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Weak convergence of semi-Markov processes in the diffusive approximation scheme is studied in the paper.This problem is not new
and it is studied in many papers, using convergence of random processes. Unlike other studies, we used in this paper concept of the
compensating operator. It enables getting sufficient conditions of weak convergence under the conditions on the local characteristics
of output semi-Markov process.

1. Introduction

Weak convergence conditions for semi-Markov stochastic
processes in the diffusion approximation scheme without
balance condition are studied in the paper.Theory of Markov
and semi-Markov processes is used in securitymarket (Black-
Sholes equation, Vasicek model, and their modifications)
[1], queuing systems [2, 3], engineering [4], biology [5],
climate models [6, 7], and publicity models [8]. But numer-
ous papers were devoted to problems of Markov processes
convergence.This approach produces errors of mathematical
model because exponential distribution of sojourn time in
states is supposed. The supposition enables staying in the
state any time with nonzero probability. This is unacceptable
in physics systems. That is why the subject of this research
is semi-Markov processes. Beside this, other techniques of
weak convergence research are used in many papers. In
this case authors get different sufficient conditions of the
convergence. For example, in [9] author states his results as
solution of some martingale problem. It complicates testing
these conditions. In [3] author focuses on the convergence of
characteristic functions and claims the convergence of char-
acteristic functions for prelimited processes. In [10] author
claims the convergence of the generators of the prelimited
processes to the generator of some diffusion process.

In contrast to abovelisted works, only moment’s condi-
tions on the semi-Markov process local characteristic are

used in this paper. Using the term of compensating operator
makes it possible to not use convergence of the generators of
prelimited processes.

2. Main Result

Consider the conditions of weak convergence of semi-
Markov random processes (SMP) in diffusion approximation
scheme. Consideration of these problems can be found in
[3, 9–15]. Let us consider SMP 𝜂(𝑡), 𝑡 ≥ 0, on the probability
space (Ω, 𝐹, 𝑃) [11, 16, 17] in Euclidian space 𝑅𝑑, 𝑑 ≥ 1, which
is generated by the Markov renewal process (MRP)

(𝜂𝑛, 𝜏𝑛) , 𝑛 ≥ 0; (1)

that is

𝜂 (𝑡) = 𝜂](𝑡), (2)

where ](𝑡)fl max{𝑛 ≥ 0 : 𝜏𝑛 < 𝑡} is the counting process.
Denote the sojourn time in states 𝜃𝑛fl 𝜏𝑛 − 𝜏𝑛−1, 𝑛 ≥

0. MRP is determined by semi-Markov kernel, which sets
conditional probabilities of jump’s values, and by distribution
of the sojourn time in states:

𝑄 (𝑢, 𝑑V, 𝑡)fl𝑃 {Δ𝜂𝑛+1 ∈ 𝑑V, 𝜃𝑛+1 ≤ 𝑡 | 𝜂𝑛 = 𝑢}

= Γ (𝑢, 𝑑V) 𝐹𝑢 (𝑡) ,
(3)
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where 𝑢 ∈ 𝑅𝑑, 𝑑V ∈ 𝛽𝑅𝑑 , 𝑡 ≥ 0, Δ𝜂𝑛+1 = 𝜂𝑛+1 − 𝜂𝑛, 𝛽𝑅𝑑 is the
Borel 𝜎-algebra on 𝑅𝑑, and

Γ (𝑢, 𝑑V)fl𝑃 {Δ𝜂𝑛+1 ∈ 𝑑V | 𝜂𝑛 = 𝑢} ,

𝐹𝑢 (𝑡)fl𝑃 {𝜃𝑛+1 ≤ 𝑡 | 𝜂𝑛 = 𝑢} .
(4)

Note that in this section the important fact will be one
when the kernel 𝑄(𝑢, 𝑑V, 𝑡) has decomposition:

𝑄 (𝑢, 𝑑V, 𝑡) = Γ (𝑢, 𝑑V) 𝐹𝑢 (𝑡) (5)

because in general this assumption is not valid.
In this paper suppose that balance condition did not hold;

it means that

𝑎 (𝑢) fl ∫
𝑅𝑑
VΓ (𝑢, 𝑑V) ̸= 0. (6)

In this case it is impossible to consider the process in
the scheme of diffusive approximation, which is defined by
relation

𝜁
𝜀
(𝑡) fl 𝜀𝜂 (𝜀−2𝑡) (7)

because it is impossible towrite the asymptotic representation
of compensating operator (CO) of the process. That is why
we consider semi-Markov process 𝜂𝜀(𝑡), 𝑡 ≥ 0, in averaging
scheme, which is defined by equation

𝜂
𝜀
(𝑡) fl 𝜀𝜂 (𝜀−1𝑡) . (8)

We can prove weak convergence of the process 𝜂𝜀 ⇒ 𝜌,
where 𝜌 is the solution of differential equation

𝑑𝜌 (𝑡)

𝑑𝑡
= 𝐶 (𝜌 (𝑡)) , (9)

where

𝐶 (𝑢) = 𝑎 (𝑢) 𝑏 (𝑢) ,

𝑏 (𝑢)fl (𝜆 (𝑢))−1 ,

𝜆 (𝑢)fl ∫
∞

0

𝑡𝑑𝐹𝑢 (𝑡) .

