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This paper presents a set of fully analytical solutions, together with explicit expressions, in the time and frequency domain for
the heat conduction response of homogeneous unbounded and of bounded rectangular spaces (three-, two-, and one-dimensional
spaces) subjected to point, line, and plane heat diffusion sources. Particular attention is given to the case of spatially sinusoidal,
harmonic line sources. In the literature this problem is often referred to as the two-and-a-half-dimensional fundamental solution
or 2.5D Green’s functions. These equations are very useful for formulating three-dimensional thermodynamic problems by means
of integral transforms methods and/or boundary elements. The image source technique is used to build up different geometries
such as half-spaces, corners, rectangular pipes, and parallelepiped boxes. The final expressions are verified here by applying the
equations to problems for which the solution is known analytically in the time domain.

1. Introduction

Problems in thermodynamics can often be solvedwith the aid
of formulas or expressions known as Green’s functions.These
functions, or fundamental solutions, relate the field variables
(heat fluxes and temperatures) at some location in a solid
body caused by thermodynamic sources placed elsewhere in
the medium.

The fundamental solutions most often used are point
sources in a three-dimensional (3D), infinite homogeneous
space; line sources acting within two-dimensional (2D)
spaces; and plane sources heating one-dimensional (1D)
spaces. The reason for these choices is that these three
fundamental solutions are known in closed-form in time
domain and have a relatively simple structure [1].

They are frequently combined to simulate heat conduc-
tion in the time domain or in a transform space defined by the
Laplace transform, in half-spaces, infinite plates, rectangular
2D spaces, wedges, and rectangular 3D spaces [1–3]. Solutions
have also been proposed to deal with multilayer systems, and
they include the matrix method [1], the thermal quadrupole

method [3], the thin layer method [4], andmethods based on
the definition of potentials [5–7]. Chen et al. have described
the use of image method to solve 2D and 3D problems in
unbounded and half-space domains containing circular or
spherical shaped boundaries [8–10].

This paper compiles alternative fundamental solutions
in explicit form, specifically Green’s functions for harmonic
2D and 3D and harmonic (steady state) line sources whose
amplitude varies sinusoidally in the third dimension.This last
solution, which is often referred to in the literature as the 2.5D
problem, can be of significant value when formulating 3D
thermodynamics problems via boundary elements together
with integral transforms. In addition, the proposed Green’s
functions are combined using an image source technique
to model a half-space, a corner, a layer system, a laterally
confined layer system, a solid rectangular column, a solid
rectangular column with an end cross section, and a 3D
parallelepiped inclusion. To the best of our knowledge, this
is the first such derivation that promises to be efficient for
formulating 3D thermodynamics problems using boundary
elements and integral transforms.
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Time domain solutions are obtained by applying inverse
Fourier transforms, using complex frequencies to avoid alias-
ing phenomena. These solutions are validated by comparing
computed responses with those obtained directly in the time
domain.

2. Fundamental Solution

The transient heat transfer by conduction in an infinite,
homogeneous space can be described by the diffusion equa-
tion in Cartesian coordinates:

( 𝜕2
𝜕𝑥2 +

𝜕2
𝜕𝑦2 +

𝜕2
𝜕𝑧2)𝑇 = 1

𝐾
𝜕𝑇
𝜕𝑡 , (1)

in which 𝑡 is time, 𝑇(𝑥, 𝑦, 𝑧, 𝑡) is the temperature at a point(𝑥, 𝑦, 𝑧) in the domain, and 𝐾 is the thermal diffusivity
defined by 𝜆/(𝜌𝑐), where 𝜆 is the thermal conductivity, 𝜌 is
the density, and 𝑐 is the specific heat of medium.

The solution of (1) can be obtained in the frequency
domain after the application of a Fourier transform in the
time domain, which leads to the following equation:

(∇2 + (√−𝑖𝜔
𝐾 )
2

)𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 0, (2)

where 𝑖 = √−1, 𝑘
1
= √−𝑖𝜔/𝐾 and 𝜔 is the frequency.

Consider first an infinite, homogeneous space subjected
at (𝑥
0
, 𝑦
0
, 𝑧
0
) to a harmonic point heat source of the form𝛿(𝑥 − 𝑥

0
)𝛿(𝑦 − 𝑦

0
)𝛿(𝑧 − 𝑧

0
)𝑒𝑖𝜔𝑡. In this expression, 𝛿(𝑥 − 𝑥

0
),𝛿(𝑦−𝑦

0
), and 𝛿(𝑧−𝑧

0
) are Dirac delta functions, and 𝜔 is the

frequency of the source. The response of this heat source can
be expressed by

�̂�
𝑓
(𝑥, 𝑦, 𝑧, 𝜔) = 𝑒−√𝑖𝜔/𝐾√𝑟2+(𝑧−𝑧0)2

2𝜆√𝑟2 + (𝑧 − 𝑧
0
)2 , (3)

where 𝑟 = √(𝑥 − 𝑥
0
)2 + (𝑦 − 𝑦

0
)2.

Consider next an infinite, homogeneous space subjected
to a spatially varying line heat source of the form 𝛿(𝑥 −
𝑥
0
)𝛿(𝑦 − 𝑦

0
)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧), with 𝑘

𝑧
being the wavenumber in 𝑧.

This source acts in one of the three coordinate directions,
passes through (𝑥

0
, 𝑦
0
), and varies sinusoidally in the 𝑧 (i.e.,

third) dimension. This type of source is often referred to in
the literature as a 2.5D source.The response to this source can
be obtained by applying a spatial Fourier transform in the 𝑧
direction to the equations for a point heat load.

