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We determine the smallest and the largest number of (𝐴, 𝐵, 2𝐶)-edge colourings in trees. We prove that the star is a unique tree
that maximizes the number of all of the (𝐴, 𝐵, 2𝐶)-edge colourings and that the path is a unique tree that minimizes it.

1. Introduction and Preliminary Results

For a general concept, see [1]. The Fibonacci sequence {𝐹
𝑛
} is

defined recursively by the second-order recurrence relation
𝐹
𝑛
= 𝐹
𝑛−1

+𝐹
𝑛−2

for 𝑛 ≥ 2with the initial conditions𝐹
0
= 𝐹
1
=

1. A related sequence is the Pell sequence {𝑃
𝑛
} defined by𝑃

𝑛
=

2𝑃
𝑛−1

+𝑃
𝑛−2

for 𝑛 ≥ 2with𝑃
0
= 0,𝑃

1
= 1.Table 1 includes first

terms of the sequence {𝑃
𝑛
}. The terms of Fibonacci and Pell

sequences are called Fibonacci numbers and Pell numbers,
respectively. The numbers of the Fibonacci type play an
important role in distinct areas of mathematics and they
havemany different applications and interpretations. Some of
them are closely related to the Hosoya index 𝑍(𝐺) (defined
as a number of all matchings in the graph 𝐺, including the
empty matching) and the Merrifield-Simmons index 𝜎(𝐺)

(defined as a number of all independent sets in 𝐺, including
the empty set); see [2] and its references. It is well-known that
𝜎(P
𝑛
) = 𝐹

𝑛
and 𝑍(P

𝑛
∘ K
1
) = 𝑃

𝑛+1
, for 𝑛 ≥ 1, where P

𝑛

is an 𝑛-vertex path, K
𝑛
is an 𝑛-vertex complete graph, and

𝐺 ∘ 𝐻 denotes the corona of two graphs. The numbers of the
Fibonacci type in the graph theory were studied intensively
also in [3–15].

Consider a simple, undirected graph 𝐺 with the vertex
set 𝑉(𝐺) and the edge set 𝐸(𝐺). In [11] we introduced an
(𝑎
1
𝐴
1
, 𝑎
2
𝐴
2
, . . . , 𝑎

𝑝
𝐴
𝑝
)-edge colouring of a graph 𝐺 defined

in the following way. Let 𝐺 be 𝑝-edge coloured graph with
the set of colours {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑝
}, where 𝑝 ≥ 2. Moreover,

let 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
be positive integers. We say that a subgraph

of 𝐺 is 𝑀-monochromatic if all its edges are coloured alike

by colour 𝑀 ∈ {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑝
}. The graph 𝐺 is said to

be (𝑎
1
𝐴
1
, 𝑎
2
𝐴
2
, . . . , 𝑎

𝑝
𝐴
𝑝
)-edge coloured, if every maximal

(with respect to set inclusion) 𝐴
𝑖
-monochromatic subgraph

of 𝐺 can be partitioned into edge-disjoint paths of the length
𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑝. This type of edge colouring of graph

generalizes the edge colouring introduced by Piejko and
Włoch in [10] and the edge colouring by monochromatic
paths introduced by Trojnar-Spelina and Włoch in [13].
Many interesting results concerning some special kinds
of (𝑎
1
𝐴
1
, 𝑎
2
𝐴
2
, . . . , 𝑎

𝑝
𝐴
𝑝
)-edge colouring of graphs can be

found in [10, 11]. We recall some of them.
Let {𝐴, 𝐵, 𝐶} be the set of colours. By (𝐴, 𝐵, 2𝐶)-edge

colouring we denote the 3-edge colouring of graph 𝐺, such
that every 𝐶-monochromatic subgraph of 𝐺 can be parti-
tioned into edge-disjoint paths of the even length. Let 𝛿(𝐺)

be the number of all (𝐴, 𝐵, 2𝐶)-edge colourings of the graph
𝐺. The following result was given in [10].

Theorem 1 (see [10]). Let 𝑛 ≥ 2 be an integer. Then 𝛿(P
𝑛
) =

𝑃
𝑛
.

