distributed is hidden
and can only be estimated using the noisy signals from
the borrower and her ego-network. Thus the model was
based on homophily by preference. Reference [17] proposed
the SEN-HMM-CSD (Social Economic Network-Hidden
Markov Model-Credit Scores and Default) model whereby
economic and social network variables including trust, dis-
trust, and reputation were used to estimate the hidden credit
quality of a borrower in a social network. In the SEN-HMM-
CSD model, the true credit quality was modeled as a discrete
time, discrete state hidden Markov model. Assuming a fully
connected social network on a population with no drift, the
network based variables were used to generate the credit
risk analysis factors, which in turn were used to estimate
the hidden Markov parameters for each individual borrower.
Our work generalizes the SEN-HMM-CSD model in the
continuous time continuous state Hidden Markov model
direction through the following: inclusion of neighbouring
nodes signals in the estimation of credit worthiness, credit
limit variability tied to individual’s credit worthiness, and the
network ties based on credit type homophily; thus there is no
assumption on a fully connected network model.

The objective of stochastic filtering is to find the best esti-
mate of a hidden process𝑋 partially seen through the obser-
vation process 𝑌. Excellent textbook treatment of stochastic
filtering includes [18–20]. Recent studies on stochastic filter-
ing and information modeling include [3] who studied amar-
ket model whereby the unobserved drift process (modeled
as an Ornstein-Uhlenbeck process) is filtered conditioned
on a continuous time stock return observations and discrete
time expert opinion. By incorporating expert opinion in
their estimation, the model was a continuous time version
of the Black-Littermanmodel [21]. Reference [22] considered
a market model whereby the unobserved drift parameter
is estimated on an observation filtration initially enlarged
with the terminal value of the stock price perturbed by
some constant variance noise. Reference [23] considered an
enlargement of filtration problem with a random variable
combined with partial information, with an application in
linear stochastic control.

The paper is organized as follows. In Section 2, we
present our credit model, dynamic social network model,
and the information setup. Stochastic filtering and Bayesian
updating results are presented in Section 3. Within this
section, we also present the properties of the conditional
variance. Credit limit management optimization problem is
solved in Section 4. Brief numerical results are presented in
Section 5, whilst Section 6 concludes.
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2. The Credit Model

Consider a filtered probability space (Ω,A,A = (A𝑡)𝑡≥0,P)
satisfying the usual conditions of right continuity and com-
pleteness. All processes are assumed to be A adapted. We are
interested in the following filtering problem.

Borrower’s Behavioral Dynamics. We model the bor-
rower’s observed behavioral dynamics as a linear diffusion
process defined as

𝑑𝑌𝑡 = 𝛼𝑋𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡 (1)

The parameters 𝛼, 𝜎 > 0 are assumed to be constants and𝑊𝑡 is a A adapted one dimensional Brownian motion. The
hidden credit quality process 𝑋𝑡 driving the drift is modeled
as a mean-reverting Ornstein Ulehnbeck process defined as

𝑑𝑋𝑡 = 𝜇 (𝛿 − 𝑋𝑡) 𝑑𝑡 + 𝛾𝑑𝐵𝑡𝑋0 = 𝑥 (2)

where 𝛿 ∈ R, 𝜇 > 0, 𝛾 > 0 are constants and 𝐵𝑡 is a Brow-
nian motion. We assume that 𝐵𝑡 and 𝑊𝑡 are independent.𝑥 is a A measurable normally distributed random variable
independent of 𝐵 and 𝑊 with mean 𝑚0 ∈ R and variance
V0 > 0. 𝑋𝑡 is a Gaussian process; its mean and variance are
given by

𝛿 + 𝑒−𝜇𝑡 (𝑚0 − 𝛿)𝛾22𝜇 + 𝑒−2𝜇𝑡 (V0 − 𝛾22𝜇)
(3)

Network Dynamics. We consider a society with a pop-
ulation Z. Each individual in the population has a nor-
mally distributed time varying credit quality 𝑋𝑖𝑡. The credit
qualities 𝑋𝑖𝑡 are assumed to be independent across the
individuals. At each time 𝑡 > 0, with no other additional
borrower information, an individual’s true credit quality 𝑋𝑡

is assumed to be normally distributed with mean 0 and
variance 𝑞−1. Individuals 𝑖 and 𝑗 interact and a network tie is
formed by mutual consent. Affecting equations (4) and (5)-
the highlighted section should read: Assuming an undirected
network i.e.Y𝑖𝑗(𝑡) =Y𝑗𝑖(𝑡), then we let

Y𝑖𝑗 (𝑡) | 𝜋𝑖𝑗 (𝑡) ∼ Bern (𝜋𝑖𝑗 (𝑡)) (4)

for every 𝑖 ̸= 𝑗 and 𝑡 ⩾ 0 with
𝜋𝑖𝑗 (𝑡) = 𝑒−(1/2)(𝑋𝑖𝑡−𝑋𝑗𝑡)2 (5)

Thus the network ties Y𝑖𝑗(𝑡) ∈ {0, 1} are conditionally inde-
pendent Bernoulli random variables given the corresponding
probabilities of tie formation 𝜋𝑖𝑗(𝑡) ∈ (0, 1). 𝜋𝑖𝑗(𝑡) is the sur-
vival function of a standard Raleigh distribution. Existence
of a network tie between individual 𝑖 and 𝑗 is dependent on
the distance between their credit types, and shorter distance
leads to higher probability of network tie. Thus the network
model captures homophily, whereby individuals with similar
characteristics aremore likely to have social network ties than
individuals with different characteristics. We assume there is
no cost incurred in network tie formation or destruction.

Let 𝐺𝑡 denote the set of friendship ties in the society at
time 𝑡. The set of borrower 𝑖’s friends at time 𝑡, known as her
ego-network, is defined as 𝑔1

𝑡 = {𝑖𝑗 | 𝑖𝑗 ∈ 𝐺𝑡}. For a particular
borrower 𝑖, we consider her true credit quality process𝑋𝑡 and
behavioral score 𝑌𝑡.