(10)

Consider stochastic process:

𝜉
𝜀
(𝑡) fl 𝜀−1 (𝜀2𝜂 (𝜀−2𝑡) − 𝜌 (𝑡)) . (11)

According to (11), we get

𝜏
𝜀

𝑛
= 𝜀
2
𝜏𝑛,

𝜃
𝜀

𝑛
= 𝜀
2
𝜃𝑛.

(12)

Let us define

𝜉
𝜀

𝑛
fl 𝜀𝜂 (𝜏𝑛) − 𝜀

−1
𝜌 (𝜀
2
𝜏𝑛) ,

𝜌
𝜀

𝑛
= 𝜌 (𝜀

2
𝜏𝑛) .

(13)

Consider compensating operator for some process.

Definition 1. The compensating operator Γ𝜀 for SMP 𝜉𝜀(𝑡), 𝑡 ≥
0, is defined by the relation

Γ
𝜀
𝜑 (𝑢, 𝑡)

fl
𝐸 [𝜑 (𝜉

𝜀

𝑛+1
, 𝜏
𝜀

𝑛+1
) − 𝜑 (𝜉

𝜀

𝑛
, 𝜏
𝜀

𝑛
) | 𝜉
𝜀

𝑛
= 𝑢, 𝜏

𝜀

𝑛
= 𝑡]

𝐸 [𝜃
𝜀

𝑛+1
| 𝜉𝜀
𝑛
= 𝑢]

(14)

on the test-functions 𝜑(𝑢, 𝑡).

In this case there is a weak convergence SMP in the
scheme of diffusive approximation without balance condi-
tions.

Theorem 2. Let the following conditions be satisfied:

(D1) Uniform integrability (bounded time in states):

lim
𝑇→∞

sup
𝑢∈𝑅𝑑

∫

∞

𝑇

𝐹 (𝑡) 𝑑𝑡 = 0. (15)

(D2) ∃𝐶, 𝐶1 > 0, that inequality

𝐸𝑒
−𝜀𝜃𝑢 ≤ 1 − 𝐶𝜀,

𝐷𝜃𝑢 < 𝐶1

(16)

is uniform by 𝑢 ∈ 𝑅𝑑 and 𝜀 > 0.
(D3) Boundary of the second moment of jump’s value:

sup
𝑢∈𝑅𝑑

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑅𝑑
VV𝑇Γ𝜀 (𝑢, 𝑑V)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< ∞. (17)

(D4) Kernel Γ𝜀(𝑢, 𝑑V) satisfies the following conditions:

𝑎
𝜀
(𝑧, 𝑢) = ∫

𝑅𝑑
VΓ𝜀 (𝑧 + 𝜀𝑢, 𝑑V)

= 𝑎 (𝑧) + 𝜀𝑎1 (𝑧, 𝑢) + 𝜀𝛿
𝜀

1
,

𝐵
𝜀
(𝑧, 𝑢) = ∫

𝑅𝑑
VV𝑇Γ𝜀 (𝑧 + 𝜀𝑢, 𝑑V) = 𝐵 (𝑧) + 𝜀𝛿

𝜀

2
,

(18)

where 𝛿𝜀
1
, 𝛿
𝜀

2
→ 0, 𝜀 → 0.

(D5) Function 𝑏(𝑢) satisfies the condition

𝑏 (𝜌 + 𝜀𝑢) = 𝑏 (𝜌) + 𝜀𝛿
𝜀

3
, 𝛿
𝜀

3
󳨀→ 0, 𝜀 󳨀→ 0. (19)

(D6) Convergence of the initial conditions is as follows:

𝜉
𝜀
(0) 󳨀→ 𝜉 (0) ,

sup
𝜀>0

𝐸
󵄨󵄨󵄨󵄨𝜉
𝜀
(0)
󵄨󵄨󵄨󵄨 < ∞.

