
Research Article
Analytical Solutions of Ionic Diffusion and Heat Conduction in
Multilayered Porous Media

Yu Bai,1 Ali Harajli,2 and Yunping Xi3

1Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2Colorado Department of Transportation, Denver, CO, USA
3University of Colorado Boulder, Boulder, CO, USA

Correspondence should be addressed to Yunping Xi; yunping.xi@colorado.edu

Received 25 June 2015; Revised 4 November 2015; Accepted 4 November 2015

Academic Editor: Goangseup Zi

Copyright © 2015 Yu Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ionic diffusion and heat conduction in a multiple layered porous medium have many important engineering applications. One of
the examples is the chloride ions from deicers penetrating into concrete structures such as bridge decks. Different overlays can
be placed on top of concrete surface to slowdown the chloride penetration. In this paper, the chloride ion diffusion equations
were established for concrete structures with multiple layers of protective system. By using Laplace transformation, an analytical
solutionwas developed first for chloride concentration profiles in two-layered system and then extended tomultiple layered systems
with nonconstant boundary conditions, including the constant boundary and linear boundary conditions. Because ionic diffusion
in saturated media and heat conduction are governed by the same form of partial differential equations with different materials
parameters, the analytical solution was further extended to handle heat conduction in amultiple layered system under nonconstant
boundary conditions. The numerical results were compared with available test data. The basic trends of the analytical solution and
the test data agreed quite well.

1. Introduction

Ionic diffusion and heat conduction in a multiple layered
porous medium have many engineering applications. One
of the examples is the chloride ion diffusion into concrete
structures such as bridge decks. This topic will be one of
the engineering examples used in this study. The basic
formulation and solution of the partial differential equations
will be based on the chloride ion diffusion in concrete
structures. The chloride ions come from deicers used in
the winter maintenance of concrete pavements and bridges.
The chloride ions penetrate into concrete and reach the
embedded steel bars (called rebars). Once the concentration
of the chloride ions at the rebar level reaches a critical level,
the rebar corrosion process will start. Rebar corrosion can
cause the reduction of service life of reinforced concrete
structures by two detrimental effects: the reduction of cross
section area of rebars and the spalling of concrete cover due to
the formation of rust (the density of rust is smaller than that

of steel). Corrosion damage of reinforced concrete structures
is a widespread phenomenon all over theworld.Many protec-
tive measures have been developed and applied. For concrete
bridges, different types of overlays can be installed on the top
surface of reinforced concrete bridge decks to slow down the
penetration of chloride ions, such as thin-bonded polymer
overlays and asphaltic waterproof membranes. The diffusion
resistances of the overlay systems and the concrete of bridge
decks are considerably different, because they aremade of dif-
ferent materials.Therefore, there is a pressing need to predict
the chloride diffusion in concrete structures with multiple
layers of different protective systems, which is the main topic
of this paper. Much research has been conducted on the
topic of ionic diffusion in porous media [1–5]. The efforts
were spent on different topics such as modelling of diffusion
parameters and effect of ionic and moisture interactions
during the diffusion process. There has been no analytical
solution available for ionic diffusion in multiple layered
systems.
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Figure 1: Concrete with two layers of protection.

Heat conduction in concrete structures is also important
in practice and its mathematical description is very much
similar to the chloride diffusion in concrete. There are many
available solutions for heat conduction in different systems
with different boundary conditions [6]. But, there has beenno
analytical solution available for heat conduction in multiple
layered systems. Since the governing equations for the heat
conduction and ionic diffusion have the same format but
with different material parameters, the solutions for the ionic
diffusion problem can also be used for the heat conduction
problem.

In this paper, we will first present the diffusion model
with two protective layers on top of concrete in Section 2.
In Section 3, we will use Laplace transform to obtain the
analytical solution of the diffusion equation under constant
boundary conditions. In Section 4, wewill change the bound-
ary conditions to nonconstant conditions and obtain the
corresponding analytical solutions. We will then generalize
our results to the case with (𝑛 − 1) layers of protective system
in Section 5. In Section 6, we will expand our results to
the heat conduction equation. A numerical solution of heat
condition will be given and available test data will be used
to verify the present analytical solutions. Finally, conclusions
will be given in Section 7.

2. Two Protective Layers under Constant
Boundary Conditions

The diffusion of chloride ions in concrete can be represented
by Fick’s first law.The flux of chloride ions through a concrete
structure is proportional to the gradient of free chloride
concentration in the pore solution in concrete:𝐽 = −𝐷cl grad (𝐶𝑓) , (1)

where 𝐽 is the flux of free chloride ions, 𝐷cl is the chloride
diffusivity, and 𝐶𝑓 is the free chloride concentration in the
pore solution. Once chloride ions get into concrete, some of
them attached to the surface of pore wall and the others are
free to move forward. Apparently, the flux of chloride ions
is related only to the free chloride ion gradient in (1). The
total chloride ions are the sum of the attached ions (called
bounded ions) and the free ions. Combining (1) with themass
conservation law ([1, 2]), we can obtain Fick’s second law:𝑑𝐶𝑡𝑑𝑡 = −div (𝐽) , (2)

in which 𝑡 is time in days and 𝐶𝑡 is the total chloride concen-
tration. By substituting (2) into (1) and decoupling the free

chloride concentration from the total chloride concentration,
the governing equation of the diffusion of chlorides into
saturated concrete can be written as ([3–5])

𝜕𝐶𝑡𝜕𝑡 = 𝜕𝐶𝑡𝜕𝐶𝑓 𝜕𝐶𝑓𝜕𝑡 = div [𝐷cl grad (𝐶𝑓)] . (3)

Governing partial differential equation (3) includes two
material parameters: the chloride binding capacity (𝜕𝐶𝑓/𝜕𝐶𝑡)
and the chloride diffusivity (𝐷cl). Both parameters depend on
the properties of concrete and the environmental conditions.

