
Research Article
Rainbow Connectivity Using a Rank Genetic Algorithm:
Moore Cages with Girth Six

J. Cervantes-Ojeda, M. Gómez-Fuentes , D. González-Moreno, and M. Olsen

Universidad Autónoma Metropolitana, Cuajimalpa 05348, Mexico

Correspondence should be addressed to M. Gómez-Fuentes; mcgomezfuentes@aim.com

Received 12 September 2018; Accepted 29 January 2019; Published 3 March 2019

Academic Editor: Ali R. Ashrafi

Copyright © 2019 J. Cervantes-Ojeda et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A rainbow 𝑡-coloring of a 𝑡-connected graph𝐺 is an edge coloring such that for any two distinct vertices𝑢 and V of𝐺 there are at least𝑡 internally vertex-disjoint rainbow (𝑢, V)-paths. In this work, we apply a Rank Genetic Algorithm to search for rainbow 𝑡-colorings
of the family of Moore cages with girth six (𝑡; 6)-cages.We found that an upper bound in the number of colors needed to produce a
rainbow 4-coloring of a (4; 6)-cage is 7, improving the one currently known, which is 13.The computation of the minimumnumber
of colors of a rainbow coloring is known to be NP-Hard and the Rank Genetic Algorithm showed good behavior finding rainbow𝑡-colorings with a small number of colors.

1. Introduction and Definitions

Evolutionary algorithms have been applied to a wide variety
of engineering problems [1], and they have also been applied
to mathematics problems. For instance, Jong and Spears [2]
showed that Genetic Algorithms (GA) can be used to solve
NP-Complete problems, [3] applied a GA to a geometry
problem, and [4] solved nonlinear algebraic equations by
using aGA. Herewe have successfully applied a Rank Genetic
Algorithm (Rank GA) [5] to the graph theory problem of
finding the rainbow connection number of a graph (𝑟𝑐(𝐺)).
Chakraborty et al. [6] proved that, for a given graph 𝐺,
deciding whether 𝑟𝑐(𝐺) = 2 is NP-Complete and that it is
also NP-Complete to decide whether a given edge-colored
(with an unbounded number of colors) graph is rainbow
connected.Therefore, our motivation is to try using the Rank
GA heuristic on this problem. To our best knowledge, this
problem has not been approached in this way nor using any
other heuristic algorithms.

In a genetic algorithm we have an initial population of
individuals; in our case, each individual represents a partic-
ular edge-colored graph. Each individual of the population
is evaluated according to a fitness function; this function
measures the ability of the individual for reaching a prede-
termined objective. Once individuals are evaluated, the next

generation is obtained by applying genetic operators to the
population inspired by the evolution in nature, such as cross-
over between individuals, selection of the fittest individuals,
and mutations. This procedure is repeated until the genetic
algorithm finds an individual that achieves the required
objective or until a maximum number of generations are
reached. A genetic algorithm can solve mathematical prob-
lems that are intractable by exhaustive search, as is the case of
the problem described here.

A graph 𝐺 is 𝑡-connected if and only if there are at least 𝑡
internally disjoint (𝑢, V)-paths connecting every two distinct
vertices 𝑢 and V of 𝐺 [7]. A rainbow path is a path 𝑃 such
that all the edges of 𝑃 have different colors (a path 𝑃 of 𝐺 is a
sequence of distinct vertices (V1, V2, . . . , V𝑛) such that {V𝑖, V𝑖+1}
is an edge for 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}). An edge coloring of a
graph is called a rainbow 𝑡-coloring if for every pair of distinct
vertices 𝑢 and V there are at least 𝑡 internally disjoint rainbow(𝑢, V)-paths. The rainbow 𝑡-connectivity 𝑟𝑐𝑡(𝐺) (defined by
Chartrand et al. [8]) of a graph 𝐺 is the minimum integer 𝑗
such that there exists an edge coloring using 𝑗 colors which is
a rainbow 𝑡-coloring. The rainbow 1-connectivity is known
as the rainbow connection number and was introduced by
Chartrand et al. [9].