(20)

Then weak convergence takes place in 𝐷([0, 𝑇]), 𝑇 < ∞,
as 𝜀 ↓ 0:

𝜉
𝜀
󳨐⇒ 𝜉
0
, (21)
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where 𝜉0(𝑡), 𝑡 ≥ 0, is the diffusion process with generator

Γ
0

𝑡
𝜑 (𝑢) = 𝐶1 (𝑢, 𝜌 (𝑡)) 𝜑

󸀠
(𝑢)

+
1

2
𝐵 (𝜌 (𝑡)) 𝜑

󸀠󸀠
(𝑢) ,

𝐶1 (𝑢, 𝜌 (𝑡))fl 𝑏 (𝜌 (𝑡)) 𝑎1 (𝜌 (𝑡) , 𝑢) ,

𝐵 (𝜌 (𝑡))fl 𝑏 (𝜌 (𝑡)) 𝜎2 (𝜌 (𝑡)) ,

𝜎
2
(𝑢)fl𝐵 (𝑢) − 𝑎2 (𝑢) .

(22)

Remark 3. Boundary operator depends on the averaged
evolution 𝜌; that is why it is advisable to consider weak con-
vergence of two-component evolution (𝜉𝜀, 𝜌𝜀). But, according
to [11, 18–20], we will prove theorem only for the process,
which consists of parameter of series 𝜀, in other words 𝜉𝜀.

The proof of Theorem 2 consists of two steps.

Step 1. Let us solve the problem of the singular perturbation
for CO of process 𝜉𝜀 as 𝜀 ↓ 0.

Consider an evolution equation

𝑑𝜌 (𝑡)

𝑑𝑡
= 𝐶 (𝜌 (𝑡)) (23)

that corresponds with

𝐶𝜑 (V) = 𝐶 (V) 𝜑󸀠 (V) (24)

and with semigroup

𝐶𝑡𝜑 (V) = 𝜑(V + ∫
𝑡

0

𝐶 (𝜌 (𝑠)) 𝑑𝑠) . (25)

By analogues, an evolution equation

𝑑𝜌
𝜀
(𝑡)

𝑑𝑡
= −𝜀
−1
𝐶 (𝜌
𝜀
(𝑡)) (26)

corresponds with operator

𝐶
𝜀
𝜑 (V) = −𝜀𝐶 (V) 𝜑󸀠 (V) (27)

with semigroup

𝐶
𝜀

𝑡
𝜑 (V) = 𝜑(V − 𝜀−1 ∫

𝑡

0

𝐶 (𝜌 (𝑠)) 𝑑𝑠) . (28)

Lemma 4. CO of two-component process (𝜉𝜀, 𝜌𝜀) on test-
functions 𝜑 ∈ 𝐶(𝑅2𝑑) is given by

Γ
𝜀
𝜑 (𝑢, V) = 𝜀−2𝑏 (V + 𝜀𝑢) ∫

∞

0

𝐹V+𝜀𝑢 (𝑑𝑠)

⋅ ∫
𝑅𝑑
[𝐶𝜀2𝑠𝐶

𝜀

𝜀2𝑠
Δ 𝜀𝑧𝜑 (𝑢, V) − 𝜑 (𝑢, V)]

⋅ Γ𝜀 (V + 𝜀𝑢, 𝑑𝑧) ,

(29)

where

Δ 𝜀𝑧𝜑 (𝑢, V) fl𝜑 (𝑢 + 𝜀𝑧, V) . (30)

Proof. By Definition 1, we got a relation for values of jumps
and time of renewals:

Δ𝜉
𝜀

𝑛+1
= 𝜀Δ𝜂

𝜀

𝑛+1
− 𝜀
−1
Δ𝜌
𝜀

𝑛+1
,

𝜏
𝜀

𝑛
= 𝜀
2
𝜏𝑛.

(31)

Then

Δ𝜌
𝜀

𝑛+1
= ∫

𝜀
2
𝜃𝑛+1

0

𝐶 (𝜌 (𝜀
2
𝜏𝑛 + ℎ)) 𝑑ℎ.

(32)

So, according to the condition 𝜌𝜀
𝑛
= V we get

𝜑 (𝑢, 𝜌
𝜀

𝑛+1
) = 𝜑 (𝑢, 𝜌

𝜀

𝑛
+ Δ𝜌
𝜀

𝑛+1
) = 𝐶𝜀2𝜃𝑛+1

𝜑 (𝑢, V) . (33)