Let {𝑠
𝑛
} be the sequence defined by the relation 𝑠

𝑛
=

2𝑠
𝑛−1

+ (𝑛 − 1)𝑠
𝑛−2

for 𝑛 ≥ 2 with the initial conditions 𝑠
0
= 1,

𝑠
1
= 2. We can find a few first terms of {𝑠

𝑛
} in Table 1.

The sequence {𝑠
𝑛
} has many distinct interpretations also

in graphs. It is worth mentioning that 𝑠
𝑛
is the Hosoya index

of the corona of the complete graphs K
𝑛
and K

1
; that is,

𝑍(K
𝑛
∘ K
1
) = 𝑠

𝑛
for 𝑛 ≥ 1. For more interpretations see

[16, 17].
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Table 1: The first terms of {𝑃
𝑛
} and {𝑠

𝑛
}.

𝑛 0 1 2 3 4 5 6 7 8 9 10 11

𝑃
𝑛

0 1 2 5 12 29 70 169 408 985 2378 5741

𝑠
𝑛

1 2 5 14 43 142 499 1850 7193 123109 538078 2430355

Another interpretation of the sequence {𝑠
𝑛
} in graphs,

which is closely related to (𝐴, 𝐵, 2𝐶)-edge colouring of 𝑛-edge
starK

1,𝑛
, was given in [11].

Theorem 2 (see [11]). Let 𝑛 be a positive integer. Then
𝛿(K
1,𝑛

) = 𝑠
𝑛
.

In [12] Prodinger and Tichy proved that the star is a
tree that maximizes theMerrifield-Simmons index, while the
path is a tree that minimizes it. In this paper we obtain an
analogous result for the number of (𝐴, 𝐵, 2𝐶)-edge colourings
in trees.

Let 𝐺 and 𝐻 be given graphs with distinguished vertices
𝑥 ∈ 𝑉(𝐺) and 𝑦 ∈ 𝑉(𝐻). By 𝐺

𝑥 ∗ 𝐻𝑦 we denote the graph
obtained from 𝐺 and 𝐻 by identifying vertices 𝑥 and 𝑦 (see
Figure 1) and by 𝐺

𝑥 +𝐻𝑦 we denote the graph obtained from
𝐺 and 𝐻 by adding the edge 𝑥𝑦 (see Figure 2).

For 𝑒 ∈ 𝐸(𝐺) the notation 𝐺 \ {𝑒} means the graph
obtained from 𝐺 by deleting the edge 𝑒.We prove the follow-
ing.

Theorem 3. Let 𝑥 ∈ 𝑉(𝐺), 𝑦 ∈ 𝑉(𝐻) and let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
∈

𝑉(𝐺) be neighbours of 𝑥 and let 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑙
∈ 𝑉(𝐻) be

neighbours of 𝑦, where 𝑘 and 𝑙 are positive integers. Then

𝛿 (𝐺
𝑥

+ 𝐻
𝑦

) = 2𝛿 (𝐺) 𝛿 (𝐻) + 𝛿 (𝐻)

𝑘

∑
𝑖=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
})

+ 𝛿 (𝐺)

𝑙

∑
𝑗=1

𝛿 (𝐻 \ {𝑦𝑦
𝑗
}) ,

(1)

𝛿 (𝐺
𝑥

∗ 𝐻
𝑦

) ≥ 𝛿 (𝐺) 𝛿 (𝐻)

+

𝑘

∑
𝑖=1

𝑙

∑
𝑗=1

𝛿 (𝐻 \ {𝑦𝑦
𝑗
}) 𝛿 (𝐺 \ {𝑥𝑥

𝑖
}) .

(2)

Furthermore, if 𝑙 = 1 then

𝛿 (𝐺
𝑥

∗ 𝐻
𝑦

) = 𝛿 (𝐺) 𝛿 (𝐻)

+ 𝛿 (𝐻 \ {𝑦𝑦
1
})

𝑘

∑
𝑖=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
}) .