In this paper we assumed that the two material param-
eters 𝐷cl and (𝜕𝐶𝑓/𝜕𝐶𝑡) are two constants, and thus a
combined parameter can be defined—𝑑cl = 𝐷cl(𝜕𝐶𝑓/𝜕𝐶𝑡)—
which is called the chloride diffusion coefficient. The three-
dimensional diffusion equation, (3), can be written in a one-
dimensional form:

𝜕𝐶𝑓𝜕𝑡 = 𝑑cl 𝜕2𝐶𝑓𝜕𝑥2 , (4)

in which 𝑑cl is the chloride diffusion coefficient. As men-
tioned earlier, we will use chloride ion penetration into
concrete bridge desk as an example. There are two layers of
protection on the bridge decks as shown in Figure 1. Subscript
1 is for the top layer, 2 for the second layer, and 3 for
the substrate (i.e., the concrete deck). We denote that the
chloride diffusion coefficients of the first layer, the second
layer, and concrete are 𝑑1, 𝑑2, and 𝑑3, respectively, which
are all constants, and the corresponding concentrations of
chloride ions are 𝐶1(𝑥, 𝑡), 𝐶2(𝑥, 𝑡), and 𝐶3(𝑥, 𝑡), respectively.
Based on Fick’s first and second laws, the concentrations of
chlorides ions in the first layer, the second layer, and the
concrete satisfy the following differential equations:

𝜕𝐶1𝜕𝑡 = 𝑑1 𝜕2𝐶1𝜕𝑥2 , 𝑙1 ≤ 𝑥 ≤ 𝑙2, (5)

𝜕𝐶2𝜕𝑡 = 𝑑2 𝜕2𝐶2𝜕𝑥2 , 𝑙2 ≤ 𝑥 ≤ 𝑙3, (6)

𝜕𝐶3𝜕𝑡 = 𝑑3 𝜕2𝐶3𝜕𝑥2 , 𝑥 ≥ 𝑙3. (7)

There are two interfaces in the system: one is between
two layers of overlays and the other one is between the
second overlay and the concrete. At the interfaces, not only
the concentrations of chlorides ions, but also the fluxes of
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chloride ions should be equal (the continuity conditions).
That is, 𝐶1 (𝑙2, 𝑡) = 𝐶2 (𝑙2, 𝑡) , (8)𝐷1

𝜕𝐶1𝜕𝑥 𝑥=𝑙2 = 𝐷2
𝜕𝐶2𝜕𝑥 𝑥=𝑙2 , (9)𝐶2 (𝑙3, 𝑡) = 𝐶3 (𝑙3, 𝑡) , (10)𝐷2

𝜕𝐶2𝜕𝑥 𝑥=𝑙3 = 𝐷3
𝜕𝐶3𝜕𝑥 𝑥=𝑙3 . (11)

Assume the initial conditions are𝐶1 (𝑥, 0) = 𝐶2 (𝑥, 0) = 𝐶3 (𝑥, 0) = 𝐶0. (12)

The boundary conditions are𝐶1 (𝑙1, 𝑡) = 𝐶𝑠, (13)𝐶1 (∞, 𝑡) < ∞,𝐶2 (∞, 𝑡) < ∞,𝐶3 (∞, 𝑡) = 𝐶0. (14)

𝐶0 and 𝐶𝑠 are initial and boundary concentrations, respec-
tively.The diffusionmodel with two layers of protection is set
up by (5) to (14).

3. Analytical Solution for
the Two-Protective-Layered System

In this section we use Laplace transform to obtain the
analytical solution of (5)–(14).

3.1. Laplace Transform for the First Layer. Denote the Laplace
transform of 𝐶1(𝑥, 𝑡) by 𝐶1(𝑥, 𝑝); that is,

𝐶1 (𝑥, 𝑝) =L (𝐶1 (𝑥, 𝑡)) = ∫∞

0
𝐶1 (𝑥, 𝑡) 𝑒−𝑝𝑡𝑑𝑡. (15)

Then we use Laplace transform for the equations of the first
layer, which are (5), (12), (13), and (14), and we have𝑑2𝑑𝑥2𝐶1 (𝑥, 𝑝) = 𝑝𝑑1𝐶1 (𝑥, 𝑝) − 𝐶0𝑑1 , (16)

𝐶1 (𝑙1, 𝑝) = 𝐶𝑠𝑝 ≜ 𝐶𝑠. (17)

Suppose 𝐽0 is the flux of chloride ions at 𝑙1. By using (1), we
have

𝐽0 = −𝐷1
𝑑𝐶1𝑑𝑥 𝑥=𝑙1 . (18)

By the Laplace transform of (18), we have

𝑑𝑑𝑥𝐶1 (𝑙1, 𝑝) = − 𝐽0𝐷1
, (19)

where 𝐽0 is the Laplace transform of 𝐽0, which will be
determined later. Denote 𝑞1 = √𝑝/𝑑1. The solution of (16)
and (17) is

𝐶1 (𝑥, 𝑝) = 𝑠1𝑒−𝑞1𝑥 + 𝑠2𝑒𝑞1𝑥 + 𝐶0𝑝 ,𝑠1, 𝑠2 to be determined. (20)

Substitute (16) and (17) into (20); we have

𝐶𝑠 − 𝐶0𝑝 = 𝑠1𝑒−𝑞1𝑙1 + 𝑠2𝑒𝑞1𝑙1 ,
− 𝐽0𝐷1

= −𝑞1𝑠1𝑒−𝑞1𝑙1 + 𝑞1𝑠2𝑒𝑞1𝑙1 . (21)

And then

𝑠1 = (𝐶𝑠 − 𝐶0/𝑝) + 𝐽0/𝐷1𝑞12 𝑒−𝑞1(𝑥−𝑙1),
𝑠2 = (𝐶𝑠 − 𝐶0/𝑝) − 𝐽0/𝐷1𝑞12 𝑒𝑞1(𝑥−𝑙1). (22)

Consequently,

𝐶1 (𝑥, 𝑝) − 𝐶0𝑝 = (𝐶𝑠 − 𝐶0𝑝 ) cosh 𝑞1 (𝑥 − 𝑙1)
− 𝐽0𝐷1𝑞1 sinh 𝑞1 (𝑥 − 𝑙1) ,

(23)

and, by using (1),

𝐽1 (𝑥, 𝑝) = −𝐷1
𝑑𝐶1𝑑𝑥

= −𝐷1 (𝐶𝑠 − 𝐶0𝑝 ) 𝑞1 sinh 𝑞1 (𝑥 − 𝑙1)+ 𝐽0 cosh 𝑞1 (𝑥 − 𝑙1) ,
(24)

where 𝐽1 is the Laplace transform of 𝐽1, the flux of chloride
ions in the first layer.