Lender’s information. As a result of the information
asymmetry between the lender and the borrowers, the lender
is unable to directly observe the true credit quality process𝑋𝑡

for the individual 𝑖. He however gets noisy observation of the
hidden process via the behavioural process 𝑌𝑡. Additionally,
the lender is able to receive at discrete time points 0 = 𝑡0 <𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑁−1 < 𝑇, 𝑁 ∈ N noisy signals about the current
state of 𝑋𝑖 and neighbouring nodes within her ego-network.
For each 𝑘 ∈ 0, 1, . . . , 𝑁, let the set Z𝑘 = {𝑍𝑗𝑘 | 𝑖𝑗 ∈ 𝑔1

𝑡 }
be the set of signals of the borrower’s ego-network such that𝑍𝑗𝑘 = 𝑋𝑗𝑡𝑘

+ √Λ𝑘𝜀𝑗𝑘. The variable 𝜀𝑗𝑘 ∼ N(0, 1) is i.i.d
across individuals and E(𝜀𝑗𝑠𝜀𝑙𝑢) = 0 for 𝑗 ̸= 𝑙 𝑠 ̸= 𝑢. Thus at
time point 𝑡𝑘 the lender observes borrower 𝑖𝑠 ego-network
and the vector Z𝑘 comprising of the noisy observation of her
current credit state 𝑍𝑘 = 𝑋𝑡𝑘

+ 𝜀𝑖𝑘 and the credit states of
her immediate social contacts {𝑍𝑘𝑗, 𝑖𝑗 ∈ 𝑔1

𝑡𝑘
}. The varianceΛ 𝑘 is a measure of the reliability of the network information

received by the lender.
The information available to the lender can thus be

represented by the following filtrations:

F
𝑌 = (F𝑌

𝑡 )
𝑡 ∈ [0, 𝑇] with F

𝑌
𝑡 generated by {𝑌𝑠, 𝑠 ⩽ 𝑡}

F
𝑍 = (F𝑍

𝑡 )
𝑡 ∈ [0, 𝑇] with F

𝑍
𝑡 generated by {𝑌𝑠, 𝑠 ⩽ 𝑡, 𝑍𝑘, 𝑡𝑘 ⩽ 𝑡}

F
𝑂 = (F𝑂

𝑡 )
𝑡 ∈ [0, 𝑇] with F

𝑂
𝑡 generated by {𝑍𝑘, 𝑡𝑘 ⩽ 𝑡}

(6)

F𝑌 corresponds to the continuous time behavioral score
only and F𝑂 consists of the network information received
at discrete times whilst F𝑍 is the combination of behavioral
score and the network information. We assume that the 𝜎-
algebrasF𝑌

𝑡 andF𝑍
𝑡 are augmented by the P null sets.

Assumption 1. It is obvious that F𝑌
𝑡 ⊂ F𝑍

𝑡 for all 𝑡 > 0.
F𝑌

𝑡 is generated by the innovation process 𝑑𝑀𝑡 = 𝑑𝑊𝑡 +𝛼𝜎−1(𝑋𝑡 −𝑋𝑡)𝑑𝑡. We assume that E(Z𝑘,𝑀𝑡 −𝑀𝑡,𝑘) = 0 for all𝑡 ⩾ 𝑡𝑘. Thus F𝑌
𝑡 is immersed in F𝑍

𝑡 ; hence every F
𝑌 square

integrable martingale is a F𝑍 square integrable martingale.

3. Stochastic Filtering

Stochastic filtering entails obtaining estimate of the hidden
process 𝑋𝑡 conditioned on the observed process. Let 𝑋𝐻

𝑡 be
the projection of the process 𝑋𝑡 onto the observed filtration
F𝐻, 𝐻 ∈ {𝑂,𝑌, 𝑍}, i.e.,𝑋𝐻

𝑡 = E(𝑋𝑡 | F𝐻
𝑡 ).𝑋𝐻

𝑡 is the optimal
estimator of 𝑋𝑡 in the mean square sense. In this section,
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we derive the recursive equations for the filtered estimates
conditioned on the different information settings.

3.1. Behavioural Observations. In the case whereby the lender
observes the borrower’s behavioral information only, i.e.,
where the lender’s observation filtration is F𝑌

𝑡 , the state and
observation processes constitute a linear system of equations.
Besides, the bivariate process (𝑋𝑡, 𝑌𝑡) is Gaussian. Thus the
usual Kalman-Bucy filtering technique, see, e.g., [19, 20], can
be used to obtain the conditional mean 𝑋𝑌

𝑡 = E(𝑋𝑡 | F𝑌
𝑡 )

and the conditional variance 𝜆𝑌
𝑡 = E[(𝑋𝑡 − 𝑋𝑌

𝑡 )2 | F𝑌
𝑡 ].

The dynamics of 𝑋𝑌
𝑡 is given by the following SDE:

𝑑𝑋𝑌
𝑡 = (𝜇 (𝛿 − 𝑋Y

𝑡 ) − 𝛼2𝜎−2𝜆𝑌
𝑡 𝑋𝑌

𝑡 ) 𝑑𝑡 + 𝛼𝜎−2𝜆𝑌
𝑡 𝑑𝑌𝑡,

𝑋𝑌
0 = 𝑚0

(7)

whilst the dynamics of 𝜆𝑌
𝑡 is given by the deterministic ODE

𝑑𝜆𝑌
𝑡𝑑𝑡 = −2𝜇𝜆𝑌

𝑡 + 𝛾2 − 𝛼2𝜎−2 (𝜆𝑌
𝑡 )2 ,

𝜆𝑌
0 = V0

(8)

Equation (8) is the wellknown Riccati equation. With
initial value 𝜆𝑌

0 = V0, the unique solution for the equation
can be given as

𝜆𝑌
𝑡 = −𝜇𝜎2

𝛼2
+ 𝐶𝑜

𝐶1 + 𝐶2𝑒−2(𝛼2/𝜎2)𝐶𝑜𝑡𝐶1 − 𝐶2𝑒−2(𝛼2/𝜎2)𝐶𝑜𝑡 (9)

with𝐶0 = (𝜎/𝛼)√(𝜇2𝜎2/𝛼2) + 𝛾2,𝐶1 = V0 +𝐶0 +𝜇𝜎2/𝛼2, and𝐶2 = V0 − 𝐶0 + 𝜇𝜎2/𝛼2 (see, e.g., [24]).

3.2. Behavioral Observations and Network Information. This
is the case whereby the lender uses both the observed
behavioral score and the network information to obtain an
estimate of the borrower’s credit quality.The following lemma
shows that the expected number of friends for individual 𝑖 at
any time 𝑡 ⩾ 0 can be treated as a constant.