(3)

Proof. By 𝛿
𝐴
, 𝛿
𝐵
, and 𝛿

𝐶
we denote the number of all

(𝐴, 𝐵, 2𝐶)-edge colourings of the graph𝐺𝑥 +𝐻𝑦 such that an
edge 𝑥𝑦 has a colour 𝐴, 𝐵, or 𝐶, respectively. It can be easily
seen that 𝛿

𝐴
and 𝛿
𝐵
are equal to the number of all (𝐴, 𝐵, 2𝐶)-

edge colourings of the graph 𝐺, multiplied by the number
of all (𝐴, 𝐵, 2𝐶)-edge colourings of the graph 𝐻. Moreover,
𝛿
𝐶
is equal to the number of all (𝐴, 𝐵, 2𝐶)-edge colourings

of the graph 𝐻 multiplied by the number of all (𝐴, 𝐵, 2𝐶)-
edge colourings of graphs 𝐺 \ {𝑥𝑥

𝑖
}, where 𝑖 = 1, 2, . . . , 𝑘,

G H

x = y

Figure 1: The graph 𝐺
𝑥

∗ 𝐻
𝑦.

G H

x y

Figure 2: The graph 𝐺𝑥 + 𝐻𝑦.

plus the number of all (𝐴, 𝐵, 2𝐶)-edge colourings of the graph
𝐺 multiplied by the number of all (𝐴, 𝐵, 2𝐶)-edge colourings
of graphs 𝐻 \ {𝑦𝑦

𝑗
}, where 𝑗 = 1, 2, . . . , 𝑙. In other words,

𝛿
𝐴

= 𝛿
𝐵
= 𝛿(𝐺)𝛿(𝐻) and

𝛿
𝐶

= 𝛿 (𝐻)

𝑘

∑
𝑖=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
}) + 𝛿 (𝐺)

𝑙

∑
𝑗=1

𝛿 (𝐻 \ {𝑦𝑦
𝑗
}) . (4)

Since 𝛿(𝐺𝑥 +𝐻𝑦) = 𝛿
𝐴
+ 𝛿
𝐵
+ 𝛿
𝐶
, then we obtain equality (1).

By 𝑒
𝑖
we denote the edge 𝑥𝑥

𝑖
∈ 𝐸(𝐺), where 𝑖 = 1, 2, . . . , 𝑘

and by 𝑒
𝑗
we denote the edge 𝑦𝑦

𝑗
∈ 𝐸(𝐻), where 𝑗 =

1, 2, . . . , 𝑙.Assume that 𝑟 = min{𝑘, 𝑙} and for 𝑡 ∈ {0, 1, 2, . . . , 𝑟}

let 𝜁(𝑡) be the number of all (𝐴, 𝐵, 2𝐶)-edge colourings of
the graph 𝐺

𝑥 ∗ 𝐻𝑦 with exactly 𝑡 𝐶-monochromatic paths
{𝑒, 𝑒} ⊂ 𝐸(𝐺𝑥 ∗ 𝐻𝑦), such that 𝑒 ∈ {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑘
} and

𝑒 ∈ {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑙
}. Observe that 𝜁(0) = 𝛿(𝐺)𝛿(𝐻) and

𝜁 (1) =

𝑘

∑
𝑖=1

𝑙

∑
𝑗=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
}) 𝛿 (𝐻 \ {𝑦𝑦

𝑗
}) . (5)

It should be noted that 𝛿(𝐺𝑥 ∗𝐻𝑦) = ∑
𝑟

𝑡=0
𝜁(𝑡) and so 𝛿(𝐺𝑥 ∗

𝐻𝑦) ≤ 𝜁(0)+𝜁(1), which gives inequality (2). Moreover, if 𝑙 =
1 then also 𝑟 = 1 and we obtain equality (3). This completes
the proof.

2. The Largest Number of (𝐴, 𝐵, 2𝐶)-Edge
Colourings in Trees

In this section we will show that, among all trees with the
given number of vertices 𝑛, the star K

1,𝑛−1
maximizes the
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number of (𝐴, 𝐵, 2𝐶)-edge colourings. Moreover the star
K
1,𝑛−1

is the unique tree with such property. To prove it we
need the following.

Theorem 4. Let 𝑚 ≥ 2 be an integer. Then for a graph 𝐺 and
arbitrary 𝑥 ∈ 𝑉(𝐺) one has

𝛿 (𝐺
𝑥

∗ K
V
1,𝑚

) < 𝛿 (𝐺
𝑥

∗ K
V0
1,𝑚

) , (6)

where V is the leaf ofK
1,𝑚

and V
0
is the center ofK

1,𝑚
.