For embedded chain 𝜉𝜀
𝑛
, 𝑛 ≥ 0, we get

𝐸 [𝜑 (𝜉
𝜀

𝑛+1
, V) | 𝜉𝜀

𝑛
= 𝑢] = 𝐸 [𝜑 (𝜉

𝜀

𝑛
+ Δ𝜉
𝜀

𝑛+1
, V) | 𝜉𝜀

𝑛

= 𝑢] = 𝐸 [𝜑 (𝜉
𝜀

𝑛+1
, V) | 𝜉𝜀

𝑛
= 𝑢] = 𝐸[𝜑(𝜉

𝜀

𝑛

+ Δ𝜂
𝜀

𝑛+1
− 𝜀
−1
∫

𝜀
2
𝜃𝑛+1

0

𝐶 (𝜌 (𝜀
2
𝜏𝑛 + ℎ)) 𝑑ℎ, V) | 𝜉

𝜀

𝑛

= 𝑢] = 𝐶
𝜀

𝜀2𝑠
Δ 𝜀𝜃𝑛+1

𝜑 (𝑢, V) .

(34)

Then calculate

Γ
𝜀
𝜑 (𝑢, V)

=
𝐸 [𝜑 (𝜉

𝜀

𝑛+1
, 𝜌
𝜀

𝑛+1
) − 𝜑 (𝑢, V) | 𝜉𝜀

𝑛
= 𝑢, 𝜌

𝜀

𝑛
= V]

𝐸 [𝜃
𝜀

𝑛+1
| 𝜉𝜀
𝑛
= 𝑢]

= 𝜀
−2
𝑏 (V + 𝜀𝑢) 𝐸 [𝜑 (𝜉𝜀

𝑛
+ Δ𝜉
𝜀

𝑛+1
, 𝜌
𝜀

𝑛
+ Δ𝜌
𝜀

𝑛+1
)

− 𝜑 (𝑢, V) | 𝜂𝑛 = 𝑢 + 𝜀V] .

(35)

So, finally we get representation of the compensating
operator for two-component evolution (𝜉𝜀, 𝜌𝜀):

Γ
𝜀
𝜑 (𝑢, V) = 𝜀−2𝑏 (V + 𝜀𝑢) ∫

∞

0

𝐹V+𝜀𝑢 (𝑑𝑠)

⋅ ∫
𝑅𝑑
[𝐶𝜀2𝑠𝐶

𝜀

𝜀2𝑠
Δ 𝜀𝑧𝜑 (𝑢, V) − 𝜑 (𝑢, V)]

⋅ Γ𝜀 (V + 𝜀𝑢, 𝑑𝑧) ,

(36)

as we wanted to show.
Lemma 4 is proved.

Consider asymptotic behavior of CO, from Lemma 4 as
𝜀 ↓ 0.

Lemma 5. On test-functions 𝜑(𝑢, V) ∈ 𝐶∞(𝑅2𝑑) CO of the
process (𝜉𝜀, 𝜌𝜀) has asymptotic representation

Γ
𝜀
𝜑 (𝑢, V) = Γ0𝜑 (𝑢, V) + 𝑅𝜀𝜑 (𝑢, V) , (37)
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where Γ0 is given by the following relation:

Γ
0
𝜑 (𝑢, V) = 𝐶1 (V, 𝑢) 𝜑

󸀠

𝑢
(𝑢, V) +

1

2
𝐵 (V) 𝜑󸀠󸀠

𝑢
(𝑢, V)

+ 𝐶 (V) 𝜑󸀠V (𝑢, V)
(38)

and for the negligible term,

lim
𝜀↓0

sup
𝑢,V∈𝑅𝑑

󵄨󵄨󵄨󵄨𝑅
𝜀
𝜑 (𝑢, V)󵄨󵄨󵄨󵄨 = 0 (39)

is true.

Proof. Let us use an algebraic identity

(𝑎𝑏𝑐 − 1) = (𝑎 − 1) + (𝑏 − 1) + (𝑐 − 1)

+ (𝑎 − 1) (𝑏 − 1) + (𝑎 − 1) (𝑐 − 1)

+ (𝑏 − 1) (𝑐 − 1)

+ (𝑎 − 1) (𝑏 − 1) (𝑐 − 1) .

(40)

According to Lemma 4 and algebraic identity (40) we get

Γ
𝜀
𝜑 (𝑢, V) = 𝜀−2𝑏 (V + 𝜀𝑢) ∫

∞

0

𝐹V+𝜀𝑢 (𝑑𝑠)

⋅ ∫
𝑅𝑑
[(𝐶𝜀2𝑠 − 𝐼) + (𝐶

𝜀

𝜀2𝑠
− 𝐼) + (Δ 𝜀𝑧 − 𝐼) + 𝑜 (𝜀)]

⋅ 𝜑 (𝑢, V) Γ𝜀 (V + 𝜀𝑢, 𝑑𝑧) = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4.