Lemma 2. Let 𝜂𝑡 be the borrower’s degree (number of friends)
at time 𝑡. At each time 𝑡 ⩾ 0, conditioned on the borrower’s true
credit quality 𝑋𝑡, the expected degree E(𝜂𝑡 | 𝑋𝑡) is a constant
denoted as 𝜂.
Proof. Conditioned on the borrower’s true credit type𝑋𝑡, the
probability of having a network tie with any other individual
is

∫∞

−∞
𝑒−(𝑋𝑡−𝑠)2/2√ 𝑞2𝜋𝑒−𝑞(𝑠2/2)𝑑𝑠 = √ 𝑞𝑞 + 1𝑒−(𝑞/2(𝑞+1))𝑋2𝑡 (10)

Thus the conditional expected number of friends E(𝜂𝑡 | 𝑋𝑡)
is given by

E (𝜂𝑡 | 𝑋𝑡) = Z√ 𝑞𝑞 + 1𝑒−(𝑞/2(𝑞+1))𝑋2𝑡 (11)

As 𝑞 → 0, Z → ∞ we make the simplifying assumption
thatZ√𝑞/(𝑞 + 1) is a constant denoted by 𝜂.Thus in the limit
E(𝜂𝑡 | 𝑋𝑡) = 𝜂.

The simplifying assumption is justified by the considera-
tion that in a typical human social network; types are diffuse
and the population size is large. Besides, in a small social
network with less diffuse individual types, the benefits of
social network scoring would be limited.

Proposition 3. For any 𝑘 ∈ 0, 1, . . . , 𝑁 and 𝑡 > 0, let 𝑝𝑘 =Λ 𝑘
−1 be the precision of the network information at time 𝑡𝑘.

Further define the parameter

𝜃𝑍𝑘 = (𝑝𝑘 + 1)𝜆𝑍
𝑡𝑘−𝑝𝑘 (𝑝𝑘 + 1 + 𝜂𝑘) + (𝑝𝑘 + 1) (12)

Then it holds that

(i) For any 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1),𝑋𝑍
𝑡 is Gaussian and its dynamics

satisfies the following:

𝑑𝑋𝑍
𝑡 = (𝜇 (𝛿 − 𝑋𝑍

𝑡 ) − 𝛼2𝜎−2𝜆𝑍
𝑡 𝑋𝑍

𝑡 ) 𝑑𝑡 + 𝛼𝜎−2𝜆𝑍
𝑡 𝑑𝑌𝑡 (13)

whilst the conditional variance is given by

𝜆𝑍
𝑡 = −𝜇𝜎2

𝛼2
+ 𝐶𝑜

𝐶1𝑘 + 𝐶2𝑘𝑒−2(𝛼2/𝜎2)𝐶𝑜𝑡𝐶1𝑘 − 𝐶2𝑘𝑒−2(𝛼2/𝜎2)𝐶𝑜𝑡 (14)

with initial values 𝑋𝑍
𝑡𝑘, 𝜆𝑍

𝑡𝑘. 𝐶0 is same as in (9) whilst𝐶1𝑘 = 𝜆𝑍
𝑡𝑘 +𝐶0 +𝜇𝜎2/𝛼2 and 𝐶2𝑘 = 𝜆𝑍

𝑡𝑘 −𝐶0 +𝜇𝜎2/𝛼2

(ii) At information date 𝑡𝑘, 𝑋𝑍
𝑡,𝑘 is Gaussian with the

conditional mean and variance𝑋𝑍
𝑡,𝑘, 𝜆𝑍

𝑡,𝑘 updated from
their respective values at 𝑡𝑘− (that is, before the arrival
of the network information) to be mean

𝑋𝑍
𝑡,𝑘 = 𝜃𝑍𝑘 𝜆𝑍

𝑡𝑘−(𝑋𝑍
𝑡,𝑘−𝜆𝑍
𝑡𝑘−

+ 𝑝𝑘𝑍𝑖𝑘 + 𝑝𝑘𝑝𝑘 + 1∑𝑗∈𝑍𝑍𝑗𝑘) (15)

and variance

𝜃𝑍𝑘 𝜆𝑍
𝑡𝑘− = 𝜆𝑍

𝑡𝑘− (𝑝𝑘 + 1)𝜆𝑍
𝑡𝑘−𝑝𝑘 (𝑝𝑘 + 1 + 𝜂𝑘) + (𝑝𝑘 + 1) (16)

Proof.
Part (i). Between two information dates, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), there
is no arrival of new network information. The only observed
process is the continuous time returns 𝑌𝑡 with the lender’s
information set being F𝑍

𝑡 = F𝑍
𝑡,𝑘 ∨ 𝜎 {𝑌𝑠, 𝑡𝑘 < 𝑠 ⩽ 𝑡}. Thus,

we have the standard Kalman-Bucy filtering case, with the
initial values for conditional mean and conditional variance
being 𝑋𝑍

𝑡𝑘 and 𝜆𝑍
𝑡𝑘, respectively. The result thus follows from

(8) and (9).

Part (ii). At the information date, 𝑡𝑘, the estimates for the
mean and variance are updated from their values at time 𝑡𝑘−
using the Bayesian method. The borrower’s ego network at
time 𝑡𝑘 comprises all her direct network ties. We assume that
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the lender is able to observe the borrower’s complete ego-
network at time 𝑡𝑘.The posterior probability of the borrower’s
credit type P(𝑋𝑡𝑘

| Z𝑘) is obtained by

P (𝑋𝑡𝑘
| Z𝑘) ∝ P (𝑋𝑡𝑘

,Z𝑘) = ∫∞

−∞
P (Z𝑘 | 𝑋𝑡𝑘

, 𝑋𝑗,𝑡𝑘
)

⋅ P (𝑋𝑡𝑘
)P (𝑋𝑗,𝑡𝑘

| 𝑋𝑡𝑘
) 𝑑𝑋𝑗,𝑡𝑘

= ∫∞

−∞
P (Z𝑘 | 𝑋𝑡𝑘

, 𝑋𝑗,𝑡𝑘
)P (𝑋𝑡𝑘

)
⋅ P (𝑋𝑗,𝑡𝑘

) 𝑑𝑋𝑗,𝑡𝑘

(17)

The last equality is as a result of the assumption of indepen-
dence for the𝑋𝑗𝑡𝑘. We haveP(𝑋𝑗,𝑡𝑘

) = ∏𝑖𝑗∈𝑔1
𝑘
𝑒−(𝑞/2)𝑋2𝑗,𝑡𝑘 being

the assumed density of any individual𝑋𝑗 for 𝑗 ̸= 𝑖.The lender
does not update his knowledge of individual 𝑗𝑠 signal. The
remaining part of the integrand is

P (Z𝑘 | 𝑋𝑡𝑘
, 𝑋𝑗,𝑡𝑘

)P (𝑋𝑡𝑘
)

= 𝑒−((𝑋𝑡𝑘−𝑋𝑍𝑡𝑘−)2/2𝜆𝑍𝑡𝑘−) × 𝑒−(𝑝𝑘/2)(𝑍𝑖𝑘−𝑋𝑡𝑘)2
× ∏

𝑗∈𝑍𝑘

𝑒−(𝑝𝑘/2)(𝑍𝑗𝑘−𝑋𝑗𝑡𝑘)2 × ∏
𝑖𝑗∈𝑔1
𝑘

𝑒−(1/2)(𝑋𝑡𝑘−𝑋𝑗𝑡𝑘)2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑎)

× ∏
𝑗∈𝑔0
𝑘
𝑗∉𝑍𝑘

(1 − E (𝜂𝑡𝑘 | 𝑋𝑡𝑘)
Z

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑏)

(18)

where

(i) The first term denotes the product of the prior density
(before the arrival of network information) and the
likelihood function for the observation 𝑍𝑖𝑡,𝑘.