Proof. Let 𝑉(K
1,𝑚

) = {V
0
, V
1
, . . . , V

𝑚
} and 𝐸(K

1,𝑚
) =

{V
0
V
1
, V
0
V
2
, . . . , V

0
V
𝑚
}. Let 𝑥 ∈ 𝑉(𝐺) be the vertex of degree

𝑘 ≥ 1 and let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
∈ 𝑉(𝐺) be neighbours of 𝑥. By (3)

inTheorem 3 we have

𝛿 (𝐺
𝑥

∗ K
V
1,𝑚

) = 𝛿 (𝐺) 𝛿 (K
1,𝑚

)

+ 𝛿 (K
1,𝑚−1

)

𝑘

∑
𝑖=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
})

(7)

and by inequality (2) in Theorem 3 we have

𝛿 (𝐺
𝑥

∗ K
V0
1,𝑚

)

≥ 𝛿 (𝐺) 𝛿 (K
1,𝑚

)

+

𝑘

∑
𝑖=1

𝑚

∑
𝑗=1

𝛿 (K
1,𝑚

\ {V
0
V
𝑗
}) 𝛿 (𝐺 \ {𝑥𝑥

𝑖
}) .

(8)

It should be noted that ∑𝑚
𝑗=1

𝛿(K
1,𝑚

\ {V
0
V
𝑗
}) = 𝑚𝛿(K

1,𝑚−1
)

and so (8) gives

𝛿 (𝐺
𝑥

∗ K
V0
1,𝑚

) ≥ 𝛿 (𝐺) 𝛿 (K
1,𝑚

)

+ 𝑚𝛿 (K
1,𝑚−1

)

𝑘

∑
𝑖=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
}) .

(9)

Since 𝑚 ≥ 2, then from (7) and (9) we have 𝛿(𝐺𝑥 ∗ KV
1,𝑚

) <

𝛿(𝐺
𝑥

∗ K
V0
1,𝑚

), which completes the proof.

Theorem 5. Let 𝑛 ≥ 2 be an integer and let 𝑇
𝑛
be a tree with 𝑛

vertices. Then

𝛿 (𝑇
𝑛
) ≤ 𝛿 (K

1,𝑛−1
) . (10)

Proof (by induction on the number of vertices of degree 𝑘 ≥ 2 in
the tree 𝑇

𝑛
). Let 𝑇

𝑛,𝑡
be an 𝑛-vertex tree with exactly 𝑡 vertices

of degree 𝑘 ≥ 2. If 𝑡 = 1 then the result is obvious, because𝑇
𝑛,1

is an 𝑛-vertex star K
1,𝑛−1

. Assume that inequality (10) holds
for 𝑇
𝑛,𝑡

with arbitrary 𝑡 ≥ 1. We will prove that it holds for
𝑇
𝑛,𝑡+1

. Note that for each tree 𝑇
𝑛,𝑡+1

there exists 𝑥 ∈ 𝑉(𝑇
𝑛,𝑡+1

),
such that 𝑇

𝑛,𝑡+1
is isomorphic to 𝑇𝑥

𝑛−𝑚+1,𝑡
∗ KV
1,𝑚−1

, where V
is the leaf of the starK

1,𝑚−1
and 𝑚 ≥ 3. ApplyingTheorem 4

we have

𝛿 (𝑇
𝑛,𝑡+1

) = 𝛿 (𝑇
𝑥

𝑛−𝑚+1,𝑡
∗ K

V
1,𝑚−1

)

< 𝛿 (𝑇
𝑥

𝑛−𝑚+1,𝑡
∗ K

V0
1,𝑚−1

) ,

(11)

where V
0
is the center of the starK

1,𝑚−1
.Note that 𝑇𝑥

𝑛−𝑚+1,𝑡
∗

K
V0
1,𝑚−1

is the 𝑛-vertex tree with 𝑡 vertices of the degree 𝑘 ≥

2. Thus, by the induction hypothesis we have 𝛿(𝑇
𝑛,𝑡+1

) ≤

𝛿(K
1,𝑛−1

), which completes the proof.