Applying a Fourier transformation in the 𝑧direction leads
to the solution

�̃�
𝑓
(𝑥, 𝑦, 𝑘

𝑧
, 𝜔) = −𝑖

4𝜆𝐻0 (𝑘1𝑧𝑟) , (4)

where 𝑘
1𝑧
= √−𝑖𝜔/𝐾 − 𝑘2

𝑧
,𝐻
0
( ) are Hankel functions of the

second kind and order 0.
The full 3D solution can then be achieved by apply-

ing an inverse Fourier transform in the 𝑘
𝑧
domain. This

inverse Fourier transformation can be expressed as a discrete
summation if we assume the existence of virtual sources,
equally spaced at 𝐿

𝑧
along 𝑧, which enables the solution to

be obtained by solving a limited number of 2D problems,

�̂�
𝑓
(𝑥, 𝑦, 𝑧, 𝜔)
= 2𝜋
𝐿
𝑧

−𝑖
4𝜆
𝑀∑
𝑚
𝑘
=−𝑀

𝐻
0
(√−𝑖𝜔𝐾 − 𝑘2

𝑧𝑚
𝑟) 𝑒−𝑖𝑘𝑧𝑚𝑧, (5)

with 𝑘
𝑧𝑚

being the axial wavenumber given by 𝑘
𝑧𝑚

=(2𝜋/𝐿
𝑧
)𝑚
𝑘
. The distance 𝐿

𝑧
chosen must be big enough to

prevent spatial contamination from the virtual sources.
Equation (4) can be further manipulated and written as a

continuous superposition of heat plane phenomena,

�̃�
𝑓
(𝑥, 𝑦, 𝑘

𝑧
, 𝜔)

= −𝑖
4𝜋𝜆 ∫+∞

−∞

(𝑒−𝑖𝑘1𝑧𝑥|𝑦−𝑦0|𝑘
1𝑧𝑥

) 𝑒−𝑖𝑘𝑥(𝑥−𝑥0)𝑑𝑘
𝑥
, (6)

where 𝑘
1𝑧𝑥

= √−𝑖𝜔/𝐾 − 𝑘2
𝑧
− 𝑘2
𝑥
and Im(𝑘

1𝑧𝑥
) ≤ 0, and the

integration is performed with respect to the horizontal wave
number (𝑘

𝑥
) in the 𝑥 direction.

Assuming the existence of an infinite number of virtual
sources, we can discretize these continuous integrals. The
integral in the above equation can be transformed into
a summation if an infinite number of such sources are
distributed along the𝑥 direction, spaced at equal intervals 𝐿

𝑥
.

The above equation can then be written as

�̃�
𝑓
(𝑥, 𝑦, 𝑘

𝑧
, 𝜔) = 𝐸

0

𝑛=+∞∑
𝑛
𝑥
=−∞

( 𝐸
𝑘
1𝑧𝑛

)𝐸
𝑑
, (7)

where 𝐸
0
= −𝑖/(2𝜆𝐿

𝑥
), 𝐸 = 𝑒−𝑖𝑘1𝑧𝑛|𝑦|, 𝐸

𝑑
= 𝑒−𝑖𝑘𝑛(𝑥), 𝑘

1𝑧𝑛
=

√−𝑖𝜔/𝐾 − 𝑘2
𝑧
− 𝑘2
𝑛
and Im(𝑘

1𝑧𝑛
) ≤ 0, and 𝑘

𝑛
= (2𝜋/𝐿

𝑥
)𝑛
𝑥
,

which can in turn be approximated by a finite sum of
equations (𝑁). Note that 𝑘

𝑧
= 0 is the 2D case, �̃�

𝑓
(𝑥, 𝑦, 𝜔) =

𝐸
0
∑𝑛=+∞
𝑛
𝑥
=−∞

(𝐸/𝑘
1𝑛
)𝐸
𝑑
with 𝑘

1𝑛
= √−𝑖𝜔/𝐾 − 𝑘2

𝑛
.

Next, the above Green’s functions are combined so as
to define Green’s functions for a half-space, a corner, a
single layer system, a U system, a solid rectangular pipe, a
solid open box, and a 3D parallelepiped box. Expressions in
frequency and time solutions are provided.The time solutions
obtained after the application of inverse spatial and frequency
Fourier transforms are compared with those given by Green’s
functions defined directly in the time domain.

Green’s functions for the different spaces are determined
using the image sourcemethod. By thismethod a distribution
of virtual sources and sinks are combined so as to give
null temperatures (Dirichlet boundary conditions) or heat
fluxes on the required boundaries (Neumann boundary
conditions). Other boundary conditions, such as Robin,
are not studied in this paper. In the case of solid bodies
bounded by two parallel surfaces the number of sources,
placed perpendicular to the surfaces, is theoretically infinite.
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Table 1

𝑟𝑙𝑚𝑛
𝑖𝑗𝑘

= √(𝑥
𝑖
)2 + (𝑦

𝑗
)2 + (𝑧

𝑘
)2

𝑥
0
= 𝑥 − 𝑥

0
𝑦
0
= 𝑦 − 𝑦

0
𝑧
0
= 𝑧 − 𝑧

0𝑥
1
= 𝑥 + 𝑥

0
− 2𝑑
1
𝑙 𝑦

1
= 𝑦 + 𝑦

0
− 2𝑑
2
𝑚 𝑧

1
= 𝑧 + 𝑧

0
− 2𝑑
3
𝑛

𝑥
2
= 𝑥 + 𝑥

0
+ 2𝑑
1
(𝑙 − 1) 𝑦

2
= 𝑦 + 𝑦

0
+ 2𝑑
2
(𝑚 − 1) 𝑧

2
= 𝑧 + 𝑧

0
+ 2𝑑
3
(𝑛 − 1)

𝑥
3
= 𝑥 − 𝑥

0
− 2𝑑
1
𝑙 𝑦

3
= 𝑦 − 𝑦

0
− 2𝑑
2
𝑚 𝑧

3
= 𝑧 − 𝑧

0
− 2𝑑
3
𝑛

𝑥
4
= 𝑥 − 𝑥

0
+ 2𝑑
1
𝑙 𝑦

4
= 𝑦 − 𝑦

0
+ 2𝑑
2
𝑚 𝑧

4
= 𝑧 − 𝑧

0
+ 2𝑑
3
𝑛

The superscripts 𝑙, 𝑚, and 𝑛 identify the position of the virtual sources along the 𝑥, 𝑦, and 𝑧 directions, respectively. The upper value of 𝑙,𝑚, and 𝑛 is defined
by the convergence criteria. Each value of 𝑙,𝑚, and 𝑛 is associated with four possible source positions, which are identified by the subscripts 𝑖, 𝑗, and 𝑘 for the
𝑥, 𝑦, and 𝑧 directions, respectively. Thus, 𝑖, 𝑗, and 𝑘may take the values of 1, 2, 3, and 4.