(ii) (a) denotes the probability that at time 𝑡𝑘 borrower 𝑖
is friendswith the individuals within her ego-network
(in 𝑔1

𝑡𝑘
) whose signals are in Z𝑘 and that these friends

have the signals as collected in Z𝑘

(iii) (b) denotes the probability that at time 𝑡𝑘 borrower 𝑖
is not friends with anyone outside 𝑔1

𝑡𝑘
.

As 𝑞 → 0,Z → ∞, by themonotone convergence theorem
and applying Lemma 2 above then

∏
𝑗∈𝑔0
𝑘
𝑗∉𝑍𝑘

(1 − E (𝜂𝑡𝑘 | 𝑋𝑡𝑘)
Z

) → 𝑒−𝜂 (19)

which has no𝑋𝑡𝑘 term. Hence we have

P (𝑋𝑡𝑘
| Z𝑘, 𝑔𝑘) ∝ ∫∞

−∞
𝑒−(𝑋𝑡𝑘−𝑋𝑍𝑡𝑘−)2/2𝜆𝑍𝑡𝑘−

× 𝑒−(𝑝𝑘/2)(𝑍𝑖𝑘−𝑋𝑡𝑘)2

× ∏
𝑗∈𝑍𝑘

𝑒−(𝑝𝑘/2)(𝑍𝑗𝑘−𝑋𝑗𝑡𝑘)2

× ∏
𝑖𝑗∈𝑔1
𝑘

𝑒−(1/2)(𝑋𝑡𝑘−𝑋𝑗𝑡𝑘)2𝑑𝑋𝑗,𝑡𝑘

(20)

whereby the integrand is a product of Gaussian densities.
Upon integrating out𝑋𝑗𝑡𝑘 andmatching the terms of𝑋𝑡𝑘 and𝑋2

𝑡𝑘 we obtain the posterior density which is Gaussian with
the given expectation and variance.

For the case whereby the lender observes only the
network information, i.e., 𝐻 = 𝑂, we have that between
information dates 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), there is no arrival of new
information. We thus get the following corollary.

Corollary 4. When the lender’s information set isF𝑂
𝑡 we have

the following:

(i) For 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), the estimates for the mean and
variance are given by

𝑋𝑂
𝑡 = 𝛿 + 𝑒−𝜇(𝑡−𝑡𝑘) (𝑋𝑂

𝑡𝑘 − 𝛿) (21)

𝜆𝑂
𝑡 = 𝑒−2𝜇(𝑡−𝑡𝑘)𝜆𝑂

𝑡𝑘
+ 𝛾22𝜇 (1 − 𝑒−2𝜇(𝑡−𝑡𝑘)) (22)

(ii) At information date 𝑡𝑘, it holds that 𝑋𝑂
𝑡 is Gaussian

with mean and variance

𝑋0
𝑡,𝑘 = 𝜃0𝑘𝜆0

𝑡𝑘−(𝑋0
𝑡,𝑘−𝜆0
𝑡𝑘−

+ 𝑝𝑘𝑍𝑖𝑘 + 𝑝𝑘𝑝𝑘 + 1∑𝑗∈𝑍𝑍𝑗𝑘) (23)

𝜃0𝑘𝜆0
𝑡𝑘− = 𝜆0

𝑡𝑘− (𝑝𝑘 + 1)𝜆0
𝑡𝑘−
𝑝𝑘 (𝑝𝑘 + 1 + 𝜂𝑘) + (𝑝𝑘 + 1) (24)

respectively.

Proof. Between information dates, it follows that F𝑂
𝑡 = F𝑂

𝑡𝑘

for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). Thus 𝑋𝑂
𝑡 = E(𝑋𝑡 | F𝑂

𝑡𝑘) and 𝜆𝑂
𝑡 = E[(𝑋𝑡 −𝑋𝑂

𝑡 )2 | F𝑂
𝑡𝑘]. From the state/observation model, we get that𝑋𝑡 has the form

𝑋𝑡 = 𝛿 + 𝑒−𝜇(𝑡−𝑡𝑘) (𝑋𝑡𝑘
+ 𝛾∫𝑡

𝑡𝑘

𝑒𝜇𝑠𝑑𝐵𝑠) (25)

Therefore

𝑋𝑂
𝑡 = 𝛿 + 𝑒−𝜇(𝑡−𝑡𝑘)E (𝑋𝑡𝑘 − 𝛿 | F𝑂

𝑡𝑘)
= 𝛿 + 𝑒−𝜇(𝑡−𝑡𝑘) (𝑋𝑂

𝑡𝑘 − 𝛿) (26)

The conditional variance is given by

E ((𝑋𝑡 − 𝑋𝑂
𝑡 )2 | F𝑂

𝑡𝑘) = E((𝑒−𝜇(𝑡−𝑡𝑘) (𝑋𝑡𝑘
− 𝑋𝑂

𝑡𝑘
)

+ 𝑒−𝜇(𝑡−𝑡𝑘)𝛾∫𝑡

𝑡𝑘

𝑒𝜇(𝑠−𝑡𝑘)𝑑𝐵𝑠)2 |F𝑂
𝑡𝑘)
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= 𝑒−2𝜇(𝑡−𝑡𝑘)E ((𝑋𝑡𝑘
− 𝑋𝑂

𝑡𝑘
)2 | F𝑂

𝑡𝑘)
+ 𝑒−2𝜇(𝑡−𝑡𝑘)𝛾2 ∫𝑡

𝑡𝑘

𝑒2𝜇(𝑠−𝑡𝑘)𝑑𝑠 = 𝑒−2𝜇(𝑡−𝑡𝑘)𝜆𝑂
𝑡𝑘
+ 𝛾22𝜇 (1

− 𝑒−2𝜇(𝑡−𝑡𝑘))
(27)

Here we have employed the martingale property of the
Brownian motion process and used the Ito isometry to obtain
the variance. At informationdate 𝑡𝑘 , the estimates are updated
by the information received from the random vectorZ𝑘.With
a Gaussian prior for 𝑋𝑡𝑘

, we use the Bayesian update similar
to Proposition 3 part (ii) to get the posterior expectation and
variance.