Using the matrix format [6], we have

(𝐶1 (𝑥, 𝑝) − 𝐶0𝑝𝐽1 (𝑥, 𝑝) ) = ( cosh 𝑞1 (𝑥 − 𝑙1) − 1𝐷1𝑞1 sinh 𝑞1 (𝑥 − 𝑙1)−𝐷1𝑞1 sinh 𝑞1 (𝑥 − 𝑙1) cosh 𝑞1 (𝑥 − 𝑙1) )(𝐶𝑠 (𝑥, 𝑝) − 𝐶0𝑝𝐽0 (𝑥, 𝑝) ) . (25)
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3.2. Laplace Transform for the Second Layer. Denote the
Laplace transform of 𝐶2(𝑥, 𝑡) by 𝐶2(𝑥, 𝑝); we can use Laplace
transform for the equations of the second layer, which are (6),
(8), (9), (12), and (14), and we have

𝑑2𝑑𝑥2𝐶2 (𝑥, 𝑝) = 𝑝𝑑2𝐶2 (𝑥, 𝑝) − 𝐶0𝑑2 , (26)

𝐶1 (𝑙2, 𝑝) = 𝐶2 (𝑙2, 𝑝) , (27)𝐽1 (𝑙2, 𝑝) = 𝐽2 (𝑙2, 𝑝) , (28)

where 𝐽2 is the Laplace transform of 𝐽2, the flux of chloride
ions in the second layer. Denote 𝑞2 = √𝑝/𝑑2. With (25), (27),
and (28), we have

(𝐶2 (𝑙2, 𝑝) − 𝐶0𝑝𝐽2 (𝑙2, 𝑝) ) = (𝐶1 (𝑙2, 𝑝) − 𝐶0𝑝𝐽1 (𝑙2, 𝑝) ) = ( cosh 𝑞1 (𝑙2 − 𝑙1) − 1𝐷1𝑞1 sinh 𝑞1 (𝑙2 − 𝑙1)−𝐷1𝑞1 sinh 𝑞1 (𝑙2 − 𝑙1) cosh 𝑞1 (𝑙2 − 𝑙1) )(𝐶𝑠 − 𝐶0𝑝𝐽0 ) . (29)

Using the similar method in Section 3.1, we have

(𝐶2 (𝑥, 𝑝) − 𝐶0𝑝𝐽2 (𝑥, 𝑝) ) = ( cosh 𝑞2 (𝑥 − 𝑙2) − 1𝐷2𝑞2 sinh 𝑞2 (𝑥 − 𝑙2)−𝐷2𝑞2 sinh 𝑞2 (𝑥 − 𝑙2) cosh 𝑞2 (𝑥 − 𝑙2) )(𝐶1 (𝑙2, 𝑝) − 𝐶0𝑝𝐽1 (𝑙2, 𝑝) ) . (30)

3.3. Laplace Transform of the Last Layer (the Concrete Deck).
Denote the Laplace transform of 𝐶3(𝑥, 𝑡) by 𝐶3(𝑥, 𝑝); we
can use Laplace transform for the equations of the last layer,
the concrete, which are (7), (10), (11), (12), and (14); we
have

𝑑2𝑑𝑥2𝐶3 (𝑥, 𝑝) = 𝑝𝑑3𝐶2 (𝑥, 𝑝) − 𝐶0𝑑3 , (31)

𝐶3 (∞, 𝑝) = 𝐶0𝑝 , (32)𝐶2 (𝑙3, 𝑝) = 𝐶3 (𝑙3, 𝑝) , (33)𝐽2 (𝑙3, 𝑝) = 𝐽3 (𝑙3, 𝑝) , (34)

where 𝐽3 is the Laplace transform of 𝐽3, the flux of chloride
ions in concrete. Denote 𝑞3 = √𝑝/𝑑3. With (30), (33), and
(34), we have

(𝐶3 (𝑙3, 𝑝) − 𝐶0𝑝𝐽3 (𝑙3, 𝑝) ) = (𝐶2 (𝑙3, 𝑝) − 𝐶0𝑝𝐽2 (𝑙3, 𝑝) ) = ( cosh 𝑞2 (𝑙3 − 𝑙2) − 1𝐷2𝑞2 sinh 𝑞2 (𝑙3 − 𝑙2)−𝐷2𝑞2 sinh 𝑞2 (𝑙3 − 𝑙2) cosh 𝑞2 (𝑙3 − 𝑙2) )(𝐶1 (𝑙2, 𝑝) − 𝐶0𝑝𝐽1 (𝑙2, 𝑝) ) . (35)

Using the similar method in Section 3.1, we have

(𝐶3 (𝑥, 𝑝) − 𝐶0𝑝𝐽3 (𝑥, 𝑝) ) = ( cosh 𝑞3 (𝑥 − 𝑙3) − 1𝐷3𝑞3 sinh 𝑞3 (𝑥 − 𝑙3)−𝐷3𝑞3 sinh 𝑞3 (𝑥 − 𝑙3) cosh 𝑞3 (𝑥 − 𝑙3) )(𝐶3 (𝑙3, 𝑝) − 𝐶0𝑝𝐽3 (𝑙3, 𝑝) ) . (36)