The use of complex frequencies allows the contribution of
the sources placed at greater distances to vanish and so to
limit the number of the virtual sources. The use of complex
frequencies with a small imaginary part, taking the form𝜔

𝑐
=𝜔−𝑖𝜂 (where𝜔 = 0.7Δ𝜔 andΔ𝜔 is the frequency increment),

has the additional effect of avoiding the aliasing phenomena.
This shift in the frequency domain is subsequently taken
into account in the time domain by means of an exponential
window, 𝑒𝜂𝑡, applied to the response.

Green’s functions are validated assuming that themedium
is subject to a Dirac delta source. This type of source would
require the solution to be computed in the frequency domain[0.0,∞]Hz. However, the response does not need to be
computed for a very large number of frequencies since it
decays very quickly as the frequency decays. Note that the
static response for the frequency 0.0Hz can be calculated
thanks to the use of complex frequencies.

The number of virtual sources used depends directly on
the predefined convergence criterion. As we move from one
dimension to two dimensions and then to three dimensions,
the number of sources grows significantly. Thus, although
the method converges rapidly, the cost of computation grows
significantly as we move from a one-dimensional to a three-
dimensional problem.

3. Green’s Functions

Green’s functions in the time and frequency domain will be
grouped for the following three cases:

(i) unbounded space, which includes Green’s functions
for 1D, 2D, and 3D sources;

(ii) two-dimensional space, which contains Green’s func-
tions for a half-space, a space bounded by twoperpen-
dicular planes, a single layer system, a U system, and a
solid rectangular pipe, when subjected to 2D and 3D
sources;

(iii) three-dimensional space, which compiles Green’s
functions for point sources placed in a solid open box
and in a 3D parallelepiped box.

Special attention is given to the 2.5D solution in all cases since
it enables the computation of the 3Dheat field as a summation

of 2D sources with varying spatial wavenumbers. Different
boundary conditions are assumed and combined, namely,
null temperatures or null heat fluxes. For each case, a scheme
of the geometry is first illustrated (Figures 9–16) and then
Green’s functions are presented in the time and frequency
domains. To verify the proposed solutions, responses in the
time domain are included and computed directly in the
time domain and in the frequency domain. A selection of
results is presented in Figures 1–8 to illustrate the agreement
between different solutions. Each figure includes a legend that
indicates the comparisons performed.

All results showed a good agreement between the differ-
ent formulations for all cases.

In the examples provided the Dirac delta source is
positioned at the coordinate (𝑥

0
= 0.2m, 𝑦

0
= 0.1m, 𝑧

0
=0.15m). This medium is homogeneous and is characterized

by a thermal conductivity of 𝜆 = 426.0W⋅m−1 ⋅∘C−1, a density𝜌 = 10500.0 kg ⋅ m−3, and a specific heat 𝑐 = 235.0 J ⋅ kg−1 ⋅
∘C−1. Computations are performed in the frequency range[0.0, 40.96]Hz with a frequency increment of 0.01Hz. The
heat field is computed at the receiver point𝑅 (𝑥 = 0.25m, 𝑦 =0.15m, 𝑧 = 0.05m). The responses obtained with the time
formulation (used to validate the frequency formulation) are
determined for a time window [0.0, 100.0] s with a time step
of 0.0061 s. Depending on the type of geometry the medium
may be bounded by planes placed at 𝑥 = 0.0m, 𝑦 = 0.0m,𝑧 = 0.0m, 𝑥 = 𝑑

1
= 0.30m, 𝑦 = 𝑑

2
= 0.25m, or/and𝑧 = 𝑑

3
= 0.20m.

The notation in Table 1 is used.

3.1. Unbounded Space. See Figure 9.

Equations for an Unbounded Space, Assuming 1D, 2D, and 3D
Heat Sources. 1D source is as follows:

𝑇 (𝑦, 𝑡) = 𝑒−|𝑦0|2/4𝐾𝜏
𝜌𝑐 (4𝜋𝐾𝜏)1/2 ,

𝑇 (𝑦, 𝜔) = −𝑖
2𝜆

𝑒−𝑖𝑘1|𝑦0|
𝑘
1

.
(8)
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Figure 1: Responses for an unbounded space: (a) 1D heat source; (b) 2D heat source; (c) 3D heat source.
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Figure 2: Response for the half-space (Case 1): (a) 2D heat source; (b) 3D heat source.
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Figure 3: Response for the bounded space defined by 𝑥 ≤ 𝑑
1
and 𝑦 ≥ 0 (Case 3): (a) 2D heat source; (b) 3D heat source.
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Figure 4: Response for the horizontal layer (Case 3): (a) 2D heat source; (b) 3D heat source.
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Figure 5: Response for the U system (Case 3): (a) 2D heat source; (b) 3D heat source.
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Figure 6: Response for the solid rectangular pipe (Case 3): (a) 2D heat source; (b) 3D heat source.
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Figure 7: Response for the solid open box: (a) Case 2; (b) Case 3.

A
m

pl
itu

de
 (1

0
−
5
∘ C)

0

0.5

1.0

1.5

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Time formulation
Frequency formulation
Frequency formulation (as the sum of 2.5D sources)

(a)

0

0.5

1.0

2.0

1.5

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Time formulation
Frequency formulation
Frequency formulation (as the sum of 2.5D sources)

A
m

pl
itu

de
 (1

0
−
5
∘ C)

(b)

Figure 8: Responses for the 3D parallelepiped box: (a) Case 2. (b) Case 3.



Journal of Applied Mathematics 7

x

y

z
Case 1

Figure 9: Unbounded space.

2D source is as follows:

𝑇 (𝑥, 𝑦, 𝑡) = 𝑒−(𝑟0000 )2/4𝐾𝜏
𝜌𝑐 (4𝜋𝐾𝜏) ,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆𝐻0 (𝑘1𝑟0000) ,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
2𝜆𝐿
𝑥

∞∑
𝑛
𝑥
=−∞

[𝑒−𝑖𝑘1𝑛|𝑦0|𝑘
1𝑛

𝑒−𝑖𝑘𝑛(𝑥0)]
as the sum of plane sources.