Remark 5.

(i) For the case where the individual has no network ties
(isolated node), i.e., when 𝜂𝑡𝑘 = 0, then 𝜃0𝑘 reduces
to Λ 𝑘/(Λ 𝑘 + 𝜆0

𝑡𝑘−). Considering the behavior of the
estimates with limiting values ofΛ 𝑘, whenΛ 𝑘 = 0we
have that 𝜃0𝑘 = 0 and 𝑋𝑂

𝑡 = 𝑋𝑡𝑘 whilst when Λ 𝑘 = ∞
we have 𝜃0𝑘 = 1 and 𝑋𝑂

𝑡 = 𝑋𝑡𝑘−. For Λ 𝑘 = ∞ the
implication is that no additional information on the
hidden process 𝑋𝑡 can be obtained by observing the
network data.

(ii) Further, the estimates 𝑋𝑂
𝑡 and 𝜆𝑂

𝑡 can be obtained
from 𝑋𝑍

𝑡 and 𝜆𝑍
𝑡 as limiting cases as 𝜎 → ∞.

Thus between information dates, the dynamics for the
conditional mean and conditional variance are 𝑑𝑋0

𝑡 =(𝜇(𝛿−�̂�0
𝑡 ))𝑑𝑡 and 𝑑𝜆𝑂

𝑡 = (−2𝜇𝜆0
𝑡 +𝛾2)𝑑𝑡, respectively.

These are deterministic O.D.E equations which can
be solved to yield the expressions in Corollary 4.
The implication is that on account of 𝜎 → ∞ no
additional information relating to the hidden process𝑋𝑡 can be obtained by observing the continuous time
process 𝑌𝑡.

(iii) We may consider a case whereby the information
arrival times 𝑡𝑘, 𝑘 = 0, 1, . . . , 𝑁 − 1 are random
times with intensity 𝜑 akin to the jump times of a
Poisson process. The random times are independent
of the processes 𝑋,𝑌,Z and the Brownian motions𝑊,𝐵; thus the timing of jumps does not carry any
information. We deal with this case in Section 4 on
optimal credit limit management.

In the following proposition, we show how the additional
network information Z𝑘 improves the lender’s estimate of the
borrower’s true credit quality. This is captured by the lower
variance associated with the estimates from the information
set F𝑍

𝑡 compared to the other two alternative information
settings. Thus a lender incorporating signals from the bor-
rower’s ego-network in his analysis is bound to have a better
estimate of the borrower’s true credit history.

Proposition 6 (properties of the conditional variance). For𝐻 ∈ {𝑌, 𝑂}, 𝑡 ∈ [0, 𝑇] and 𝑘 = 1, 2, . . . , 𝑁

𝜆𝑍
𝑡 ⩽ 𝜆𝐻

𝑡 (28)

Proof. For 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), the dynamics of the conditional
variance is given by the function

𝑑𝜆𝐻
𝑡𝑑𝑡 = 𝑓𝐻 (𝜆𝐻

𝑡 ) (29)

for𝐻 ∈ {𝑌, 𝑂, 𝑍}. From Proposition 3 (i), we have

𝑓𝑍 (𝑟) = 𝑓𝑌 (𝑟) = −2𝜇𝑟 + 𝛾2 − 𝛼2𝜎−2𝑟2 (30)

whilst following Remark 5

𝑓𝑂 (𝑟) = −2𝜇𝑟 + 𝛾2 which is 𝑓𝑂 (𝑟)
= 𝑓𝑍 (𝑟) + 𝛼2𝜎−2𝑟2 (31)

Comparing 𝜆𝑍
0 and 𝜆𝑌

0 , we note that, at time 𝑡 = 0,𝜆𝑍
0 = 𝜃00V0 ⩽ V0 = 𝜆𝑌

0 since 𝜃0 ∈ [0, 1] for all values of𝜂0. Since 𝑓𝑍(𝑟) = 𝑓𝑌(𝑟) and a unique solution for the ODE𝑓𝑍(𝑟) exists, we note that the inequality will persist for all𝑡 ∈ [𝑡0, 𝑡1). At time 𝑡 = 𝑡1, we again have the inequality𝜆𝑍
𝑡𝑘
⩽ 𝜆𝑌

𝑡1
. Extending the argument for all 𝑡 ∈ [0, 𝑇) yields

that that 𝜆𝑍
𝑡 ⩽ 𝜆𝑌

𝑡 .
To prove that 𝜆𝑍

0 ⩽ 𝜆𝑂
0 , we note that, at time 𝑡 = 0, 𝜆𝑍

0 =𝜆𝑂
0 . For 𝑡 ∈ [0, 𝑡1), we have𝑓𝑍(𝑟) ⩽ 𝑓𝑂(𝑟).Thismeans that the

two deterministic functions starting at the same initial value
will have the relation 𝜆𝑍

𝑡 ⩽ 𝜆𝑂
𝑡 . At time 𝑡 = 𝑡1, since the map𝑥 → 𝑥(𝑝+1)/(𝑥𝑝𝑘(𝑝𝑘+1+𝜂𝑘)+(𝑝𝑘+1)) is nondecreasing, we

shall have 𝜆𝑍
𝑡1
⩽ 𝜆𝑂

𝑡1
. Iterating this argument for all 𝑡 ∈ [0, 𝑇]

we conclude that 𝜆𝑍
0 ⩽ 𝜆𝑂

0 .

The implication of this result is that the network infor-
mation improves the accuracy of the lender’s belief about
the borrower’s true credit quality. Periodically observing
the borrower’s ego-network at discrete times without even
observing the entire network leads to a better estimate of the
hidden true credit quality.This is as a result of the network ties
being based on borrower type homophily. This is quite in line
with industry’s practice in digital and mobile phone based
lending whereby an individual’s social network data can be
used to improve the estimate of her credit quality.