3.4. Solution of 𝐶3(𝑥, 𝑝). After establishing the basic equa-
tions, we will first solver for 𝐶3(𝑥, 𝑝). In order to simplify the
solutions, we denote

ℎ1 = 𝑙2 − 𝑙1,ℎ2 = 𝑙3 − 𝑙2,𝜎1 = √𝑑1𝑑2 ,

𝜎2 = √𝑑2𝑑3 ,𝜏1 = 𝐷1𝐷2
,

𝜏2 = 𝐷2𝐷3𝑋𝑖 ≜ 𝑋𝑖 (𝑝) = cosh 𝑞𝑖 (𝑙𝑖+1 − 𝑙𝑖) = cosh 𝑞𝑖ℎ𝑖, (𝑖 = 1, 2) ,𝑌𝑖 ≜ 𝑌𝑖 (𝑝) = sinh 𝑞𝑖 (𝑙𝑖+1 − 𝑙𝑖) = sinh 𝑞𝑖ℎ𝑖, (𝑖 = 1, 2) ,
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𝐴 = cosh 𝑞3 (𝑥 − 𝑙3) ,𝐵 = sinh 𝑞3 (𝑥 − 𝑙3) .
(37)

From (29), (35), and (36), we have

(𝐶3 (𝑥, 𝑝) − 𝐶0𝑝𝐽3 (𝑥, 𝑝) ) = ( 𝐴 − 1𝐷3𝑞3𝐵−𝐷3𝑞3𝐵 𝐴 )( 𝑋2 − 1𝐷2𝑞2𝑌2−𝐷2𝑞2𝑌2 𝑋2

)( 𝑋1 − 1𝐷1𝑞1𝑌1−𝐷1𝑞1𝑌1 𝑋1

)(𝐶𝑠 − 𝐶0𝑝𝐽0 )
= (𝐶𝑠 − 𝐶0𝑝 )( 𝑋1𝑋2𝐴 + 𝐷1𝑞1𝐷2𝑞2𝑌1𝑌2𝐴 + 𝐷2𝑞2𝐷3𝑞3𝑋1𝑌2𝐵 + 𝐷1𝑞1𝐷3𝑞3𝑌1𝑋2𝐵

−𝐷3𝑞3𝑋1𝑋2𝐵 − 𝐷1𝑞1𝐷3𝑞3𝐷2𝑞2 𝑌1𝑌2𝐵 − 𝐷1𝑞1𝑌1𝑋2𝐴 − 𝐷2𝑞2𝑋1𝑌2𝐴)
+ 𝐽0(−

1𝐷1𝑞1𝑌1𝑋2𝐴 − 1𝐷2𝑞2𝑋1𝑌2𝐴 − 𝐷2𝑞2𝐷1𝑞1𝐷3𝑞3𝑌1𝑌2𝐵 − 1𝐷3𝑞3𝑋1𝑋2𝐵𝐷3𝑞3𝐷1𝑞1𝑌1𝑋2𝐵 + 𝐷3𝑞3𝐷2𝑞2𝑋1𝑌2𝐵 + 𝐷2𝑞2𝐷1𝑞1𝑌1𝑌2𝐴 + 𝑋1𝑋2𝐴 ).
(38)

Because of (32), the sum of the coefficients of 𝐴 and the
coefficients of 𝐵must equal zero in 𝐶3(𝑥, 𝑝). That is,

𝐽0 = 𝑋1𝑋2 + (𝐷1𝑞1/𝐷2𝑞2) 𝑌1𝑌2 + (𝐷2𝑞2/𝐷3𝑞3)𝑋1𝑌2 + (𝐷1𝑞1/𝐷3𝑞3) 𝑌1𝑋2(1/𝐷1𝑞1) 𝑌1𝑋2 + (1/𝐷2𝑞2)𝑋1𝑌2 + (𝐷2𝑞2/𝐷1𝑞1𝐷3𝑞3) 𝑌1𝑌2 + (1/𝐷3𝑞3)𝑋1𝑋2

(𝐶𝑠 − 𝐶0𝑝 ) . (39)

Substituting (39) and (17) into (38), we have

𝐶3 (𝑥, 𝑝) = 𝐶0𝑝 + (𝐶𝑠 − 𝐶0𝑝 ) 𝑒−𝑞3(𝑥−𝑙3)𝑍= 𝐶0𝑝 + (𝐶𝑠 − 𝐶0) 𝑒−𝑞3(𝑥−𝑙3)𝑝𝑍 , (40)

where

𝑍 = 𝜎1𝜎2𝜏1𝜏2 sinh(√ 𝑝𝑑1 ℎ1) cosh(√ 𝑝𝑑1 𝜎1ℎ2)
+ 𝜎2𝜏2 cosh√ 𝑝𝑑1 (𝑙2 − 𝑙1) sinh(√ 𝑝𝑑1 𝜎1ℎ2)
+ 𝜎1𝜏1 sinh(√ 𝑝𝑑1 ℎ1) sinh(√ 𝑝𝑑1 𝜎1ℎ2)
+ cosh(√ 𝑝𝑑1 ℎ1) cosh(√ 𝑝𝑑1 𝜎1ℎ2) .