(9)

3D source is as follows:

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑒−(𝑟000000 )2/4𝐾𝜏
𝜌𝑐 (4𝜋𝐾𝜏)1.5 with 𝜏 = 𝑡 − 𝑡

0
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆𝑟000
000

𝑒−√𝑖𝜔/𝐾𝑟000000 ,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑧

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

as the sum of 2.5D sources.

(10)

3.2. Two-Dimensional Space

(a) Half-Space Defined by 𝑦 ≥ 0. Boundary conditions
prescribed for the half-space (Cases 1 and 2) are shown in
Figure 10.

Equations for the half-space (Cases 1 and 2), subjected to
a 2D heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑗=0

𝑒−(𝑟000𝑗 )2/4𝐾𝜏,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑗=0

𝐻
0
(𝑘
1
𝑟00
0𝑗
) .

(11)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑗=0

[(−1)𝑗 𝑒−(𝑟000𝑗 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑗=0

[(−1)𝑗𝐻
0
(𝑘
1
𝑟00
0𝑗
)] .

(12)

Equations for the half-space (Cases 1 and 2), subjected to
a 3D heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑗=0

𝑒−(𝑟0000𝑗0 )2/4𝐾𝜏,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑗=0

𝑒−√𝑖𝜔/𝐾𝑟0000𝑗0
𝑟000
0𝑗0

,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑗=0

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

as the sum of 2.5D sources.

(13)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑗=0

[(−1)𝑗 𝑒−(𝑟0000𝑗0 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑗=0

[(−1)𝑗 𝑒−√𝑖𝜔/𝐾𝑟
000

0𝑗0

𝑟000
0𝑗0

] ,
𝑇 (𝑥, 𝑦, 𝑧, 𝜔)

= −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑗=0

(−1)𝑗 ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

as the sum of 2.5D sources.

(14)

(b) Bounded Space Defined by 𝑥 ≤ 𝑑
1
and 𝑦 ≥ 0. Boundary

conditions prescribed for the bounded space defined by 𝑥 ≤𝑑
1
and 𝑦 ≥ 0 (Cases 1–4) are shown in Figure 11.
Equations for the bounded space defined by 𝑥 ≤ 𝑑

1
and𝑦 ≥ 0 (Cases 1–4), subjected to a 2D heat source, are as

follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑖=0

1∑
𝑗=0

[𝑒−(𝑟𝑖0𝑖𝑗 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑖=0

1∑
𝑗=0

[𝐻
0
(𝑘
1
𝑟𝑖0
𝑖𝑗
)] .

(15)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑖=0

1∑
𝑗=0

[(−1)(𝑖+𝑗) 𝑒−(𝑟𝑖0𝑖𝑗 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑖=0

1∑
𝑗=0

[(−1)(𝑖+𝑗)𝐻
0
(𝑘
1
𝑟𝑖0
𝑖𝑗
)] .

(16)
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Figure 10: Boundary conditions prescribed for the half-space (Cases 1 and 2).
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Figure 11: Boundary conditions prescribed for the bounded space defined by 𝑥 ≤ 𝑑
1
and 𝑦 ≥ 0 (Cases 1–4).
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Figure 12: Boundary conditions prescribed for the horizontal layer (Cases 1–4).
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Figure 13: Boundary conditions prescribed for the U system (Cases 1–4).
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Figure 14: Boundary conditions prescribed for the solid rectangular pipe (Cases 1–4).
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Figure 15: Boundary conditions prescribed for the solid open box (Cases 1–4).
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Figure 16: Boundary conditions for the 3D parallelepiped box (Cases 1–4).

Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑖=0

1∑
𝑗=0

[(−1)𝑖 𝑒−(𝑟𝑖0𝑖𝑗 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑖=0

1∑
𝑗=0

[(−1)𝑖𝐻
0
(𝑘
1
𝑟𝑖0
𝑖𝑗
)] .

(17)

Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑖=0

1∑
𝑗=0

[(−1)𝑗 𝑒−(𝑟𝑖0𝑖𝑗 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑖=0

1∑
𝑗=0

[(−1)𝑗𝐻
0
(𝑘
1
𝑟𝑖0
𝑖𝑗
)] .

(18)
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Equations defined for the bounded space defined by 𝑥 ≤𝑑
1
and 𝑦 ≥ 0 (Cases 1–4) and subjected to a 3D heat source,

are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑖=0

1∑
𝑗=0

[𝑒−(𝑟𝑖00𝑖𝑗0 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑖=0

1∑
𝑗=0

[(−1)(𝑖+𝑗) 𝑒−√𝑖𝜔/𝐾𝑟
𝑖00

𝑖𝑗0

𝑟𝑖00
𝑖𝑗0

] ,
𝑇 (𝑥, 𝑦, 𝑧, 𝜔)

= −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑖=0

1∑
𝑗=0

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟10
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

as the sum of 2.5D sources.

(19)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡)
= 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑖=0

1∑
𝑗=0

[(−1)(𝑖+𝑗) 𝑒−(𝑟𝑖00𝑖𝑗0 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑖=0

1∑
𝑗=0

[(−1)(𝑖+𝑗) 𝑒−√𝑖𝜔/𝐾𝑟
𝑖00

𝑖𝑗0

𝑟𝑖00
𝑖𝑗0

] ,
𝑇 (𝑥, 𝑦, 𝑧, 𝜔)
= −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑖=0

1∑
𝑗=0

(−1)(𝑖+𝑗) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖0
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

as the sum of 2.5D sources.

(20)

Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡)
= 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑖=0

1∑
𝑗=0

[(−1)𝑖 𝑒−(𝑟𝑖00𝑖𝑗0 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑖=0

1∑
𝑗=0

[(−1)𝑖 𝑒−√𝑖𝜔/𝐾𝑟
𝑖00

𝑖𝑗0

𝑟𝑖00
𝑖𝑗0

] ,
𝑇 (𝑥, 𝑦, 𝑧, 𝜔)

= −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑖=0

1∑
𝑗=0

(−1)(𝑖) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖0
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

as the sum of 2.5D sources.

(21)

Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡)
= 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑖=0

1∑
𝑗=0

[(−1)𝑗 𝑒−(𝑟𝑖00𝑖𝑗0 )2/4𝐾𝜏] ,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑖=0

1∑
𝑗=0

[(−1)𝑗 𝑒−√𝑖𝜔/𝐾𝑟
𝑖00

𝑖𝑗0

𝑟𝑖00
𝑖𝑗0

] ,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔)

= −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑖=0

1∑
𝑗=0

(−1)(𝑗) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖0
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

as the sum of 2.5D sources.