Remark 6. From Theorems 4 and 5 we can see that the star
K
1,𝑛−1

is a unique graph which maximizes the number of
(𝐴, 𝐵, 2𝐶)-edge colourings in trees of given order 𝑛.

3. The Smallest Number of (𝐴, 𝐵, 2𝐶)-Edge
Colourings in Trees

Now we show that, among all trees with the given number
of vertices 𝑛, the path P

𝑛
minimizes the number of all

(𝐴, 𝐵, 2𝐶)-edge colourings and that it is the unique tree with
such property. To prove it we need some initial results. First
we prove the following property of the Pell numbers.

Theorem7. Let 𝑞 ≥ 2 and𝑚
𝑖
≥ 1 be integers for 𝑖 = 1, 2, . . . , 𝑞.

Then
𝑞

∑
𝑖=1

𝑃
𝑚−𝑚𝑖

𝑃
𝑚𝑖

> 𝑃
𝑚−1

, (12)

where 𝑚 = 𝑚
1
+ 𝑚
2
+ ⋅ ⋅ ⋅ + 𝑚

𝑞
+ 1.

Proof (by induction on 𝑞). For 𝑞 = 2 we have
2

∑
𝑖=1

𝑃
𝑚1+𝑚2+1−𝑚𝑖

𝑃
𝑚𝑖

= 𝑃
𝑚1

𝑃
𝑚2+1

+ 𝑃
𝑚1+1

𝑃
𝑚2

> 𝑃
𝑚1+𝑚2

. (13)

We can check the above inequality using the well-known
identity for the Pell numbers

𝑃
𝑛
𝑃
𝑚+1

+ 𝑃
𝑛−1

𝑃
𝑚

= 𝑃
𝑛+𝑚

. (14)

Assume that inequality (12) holds for an arbitrary 𝑞 ≥ 2. We
show that it holds for 𝑞 + 1; namely,

𝑞+1

∑
𝑖=1

𝑃
𝑚+𝑚𝑞+1−𝑚𝑖

𝑃
𝑚𝑖

> 𝑃
𝑚+𝑚𝑞+1−1

, (15)

where𝑚
𝑞+1

is a positive integer and𝑚 = 𝑚
1
+𝑚
2
+⋅ ⋅ ⋅+𝑚

𝑞
+1.

Using (14) and the induction hypothesis we obtain
𝑞+1

∑
𝑖=1

𝑃
𝑚+𝑚𝑞+1−𝑚𝑖

𝑃
𝑚𝑖

=

𝑞

∑
𝑖=1

𝑃
𝑚+𝑚𝑞+1−𝑚𝑖

𝑃
𝑚𝑖

+ 𝑃
𝑚
𝑃
𝑚𝑞+1

=

𝑞

∑
𝑖=1

[𝑃
𝑚−𝑚𝑖+1

𝑃
𝑚𝑞+1

+ 𝑃
𝑚−𝑚𝑖

𝑃
𝑚𝑞+1−1

] 𝑃
𝑚𝑖

+ 𝑃
𝑚
𝑃
𝑚𝑞+1

= 𝑃
𝑚𝑞+1

𝑞

∑
𝑖=1

𝑃
𝑚−𝑚𝑖+1

𝑃
𝑚𝑖

+ 𝑃
𝑚𝑞+1−1

𝑞

∑
𝑖=1

𝑃
𝑚−𝑚𝑖

𝑃
𝑚𝑖

+ 𝑃
𝑚
𝑃
𝑚𝑞+1

> 𝑃
𝑚𝑞+1

𝑃
𝑚−1

+ 𝑃
𝑚𝑞+1−1

𝑃
𝑚−1

+ 𝑃
𝑚
𝑃
𝑚𝑞+1

> 𝑃
𝑚−1

𝑃
𝑚𝑞+1−1

+ 𝑃
𝑚
𝑃
𝑚𝑞+1

= 𝑃
𝑚+𝑚𝑞+1−1

,

(16)

which ends the proof.
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Let 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑞
, 𝑞 ≥ 2, be positive integers. By