(41)

3.5. Inverse Laplace Transform. The complex inversion for-
mula [7] is

𝐶3 (𝑥, 𝑡) =L
−1 (𝐶3 (𝑥, 𝑝))= 12𝜋𝑖 ∫𝛾+𝑖∞

𝛾−𝑖∞
𝐶3 (𝑥, 𝑝) 𝑒𝑝𝑡𝑑𝑝. (42)

Substituting (40) into (42), we have

𝐶3 (𝑥, 𝑡) = 𝐶0 + (𝐶𝑠 − 𝐶0) 12𝜋𝑖 ∫𝛾+𝑖∞

𝛾−𝑖∞

𝑒−𝑞3(𝑥−𝑙3)𝑝𝑍 𝑒𝑝𝑡𝑑𝑝. (43)

It can be proved that the integrand in (43) only has a branch
point at 𝑝 = 0. So we can use the contour in Figure 2. The
line integral in (43) is found to be equal to the integral over
the small circle about the origin together with the integrals
over 𝐶𝐷 and 𝐸𝐹. That is,𝐶3 (𝑥, 𝑡) = 𝐶0

+ (𝐶𝑠 − 𝐶0)2𝜋𝑖 ( lim
𝑅→∞
𝜀→0

(∫
𝐸𝐹
+∫

𝐶𝐷
+∫

𝐷𝐺𝐸
) 𝑒−𝑞3(𝑥−𝑙3)𝑝𝑍

⋅ 𝑒𝑝𝑡𝑑𝑝) .
(44)

According to the residue theorem [7], we have12𝜋𝑖 lim𝜀→0
∫
𝐷𝐺𝐸

𝑒−𝑞3(𝑥−𝑙3)𝑝𝑍 𝑒𝑝𝑡𝑑𝑝
= lim

𝑝→0
(𝑝 − 0) 𝑒−𝑞3(𝑥−𝑙3)𝑝𝑍 𝑒𝑝𝑡 = 1. (45)

Denote 𝑃1(𝑢) = cos(ℎ1𝑢), 𝑃2(𝑢) = cos(𝜎1ℎ2𝑢), 𝑄1(𝑢) =
sin(ℎ1𝑢), and 𝑄2(𝑢) = sin(𝜎1ℎ2𝑢).

Putting 𝑝 = 𝑑1𝑢2𝑒𝑖𝜋 on 𝐸𝐹 and 𝑝 = 𝑑1𝑢2𝑒−𝑖𝜋 on 𝐶𝐷, the
contribution from 𝐶𝐷 and 𝐸𝐹 becomes
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12𝜋𝑖 lim
𝑅→∞
𝜀→0

(∫
𝐸𝐹

𝑒−𝑞3(𝑥−𝑙3)𝑝𝑍 𝑒𝑝𝑡𝑑𝑝) 𝑝=𝑑1𝑢
2𝑒𝑖𝜋=====

√𝑝=𝑖𝑢√𝑑1

= 1𝜋𝑖 ∫∞

0

𝑒−𝑢2𝑑1𝑡𝑒−𝑖𝑢𝜎1𝜎2(𝑥−𝑙3)𝑢 (𝑖 (𝜎1𝜎2/𝜏1𝜏2) 𝑄1 (𝑢) 𝑃2 (𝑢) + 𝑖 (𝜎2/𝜏2) 𝑃1 (𝑢)𝑄2 (𝑢) − (𝜎1/𝜏1) 𝑃1 (𝑢) 𝑃2 (𝑢) + 𝑄1 (𝑢)𝑄2 (𝑢))𝑑𝑢,12𝜋𝑖 lim
𝑅→∞
𝜀→0

(∫
𝐶𝐷

𝑒−𝑞3(𝑥−𝑙3)𝑝𝑍 𝑒𝑝𝑡𝑑𝑝) 𝑝=𝑑1𝑢
2𝑒−𝑖𝜋=====

√𝑝=−𝑖𝑢√𝑑1

= − 1𝜋𝑖 ∫∞

0

𝑒−𝑢2𝑑1𝑡𝑒𝑖𝑢𝜎1𝜎2(𝑥−𝑙3)𝑢 (−𝑖 (𝜎1𝜎2/𝜏1𝜏2) 𝑄1 (𝑢) 𝑃2 (𝑢) − 𝑖 (𝜎2/𝜏2) 𝑃1 (𝑢)𝑄2 (𝑢) − (𝜎1/𝜏1) 𝑃1 (𝑢) 𝑃2 (𝑢) + 𝑄1 (𝑢)𝑄2 (𝑢))𝑑𝑢,

(46)

which are mutually conjugated. Consequently, denote

𝑊(𝑢) = −𝜎1𝜏1 𝑃1 (𝑢) 𝑃2 (𝑢) + 𝑄1 (𝑢)𝑄2 (𝑢) ,
𝑉 (𝑢) = 𝜎1𝜎2𝜏1𝜏2 𝑄1 (𝑢) 𝑃2 (𝑢) + 𝜎2𝜏2 𝑃1 (𝑢)𝑄2 (𝑢) , (47)

and we have

𝐶3 (𝑥, 𝑡) = 𝐶𝑠 − 2 (𝐶𝑠 − 𝐶0)𝜋 ∫∞

0
𝐹 (𝑥, 𝑡, 𝑢) 𝑑𝑢, (48)

where

𝐹 (𝑥, 𝑡, 𝑢) = 𝑒−𝑢2𝑑1𝑡 [cos (𝜎1𝜎2𝑢 (𝑥 − 𝑙3)) 𝑉 (𝑢) + sin (𝜎1𝜎2𝑢 (𝑥 − 𝑙3))𝑊 (𝑢)]𝑢 (𝑊2 (𝑢) + 𝑉2 (𝑢)) . (49)

This is the analytical solution of (5)–(14), the chloride
concentration profiles in the porous media with two layers
of protection under constant boundary conditions.