(41)

Let us use the equations for semigroups [9]:

(𝐶𝜀2𝑠 − 𝐼) = 𝐶∫

𝜀
2
𝑠

0

𝐶𝜀2ℎ𝑑ℎ,

(𝐶
𝜀

𝜀2𝑠
− 𝐼) = 𝐶

𝜀
∫

𝜀
2
𝑠

0

𝐶
𝜀

𝜀2ℎ
𝑑ℎ.

(42)

Then for the term 𝐼1, by semigroups properties and
condition (D5), we get the following relation:

𝐼1 = 𝜀
−2
𝑏 (V + 𝜀𝑢) ∫

∞

0

𝐹V+𝜀𝑢 (𝑑𝑠) ∫
𝑅𝑑
𝐶

⋅ ∫

𝜀
2
𝑠

0

𝐶𝜀2ℎ𝑑ℎ𝜑 (𝑢, V) Γ𝜀 (V + 𝜀𝑢, 𝑑𝑧) = 𝑏 (V + 𝜀𝑢)

⋅ ∫

∞

0

𝐹V+𝜀𝑢 (𝑑𝑠) ∫
𝑅𝑑
𝐶𝑠𝜑 (𝑢, V) Γ𝜀 (V + 𝜀𝑢, 𝑑𝑧)

= 𝐶 (V) 𝜑󸀠V (𝑢, V) + 𝑜 (𝜀) .

(43)

Similarly for 𝐼2 + 𝐼3 we get

𝐼2 + 𝐼3 = 𝜀
−2
𝑏 (V + 𝜀𝑢) ∫

∞

0

𝐹V+𝜀𝑢 (𝑑𝑠)

⋅ ∫
𝑅𝑑
((𝐶
𝜀

𝜀2𝑠
− 𝐼) + (Δ 𝜀𝑧 − 𝐼)) 𝜑 (𝑢, V) Γ𝜀 (V + 𝜀𝑢, 𝑑𝑧)

= 𝐶1 (V, 𝑢) 𝜑
󸀠

𝑢
(𝑢, V) +

1

2
𝐵 (V) 𝜑󸀠󸀠

𝑢
(𝑢, V) + 𝑜 (𝜀) .

(44)

From factorization [𝐶𝜀2𝑠𝐶
𝜀

𝜀2𝑠
Δ 𝜀𝑧 − 𝐼], according to (40),

terms𝐶𝜀2𝑠−𝐼, (𝐶
𝜀

𝜀2𝑠
−𝐼)+(Δ 𝜀𝑧−𝐼)were considered. Γ

0 is built
by these terms. It is easy to check that the sum of the rest of
the terms is 𝑜(1) as 𝜀 ↓ 0, if conditions (D3)–(D5) hold.

Using representation for semigroups 𝐶𝜀2𝑠, 𝐶
𝜀

𝜀2𝑠
, and Δ 𝜀𝑧,

it is easy to show that negligible term is 𝑜(1) as 𝜀 ↓ 0.
Lemma 5 is proved.

Step 2. Let us show the relative compactness of the processes
family 𝜉𝜀 as 𝜀 > 0. We will use Theorem 1.4.6 from [21]. Let
us formulate and prove the statement we need to use this
theorem.

Remark 6. Conditions of relative compactness can also be
found in [22, 23].

Lemma 7. There is an inequality
󵄨󵄨󵄨󵄨Γ
𝜀
𝜑 (𝑢, V)󵄨󵄨󵄨󵄨 ≤ 𝐶𝜑 (45)

for test-functions 𝜑 ∈ 𝐶3,2
0
(𝑅
2𝑑
), where constant 𝐶𝜑 depends

only on function 𝜑.
For function 𝜑0(𝑢, V) = √1 + 𝑢2 + V2 there is a bound

󵄨󵄨󵄨󵄨Γ
𝜀
𝜑0 (𝑢, V)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑙𝜑0 (𝑢, V) , |𝑢| ≤ 𝑙, (46)

where constant 𝐶𝑙 depends only on the function 𝜑0, indepen-
dent from 𝜀.

Proof. Let us use the result of Lemma 5:
󵄨󵄨󵄨󵄨Γ
𝜀
𝜑 (𝑢, V)󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
Γ
0
𝜑 (𝑢, V)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑅
𝜀
𝜑 (𝑢, V)󵄨󵄨󵄨󵄨 ≤ sup

𝑢,V∈𝑅2𝑑

󵄨󵄨󵄨󵄨󵄨
𝑏 (V)

⋅ 𝑎1 (𝑢, V) 𝜑
󸀠

𝑢
+ 𝐶 (V) 𝜑󸀠V

󵄨󵄨󵄨󵄨󵄨
+ sup
𝑢,V∈𝑅2𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(𝑏 (V) 𝐵 (V)

+ ∫

∞

0

𝑠
2
𝐹V (𝑑𝑠) 𝐶

2
(V) − 2𝐶 (V) 𝑎 (V)) 𝜑󸀠󸀠

𝑢𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
𝑢,V∈𝑅2𝑑

󵄨󵄨󵄨󵄨𝑅
𝜀
𝜑 (𝑢, V)󵄨󵄨󵄨󵄨 .