(22)

(c) Horizontal Layer Defined by 𝑦 = 0 and 𝑦 = 𝑑
2
. Boundary

conditions prescribed for the horizontal layer (Cases 1–4) are
shown in Figure 12.

Equations for the horizontal layer (Cases 1–4), subjected
to a 2D heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑡)

= 1
𝜌𝑐 (4𝜋𝐾𝜏) [[

𝑒−(𝑟0000 )2/4𝐾𝜏 +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟0𝑚0𝑗 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆 [

[
𝐻
0
(𝑘
1
𝑟00
00
) +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝐻
0
(𝑘
1
𝑟0𝑚
0𝑗
)]
]
.

(23)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏) [[

𝑒−(𝑟0000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟0𝑚0𝑗 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆 [

[
𝐻
0
(𝑘
1
𝑟00
00
)

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)!𝐻
0
(𝑘
1
𝑟0𝑚
0𝑗
)]
]
.

(24)
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Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏) [[

𝑒−(𝑟0000 )2/4𝐾𝜏 +
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ [
[
4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟0𝑚0𝑗 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆 [

[
𝐻
0
(𝑘
1
𝑟00
00
) +
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ [
[
4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)𝐻
0
(𝑘
1
𝑟0𝑚
0𝑗
)]
]
]
]
.

(25)

Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏) [[

𝑒−(𝑟0000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) [
[
4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟0𝑚0𝑗 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆 [

[
𝐻
0
(𝑘
1
𝑟00
00
)

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) [
[
4∑
𝑗=1

(−1)(𝑗!+1)𝐻
0
(𝑘
1
𝑟0𝑚
0𝑗
)]
]
]
]
.

(26)

Equations for the horizontal layer (Cases 1–4), subjected
to a 3D heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟0𝑚00𝑗0
𝑟0𝑚0
0𝑗0

]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
as the sum of 2.5D sources.

(27)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
as the sum of 2.5D sources.

(28)

Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

]
]
,
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𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗−1)!

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
as the sum of 2.5D sources.

(29)

Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
as the sum of 2.5D sources.

(30)

(d)U SystemBounded by𝑦 ≥ 0,𝑦 ≤ 𝑑
2
, and𝑥 ≤ 𝑑

1
. Boundary

conditions prescribed for theU system (Cases 1–4) are shown
in Figure 13.

Equations for the U system (Cases 1–4), subjected to a 2D
heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑡)

= 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑖=0

[
[
𝑒−(𝑟𝑖0𝑖0 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟𝑖𝑚𝑖𝑗 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝜔)

= −𝑖
4𝜆
1∑
𝑖=0

[
[
𝐻
0
(𝑘
1
𝑟𝑖0
𝑖0
) +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝐻
0
(𝑘
1
𝑟𝑖𝑚
𝑖𝑗
)]
]
.

(31)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑖=0

(−1)𝑖

⋅ [
[
𝑒−(𝑟𝑖0𝑖0 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟𝑖𝑚𝑖𝑗 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑖=0

(−1)𝑖

⋅ [
[
𝐻
0
(𝑘
1
𝑟𝑖0
𝑖0
) +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)!𝐻
0
(𝑘
1
𝑟𝑖𝑚
𝑖𝑗
)]
]
.

(32)

Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑖=0

[
[
𝑒−(𝑟𝑖0𝑖0 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟𝑖𝑚𝑖𝑗 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑖=0

[
[
𝐻
0
(𝑘
1
𝑟𝑖0
𝑖0
)

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)𝐻
0
(𝑘
1
𝑟𝑖𝑚
𝑖𝑗
)]
]
.

(33)
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Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)

1∑
𝑖=0

(−1)𝑖 [
[
𝑒−(𝑟𝑖0𝑖0 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟𝑖𝑚𝑖𝑗 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆
1∑
𝑖=0

(−1)𝑖 [
[
𝐻
0
(𝑘
1
𝑟𝑖0
𝑖0
)

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1)𝐻
0
(𝑘
1
𝑟𝑖𝑚
𝑖𝑗
)]
]
.

(34)

Equations for the U system (Cases 1–4), subjected to a 3D
heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑖=0

[
[
𝑒−(𝑟𝑖00𝑖00 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟𝑖𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑖=0

[
[
𝑒−√𝑖𝜔/𝐾𝑟𝑖00𝑖00

𝑟𝑖00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟𝑖𝑚0𝑖𝑗0
𝑟𝑖𝑚0
𝑖𝑗0

]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

⋅ 1∑
𝑖=0

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
as the sum of 2.5D sources.

(35)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑖=0

(−1)𝑖 [
[
𝑒−(𝑟𝑖00𝑖00 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟𝑖𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑖=0

(−1)𝑖 [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑖00𝑖00

𝑟𝑖00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
𝑖𝑚0

𝑖𝑗0

𝑟𝑖𝑚0
𝑖𝑗0

]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑖=0

(−1)𝑖

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
as the sum of 2.5D sources.

(36)

Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑖=0

(−1)𝑖 [
[
𝑒−(𝑟𝑖00𝑖00 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟𝑖𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑖=0

(−1)𝑖 [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑖00𝑖00

𝑟𝑖00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑖𝑚0

𝑖𝑗0

𝑟𝑖𝑚0
𝑖𝑗0

]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑖=0

(−1)𝑖

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
as the sum of 2.5D sources.

(37)
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Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑖=0

(−1)𝑖 [
[
𝑒−(𝑟𝑖00𝑖00 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟𝑖𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑖=0

(−1)𝑖 [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑖00𝑖00

𝑟𝑖00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑖𝑚0

𝑖𝑗0

𝑟𝑖𝑚0
𝑖𝑗0

]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑖=0

(−1)𝑖

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑖𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
as the sum of 2.5D sources.

(38)

(e) Solid Rectangular Pipe Defined by 𝑦 ≥ 0, 𝑦 ≤ 𝑑
2
, 𝑥 ≥ 0,

and 𝑥 ≤ 𝑑
1
. Boundary conditions prescribed for the solid

rectangular pipe (Cases 1–4) are shown in Figure 14.
Equations for the solid rectangular pipe (Cases 1–4),

subjected to a 2D heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏) [[

𝑒−(𝑟0000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟0𝑚0𝑗 )2/4𝐾𝜏

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−(𝑟𝑙0𝑖0 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟𝑙𝑚𝑖𝑗 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆 [

[
𝐻
0
(𝑘
1
𝑟00
00
) +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝐻
0
(𝑘
1
𝑟0𝑚
0𝑗
)

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝐻
0
(𝑘
1
𝑟𝑙0
𝑖0
) +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝐻
0
(𝑘
1
𝑟𝑙𝑚
𝑖𝑗
)]
]
]
]
.