4. Optimal Credit Limit Management

Following Remark 5 (iii), in this section, we consider the
case whereby the network information arrival times 𝑡𝑘 are
modeled as Poisson jump times, with jump intensity 𝜑.
No information arrives at time 𝑡0. As such the sequence(𝑡𝑘,Z𝑘)𝑘∈𝐼 is a marked point process, though the dimension
of the vector Z𝑘 is governed by the borrower’s degree 𝜂𝑡𝑘 at
time 𝑡𝑘. In this case, the dynamics of the filtered process 𝑋𝑍

𝑡

and 𝜆𝑍
𝑡 will be same as in Proposition 3, save for the fact that𝜆𝑍

𝑡 will be a piecewise deterministic process with stochastic
jump times. Denote the jumps of 𝑋𝑍

𝑡,𝑘 at time 𝑡𝑘 as
𝑅𝑡,𝑘 = 𝑋𝑍

𝑡,𝑘 − 𝑋𝑍
𝑡,𝑘− (32)
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From the properties of the filtered process 𝑋𝑍
𝑡,𝑘, 𝑅𝑡,𝑘 has a

Gaussian distribution. Let 𝑓(𝑋𝑍
𝑡,𝑘, 𝑟𝑡,𝑘) denote the density of𝑅𝑡,𝑘 with first and second moments 𝜇1

𝑡,𝑘 = E(𝑅𝑡,𝑘) and 𝜇2
𝑡,𝑘 =

E(𝑅2
𝑡,𝑘), respectively. We note that the jump sizes are not

i.i.d like in the compound Poisson case, since the density𝑓(𝑋𝑍
𝑡,𝑘, 𝑟𝑡,𝑘) is dependent on the state of the system at time𝑡𝑘.
Consider a financial market model with terminal time𝑇 whereby a lender has access to the continuous time

information F𝑌 and the network information generated by
the marked point process (𝑡𝑘,Z𝑘)𝑘∈𝐼. The lender desires to
obtain an estimate of the borrower true credit quality 𝑋𝑡

based on the information set F𝑍 . Besides, the lender desires to
optimize his credit decision viz the credit limit 𝑙𝑡 sanctioned
to the borrower from time to time. Thus we are faced with
a stochastic optimal control problem. Due to mathematical
tractability, we assume a nondefaulting borrower who is
credit constrained and thus will accept and fully utilize the
credit limit as and when availed. Thus, the lender avails a
credit line facility on revolving fund basis, and the borrower
is expected to continuously utilize and repay any outstanding
amounts. The lender seeks to adjust the sanctioned credit
limit in line with the borrower’s time varying credit quality.
Different from the consumer credit card limits, the borrower
is expected to fully repay any outstanding amounts before
any new borrowing. Such a credit arrangement is applicable
in unsecured mobile and digital banking products especially
within the emerging market economies; see, e.g., [25, 26].

Define the controlled credit quality process as

𝑑𝑋𝑡 = (𝜇 (𝛿 − 𝑋𝑡) + (�̃� − 𝑝) 𝑙𝑡) 𝑑𝑡 + 𝛾𝑑𝐵𝑡 (33)

When the borrower has no outstanding credit balance, 𝑙𝑡 = 0.
As soon as the borrower obtains credit within the sanctioned
limit, the finances are channeled towards short-term working
capital/consumption with return of �̃� (different from the drift
before borrowing) which we net the price per unit of funds 𝑝.
We assume that borrowing impacts the drift of the borrower’s
credit quality without affecting her volatility. Let𝜙 = (�̃�−𝑝) >0 and

𝐽 (𝑡, 𝑥) = E𝑡,𝑥 (∫𝑇

𝑡
𝑒−𝜔𝑠 (𝑙𝑠 (𝑝 − 𝜅) − 12𝛽𝑙2𝑠)𝑑𝑠) (34)

be the lender’s objective function, where 𝜔 is the lender’s
discounting factor, 𝑝 is the price per unit of funds, 𝜅 is the
lender’s cost per unit of funds, and 𝛽 is the marginal lending
cost. 𝜔, 𝜅, 𝑝, and 𝛽 are all positive. The lender’s optimization
problem is

sup
𝑙∈𝑈

𝐽 (𝑡, 𝑥) (35)

where 𝑈, the admissible set of lending strategies, is defined
below. Since the controlled state process𝑋 is not observable,
this is a situation of stochastic optimization with partially
observed process. From Proposition 3 and Remark 5 and
applying Ito’s formula for jump diffusion process, we condi-
tion on the information set F𝑍 to obtain the filtered controlled
state process as

𝑑𝑋𝑍
𝑡 = (𝜇 (𝛿 − 𝑋𝑍

𝑡 ) + 𝜙𝑙) 𝑑𝑡 + 𝑅𝑡𝑑𝑁𝑠 + 𝛼𝜎𝜆𝑍
𝑡 𝑑𝑀𝑍

𝑡 (36)

where 𝑀𝑍
𝑡 is the F𝑍

𝑡 innovation process and 𝑁 is the
Poisson process with jump intensity 𝜑. Let 𝜑𝑑𝑡𝑓(𝑋𝑍

𝑡,𝑘, 𝑟𝑡,𝑘)𝑑𝑅
be the F𝑍 compensator for the jump process. The complete
information optimization problem is given as

sup
𝑙∈U

𝐽 (𝑡, 𝑥) = −inf
𝑙∈U

− 𝐽 (𝑡, 𝑥)
= −inf

𝑙∈U
E𝑡,𝑥 (∫𝑇

𝑡
𝑒−𝜔𝑠 (12𝛽𝑙2𝑠 − 𝑙𝑠 (𝑝 − 𝜅)) 𝑑𝑠)

(37)

Thus the lender seeks to obtain the value function𝑉(𝑡, 𝑥) = sup𝑙∈U 𝐽(𝑡, 𝑥) and the optimal loan limit 𝑙∗ such that𝑉(𝑡, 𝑥) = 𝑉𝑙∗(𝑡, 𝑥) = sup𝑙∈U 𝐽(𝑡, 𝑥). (37) with dynamics (36)
is a linear quadratic Gaussian regulator with jump diffusion
problem. We solve the optimization problem using dynamic
programming approach.

Definition 7. The admissible set 𝑈 is defined as

𝑈
= {𝑙 = (𝑙𝑡)𝑡∈[0,𝑇] , 𝑙 is 𝐹𝑍 adapted, 𝑙𝑡 ∈ [0, �̃�] , 𝑋𝑍

𝑡

> 0, E(∫𝑇

0
𝑙𝑠) < ∞, E(∫𝑇

0
∫∞

−∞

ℏ (𝑋𝑙
𝑢 + 𝑅)

− ℏ (𝑋𝑙
𝑢) 𝑓 (𝑋𝑙

𝑢, 𝑟) 𝑑𝑅 𝑑𝑢) < ∞, ∀ℏ (𝑥)
∈ 𝐶2}

(38)

where 𝐶2 is the family of functions ℏ(𝑥) such that ℏ and its
derivatives ℏ𝑥, ℏ𝑥𝑥 are continuous on R. The upper bound
on the loan amount �̃� is established exogenously. The upper
bound may be in respect to the credit product specification
or the lender’s risk management criteria.