S
𝑚1 ,𝑚2,...,𝑚𝑞

we denote the subdivision of a star K
1,𝑞

in such
way that in the resulting graph an 𝑖th edge ofK

1,𝑞
is replaced

by a path of length 𝑚
𝑖
, 𝑖 = 1, 2, . . . , 𝑞. For 𝑚

1
= 𝑚
2

= ⋅ ⋅ ⋅ =

𝑚
𝑞
= 1 the graphS

1,1,...,1
is a starK

1,𝑞
and for 𝑞 = 2 the graph

S
𝑚1 ,𝑚2

is a path P
𝑚1+𝑚2+1

. For 𝑞 = 3 the star subdivision
S
𝑚1 ,𝑚2,𝑚3

is called a tripod. In [11] we proved that

𝛿 (S
𝑚1 ,𝑚2 ,𝑚3

) = 𝑃
𝑚1+𝑚2+𝑚3+1

+ 2𝑃
𝑚1

𝑃
𝑚2

𝑃
𝑚3

(17)

for all positive integers 𝑚
1
, 𝑚
2
, and 𝑚

3
. We will use the

following notations:

𝑉(S
𝑚1 ,𝑚2,...,𝑚𝑞

) = {𝑦
0
} ∪ {𝑦

1

1
, 𝑦
1

2
, . . . , 𝑦

1

𝑚1

}

∪ {𝑦
2

1
, 𝑦
2

2
, . . . , 𝑦

2

𝑚2

} ∪ ⋅ ⋅ ⋅

∪ {𝑦
𝑞

1
, 𝑦
𝑞

2
, . . . , 𝑦

𝑞

𝑚𝑞

} ,

𝐸 (S
𝑚1 ,𝑚2,...,𝑚𝑞

) = {𝑦
0
𝑦
1

1
, 𝑦
1

1
𝑦
1

2
, . . . , 𝑦

1

𝑚1−1
𝑦
1

𝑚1

}

∪ {𝑦
0
𝑦
2

1
, 𝑦
2

1
𝑦
2

2
, . . . , 𝑦

2

𝑚2−1
𝑦
2

𝑚2

}

∪ ⋅ ⋅ ⋅

∪ {𝑦
0
𝑦
𝑞

1
, 𝑦
𝑞

1
𝑦
𝑞

2
, . . . , 𝑦

𝑞

𝑚𝑞−1
𝑦
𝑞

𝑚𝑞

} .

(18)

Theorem 8. Let 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑞
, 𝑞 ≥ 3, be positive integers.

Then

𝛿 (S
𝑚1 ,𝑚2,...,𝑚𝑞

) > 𝑃
𝑚1+𝑚2+⋅⋅⋅+𝑚𝑞+1

. (19)

Proof (by induction on 𝑞). If 𝑞 = 3 then the result we have
immediately from (17). Assume that the inequality holds for
𝑡 = 3, 4, . . . , 𝑞, with arbitrary 𝑞 ≥ 3. We will prove that it
holds for 𝑡 = 𝑞 + 1. Note that S

𝑚1 ,...,𝑚𝑞,𝑚𝑞+1
is isomorphic to

S𝑦0
𝑚1 ,...,𝑚𝑞

∗PV
𝑚𝑞+1+1

, where 𝑦
0
is the center ofS

𝑚1 ,...,𝑚𝑞
, V is the

leaf ofP
𝑚𝑞+1+1

, and 𝑚
𝑞+1

is a positive integer. Thus, applying
(3) of Theorem 3 we obtain

𝛿 (S
𝑚1 ,...,𝑚𝑞,𝑚𝑞+1

)

= 𝛿 (P
𝑚𝑞+1+1

) 𝛿 (S
𝑚1 ,...,𝑚𝑞

)

+ 𝛿 (P
𝑚𝑞+1

)

𝑞

∑
𝑖=1

𝛿 (S
𝑚1 ,...,𝑚𝑞

\ {𝑦
0
𝑦
𝑖

1
}) .

(20)

Note that for all 𝑖 ∈ {1, 2, . . . , 𝑞}

𝛿 (S
𝑚1 ,...,𝑚𝑞

\ {𝑦
0
𝑦
𝑖

1
})

= 𝛿 (S
𝑚1 ,𝑚2 ,...,𝑚𝑖−1,𝑚𝑖+1,...,𝑚𝑞

) 𝛿 (P
𝑚𝑖

) .