(47)

According to the definition of test-function 𝜑 we have
sup
𝑢,V∈𝑅2𝑑 max{|𝜑|, |𝜑󸀠

𝑢
|, |𝜑
󸀠

V|, |𝜑
󸀠󸀠

𝑢𝑢
|} ≤ 𝐾 < ∞. To prove the

lemma, condition (D3) for a boundary of the first and the
secondmoments, condition (D4), and condition (D2) remain
to be used, from which it follows that |𝑏(𝑢)| < 𝑐 < ∞.

Then
󵄨󵄨󵄨󵄨Γ
𝜀
𝜑 (𝑢, V)󵄨󵄨󵄨󵄨 ≤ 𝑐𝐾1 (1 + 𝜀) < 𝐶𝜑, (48)

where constant𝐾1 = 𝐾1(𝜑) depends only on 𝜑, 𝐶𝜑 = 2𝑐𝐾1.
To prove condition (46) the properties of the function 𝜑0

remain to be remembered; namely

(𝜑0)
󸀠

𝑢
≤ 1 ≤ 𝜑0,

(𝜑0)
󸀠

V ≤ 1 ≤ 𝜑0,

(𝜑0)
󸀠

𝑢𝑢
≤ 1 ≤ 𝜑0,

(𝜑0)
󸀠

VV ≤ 1 ≤ 𝜑0.

(49)

Lemma 7 is proved.
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Lemma 8. 𝜉𝜀, 𝜀 > 0, is relatively compact family.

Proof. To determine the relative compactness of the family
𝜉
𝜀, 𝜀 > 0, according to Theorem 1.4.6 [21] submartingality of
the stochastic process 𝛼𝜀(𝑡) = 𝜑(𝜁𝜀(𝑡)) + 𝐶𝜑𝑡 for nonnegative
infinitely differentiable 𝜑 and for some constant 𝐶𝜑 and
inequality (45) and (46) remains to be shown, where 𝜁𝜀(𝑡) =
(𝜉
𝜀
(𝑡), 𝜌(𝑡)).
Let us prove that stochastic process 𝜁𝜀(𝑡) is nonneg-

ative submartingale relatively to the stream of 𝜎-algebras
𝐹
𝜀

𝑡
fl𝜎(𝜏𝜀

+
(𝑠), 𝑠 ≤ 𝑡), 𝜏𝜀

+
(𝑡) = 𝜏+(𝑡) + 1:

𝐸 [𝛼
𝜀
(𝑡) − 𝛼

𝜀
(𝑠) | 𝐹

𝜀

𝑡
]

= 𝐸 [𝜑 (𝜁
𝜀
(𝑡)) − 𝜑 (𝜁

𝜀
(𝑠)) | 𝐹

𝜀

𝑡
] + 𝐶𝜑 (𝑡 − 𝑠)

= 𝐸 [∫

𝑡

𝑠

Γ
𝜀
𝜑 (𝜁
𝜀
(𝑢)) 𝑑𝑢 | 𝐹

𝜀

𝑡
] + 𝐶𝜑 (𝑡 − 𝑠)

= 𝐸[∫

𝜏
𝜀

+
(𝑡)

𝜏𝜀
+
(𝑠)

(Γ
𝜀
𝜑 (𝜁
𝜀
(𝑢)) + 𝐶) 𝑑𝑢 | 𝐹

𝜀

𝑡
]

+ 𝐸[(∫

𝜏
𝜀

+
(𝑠)

𝑠

+∫

𝑡

𝜏𝜀
+
(𝑡)

) (Γ
𝜀
𝜑 (𝜁
𝜀
(𝑢)) + 𝐶) 𝑑𝑢 | 𝐹

𝜀

𝑡
]

+ 𝐶 (𝑡 − 𝜏
𝜀

+
(𝑡) − 𝑠 + 𝜏

𝜀

+
(𝑠)) .

(50)

Two last terms tend to 0 as 𝜀 ↓ 0. By Lemma 7

𝐸[∫

𝜏
𝜀

+
(𝑡)

𝜏𝜀
+
(𝑠)

(Γ
𝜀
𝜑 (𝜁
𝜀
(𝑢)) + 𝐶) 𝑑𝑢 | 𝐹

𝜀

𝑡
] ≥ 0. (51)

Measurability of the process 𝛼𝜀 relatively to the stream 𝐹𝜀
is obvious. So, 𝛼𝜀 is nonnegative submartingale.