The rainbow 𝑡-connectivity of a graph has applications
in the Cybernetic Security (see Ericksen [10]). For any fixed

Hindawi
Journal of Applied Mathematics
Volume 2019, Article ID 4073905, 7 pages
http://dx.doi.org/10.1155/2019/4073905

http://orcid.org/0000-0003-0033-4476
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1155/2019/4073905

2 Journal of Applied Mathematics

𝑘 ≥ 2, deciding if 𝑟𝑐1(𝐺) = 𝑘 is NP-Complete [6, 11].
For more references on rainbow connectivity and rainbow 𝑡-
connectivity we refer the reader to the survey by Li [12] et al.
and the book of Li and Sun [13].

A graph 𝐺 is 𝑘-regular if every vertex of 𝐺 has degree 𝑘.
The girth of 𝐺 is the length of a shortest cycle of 𝐺. Given two
integers 𝑘 ≥ 2 and 𝑔 ≥ 3 a (𝑘; 𝑔)-cage is a 𝑘-regular graph
with girth 𝑔 and the minimum possible number of vertices.
Let 𝑛(𝑘; 𝑔) denote the order of a (𝑘; 𝑔)-cage. For references
on cages see the dynamic survey of Exoo and Jajcay [14].
By counting the vertices emerging from a vertex or from an
edge the lower bound 𝑛0(𝑘; 𝑔), known as theMoore bound, is
obtained. That is, 𝑛(𝑘; 𝑔) ≥ 𝑛0(𝑘; 𝑔), where
𝑛0 (𝑘; 𝑔)

=
{{{{{{{{{{{

2(𝑔−2)/2∑
𝑖=0

(𝑘 − 1)𝑖 = 2 (𝑘 − 1)𝑔/2 − 2𝑘 − 2 if 𝑔 is even,
1 + (𝑔−1)/2∑
𝑖=1

𝑘 (𝑘 − 1)𝑖−1 = 𝑘 (𝑘 − 1)(𝑔−1)/2 − 2𝑘 − 2 if 𝑔 is odd.
(1)

When 𝑛(𝑘; 𝑔) = 𝑛0(𝑘; 𝑔) the (𝑘; 𝑔)-cage is called a Moore(𝑘; 𝑔)-cage; for references onMoore cages see [15].TheMoore
cages have been characterized [16–18].The existence of (𝑘; 6)-
Moore cages is related to the existence of finite geometries.
For instance, the (3; 6)-cage is the incidence graph of Fano’s
plane. Concerning connectivity of (𝑘; 6)-cages it has been
proved that they are 𝑘-connected [19].

Chartrand et al. [20] showed that the rainbow 3-
connectivity of the (3; 6)-cage (the Moore cage known as
Heawood graph) is between 5 and 7 inclusive. Recently,
Balbuena et al. [21] proved that it is not 5, and they bounded
the rainbow 𝑘-connectivity of (𝑘; 6)-cages as follows: if 𝐺 is a
Moore (𝑘; 6)-cage, then

𝑘 ≤ 𝑟𝑐𝑘 (𝐺) ≤ 𝑘2 − 𝑘 + 1 (2)

If 𝐺 is a (𝑘, 6)-cage, then for 𝑘 = 3, 𝑘 = 4, and 𝑘 = 5,
respectively, we have 𝑟𝑐3(𝐺) ≤ 7, 𝑟𝑐4(𝐺) ≤ 13, and 𝑟𝑐5(𝐺) ≤21, respectively. In this paper we use a genetic algorithm to
search for rainbow 𝑘-colorings of (𝑘; 6)-cages with 𝑘 = 3 and𝑘 = 4 [21] in order to see if the upper bound for 𝑟𝑐𝑘(𝐺) can be
improved.

The structure of this paper is as follows. In Section 2 we
explain how theRankGAwas applied to the rainbow coloring
problem. Results are presented in Section 3 and finally the
conclusions are drawn in Section 4.

2. Finding Rainbow Colorings in a Moore Cage
with a Genetic Algorithm

Finding a particular rainbow 𝑡-coloring of a graph 𝐺 using𝑟 colors (that is a coloring with 𝑡 internally disjoint rainbow
paths between any pair of vertices) implies that 𝑟𝑐𝑡 (𝐺) ≤ 𝑟.We
use an adapted version of the Rank GA [5] to find rainbow
colorings in a Moore cage. To do so, each individual in the
population contains a list of the assigned colors of each edge
in the graph and is initialized randomly. In the Rank GA,
the individuals of the population are ranked from best to

Table 1: Parameters of the Rank GA.