(39)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏) [[

𝑒−(𝑟0000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟0𝑚0𝑗 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−(𝑟𝑙0𝑖0 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟𝑙𝑚𝑖𝑗 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆 [

[
𝐻
0
(𝑘
1
𝑟00
00
)

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)!𝐻
0
(𝑘
1
𝑟0𝑚
0𝑗
) + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝐻
0
(𝑘
1
𝑟𝑙0
𝑖0
) +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)!𝐻
0
(𝑘
1
𝑟𝑖𝑚
𝑖𝑗
)]
]
]
]
.

(40)

Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏) [[

𝑒−(𝑟0000 )2/4𝐾𝜏 +
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟0𝑚0𝑗 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)(𝑖!+1) [
[
𝑒−(𝑟𝑙0𝑖0 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟𝑙𝑚𝑖𝑗 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆 [

[
𝐻
0
(𝑘
1
𝑟00
00
) +
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)𝐻
0
(𝑘
1
𝑟0𝑚
0𝑗
) + 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)(𝑖!+1) [
[
𝐻
0
(𝑘
1
𝑟𝑙0
𝑖0
) +
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)𝐻
0
(𝑘
1
𝑟𝑙𝑚
𝑖𝑗
)]
]
]
]
.

(41)
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Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏) [[

𝑒−(𝑟0000 )2/4𝐾𝜏 +
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟0𝑚0𝑗 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝑒−(𝑟𝑙0𝑖0 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟𝑙𝑚𝑖𝑗 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝜔) = −𝑖
4𝜆 [

[
𝐻
0
(𝑘
1
𝑟00
00
) +
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1)𝐻
0
(𝑘
1
𝑟0𝑚
0𝑗
) + 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝐻
0
(𝑘
1
𝑟𝑙0
𝑖0
)

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1)𝐻
0
(𝑘
1
𝑟𝑙𝑚
𝑖𝑗
)]
]
]
]
.

(42)

Equations for the solid rectangular pipe (Cases 1–4),
subjected to a 3D heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏 +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−(𝑟𝑙00𝑖00 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟𝑙𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟0𝑚00𝑗0
𝑟0𝑚0
0𝑗0

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙00𝑖00

𝑟𝑙00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟𝑙𝑚0𝑖𝑗0
𝑟𝑙𝑚0
𝑖𝑗0

]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
]
]

as the sum of 2.5D sources.

(43)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−(𝑟𝑙00𝑖00 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟𝑙𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙00𝑖00

𝑟𝑙00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚0

𝑖𝑗0

𝑟𝑙𝑚0
𝑖𝑗0

]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)! [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)]
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+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)!

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
]
]

as the sum of 2.5D sources.
(44)

Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)(𝑖!+1) [
[
𝑒−(𝑟𝑙00𝑖00 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟𝑙𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)(𝑖!−1) [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙00𝑖00

𝑟𝑙00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚0

𝑖𝑗0

𝑟𝑙𝑚0
𝑖𝑗0

]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)] + 𝑁𝑆𝑥∑

𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)(𝑖!−1) [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
]
]

as the sum of 2.5D sources.
(45)

Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝑒−(𝑟𝑙00𝑖00 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟𝑙𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

[
[
(−1)(𝑚−1) 4∑

𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

]
]

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑗−1)!(𝑗+1)+1) [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙00𝑖00

𝑟𝑙00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚0

𝑖𝑗0

𝑟𝑙𝑚0
𝑖𝑗0

]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)] + 𝑁𝑆𝑥∑

𝑙=1

(−1)(𝑙−1)
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⋅ 4∑
𝑖=1

(−1)((𝑖−1)!(𝑗+1)+1) [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
]
]

as the sum of 2.5D sources.
(46)

3.3. Three-Dimensional Space

(a) Solid Open Box Defined by 𝑦 ≥ 0, 𝑦 ≤ 𝑑
2
, 𝑥 ≥ 0, 𝑥 ≤𝑑

1
, and 𝑧 ≤ 𝑑

3
. Boundary conditions prescribed for the solid

open box (Cases 1–4) are shown in Figure 15.
Equations for the solid open box (Cases 1–4), subjected

to a 3D heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑛=0

[
[
𝑒−(𝑟00𝑛00𝑛 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟0𝑚𝑛0𝑗𝑛 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−(𝑟𝑙0𝑛𝑖0𝑛 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟𝑙𝑚𝑛𝑖𝑗𝑛 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑛=0

[
[
𝑒−√𝑖𝜔/𝐾𝑟00𝑛00𝑛

𝑟00𝑛
00𝑛

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟0𝑚𝑛0𝑗𝑛
𝑟0𝑚𝑛
0𝑗𝑛

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙0𝑛𝑖0𝑛

𝑟𝑙0𝑛
𝑖0𝑛

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟𝑙𝑚𝑛𝑖𝑗𝑛
𝑟𝑙𝑚𝑛
𝑖𝑗𝑛

]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑛=0

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]]

]
]
]

as the sum of 2.5D sources.

(47)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑛=0

(−1)𝑛 [
[
𝑒−(𝑟00𝑛00𝑛 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟0𝑚𝑛0𝑗𝑛 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−(𝑟𝑙0𝑛𝑖0𝑛 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟𝑙𝑚𝑛𝑖𝑗𝑛 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑛=0

(−1)𝑛 [
[
𝑒−√𝑖𝜔/𝐾𝑟00𝑛00𝑛

𝑟00𝑛
00𝑛

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚𝑛

0𝑗𝑛

𝑟0𝑚𝑛
0𝑗𝑛

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙0𝑛𝑖0𝑛

𝑟𝑙0𝑛
𝑖0𝑛

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚𝑛

𝑖𝑗𝑛

𝑟𝑙𝑚𝑛
𝑖𝑗𝑛

]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑛=0

(−1)𝑛

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)! [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)!