Lemma 8 is proved.

According to Lemma 8 𝜁𝜀, 𝜀 > 0, is a relatively compact
family. To complete the proof of the theorem the family 𝜁𝜀
that converges to martingale remains to be shown. Consider
stochastic processes:

𝜁
𝜀

+
(𝑡)fl 𝜁𝜀 (𝜏𝜀

+
(𝑡)) ,

𝜁
𝜀

𝜏
(𝑡)fl 𝜁𝜀 (𝜏𝜀 (𝑡)) ,

𝑡 ≥ 0,

𝜇
𝜀

𝑡
fl𝜑 (𝜁𝜀 (𝑡)) − ∫

𝑡

0

Γ
0
𝜑 (𝜁
𝜀
(𝑠)) 𝑑𝑠.

(52)

Then

𝐸𝜇
𝜀

𝑡
= 𝐸(𝜑 (𝜁

𝜀
(𝑡)) − ∫

𝑡

0

Γ
0
𝜑 (𝜁
𝜀
(𝑠)) 𝑑𝑠)

= 𝐸 (𝜑 (𝜁
𝜀
(𝑡)) − 𝜑 (𝜁

𝜀

+
(𝑡)))

+ 𝐸(𝜑 (𝜁
𝜀

+
(𝑡)) − ∫

𝑡

0

Γ
𝜀
𝜑 (𝜁
𝜀

+
(𝑠)) 𝑑𝑠)

+ 𝐸(∫

𝜏
𝜀

+
(𝑡)

𝑡

Γ
0
𝜑 (𝜁
𝜀
(𝑠)) 𝑑𝑠)

+ 𝐸(∫

𝜏
𝜀

+
(𝑡)

𝑡

Γ
𝜀
(𝜑 (𝜁
𝜀

+
(𝑠)) − 𝜑 (𝜁

𝜀
(𝑠))) 𝑑s)

+ 𝐸(∫

𝜏
𝜀

+
(𝑡)

𝑡

(Γ
𝜀
𝜑 (𝜁
𝜀
(𝑠)) − Γ

0
𝜑 (𝜁
𝜀
(𝑠))) 𝑑𝑠) .

(53)

According to Lemma 7 the third term satisfies the relation

𝐸(∫

𝜏
𝜀

+
(𝑡)

𝑡

Γ
0
𝜑 (𝜁
𝜀
(𝑠)) 𝑑𝑠) 󳨀→ 0. (54)

By the same way we can prove that the first and the fourth
terms tend to 0, because 𝜑 is continuous.

The last term tends to 0 by Lemma 5, because

lim
𝜀↓0

Γ
𝜀
𝜑 (𝑢) = Γ

0
𝜑 (𝑢) (55)

on test-functions𝜑, which have uniform bounded derivatives
of any order.

The second term is equal to

𝜗
𝜀

𝑡
fl𝜑 (𝜁𝜀

+
(𝑡)) − ∫

𝑡

0

Γ
𝜀
𝜑 (𝜁
𝜀

+
(𝑠)) 𝑑𝑠 (56)

and has a martingale condition according to Lemma 6.1 [11].
Let us use its martingale condition:

𝐸𝜗
𝜀

𝑡
fl𝐸𝜁𝜀 (0) = 𝐸𝜑 (𝜉𝜀 (0)) . (57)

Finally we have

𝐸𝜇
𝜀

𝑡
= 𝐸𝜑 (𝜁

𝜀
(0)) + 𝑟

𝜀
, (58)

where 𝑟𝜀 → 0 as 𝜀 ↓ 0.
Now from theorem’s condition (D6) we get

𝐸𝜇𝑡 = 𝐸𝜑 (𝜁 (0)) ; (59)

in another words, 𝜁 is martingale.
So, we have checked all conditions of the weak conver-

gence, namely, the compactness of the processes family and
the martingality of the limited process. Beside this according
to Lemma 5 CO converges to the generator of diffusion
process.

Theorem 2 is proved.

3. Numerical Example

Consider semi-Markov process 𝜂(𝑡), 𝑡 ≥ 0, in 𝑅1. For this
process Γ(𝑢, 𝑑V) has uniform distribution on [𝑢−1/2, 𝑢+1/2]
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Figure 1: Diffusion approximation with epsilon = 0.1.
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Figure 2: Diffusion approximation with epsilon = 0.01.

and 𝜃𝑛+1 | 𝜂𝑛 = 𝑢 has Bernoulli distribution with parameters
(4, 1/2). Then

𝑎 (𝑢) = 𝑢 ̸= 0 (60)

and average evolution 𝜌(𝑡), 𝑡 > 0, has representation

𝜌 (𝑡) = 𝜌0𝑒
𝑡/2
, (61)

where 𝜌0 are initial condition. It is easy to verify the con-
ditions of the theorem. Prelimited processes are shown in
Figures 1 and 2 for 𝜀 = 10−1, 10−2.