Description Value
Population size = |𝐸 (𝐺)|
Number of Generations No limit
Population’s selective pressure 𝑆 3

worst in terms of their fitness before the genetic operators
(selection, recombination and mutation) are applied. The
application of these genetic operators depends on the rank of
each individual in the population.The top ranked individuals
tend to vary less than the bottom ranked ones. This is to
make the latter try to escape from local optima of the fitness
function. Also, top ranked individuals tend to be clonedmore
than others who tend to disappear.

The adapted RankGA pseudocode that was used is given
in Algorithm 1 and its parameters are shown in Table 1.

2.1. The Fitness Function. We detail below the fitness func-
tion. As this is an interdisciplinary work, we express the
fitness function mathematically (below) and also in a com-
putational way in Algorithm 2.

Let 𝐺 be a graph, let Ψ(𝐺) be the set of all possible
colorings of the edges 𝐸(𝐺), and let 𝐴 be the set of all pairs
of vertices of 𝐺, that is, 𝐴 = {{𝑎1, 𝑎2} | 𝑎1, 𝑎2 ∈ 𝑉(𝐺)}. The
fitness function to be maximized using the RankGA is given
as

𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔𝐹𝑖𝑡𝑛𝑒𝑠𝑠 : Ψ (𝐺) 󳨀→ R [0, 1] (3)

𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝜓) = [∏
a∈A

𝑝𝑎𝑖𝑟𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (a, 𝜓)]1/|𝐴| (4)

where 𝜓 ∈ Ψ(𝐺) and
𝑝𝑎𝑖𝑟𝐹𝑖𝑡𝑛𝑒𝑠𝑠 : 𝐴 × Ψ (𝐺) 󳨀→ R [0, 1] (5)

𝑝𝑎𝑖𝑟𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (a, 𝜓) = max
P𝑘a∈𝐷𝑃𝑆

𝑘(a)
{𝑑𝑝𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (P𝑘a, 𝜓)} (6)

where𝐷𝑃𝑆𝑘(a) is the set of all setsP𝑘a of 𝑘 internally disjoint
paths between the vertices in a and

𝑑𝑝𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 : 𝐷𝑃𝑆𝑘 (a) × Ψ (𝐺) 󳨀→ R [0, 1] (7)

𝑑𝑝𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (P𝑘a, 𝜓)

= [
[

∏
𝑝∈P𝑘a

𝑝𝑎𝑡ℎ𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑝, 𝜓)]
]
1/|P𝑘a | (8)

where

𝑝𝑎𝑡ℎ𝐹𝑖𝑡𝑛𝑒𝑠𝑠 : P𝑘a × Ψ (𝐺) 󳨀→ R [0, 1] (9)

𝑝𝑎𝑡ℎ𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑝, 𝜓) = 𝑝𝑎𝑡ℎ𝑁𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠 (𝑝, 𝜓)󵄨󵄨󵄨󵄨𝐸 (𝑝)󵄨󵄨󵄨󵄨 (10)

Journal of Applied Mathematics 3

procedure RankGA𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠 ←󳨀 |𝐸(𝐺)|𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐸V𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 and 𝑆𝑜𝑟𝑡
while not end Criteria met do𝑅𝑎𝑛𝑘𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑘𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐸V𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 and 𝑆𝑜𝑟𝑡𝑅𝑎𝑛𝑘𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐸V𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 and 𝑆𝑜𝑟𝑡

procedure Rank Selection𝑐𝑙𝑜𝑛𝑒𝑠 ←󳨀 𝑛𝑢𝑙𝑙
for 𝑖 in [0..𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠 − 1] do𝑟 ←󳨀 𝑖/(𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠 − 1)𝑛 ←󳨀 ⌊𝑆(1 − 𝑟)(𝑆−1)⌋

for 𝑗 in [0..𝑛 − 1] do𝑐𝑙𝑜𝑛𝑒𝑠.𝑎𝑑𝑑(𝑖𝑛𝑑𝑖) ⊳ 𝑖𝑛𝑑𝑖 is cloned 𝑛 times𝑖 ←󳨀 0
while 𝑐𝑙𝑜𝑛𝑒𝑠.𝑠𝑖𝑧𝑒() < 𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠 do𝑟 ←󳨀 𝑖/(𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠 − 1)𝑛 ←󳨀 𝑆(1 − 𝑟)(𝑆−1)𝑓 ←󳨀 𝑛 − ⌊𝑛⌋ ⊳ 𝑓 is the fractional part of 𝑛