4. Nonconstant Boundary for
the Two-Protective-Layered Systems

In reality, the boundary condition (the chloride concen-
tration) on the surface of a bridge structure may not be
constant. In this case, other boundary conditions should be
considered.We can change constant boundary condition (13)
to a nonconstant boundary condition, such as

𝐶1 (𝑙1, 𝑡) = 𝑔 (𝑡) = 𝐶𝑠 + ∫𝑡

0
ℎ (𝑧) 𝑑𝑧, (50)

where 𝐶𝑠 is a constant and ℎ(𝑡) (𝑡 ≥ 0) is a continuous
function; we can also obtain the analytical solution for
the diffusion equation with boundary condition (50). Now,
we consider (5)–(12), (50), and (14). Equation (17) becomes

𝐶𝑠 =L (𝑔 (𝑡)) = L (ℎ (𝑡)) + 𝐶𝑠𝑝 , (51)

which is the Laplace transform of 𝐶1(𝑙1, 𝑡). The derivation is
the same as in Section 3, which will not be repeated here.
Equation (40) with the new boundary condition becomes

𝐶3 (𝑥, 𝑝) = 𝐶0𝑝 + (𝐶𝑠 − 𝐶0𝑝 ) 𝑒−𝑞3(𝑥−𝑙3)𝑍
= 𝐶0𝑝 + (L (𝑔 (𝑡)) − 𝐶0) 𝑒−𝑞3(𝑥−𝑙3)𝑝𝑍 . (52)

By the inverse Laplace transform, we have

𝐶3 (𝑥, 𝑡) =L
−1 (𝐶3 (𝑥, 𝑝))

= 𝐶0 +L−1(L (ℎ (𝑡)) 𝑒−√𝑝/𝑑3(𝑥−𝑙3)𝑝𝑍 )
+L−1((𝐶𝑠 − 𝐶0) 𝑒−√𝑝/𝑑3(𝑥−𝑙3)𝑝𝑍 ) .

(53)

From Section 3.5, we know

L
−1(𝑒−√𝑝/𝑑3(𝑥−𝑙3)𝑝𝑍 ) = 1 − 2𝜋 ∫∞

0
𝐹 (𝑥, 𝑡, 𝑢) 𝑑𝑢. (54)
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Figure 2: Integral contour.

Substituting (54) into (53) and by using the convolution
theorem [7], we have

𝐶3 (𝑥, 𝑡)
= 𝐶0 +L−1(L (ℎ (𝑡)) 𝑒−√𝑝/𝑑3(𝑥−𝑙3)𝑝𝑍 )
+ (𝐶𝑠 − 𝐶0) (1 − 2𝜋 ∫∞

0
𝐹 (𝑥, 𝑡, 𝑢) 𝑑𝑢)

= 𝐶0
+ ∫𝑡

0
[ℎ (𝑡 − 𝑧) (1 − 2𝜋 ∫∞

0
𝐹 (𝑥, 𝑧, 𝑢) 𝑑𝑢)] 𝑑𝑧

− 2 (𝐶𝑠 − 𝐶0)𝜋 ∫∞

0
𝐹 (𝑥, 𝑡, 𝑢) 𝑑𝑢,

(55)

where 𝐹(𝑥, 𝑡, 𝑢) is defined in (49). It can be seen that the
analytical solution, (48), is a special case of (55); that is, ℎ(𝑡) ≡0.

As an example, a linear boundary condition can be con-
sidered, which is a commonly used nonconstant boundary
condition; that is,

𝐶1 (𝑙1, 𝑡) = 𝑔 (𝑡) = 𝑎𝑡 + 𝑏, (56)

where 𝑎, 𝑏 are two constants. From (55), we can easily obtain
the analytical solution of (5)–(12), (55), and (14), which is

𝐶3 (𝑥, 𝑡) = 𝑎𝑡 + 𝑏 − 2 (𝑏 − 𝐶0)𝜋 ∫∞

0
𝐹 (𝑥, 𝑡, 𝑢) 𝑑𝑢

+ 2𝑎𝜋𝐷1
∫∞

0
(1 − 𝑒𝑢2𝑑1𝑡𝑢2 )𝐹 (𝑥, 𝑡, 𝑢) 𝑑𝑢, (57)

where 𝐹(𝑥, 𝑡, 𝑢) is defined in (49).

5. Analytical Solution with (𝑛 − 1)
Protective Layered System (𝑛 > 3)

In Sections 3 and 4 we obtained the analytical solutions for
the chloride diffusion equation of two protective layers under
constant and nonconstant boundary conditions, respectively.
We can further generalize the results to the chloride diffusion
equation with (𝑛 − 1) protective layers under nonconstant
boundary conditions.

5.1. Diffusion Model for the Multiple Layered System. Assum-
ing the system has 𝑛 − 1 protective layers (totally 𝑛 layers
including the concrete), as shown in Figure 3, the material
parameters of each protective layer and the concrete are𝑑1, 𝑑2, . . . , 𝑑𝑛 and 𝐷1, 𝐷2, . . . , 𝐷𝑛, respectively, and all mate-
rial parameters are constants. The corresponding concen-
trations of chloride ions are 𝐶1(𝑥, 𝑡), 𝐶2(𝑥, 𝑡), . . . , 𝐶𝑛(𝑥, 𝑡),
respectively. The chloride diffusion equations with (𝑛 − 1)
protective layers are similar to those in Section 2:

𝜕𝐶1𝜕𝑡 = 𝑑1 𝜕2𝐶1𝜕𝑥2 , 𝑙1 ≤ 𝑥 ≤ 𝑙2,
𝐶1 (𝑙1, 𝑡) = 𝑔 (𝑡) = 𝐶𝑠 + ∫𝑡

0
ℎ (𝑡) 𝑑𝑡,

𝐶1 (𝑥, 0) = 𝐶0,𝐶1 (∞, 𝑡) < ∞, (The first layer)𝜕𝐶2𝜕𝑡 = 𝑑2 𝜕2𝐶2𝜕𝑥2 , 𝑙2 ≤ 𝑥 ≤ 𝑙3,𝐶2 (𝑥, 0) = 𝐶0,𝐶2 (∞, 𝑡) < ∞,𝐶1 (𝑙2, 𝑡) = 𝐶2 (𝑙2, 𝑡) ,𝐷1
𝜕𝐶1𝜕𝑥 𝑥=𝑙2 = 𝐷2