(21)

By induction hypothesis we have 𝛿(S
𝑚1 ,𝑚2 ,...,𝑚𝑖−1,𝑚𝑖+1,...,𝑚𝑞

) >

𝑃
𝑚−𝑚𝑖

for all 𝑖 ∈ {1, 2, . . . , 𝑞} and 𝑚 = 𝑚
1
+ 𝑚
2
+ ⋅ ⋅ ⋅ + 𝑚

𝑞
+ 1.

Therefore (21) andTheorems 1 and 7 give
𝑞

∑
𝑖=1

𝛿 (S
𝑚1 ,...,𝑚𝑞

\ {𝑦
0
𝑦
𝑖

1
}) >

𝑞

∑
𝑖=1

𝑃
𝑚−𝑚𝑖

𝑃
𝑚𝑖

> 𝑃
𝑚−1

. (22)

Thus by (20), (22), andTheorem 1 we have

𝛿 (S
𝑚1 ,...,𝑚𝑞 ,𝑚𝑞+1

) > 𝑃
𝑚𝑞+1+1

𝛿 (S
𝑚1 ,...,𝑚𝑞

) + 𝑃
𝑚𝑞+1

𝑃
𝑚−1

. (23)

By the induction hypothesis we have 𝛿(S
𝑚1 ,...,𝑚𝑞

) > 𝑃
𝑚
and so

(23) gives

𝛿 (S
𝑚1 ,...,𝑚𝑞,𝑚𝑞+1

) > 𝑃
𝑚𝑞+1+1

𝑃
𝑚

+ 𝑃
𝑚𝑞+1

𝑃
𝑚−1

. (24)

Using identity (14) we have 𝛿(S
𝑚1 ,...,𝑚𝑞 ,𝑚𝑞+1

) > 𝑃
𝑚+𝑚𝑞+1

=

𝑃
𝑚1+⋅⋅⋅+𝑚𝑞+𝑚𝑞+1+1

, which completes the proof.

Theorem9. Let𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑞
, 𝑞 ≥ 2, be positive integers and

let𝑚 = 𝑚
1
+𝑚
2
+⋅ ⋅ ⋅+𝑚

𝑞
+1.Then for a graph𝐺 and arbitrary

𝑥 ∈ 𝑉(𝐺) one has

𝛿 (𝐺
𝑥

+ S
𝑦0

𝑚1 ,𝑚2 ,...,𝑚𝑞

) > 𝛿 (𝐺
𝑥

+ P
V
𝑚
) , (25)

where 𝑦
0
is the center ofS

𝑚1 ,𝑚2,...,𝑚𝑞
and V is the leaf of the path

P
𝑚
.

Proof. Let 𝑥 ∈ 𝑉(𝐺) be the vertex of degree 𝑘 ≥ 1

and let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
∈ 𝑉(𝐺) be neighbours of 𝑥. Note

that 𝐺𝑥 + S𝑦0
𝑚1 ,𝑚2,...,𝑚𝑞

is isomorphic to 𝐺𝑥 ∗ S
𝑦

𝑚1 ,𝑚2,...,𝑚𝑞,1
,

whereS
𝑚1 ,𝑚2,...,𝑚𝑞,1

is the graph obtained fromS
𝑚1 ,𝑚2,...,𝑚𝑞

by
adding a vertex 𝑦 and an edge 𝑦

0
𝑦. Therefore, equality (3) of

Theorem 3 gives

𝛿 (𝐺
𝑥

+ S
𝑦0

𝑚1 ,𝑚2 ,...,𝑚𝑞

)

= 𝛿 (𝐺) 𝛿 (S
𝑚1 ,𝑚2 ,...,𝑚𝑞 ,1

)

+ 𝛿 (S
𝑚1 ,𝑚2,...,𝑚𝑞

)

𝑘

∑
𝑖=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
}) .

(26)

Moreover equality (1) of Theorem 3 gives

𝛿 (𝐺
𝑥

+ P
V
𝑚
) = 2𝛿 (𝐺) 𝛿 (P

𝑚
)

+ 𝛿 (P
𝑚
)

𝑘

∑
𝑖=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
})

+ 𝛿 (𝐺) 𝛿 (P
𝑚−1

) .