if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) < 𝑓 then𝑐𝑙𝑜𝑛𝑒𝑠.𝑎𝑑𝑑(𝑖𝑛𝑑𝑖) ⊳ one extra clone of 𝑖𝑛𝑑𝑖𝑖 ←󳨀 (𝑖 + 1)mod 𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠𝑖𝑛𝑑 ←󳨀 𝑐𝑙𝑜𝑛𝑒𝑠 ⊳ replace population𝑆𝑜𝑟𝑡
procedure Rank Recombination

for 𝑖 in [0..𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠 − 2] step 2 do
for 𝑗 in [0..𝑛𝑢𝑚𝐺𝑒𝑛𝑒𝑠 − 1] do

if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) < 0.5 then
Switch(𝑔𝑖,𝑗, 𝑔𝑖+1,𝑗) ⊳mating is with 𝑖𝑛𝑑𝑖+1

procedure Rank Mutation
for 𝑖 in [0..𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠 − 1] do𝑟 ←󳨀 𝑖/(𝑛𝑢𝑚𝐼𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠 − 1)

for 𝑗 in [0..𝑛𝑢𝑚𝐺𝑒𝑛𝑒𝑠 − 1] do
if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) < 𝑟 then𝑔𝑖,𝑗 ←󳨀 random integer in the range [0..𝑛𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠 − 1]

Algorithm 1: Rank GA.

where 𝐸(𝑝) is the set of all edges in path 𝑝 and

𝑝𝑎𝑡ℎ𝑁𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠 : P𝑘a × Ψ (𝐺) 󳨀→ R [0, 1] (11)

𝑝𝑎𝑡ℎ𝑁𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠 (𝑝, 𝜓) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃
𝑒∈𝐸(𝑝)

{𝜓 (𝑒)}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (12)

where 𝜓(𝑒) is the color that the coloring 𝜓 assigns to edge 𝑒.
The function 𝑝𝑎𝑡ℎ𝑁𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠, in (12), calculates the

cardinality of a set made out of the colors𝜓(𝑒) assigned to the
edges 𝑒 ∈ 𝐸(𝑝) in path 𝑝. The function 𝑝𝑎𝑡ℎ𝐹𝑖𝑡𝑛𝑒𝑠𝑠, in (10),
calculates the ratio of the 𝑝𝑎𝑡ℎ𝑁𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠 over the length of
path 𝑝, being this a value in the range [1/|𝐸(𝑝)|, 1], yielding 1
only in case the path has a rainbow coloring and lower values
as the number of colors used in the path is reduced. The
function 𝑑𝑝𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠, in (8), calculates the geometric mean
of all the 𝑝𝑎𝑡ℎ𝐹𝑖𝑡𝑛𝑒𝑠𝑠 values of all the 𝑘 + 1 paths 𝑝 in
the disjoint path set P𝑘a , yielding a value in the range [0, 1]

with 1 representing a rainbow disjoint path set. The function𝑝𝑎𝑖𝑟𝐹𝑖𝑡𝑛𝑒𝑠𝑠, in (6), returns the maximum 𝑑𝑝𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 that
can be obtained from the set of disjoint path sets 𝐷𝑃𝑆𝑘(a)
between the vertices in the vertex pair a yielding 1 if and
only if there exists at least one rainbow disjoint path set
P𝑘a in 𝐷𝑃𝑆𝑘(a). Finally, the function 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔𝐹𝑖𝑡𝑛𝑒𝑠𝑠 in (4)
computes the geometric mean of all the 𝑝𝑎𝑖𝑟𝐹𝑖𝑡𝑛𝑒𝑠𝑠 values
yielding a result that is 1 if and only if all pairs of vertices a
have a fitness value of 1; i.e., the given coloring 𝜓 is a rainbow
coloring.

The pseudocode of the fitness function is given in Algo-
rithm 2.