𝜕𝐶2𝜕𝑥 𝑥=𝑙2 ,(The second layer)...𝜕𝐶𝑛−1𝜕𝑡 = 𝑑𝑛−1 𝜕2𝐶𝑛−1𝜕𝑥2 , 𝑙𝑛−1 ≤ 𝑥 ≤ 𝑙𝑛,𝐶𝑛−1 (𝑥, 0) = 𝐶0,𝐶𝑛−1 (∞, 𝑡) < ∞,𝐶𝑛−2 (𝑙𝑛−1, 𝑡) = 𝐶𝑛−1 (𝑙𝑛−1, 𝑡) ,𝐷𝑛−2
𝜕𝐶𝑛−2𝜕𝑥 𝑥=𝑙𝑛−1 = 𝐷𝑛−1

𝜕𝐶𝑛−1𝜕𝑥 𝑥=𝑙𝑛−1 ,(The (𝑛 − 1)th layer) ,𝜕𝐶𝑛𝜕𝑡 = 𝑑𝑛 𝜕2𝐶𝑛𝜕𝑥2 , 𝑙𝑛 ≤ 𝑥,𝐶𝑛−1 (𝑥, 0) = 𝐶0,𝐶𝑛 (∞, 𝑡) = 𝐶0,𝐶𝑛−1 (𝑙𝑛, 𝑡) = 𝐶𝑛 (𝑙𝑛, 𝑡) ,
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Figure 3: Concrete with (𝑛 − 1) layers of protection.
𝐷𝑛−1

𝜕𝐶𝑛−1𝜕𝑥 𝑥=𝑙𝑛 = 𝐷𝑛
𝜕𝐶𝑛𝜕𝑥 𝑥=𝑙𝑛(Concrete) .

(58)

5.2. Analytical Solution for the Multiple Layered System. We
first introduce the denotations. Denoteℎ𝑖 = 𝑙𝑖+1 − 𝑙𝑖,

𝜎𝑖 = √ 𝑑𝑖𝑑𝑖+1 ,
𝜏𝑖 = 𝐷𝑖𝐷𝑖+1

,
𝑖 = 1, 2, . . . , 𝑛 − 1,𝛼1 = 1,𝛼2 = 𝜎1,𝛼3 = 𝜎1𝜎2,...𝛼𝑘 = 𝜎1𝜎2 ⋅ ⋅ ⋅ 𝜎𝑘−1,...𝛼𝑛−1 = 𝜎1𝜎2 ⋅ ⋅ ⋅ 𝜎𝑛−2,𝛼𝑛 = 𝜎1𝜎2 ⋅ ⋅ ⋅ 𝜎𝑛−1,𝛽1 = 1,𝛽2 = 𝜏1,

𝛽3 = 𝜏1𝜏2,...𝛽𝑘 = 𝜏1𝜏2 ⋅ ⋅ ⋅ 𝜏𝑘−1,...𝛽𝑛−1 = 𝜏1𝜏2 ⋅ ⋅ ⋅ 𝜏𝑛−2,𝛽𝑛 = 𝜏1𝜏2 ⋅ ⋅ ⋅ 𝜏𝑛−1,𝑃𝑖 (𝑢) = cos (𝛼𝑖ℎ𝑖𝑢) ,𝑄𝑖 (𝑢) = sin (𝛼𝑖ℎ𝑖𝑢) ,𝑖 = 1, 2, . . . , 𝑛 − 1.
(59)

Let

𝑊𝑛 (𝑢) = 𝑃1𝑃2 ⋅ ⋅ ⋅ 𝑃𝑛−1 + ∑
𝑘 is even,
𝑛−1≥𝑘>0

𝑆𝑚1𝑚2 ⋅⋅⋅𝑚𝑘 (−1)𝑘/2
⋅ 𝑄𝑚1

𝑄𝑚2
⋅ ⋅ ⋅ 𝑄𝑚𝑘

𝑃𝑚𝑘+1𝑃𝑚𝑘+2 ⋅ ⋅ ⋅ 𝑃𝑚𝑛−1 ,𝑉𝑛 (𝑢) = ∑
𝑘 is odd,
𝑛−1≥𝑘>0

𝑅𝑚1𝑚2 ⋅⋅⋅𝑚𝑘 (−1)(𝑘−1)/2
⋅ 𝑄𝑚1

𝑄𝑚2
⋅ ⋅ ⋅ 𝑄𝑚𝑘

𝑃𝑚𝑘+1𝑃𝑚𝑘+2 ⋅ ⋅ ⋅ 𝑃𝑚𝑛−1 ,
(60)

where

(1) 𝑚1, 𝑚2, . . . , 𝑚𝑛−1 is a permutation of 1, 2, . . . , 𝑛 − 1,(2) 𝑚1 > 𝑚2 > ⋅ ⋅ ⋅ > 𝑚𝑘,
(3) 𝑆𝑚1𝑚2 ⋅⋅⋅𝑚𝑘 = 𝛼𝑚𝑘−1𝛽𝑚𝑘𝛼𝑚𝑘𝛽𝑚𝑘−1 ⋅ 𝛼𝑚𝑘−3𝛽𝑚𝑘−2𝛼𝑚𝑘−2𝛽𝑚𝑘−3 ⋅ ⋅ ⋅ 𝛼𝑚1𝛽𝑚2𝛼𝑚2𝛽𝑚1 , 𝑘 is even,
(4) 𝑅𝑚1𝑚2⋅⋅⋅𝑚𝑘 = {{{{{{{{{

𝛼𝑛𝛽𝑛 ⋅ 𝛽𝑚1𝛼𝑚1 , if 𝑘 = 1,𝛼𝑛𝛽𝑛 ⋅ 𝛼𝑚𝑘−1𝛽𝑚𝑘𝛼𝑚𝑘𝛽𝑚𝑘−1 ⋅ 𝛼𝑚𝑘−3𝛽𝑚𝑘−2𝛼𝑚𝑘−2𝛽𝑚𝑘−3 ⋅ ⋅ ⋅ 𝛽𝑚3𝛼𝑚2𝛽𝑚2𝛼𝑚3 ⋅ 𝛽𝑚1𝛼𝑚1 , if 𝑘 ≥ 3, 𝑘 is odd.
(61)
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The lengthy derivation will not be shown here, and the
results will be listed. The analytical solution of (58) for the
multiple layered system is