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]]

]
]
]

as the sum of 2.5D sources.
(48)
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Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑛=0

[
[
𝑒−(𝑟00𝑛00𝑛 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟0𝑚𝑛0𝑗𝑛 )2/4𝐾𝜏

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)(𝑖!+1) [
[
𝑒−(𝑟𝑙0𝑛𝑖0𝑛 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟𝑙𝑚𝑛𝑖𝑗𝑛 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑛=0

[
[
𝑒−√𝑖𝜔/𝐾𝑟00𝑛00𝑛

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚𝑛

0𝑗𝑛

𝑟0𝑚𝑛
0𝑗𝑛

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)(𝑖!−1) [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙0𝑛𝑖0𝑛

𝑟𝑙0𝑛
𝑖0𝑛

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚𝑛

𝑖𝑗0

𝑟𝑙𝑚𝑛
𝑖𝑗𝑛

]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] + 𝑁𝑆𝑥∑

𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)(𝑖!−1) [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]]

]
]
]

as the sum of 2.5D.

(49)

Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5

1∑
𝑛=0

(−1)𝑛 [
[
𝑒−(𝑟00𝑛00𝑛 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟0𝑚𝑛0𝑗𝑛 )2/4𝐾𝜏

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝑒−(𝑟𝑙0𝑛𝑖0𝑛 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟𝑙𝑚𝑛𝑖𝑗𝑛 )2/4𝐾𝜏]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆
1∑
𝑛=0

(−1)𝑛 [
[
𝑒−√𝑖𝜔/𝐾𝑟00𝑛00𝑛

𝑟00𝑛
00𝑛

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚𝑛

0𝑗𝑛

𝑟0𝑚𝑛
0𝑗𝑛

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙0𝑛𝑖0𝑛

𝑟𝑙0𝑛
𝑖0𝑛

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚𝑛

𝑖𝑗𝑛

𝑟𝑙𝑚𝑛
𝑖𝑗𝑛

]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

1∑
𝑛=0

(−1)𝑛

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1)

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)!

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]]

]
]
]

as the sum of 2.5D sorces.

(50)

(b) 3D Parallelepiped Box Defined by 𝑦 ≥ 0, 𝑦 ≤ 𝑑
2
, 𝑥 ≥ 0,𝑥 ≤ 𝑑

1
, 𝑧 ≥ 0, and 𝑧 ≤ 𝑑

3
. Boundary conditions for the 3D

parallelepiped box (Cases 1–4) are shown in Figure 16.
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Equations for the 3D parallelepiped box (Cases 1–
4), subjected to a 3D heat source, are as follows.

Case 1. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏 +
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−(𝑟𝑙00𝑖00 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟𝑙𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]

+ 𝑁𝑆𝑧∑
𝑛=1

4∑
𝑘=1

[
[
𝑒−(𝑟00𝑛00𝑘 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟0𝑚𝑛0𝑗𝑘 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−(𝑟𝑙0𝑛𝑖0𝑘 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−(𝑟𝑙𝑚𝑛𝑖𝑗𝑘 )2/4𝐾𝜏]
]
]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟0𝑚00𝑗0
𝑟0𝑚0
0𝑗0

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙00𝑖00

𝑟𝑙00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟𝑙𝑚0𝑖𝑗0
𝑟𝑙𝑚0
𝑖𝑗0

]
]

+ 𝑁𝑆𝑧∑
𝑛=1

4∑
𝑘=1

[
[
𝑒−√𝑖𝜔/𝐾𝑟00𝑛00𝑘

𝑟00𝑛
00𝑘

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟0𝑚𝑛0𝑗𝑘
𝑟0𝑚𝑛
0𝑗𝑘

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙0𝑛𝑖0𝑘

𝑟𝑙0𝑛
𝑖0𝑘

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

𝑒−√𝑖𝜔/𝐾𝑟𝑙𝑚𝑛𝑖𝑗𝑘
𝑟𝑙𝑚𝑛
𝑖𝑗𝑘

]
]
]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
+ 𝑁𝑆𝑧∑
𝑛=1

4∑
𝑘=1

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] + 𝑁𝑆𝑥∑

𝑙=1

4∑
𝑖=1

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]]

]
]
]
]
]

as the sum of 2.5D sources.

(51)

Case 2. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−(𝑟𝑙00𝑖00 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟𝑙𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]

+ 𝑁𝑆𝑧∑
𝑛=1

4∑
𝑘=1

(−1)(𝑘−1)! [
[
𝑒−(𝑟00𝑛00𝑘 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟0𝑚𝑛0𝑗𝑘 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−(𝑟𝑙0𝑛𝑖0𝑘 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−(𝑟𝑙𝑚𝑛𝑖𝑗𝑘 )2/4𝐾𝜏]
]
]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙00𝑖00

𝑟𝑙00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚0

𝑖𝑗0

𝑟𝑙𝑚0
𝑖𝑗0

]
]

+ 𝑁𝑆𝑧∑
𝑛=1

4∑
𝑘=1

(−1)(𝑘−1)! [
[
𝑒−√𝑖𝜔/𝐾𝑟00𝑛00𝑘

𝑟00𝑛
00𝑘

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚𝑛

0𝑗𝑘

𝑟0𝑚𝑛
0𝑗𝑘

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)!

⋅ [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙0𝑛𝑖0𝑘

𝑟𝑙0𝑛
𝑖0𝑘

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚𝑛

𝑖𝑗𝑘

𝑟𝑙𝑚𝑛
𝑖𝑗𝑘

]
]
]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)! [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
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+ 𝑁𝑆𝑧∑
𝑛=1

4∑
𝑘=1

(−1)(𝑘−1)! [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+ 𝑁𝑆𝑥∑
𝑙=1

4∑
𝑖=1

(−1)(𝑖−1)! [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+
𝑁𝑆
𝑦∑
𝑚=1

4∑
𝑗=1

(−1)(𝑗−1)! ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]]

]
]
]
]
]

as the sum of 2.5D sources.
(52)

Case 3. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏 +
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)(𝑖!+1)

⋅ [
[
𝑒−(𝑟𝑙00𝑖00 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟𝑙𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]
+ 𝑁𝑆𝑧∑
𝑛=1