4.1. The Dynamic Programming Method. We know that if the
value function 𝑉(𝑥) ∈ 𝐶2, then it satisfies the Hamilton-
Jacobi-Bellman (HJB) equation

inf
𝑙∈𝐻

{−𝜔𝑉 + 12𝛽𝑙2 − 𝑙 (𝑝 − 𝜅) + (𝜇 (𝛿 − 𝑥) + 𝜙𝑙) 𝑉𝑥

+ 12 𝛼
2𝜆2

𝜎2
𝑉𝑥𝑥 + 𝜑 (E (𝑉 (𝑥 + 𝑅) − 𝑉 (𝑥))} = 0,

∀ (𝑡, 𝑥) ∈ [0, 𝑇) ×R

(39)

We proceed to solve the optimization problem in the follow-
ing proposition.

Proposition 8. The function

] (𝑥) = − (𝐽𝑥2 + 𝐾𝑥 + 𝐿) (40)
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solves the HJB equation with the constants 𝐽, 𝐾, and 𝐿 given as
𝐽 = 𝛽 (𝜔 + 2𝜇)2𝜙2

𝐾 = − (𝜔 + 2𝜇) (𝛽𝜇𝛿 + 𝛽𝜑𝜇1
𝑡 + 𝜙 (𝑝 − 𝜅))𝜇𝜙2

and 𝐿 = (𝜔 + 2𝜇)2𝜔𝛽𝜙2𝜇2
(𝜔(𝛽𝜇𝛿 + 𝛽𝜑𝜇1

𝑡 + 𝜙 (𝑝 − 𝜅))2

+ 2𝛽2𝜇2 (𝛼2𝜆2

𝜎2
+ 𝜑𝜇2

𝑡) + 𝜙2𝜇2 (𝑝 − 𝜅)2(𝜔 + 2𝜇) )

(41)

Proof. By solving the minimization problem in the HJB
equation, we obtain the candidate optimal loan amount as

𝑙 = 1𝛽 ((𝑝 − 𝜅) − 𝜙]𝑥) (42)

Plugging this into the HJB equation yields the following
second-order ODE equation:

− 𝜔] + 𝜇 (𝛿 − 𝑥) ]𝑥 + 12 𝛼
2𝜆2

𝜎2
]𝑥𝑥

+ 𝜑 (E (] (𝑡, 𝑥 + 𝑟) − ] (𝑡, 𝑥))
− 12𝛽 ((𝑝 − 𝜅) − 𝜙]𝑥)2 = 0

(43)

Given that the value function is a twice continuously
differentiable function of 𝑥, we make the following quadratic
ansatz:

] (𝑥) = − (𝐽𝑥2 + 𝐾𝑥 + 𝐿) (44)

whereby 𝐽,𝐾, and 𝐿 are constants to be determined. The
derivatives of ] are given by ]𝑥 = −2𝐽𝑥 − 𝐾 and ]𝑥𝑥 = −2𝐽.
Further, we have

𝜑 (E (] (𝑡, 𝑥 + 𝑟) − ] (𝑡, 𝑥))
= 𝜑 (−E (𝐽 (𝑥 + 𝑅)2 + 𝐾 (𝑥 + 𝑅) + 𝐿) + 𝐽𝑥2 + 𝐾𝑥
+ 𝐿)
= 𝜑 (−E (𝐽𝑥2 + 𝐽𝑅2 + 2𝐽𝑅𝑥 + 𝐾 (𝑥 + 𝑅) + 𝐿)
+ 𝐽𝑥2 + 𝐾𝑥 + 𝐿) = −𝜑 (𝐽𝜇2

𝑡 + 2𝐽𝑥𝜇1
𝑡 + 𝐾𝜇1

𝑡 )

(45)

Inserting the derivatives of ] together with (45) and rearrang-
ing yields the following:

𝑥2 (𝜔𝐽 + 2𝐽𝜇 − 2𝐽2𝜙2

𝛽 ) + 𝑥(𝜔𝐾 − 2𝐽𝜇𝛿 + 𝐾𝜇
− 2𝐽𝜑𝜇1

𝑡 − 2𝐽𝜙2𝐾𝛽 − 2𝜙𝐽 (𝑝 − 𝜅)𝛽 ) + (𝜔𝐿 − 𝜇𝛿𝐾
− 𝛼2𝜆2𝐽𝜎2

− 𝐽𝜑𝜇2
𝑡 − 𝐾𝜑𝜇2

𝑡 − (𝑝 − 𝜅)22𝛽 − 𝜙2𝐾2

2𝛽
− 𝜙𝐾 (𝑝 − 𝜅)𝛽 ) = 0

(46)

which holds for all (𝑡, 𝑥). The terms in the large parentheses
must equal zero. As such solving for the constants 𝐽,𝐾, and𝐿 we conclude the proof. The case 𝐽 = 0 is trivial since then,
with the optimal control 𝑙(𝑡, 𝑥) = (𝑝 − 𝜅)/𝛽 being a constant.

Proposition 9. (i) The value function is given by

𝑉 (𝑥) = − (𝐽𝑥2 + 𝐾𝑥 + 𝐿) (47)

where

𝐽 = 𝛽 (𝜔 + 2𝜇)2𝜙2

𝐾 = − (𝜔 + 2𝜇) (𝛽𝜇𝛿 + 𝛽𝜑𝜇1
𝑡 + 𝜙 (𝑝 − 𝜅))𝜇𝜙2

and 𝐿 = − (𝜔 + 2𝜇)2𝜔𝛽𝜙2𝜇2
(𝜔(𝛽𝜇𝛿 + 𝛽𝜑𝜇1

𝑡 + 𝜙 (𝑝 − 𝜅))2

+ 2𝛽2𝜇2 (𝛼2𝜆2

𝜎2
+ 𝜑𝜇2

𝑡) + 𝜙2𝜇2 (𝑝 − 𝜅)2(𝜔 + 2𝜇) )

(48)

(ii) The optimal credit limit process is given by

𝑙∗𝑡 = (𝜔 + 2𝜇𝜙 )𝑋𝑍
𝑡 − 1𝜇𝛽𝜙 (𝜙 (𝑝 − 𝜅) (𝜔 + 𝜇)

+ 𝛽 (𝜔 + 2𝜇) (𝜇𝛿 + 𝜑𝜇1
𝑡 ))

(49)

Proof.

(i) Given that the solution ](𝑥) of the HJB equation is
a function in 𝐶2, it follows by verification theorem
for jump diffusion processes that the value function𝑉(𝑥) = ](𝑥).

(ii) In addition, the candidate optimal loan limit process𝑙∗𝑡 obtained from optimization problem with the HJB
is indeed the optimal loan limit process. Reference
[6] provides an excellent review of the verification
theorem for jump diffusion processes

The optimal loan limit is a straight line with y-intercept
depended on the expectation of jump size 𝑅𝑡. Since the



Journal of Applied Mathematics 9

density of 𝑅𝑡 is depended on the state of the system at time 𝑡,
the intercept will change in line with the time varying values
of𝑋𝑍

𝑡,𝑘. The positive gradient of the line is independent of the
jump sizes.