2.2. Finding the Set of Internally Disjoint Paths Sets between
Pairs of Vertices in a Graph. The total number of possible
sets 𝑃𝑘a of 𝑘 paths (internally disjoint or not) between the
vertices in pair a is very high as 𝑘 grows so in order to save
computing time when calculating the fitness of an individual,

4 Journal of Applied Mathematics

function 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 1
for Each vertex pair a in the Graph do𝑟 ←󳨀 𝑝𝑎𝑖𝑟𝐹𝑖𝑡𝑛𝑒𝑠𝑠(a, 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 𝑟𝑒𝑠𝑢𝑙𝑡 ∗ 𝑟 ⊳ Accumulate the product
return 𝑟𝑒𝑠𝑢𝑙𝑡

function 𝑝𝑎𝑖𝑟𝐹𝑖𝑡𝑛𝑒𝑠𝑠(a, 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 0
for Each InternallyDisjointPathsSet𝐷𝑃𝑆𝑘 of pair a do𝑟 ←󳨀 𝑑𝑝𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐷𝑃𝑆𝑘, 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)

if 𝑟 > 𝑟𝑒𝑠𝑢𝑙𝑡 then𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 𝑟 ⊳ Select best fitness
return 𝑟𝑒𝑠𝑢𝑙𝑡

function 𝑑𝑝𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐷𝑃𝑆𝑘, 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 1
for Each Path 𝑝 in𝐷𝑃𝑆𝑘 do𝑟 ←󳨀 𝑝𝑎𝑡ℎ𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝, 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 𝑟𝑒𝑠𝑢𝑙𝑡 ∗ 𝑟 ⊳ Accumulate the product
return 𝑟𝑒𝑠𝑢𝑙𝑡

function 𝑝𝑎𝑡ℎ𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝, 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 𝑝𝑎𝑡ℎ𝑁𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠(𝑝, 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)/𝑝𝑎𝑡ℎ.𝑠𝑖𝑧𝑒
return 𝑟𝑒𝑠𝑢𝑙𝑡

function 𝑝𝑎𝑡ℎ𝑁𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠(𝑝, 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔)𝑐𝑜𝑢𝑛𝑡 ←󳨀 0
for Each Step 𝑠 in 𝑝 do𝑐 ←󳨀 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔[𝑠.𝑠𝑜𝑢𝑟𝑐𝑒][𝑠.𝑑𝑒𝑠𝑡]

if not 𝑢𝑠𝑒𝑑[𝑐] then ⊳ count colors only once𝑐𝑜𝑢𝑛𝑡 ←󳨀 𝑐𝑜𝑢𝑛𝑡 + 1𝑢𝑠𝑒𝑑[𝑐] ←󳨀 𝑡𝑟𝑢𝑒 ⊳mark color as already used
return 𝑐𝑜𝑢𝑛𝑡

Algorithm 2: Coloring fitness function.

the function 𝑝𝑎𝑖𝑟𝐹𝑖𝑡𝑛𝑒𝑠𝑠 in (6) iterates only on the elements
of the set 𝐷𝑃𝑆𝑘(a) which is the set of path sets P𝑘a that
contain 𝑘 internally disjoint paths between the vertices in a.
Algorithm 3 describes a way to calculate and store the set of
all 𝐷𝑃𝑆𝑘(a).

In this algorithm, the procedure 𝑠𝑡𝑜𝑟𝑒𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑃𝑎𝑡ℎ𝑠𝑆𝑒𝑡𝑠
takes each vertex pair a in 𝐺 and calls function 𝑔𝑒𝑡𝑃𝑎𝑡ℎ𝑠
in order to get the full set 𝑃a of paths 𝑝 between the
vertices in a with length 𝑙 ≤ 𝑛𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠 (since longer paths
cannot be rainbow colored). Then it calls another function𝑔𝑒𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑃𝑎𝑡ℎ𝑠𝑆𝑒𝑡𝑠 which tests each set 𝑃𝑘a containing 𝑘
paths 𝑝 ∈ 𝑃a between the vertices in a to see if 𝑃𝑘a is a disjoint
paths set and returns the set 𝐷𝑃𝑆𝑘(a) of disjoint paths sets
P𝑘a.