4. Conclusions

Weak convergence of semi-Markov processes in the diffusive
approximation scheme on conditions on the local character-
istics of semi-Markov process is studied in this paper.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] M.-H. Chang, Stochastic Control of Hereditary Systems and
Applications, Springer, New York, NY, USA, 2008.

[2] M. Pinsky and S. Karlin,An Introduction to Stochastic Modeling,
Academic Press, San Diego, Calif, USA, 2010.

[3] V. V. Anisimov, Switching Processes in Queueing Models, ISTE,
London, UK, 2008.

[4] N. Matloff, From Algorithms to Z-Scores: Probabilistic and Sta-
tistical Modeling in Computer Science, University of California,
Berkeley, Calif, USA, 2013.

[5] Y. I. Petunin, Application of Stochastic Processes in Biology and
Medicine Theory, Naukova Dumka, Kyiv, Ukraine, 1981.

[6] R. Cogburn, “The ergodic theory of Markov chains in random
environments,”Wahrscheinlichkeitstheorie undVerwandteGebi-
ete, vol. 66, no. 1, pp. 109–128, 1984.

[7] H. Pruscha, Statistical Analysis of Climate Series, Springer,
Berlin, Germany, 2013.

[8] D. P. Kroese and J. C. C. Chan, Statistical Modeling and
Computation, Springer, New York, NY, USA, 2014.

[9] S. N. Ethier and T. G. Kurtz,Markov Processes: Characterization
and Convergence, Wiley, New York, NY, USA, 1986.

[10] M. N. Sviridenko, About Semi-Markov Process Family Conver-
gence to the Markov Process, VINITI, Moscow, Russia, 1986.

[11] V. S. Koroliuk and N. Limnios, Stochastic Systems in Merging
Phase Space, World Scientific, Singapore, 2005.

[12] V. S. Koroliuk and N. Limnios, “First integrals in the diffusion
approximation scheme,” Applied Mathematics Letters, vol. 21,
no. 3, pp. 227–231, 2008.

[13] V. S. Koroliuk, N. Limnios, and I. V. Samoilenko, “Independent
increments and Semi-Markov switching—towards application
and reliability,” in Advances in Degradation Models, pp. 105–111,
2009.

[14] Y. Kozachenko, A. Olenko, and O. Polosmak, “Uniform conver-
gence of compactly supported wavelet expansions of gaussian
random processes,” Communications in Statistics—Theory and
Methods, vol. 43, no. 10-12, pp. 2549–2562, 2014.

[15] Y. Kozachenko, A. Olenko, and O. Polosmak, “On convergence
of general wavelet decompositions of nonstationary stochastic
processes,” Electronic Journal of Probability, vol. 18, article 69, 21
pages, 2013.

[16] A. K. Alechkov, “Linear systems with poisson impulse actions
stability,” in Physics, Technical, Chemistry and Geology Sciences,
no. 6, pp. 75–77, Nauka, Kazan, Russia, 1990.

[17] V. V. Anisimov, “Switching processes,” Cybernetic and System
Analysis, no. 4, pp. 590–595, 1977.

[18] P. Billingsley, Convergence of Probability Measures, Nauka,
Moscow, Russia, 1977.

[19] V. Y. Korolev and E. V. Kossova, “On limit distributions of
randomly indexed multidimensional random sequences with
an operator normalization,” Journal of Mathematical Sciences,
vol. 72, no. 1, pp. 2915–2929, 1994.

[20] V. V. Anisimov, “Averaging in markov models with fast
semi-markov switches and applications,” Communications in
Statistics—Theory andMethods, vol. 33, no. 3, pp. 517–531, 2004.



Journal of Applied Mathematics 7

[21] D.W. Stroock and S. R. S. Varadhan,Multidimensional Diffusion
Processes, Springer, Berlin, Germany, 1979.

[22] A. Yurachkivsky, “A criterion for relative compactness of a
sequence of measure-valued random processes,”Acta Applican-
dae Mathematicae, vol. 79, no. 1, pp. 157–164, 2003.

[23] L. Wang, “Strong law of large number for branching Hunt
processes,” Acta Mathematica Sinica (English Series), vol. 31, no.
7, pp. 1189–1202, 2015.