(−1)(𝑛−1) 4∑
𝑘=1

(−1)(𝑘!+1) [
[
𝑒−(𝑟00𝑛00𝑘 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟0𝑚𝑛0𝑗𝑘 )2/4𝐾𝜏 + 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)(𝑖!+1)

⋅ [
[
𝑒−(𝑟𝑙0𝑛𝑖0𝑘 )2/4𝐾𝜏 +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−(𝑟𝑙𝑚𝑛𝑖𝑗𝑘 )2/4𝐾𝜏]
]
]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

[
[
(−1)(𝑚−1) 4∑

𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

]
]
+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)(𝑖!+1)

⋅ [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙00𝑖00

𝑟𝑙00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚0

𝑖𝑗0

𝑟𝑙𝑚0
𝑖𝑗0

]
]
+ 𝑁𝑆𝑧∑
𝑛=1

(−1)(𝑛−1) 4∑
𝑘=1

(−1)(𝑘!+1) [
[
𝑒−√𝑖𝜔/𝐾𝑟00𝑛00𝑘

𝑟00𝑛
00𝑘

+
𝑁𝑆
𝑦∑
𝑚=1

[
[
(−1)(𝑚−1) 4∑

𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚𝑛

0𝑗𝑘

𝑟0𝑚𝑛
0𝑗𝑘

]
]
+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)(𝑖!+1)

⋅ [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙0𝑛𝑖0𝑘

𝑟𝑙0𝑛
𝑖0𝑘

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚𝑛

𝑖𝑗𝑘

𝑟𝑙𝑚𝑛
𝑖𝑗𝑘

]
]
]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)(𝑖!+1) [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1)

⋅ ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
+ 𝑁𝑆𝑧∑
𝑛=1

(−1)(𝑛−1) 4∑
𝑘=1

(−1)(𝑘!+1) [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)
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⋅ 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] + 𝑁𝑆𝑥∑

𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)((𝑗−1)!(𝑗+1)+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]]

]
]
]
]
]

as the sum of 2.5D sources.
(53)

Case 4. Consider

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 1
𝜌𝑐 (4𝜋𝐾𝜏)1.5 [[

𝑒−(𝑟000000 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟0𝑚00𝑗0 )2/4𝐾𝜏

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝑒−(𝑟𝑙00𝑖00 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟𝑙𝑚0𝑖𝑗0 )2/4𝐾𝜏]
]

+ 𝑁𝑆𝑧∑
𝑛=1

(−1)(𝑛−1) 4∑
𝑘=1

(−1)((𝑘−1)!(𝑘+1)+1) [
[
𝑒−(𝑟00𝑛00𝑘 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟0𝑚𝑛0𝑗𝑘 )2/4𝐾𝜏

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝑒−(𝑟𝑙0𝑛𝑖0𝑘 )2/4𝐾𝜏

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−(𝑟𝑙𝑚𝑛𝑖𝑗𝑘 )2/4𝐾𝜏]
]
]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = 1
2𝜆 [

[
𝑒−√𝑖𝜔/𝐾𝑟000000

𝑟000
000

+
𝑁𝑆
𝑦∑
𝑚=1

[
[
(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚0

0𝑗0

𝑟0𝑚0
0𝑗0

]
]
+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1)

⋅ 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙00𝑖00

𝑟𝑙00
𝑖00

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚0

𝑖𝑗0

𝑟𝑙𝑚0
𝑖𝑗0

]
]
+ 𝑁𝑆𝑧∑
𝑛=1

(−1)(𝑛−1)

⋅ 4∑
𝑘=1

(−1)((𝑘−1)!(𝑘+1)+1) [
[
𝑒−√𝑖𝜔/𝐾𝑟00𝑛00𝑘

𝑟00𝑛
00𝑘

+
𝑁𝑆
𝑦∑
𝑚=1

[
[
(−1)(𝑚−1) 4∑

𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
0𝑚𝑛

0𝑗𝑘

𝑟0𝑚𝑛
0𝑗𝑘

]
]

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1) [
[
𝑒−√𝑖𝜔/𝐾𝑟𝑙0𝑛𝑖0𝑘

𝑟𝑙0𝑛
𝑖0𝑘

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) 𝑒−√𝑖𝜔/𝐾𝑟
𝑙𝑚𝑛

𝑖𝑗𝑘

𝑟𝑙𝑚𝑛
𝑖𝑗𝑘

]
]
]
]
]
]
,

𝑇 (𝑥, 𝑦, 𝑧, 𝜔) = −𝑖𝜋
2𝜆𝐿
𝑥

[
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧0)]

+
𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1) 4∑
𝑗=1

(−1)(𝑗!+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
)

⋅ 𝑒−𝑖𝑘𝑧(𝑧0)] + 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1)

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧0)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧0)]]

]
+ 𝑁𝑆𝑧∑
𝑛=1

(−1)(𝑛−1) 4∑
𝑘=1

(−1)((𝑘−1)!(𝑘+1)+1)

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟00
00
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)



22 Journal of Applied Mathematics

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟0𝑚
0𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]

+ 𝑁𝑆𝑥∑
𝑙=1

(−1)(𝑙−1) 4∑
𝑖=1

(−1)((𝑖−1)!(𝑖+1)+1)

⋅ [
[
∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙0
𝑖0
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)] +

𝑁𝑆
𝑦∑
𝑚=1

(−1)(𝑚−1)

⋅ 4∑
𝑗=1

(−1)(𝑗!+1) ∞∑
𝑚
𝑘
=−∞

[𝐻
0
(𝑘
1𝑧
𝑟𝑙𝑚
𝑖𝑗
) 𝑒−𝑖𝑘𝑧(𝑧𝑛)]]

]
]
]
]
]

as the sum of 2.5D sources.
(54)

4. Conclusions

Fully analytical solutions for heat conduction for unbounded
and rectangular spaces subjected to point, line, and plane
sources have been presented. Two boundary conditions were
assumed, namely, the Dirichlet and Neumann boundary
conditions. Particular attention was given to the two-and-
a-half-dimensional fundamental solution or 2.5D Green’s
functions defined for spatially sinusoidal, harmonic line
sources. The final expressions were validated by applying the
equations to the problem of a Dirac delta source, for which
the solutions in the time domain are known in analytical
form. Excellent agreement was found between the numerical
solutions given by Fourier synthesis and the exact solutions.
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