The function 𝑔𝑒𝑡𝑃𝑎𝑡ℎ𝑠 is recursive and takes 3 parame-
ters: a vertex pair a = {𝑎1, 𝑎2}, a graph 𝐺, and a maximum
length 𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ of the paths to be found. Figure 1 illus-
trates how this function works. Paths that go from vertex 𝑎1
to vertex 𝑎2 are made by adding the step from 𝑎1 to 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖
of 𝑎1 to all paths that go from 𝑛𝑒𝑖gℎ𝑏𝑜𝑟𝑖 of 𝑎1 to 𝑎2 for each𝑖. But before doing this, vertex 𝑎1 is marked as visited in
order to avoid paths that visit a vertex more than once. After
computing the set of paths, vertex 𝑎1 is unmarked.

In Table 2 we show how several measures grow with
parameter 𝑘. First there is the number of vertices |𝑉(𝐺)|

in the (𝑘; 6) cage followed by the total number of vertex
pairs. Then there is the number of vertex pairs with distances𝑑 = 1, 𝑑 = 2, and 𝑑 = 3 between them, respectively.
We can see how the total number of paths with length𝑙 ≤ 7 = 𝑛𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠 between vertex pairs changes with
distance 𝑑 and with 𝑘. The next measure is the important
one because it shows the drastic increase with 𝑘 of the total
number of paths sets containing 𝑘 paths (internally disjoint
and noninternally disjoint) that can be formed with the paths
between the pairs of vertices with distances 𝑑 = 1, 𝑑 =2, and 𝑑 = 3 between them, respectively. All these sets
need to be tested to see which of them are disjoint pats sets.
Finally we show the total number of paths sets that need
to be tested and the approximate time to compute this with
our existing algorithms and computing power. As one can
see the numbers are much bigger as 𝑘 increases making it
practically impossible, at the moment, to do the work for𝑘 = 5.
3. Results

The genetic algorithm was able to find several rainbow
colorings of the (𝑘; 6)-Moore cage for 𝑘 = 3 and 𝑘 = 4 using
7 colors. Using 6 colors, the algorithm could not find any
rainbow colorations for neither 𝑘 = 3 nor 𝑘 = 4. A sample
rainbow coloring that was found can be seen in Figure 2.

Journal of Applied Mathematics 5

procedure 𝑠𝑡𝑜𝑟𝑒𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑃𝑎𝑡ℎ𝑠𝑆𝑒𝑡𝑠(𝐺)𝑖𝑛𝑖𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠() ⊳ set the neighbors of each vertex for current 𝑘
for Each a ∈ 𝐴 = {{𝑎1, 𝑎2}|𝑎1, 𝑎2 ∈ 𝑉(𝐺)} do𝑝𝑎𝑡ℎ𝑠[a] ←󳨀 𝑔𝑒𝑡𝑃𝑎𝑡ℎ𝑠(a, 𝐺, 𝑛𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠)𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑃𝑎𝑡ℎ𝑠𝑆𝑒𝑡𝑠[a] ←󳨀 𝑔𝑒𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑃𝑎𝑡ℎ𝑠𝑆𝑒𝑡𝑠(𝑝𝑎𝑡ℎ𝑠[a], 𝑘)

function recursive𝑔𝑒𝑡𝑃𝑎𝑡ℎ𝑠(a, 𝐺,𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ)
if 𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ ≤ 0 then ⊳ wrong length

return 𝑛𝑢𝑙𝑙
if V𝑖𝑠𝑖𝑡𝑒𝑑[𝑎1] then ⊳ 𝑎1 has already been visited

return 𝑛𝑢𝑙𝑙 ⊳ No paths to 𝑎2
if 𝑎1 = 𝑎2 then ⊳ destination reached𝑝 ←󳨀 {𝑎2} ⊳ single vertex in path

return {𝑝} ⊳ single path in the set
V𝑖𝑠𝑖𝑡𝑒𝑑[𝑎1] ←󳨀 𝑡𝑟𝑢𝑒
for 𝑖 = 1 to 𝑘 + 1 do𝑛𝑒𝑥𝑡𝑃𝑎𝑖𝑟 ←󳨀 {𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟[𝑖](𝑎1), 𝑎2} ⊳ 𝑖𝑡ℎ neighbor of 𝑎1𝑠𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡 ←󳨀 𝑔𝑒𝑡𝑃𝑎𝑡ℎ𝑠(𝑛𝑒𝑥𝑡𝑃𝑎𝑖𝑟,𝐺, 𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ − 1)