It may be optimal for the lender to decline to avail any
credit line to the borrower, i.e., to have 𝑙∗𝑡 = 0. This occurs
when

𝑋𝑍
𝑡 = 𝜙 (𝑝 − 𝜅) (𝜔 + 𝜇) + 𝛽 (𝜔 + 2𝜇) (𝜇𝛿 + 𝜑𝜇1

𝑡 )𝜇𝛽 (𝜔 + 2𝜇) (50)

In this case, for 𝑋𝑍
𝑡 to be positive we must have 𝜇1

𝑡 >(−1/𝜑)(𝜇𝛿 + 𝜙(𝑝 − 𝜅)(𝜔 + 𝜇)/(𝜔 + 2𝜇)).
Corollary 10. For the case when there is no network data, i.e.,
when F = F𝑌, the value function is given by

𝑉0 (𝑥) = − (𝐽𝑥2 + 𝐾𝑥 + 𝐿) (51)

where

𝐽 = 𝛽 (𝜔 + 2𝜇)2𝜙2
,

𝐾 = − (𝜔 + 2𝜇) (𝛽𝜇𝛿 + 𝜙 (𝑝 − 𝜅))𝜇𝜙2

and 𝐿 = (𝜔 + 2𝜇)2𝜔𝛽𝜙2𝜇2
(𝜔 (𝛽𝜇𝛿 + 𝜙 (𝑝 − 𝜅))2

+ 2𝛽2𝜇2 (𝛼2𝜆2

𝜎2
) + 𝜙2𝜇2 (𝑝 − 𝜅)2(𝜔 + 2𝜇) )

(52)

and the optimal credit limit process is

𝑙∗0,𝑡 = (𝜔 + 2𝜇𝜙 )𝑋𝑌
𝑡

− 1𝜇𝛽𝜙 (𝜙 (𝑝 − 𝜅) (𝜔 + 𝜇) + 𝜇𝛿𝛽 (𝜔 + 2𝜇))
(53)

Proof. To obtain the optimal value function when the obser-
vation filtration is F𝑌, simply replace the jump intensity
parameter 𝜑 = 0 in Proposition 9 and hence the proof.

When 𝜑 = 0, the lender’s optimization problem reduces
to the normal linear Gaussian quadratic regulator and the
objective function 𝐽(𝑡, 𝑥) = 𝐽(𝑡, 𝑥); see, e.g., [7].
Remark 11. The impact of the network information on the
lender’s optimal decision process is seen by noting that
whenever 𝜇1

𝑡 < 0 for all 𝑡 then 𝑙∗𝑡 ≥ 𝑙∗0,𝑡. This, coupled with
the variance results in Proposition 6, captures the gains made
by incorporating the borrower’s ego-network information in
the lender’s credit risk strategy.

Table 1: Model parameter values.

Mean reversion speed 𝛿 0.05 Drift 𝛼 2
Return’s volatility 𝜎 0.3 Volatility 𝛾 1
Mean reversion level 𝜇 2.0 Network variance Λ 0.04

5. Numerical Results

In this section we illustrate our findings in the preceding
sections. We model the hidden credit quality process as
an Ornstein Ulehnbeck process and the observed returns
process as a linear diffusion process. We assume that the
network information Z𝑘 arrives at equidistant time points𝑡𝑘, 𝑘 = 0, 1, . . . , 𝑁. We simulate the processes using the
parameter values as found in Table 1.

In order to capture how the network information causes
jumps on the filtered estimates and variances, Figure 1 shows
the drift 𝑋𝑡, filters 𝑋𝐻

𝑡 for 𝐻 ∈ {𝑌,𝑂, 𝑍} and variances𝜆𝐻
𝑡 for the case when the borrower’s degree 𝜂𝑡 is fixed with

values {0, 2}.The borrower’s own network information 𝑍𝑖𝑡𝑘 is
indicated with red cross. We choose the number of network
information times𝑁 = 6. In panels one and two, we note that
on information dates the filters 𝑋𝑂

𝑡 and 𝑋𝑍
𝑡 jumps towards𝑍𝑖𝑡𝑘 whilst between information dates the filters are driven

back to the stationarymeanof the drift𝛿. In panels 3 and 4, we
note that 𝜆𝑌

𝑡 moves towards its asymptotic value 𝐶0 − 𝜇𝜎2/𝛼2

as 𝑡 → ∞. 𝜆𝑂
𝑡 and 𝜆𝑍

𝑡 rise between information dates but
jump down on information dates.

To capture well the effect of number of direct friends
on the conditional variances 𝜆𝑂

𝑡 and 𝜆𝑍
𝑡 Figure 2 plots a

comparison between the variances of 𝜆𝑂
𝑡 and 𝜆𝑍

𝑡 with and
with no friends. The left panel plots a comparison of the
variances for the case when the number of friends is zero and
five. For the right panel, we model the random number of
friends at information dates 𝑡𝑘 as a Poisson random variable
with parameter 𝜌 = 5. The conditional variances for the case
when there exists friends’ data in Z𝑘 is lower as compared
to the case with zero friends. The right panel captures the
perturbation of conditional variance as the number of friends
varies.

6. Conclusion

In this paper, we have presented the detailed results for
the estimates and properties of conditional variance for
a hidden Ornstein-Ulehnbeck equation driving the drift
process of a borrower’s observed credit score. The network
information obtained from the borrower’s evolving ego-
network has been found to improve the quality of the
lender’s estimate. These results offer a theoretical basis for
the emerging area of unsecured digital and mobile phone
based lending prevalent in emerging market economies. We
have also solved a stochastic optimization problem whereby
the lender is able to obtain the optimal credit limit for a
borrower, the optimal limit being a linear function of the
borrower’s credit quality estimate. The optimization problem
is reduced to a linear quadratic Gaussian problem with jump
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Figure 1: Panel 1: The drift 𝑋𝑡 and filtered estimates𝑋𝐻
𝑡 for the case when the borrower with degree 𝜂 = 2. Panel 2: The drift 𝑋𝑡 and filtered

estimates 𝑋𝐻
𝑡 for the case when the borrower with degree 𝜂 = 0. Panel 3 and 4: The conditional variances 𝜆H𝑡 when the degrees 𝜂𝑡 = 2 and𝜂𝑡 = 0.

diffusion. The jumps caused by the network information
arriving at random times have been found to impact on the
credit limit amount availed to the borrower from time to
time.
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