(27)

By (27), Theorem 1, and the definition of (𝑃
𝑛
) we obtain

𝛿 (𝐺
𝑥

+ P
V
𝑚
) = 𝛿 (𝐺) 𝑃

𝑚+1
+ 𝑃
𝑚

𝑘

∑
𝑖=1

𝛿 (𝐺 \ {𝑥𝑥
𝑖
}) . (28)

From Theorem 8 we have 𝛿(S
𝑚1 ,𝑚2,...,𝑚𝑞 ,1

) > 𝑃
𝑚+1

and
𝛿(S
𝑚1 ,𝑚2,...,𝑚𝑞

) ≥ 𝑃
𝑚

and so (26) and (28) give 𝛿(𝐺𝑥 +

S𝑦0
𝑚1 ,𝑚2 ,...,𝑚𝑞

) > 𝛿(𝐺𝑥 + PV
𝑚
), which ends the proof.

Theorem 10. Let 𝑛 ≥ 2 be an integer and let 𝑇
𝑛
be a tree with

𝑛 vertices. Then

𝛿 (𝑇
𝑛
) ≥ 𝛿 (P

𝑛
) . (29)
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Proof (by induction on the number of vertices of degree 𝑘 ≥ 3 in
the tree𝑇

𝑛
). Let𝑇

𝑛,𝑡
be the 𝑛-vertex tree with exactly 𝑡 vertices

of degree 𝑘 ≥ 3. If 𝑡 = 0 then the result is obvious, because𝑇
𝑛,0

is an 𝑛-vertex pathP
𝑛
. Assume that inequality (29) holds for

𝑇
𝑛,𝑡

with arbitrary 𝑡 ≥ 0.We will prove that it holds for 𝑇
𝑛,𝑡+1

.

Note that for each tree 𝑇
𝑛,𝑡+1

there exists 𝑥 ∈ 𝑉(𝑇
𝑛,𝑡+1

), such
that 𝑇

𝑛,𝑡+1
is isomorphic to 𝑇

𝑥

𝑛−𝑚,𝑡
+ S𝑦0
𝑚1 ,𝑚2,...,𝑚𝑞

, where 𝑦
0
is

the center of S
𝑚1 ,𝑚2,...,𝑚𝑞

, 𝑚 = 𝑚
1
+ 𝑚
2
+ ⋅ ⋅ ⋅ + 𝑚

𝑞
+ 1, and

𝑞 ≥ 2. ApplyingTheorem 9 we have

𝛿 (𝑇
𝑛,𝑡+1

) = 𝛿 (𝑇
𝑥

𝑛−𝑚,𝑡
+ S
𝑦0

𝑚1 ,𝑚2,...,𝑚𝑞

)

> 𝛿 (𝑇
𝑥

𝑛−𝑚,𝑡
+ P

V
𝑚
) ,

(30)

where V is the leaf of the path P
𝑚
. Note that 𝑇𝑥

𝑛−𝑚,𝑡
+ PV
𝑚

is the 𝑛-vertex tree with 𝑡 vertices of degree 𝑘 ≥ 3. Thus by
the induction hypothesis we have 𝛿(𝑇

𝑛,𝑡+1
) ≥ 𝛿(P

𝑛
) and the

proof is complete.

Remark 11. From Theorems 9 and 10 we can see that the
path P

𝑛
is a unique graph which minimizes the number of

(𝐴, 𝐵, 2𝐶)-edge colourings in trees of given order 𝑛.

From previous theorems we have also the following.

Corollary 12. If 𝑇
𝑛
is a tree with the number of vertices 𝑛 ≥ 2,

then

𝑃
𝑛
≤ 𝛿 (𝑇

𝑛
) ≤ 𝑠
𝑛−1

. (31)

Moreover, if 𝑇
𝑛
is different fromP

𝑛
andK

1,𝑛−1
, then

𝑃
𝑛
< 𝛿 (𝑇

𝑛
) < 𝑠
𝑛−1

. (32)
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[7] E. Kiliç, “The generalized Pell (p,i)-numbers and their Binet
formulas, combinatorial representations, sums,” Chaos, Solitons
and Fractals, vol. 40, no. 4, pp. 2047–2063, 2009.
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