for Each path 𝑝 in 𝑠𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡 do𝑛𝑒𝑤𝑃𝑎𝑡ℎ ←󳨀 {𝑎1}_𝑝 ⊳ concatenate paths𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ 𝑛𝑒𝑤𝑃𝑎𝑡ℎ ⊳ aggregate path
V𝑖𝑠𝑖𝑡𝑒𝑑[𝑎1] ←󳨀 𝑓𝑎𝑙𝑠𝑒
return 𝑟𝑒𝑠𝑢𝑙𝑡

function 𝑔𝑒𝑡𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑃𝑎𝑡ℎ𝑠𝑆𝑒𝑡𝑠(𝑃a, 𝑘)
for Each path set 𝑃𝑘a of 𝑘 paths 𝑝 ∈ 𝑃a do ⊳may have huge # of iterations

V𝑖𝑠𝑖𝑡𝑒𝑑 ←󳨀 𝑓𝑎𝑙𝑠𝑒
for Each internal vertex V of 𝑝 do

if V𝑖𝑠𝑖𝑡𝑒𝑑[V] then
next 𝑃𝑘a

V𝑖𝑠𝑖𝑡𝑒𝑑[V] ←󳨀 𝑡𝑟𝑢𝑒𝑟𝑒𝑠𝑢𝑙𝑡 ←󳨀 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ 𝑃𝑘a
return 𝑟𝑒𝑠𝑢𝑙𝑡

Algorithm 3: Disjoint paths sets between vertices.

Length ≤ lengthMax

Length ≤ lengthMax -1

a1

neighbor

neighbor

neighbork+

Paths from neighbor to 

Paths from neighbor to 

Paths from neighbork+ to 

a2
· · ·· · ·

Figure 1: Recursive finding of the set of paths between vertices 𝑎1 and 𝑎2.

4. Conclusions

The problem of finding the rainbow 𝑘-connectivity 𝑟𝑐𝑡(𝐺)
of (𝑘; 6)-cages is intractable by exhaustive search. So it had
not been possible to verify if it is possible to improve the
upper bound given by (2). With the Rank GA we could see
that it is unlikely that the upper bound for (3; 6)-cages is
less than 7, since with 6 colors no solution was found after

having let the algorithm run for a long time. We also found
that for the (4; 6)-cage there is an upper bound of 7 colors
since the algorithm found rainbow colorings in this case.
This upper bound improves quite a lot the 13 colors given
by (2) which binds the rainbow 𝑘-connectivity of (𝑘; 6)-cages
with a quadratic function. By finding out that the upper
bound for the (4; 6)-cage is 7 we know that this upper bound
function could be one that grows slower than a quadratic

6 Journal of Applied Mathematics

Table 2: Growth with 𝑘 of the effort to find the sets of disjoint paths sets.
𝑘 3 4 5
|𝑉(𝐺)| 14 26 42
vertex pairs 91 325 861
vertex pairs with 𝑑 = 1 21 52 105
vertex pairs with 𝑑 = 2 42 156 420
vertex pairs with 𝑑 = 3 28 117 336
paths for pairs with 𝑑 = 1 17 136 642
paths for pairs with 𝑑 = 2 17 82 257
paths for pairs with 𝑑 = 3 33 244 1,025
paths sets for pairs with 𝑑 = 1 680 13,633,830 887,805,286,368
paths sets for pairs with 𝑑 = 2 680 1,749,060 8,984,340,696
paths sets for pairs with 𝑑 = 3 5,456 144,084,501 9,336,731,022,080
total effort 195,608 17,839,699,137 3,234,134,601,579,840
approx. time 32ms 23.1min 8 years

0 1
2

3

4

5

6

7

8

9

10
11

121314
15

16

17

18

19

20

21

22

23

24
25

Figure 2: Sample rainbow coloring with 𝑘 = 4 and 𝑛𝑢𝑚𝐶𝑜𝑙𝑜𝑟𝑠 = 7.

function and may be much slower. To find the form of this
function the problem should be scaled to Moore cages with𝑘 ≥ 5; however, for 𝑘 = 5, the problem is computationally
very expensive, with the algorithms and computing power
that we currently use. Thus, as for future work we will
consider different approaches such as taking into account the
symmetries of the graph, parallelization, and improvement of
algorithms.

We believe that graph theory can benefit from the use
of artificial intelligence techniques in some known NP-
Complete and NP-Hard problems such as the one presented
in this paper and there may be many of these cases.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they do not have any conflicts of
interest.

Acknowledgments

This work was funded by Universidad Autónoma Metro-
politana-Cuajimalpa. The authors would like to thank Dr.
Rodolfo René Suárez Molnar, UAM-Cuajimalpa Unit Rector,
for institutional support.

References

[1] D. Dasgupta and Z. Michalewicz, Evolutionary Algorithms in
Engineering Applications, Springer Science and Business Media,
2013.

[2] K. A. De Jong and W. M. Spears, “Using genetic algorithms to
solve NP-complete problems,” International Computer Games
Association, pp. 124–132, 1989.

[3] S. Jakobs, “On genetic algorithms for the packing of polygons,”
European Journal of Operational Research, vol. 88, no. 1, pp. 165–
181, 1996.

[4] A. Pourrajabian, R. Ebrahimi, M. Mirzaei, and M. Shams,
“Applying genetic algorithms for solving nonlinear algebraic
equations,” Applied Mathematics and Computation, vol. 219, no.
24, pp. 11483–11494, 2013.

[5] J. Cervantes and C. R. Stephens, “Limitations of existing
mutation rate heuristics and how a rank GA overcomes them,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 2,
pp. 369–397, 2009.

[6] S.Chakraborty, E. Fischer,A.Matsliah, andR.Yuster, “Hardness
and algorithms for rainbow connectivity,” in Proceedings of
the 26th International Symposium on Theoretical Aspects of
Computer Science STACS, pp. 243–254, 2009, Also, see Journal
of Combinatorial Optimization, vol. 21, pp. 330–347, 2011.

[7] K. Menger, “Zur allgemeinen Kurventheorie,” Fundamenta
Mathematicae, vol. 10, pp. 96–115, 1927.

[8] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, “The
rainbow connectivity of a graph,” Networks. An International
Journal, vol. 54, no. 2, pp. 75–81, 2009.

Journal of Applied Mathematics 7

[9] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang,
“Rainbow connection in graphs,” Mathematica Bohemica, vol.
133, no. 1, pp. 85–98, 2008.

[10] A. Ericksen, “A matter of security,” Graduating Engineer and
Computer Careers, pp. 24–28, 2007.

[11] V. B. Le and Z. Tuza, “Finding optimal rainbow connection is
hard,” 2009.

[12] X. Li, Y. Shi, and Y. Sun, “Rainbow connections of graphs: a
survey,”Graphs and Combinatorics, vol. 29, no. 1, pp. 1–38, 2013.

[13] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer,
London, UK, 2013.

[14] G. Exoo and R. Jajcay, “Dynamic cage survey,” The Electronic
Journal of Combinatorics, vol. DS16, 2013.

[15] M. Miller and J. Siran, “Moore graphs and beyond: a survey
of the degree/diameter problem,” The Electronic Journal of
Combinatorics - Dynamic Surveys, vol. 14, 2005.

[16] E. Bannai and T. Ito, “On finite Moore graphs,” Journal of the
Faculty of Science. University of Tokyo, vol. 20, pp. 191–208, 1973.

[17] R. M. Damerell, “On Moore graphs,”Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 74, no. 2, pp. 227–
236, 1973.

[18] A. J. Hoffman and R. R. Singleton, “On Moore graphs with
diameters 2 and 3,” International Business Machines Journal of
Research and Development, vol. 4, pp. 497–504, 1960.

[19] X. Marcote, C. Balbuena, and I. Pelayo, “On the connectivity of
cages with girth five, six and eight,” Discrete Mathematics, vol.
307, no. 11-12, pp. 1441–1446, 2007.

[20] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, “On
the rainbow connectivity of cages,” in Proceedings of the Thirty-
Eighth Southeastern International Conference on Combinatorics,
Graph Theory and Computing, vol. 184, pp. 209–222, 2007.

[21] C. Balbuena, J. Fresan, D. González-Moreno, and M. Olsen,
“Rainbow connectivity of Moore cages of girth 6,” Discrete
Applied Mathematics, vol. 250, pp. 104–109, 2018.