𝐶𝑛 (𝑥, 𝑡)= 𝐶𝑠
+ ∫𝑡

0
[ℎ (𝑡 − 𝑧) (1 − 2𝜋 ∫∞

0
𝐹𝑛 (𝑥, 𝑧, 𝑢) 𝑑𝑢)] 𝑑𝑧

− 2 (𝐶𝑠 − 𝐶0)𝜋 ∫∞

0
𝐹𝑛 (𝑥, 𝑡, 𝑢) 𝑑𝑢,

(62)

where

𝐹𝑛 (𝑥, 𝑡, 𝑢)
= 𝑒−𝑢2𝑑1𝑡 [cos (𝛼𝑛𝑢 (𝑥 − 𝑙𝑛)) 𝑉𝑛 (𝑢) + sin (𝛼𝑛𝑢 (𝑥 − 𝑙𝑛))𝑊𝑛 (𝑢)]𝑢 (𝑊𝑛

2 (𝑢) + 𝑉𝑛2 (𝑢)) . (63)

6. Heat Conduction in
the Two-Protective-Layered System

Heat conduction equation has the same form of equation
as the chloride diffusion shown above, which is a parabolic
partial differential equation. The difference lies in the dif-
ferent transport processes, which can be characterized by
the different material parameters involved in the equations.
Therefore, mathematically, we can expand our results to the
heat conduction problem. As an example, we present the
analytical solution of heat conduction equation in a system
with two protective layers under nonconstant boundary
conditions. Another reason for us to extend our results to the
heat conduction is that an experiment can be relatively easier
set up and conducted for the heat conduction than for the
chloride diffusion (which is a very slow process). Using the
test results of heat conduction, our analytical model can be
verified.

6.1. Heat Conduction Model. For the heat conduction prob-
lem, the material parameters are heat capacity 𝑐, density 𝜌,
and thermal conductivity𝐾.The product of heat capacity and
density, 𝑐𝜌, is equivalent to the chloride binding capacity in
the chloride diffusion equation, and the thermal conductivity𝐾 is equivalent to the chloride diffusivity. A parameter similar
to the chloride diffusion coefficient 𝑑 can be defined here for
the heat conduction, which is 𝜅 as shown in (64). 𝜅 may be
called heat diffusion coefficient. For the first layer, the second
layer, and the concrete, we denote the material parameters as𝜅𝑖, 𝐾𝑖, 𝑐𝑖, and 𝜌𝑖 (𝑖 = 1, 2, 3), respectively, and

𝜅𝑖 = 𝐾𝑖𝜌𝑖𝑐𝑖 , 𝑖 = 1, 2, 3. (64)

The temperatures of the first layer, the second layer, and
the concrete are 𝑇1(𝑥, 𝑡), 𝑇2(𝑥, 𝑡), and 𝑇3(𝑥, 𝑡), which are
governed by the following equations:

𝜕𝑇1𝜕𝑡 = 𝜅1 𝜕2𝑇1𝜕𝑥2 , 𝑙1 ≤ 𝑥 ≤ 𝑙2,𝜕𝑇2𝜕𝑡 = 𝜅2 𝜕2𝑇2𝜕𝑥2 , 𝑙2 ≤ 𝑥 ≤ 𝑙3,𝜕𝑇3𝜕𝑡 = 𝜅3 𝜕2𝑇3𝜕𝑥2 , 𝑥 ≥ 𝑙3.
(65)

At the two interfaces, they satisfy the continuity conditions:

𝑇1 (𝑙2, 𝑡) = 𝑇2 (𝑙2, 𝑡) ,
𝐾1
𝜕𝑇1𝜕𝑥 𝑥=𝑙2 = 𝐾2

𝜕𝑇2𝜕𝑥 𝑥=𝑙2 ,𝑇2 (𝑙3, 𝑡) = 𝑇3 (𝑙3, 𝑡) ,
𝐾2
𝜕𝑇2𝜕𝑥 𝑥=𝑙3 = 𝐾3

𝜕𝑇3𝜕𝑥 𝑥=𝑙3 .
(66)

The initial conditions are

𝑇1 (𝑥, 0) = 𝑇2 (𝑥, 0) = 𝑇3 (𝑥, 0) = 𝑇0. (67)

The nonconstant boundary conditions are

𝑇1 (𝑙1, 𝑡) = 𝑔 (𝑡) = 𝑇𝑠 + ∫𝑡

0
ℎ (𝑧) 𝑑𝑧, (68)

𝑇1 (∞, 𝑡) < ∞,𝑇2 (∞, 𝑡) < ∞,𝑇3 (∞, 𝑡) = 𝑇0. (69)

𝑇0 and 𝑇𝑠 are constants. These are the governing equations,
initial and boundary conditions for the heat conduction
problem of a two-protective-layered system.

6.2. Analytical Solution. Similar to the derivation in
Section 3, we can obtain an analytical solution for (65)–(69)
as follows. Denote ℎ1 = 𝑙2 − 𝑙1, ℎ2 = 𝑙3 − 𝑙2, �̃�1 = √𝜅1/𝜅2,�̃�2 = √𝜅2/𝜅3, 𝜏1 = 𝐾1/𝐾2, and 𝜏2 = 𝐾2/𝐾3, and further
denote

�̃�1 (𝑢) = cos (ℎ1𝑢) ,�̃�2 (𝑢) = cos (�̃�1ℎ2𝑢) ,𝑄1 (𝑢) = sin (ℎ1𝑢) ,
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Figure 4: A heat conduction test: (a) experimental setup; (b) test results [8].

𝑄2 (𝑢) = sin (�̃�1ℎ2𝑢) ,
�̃� (𝑢) = −�̃�1𝜏1 �̃�1 (𝑢) �̃�2 (𝑢) + 𝑄1 (𝑢)𝑄2 (𝑢) ,
�̃� (𝑢) = �̃�1�̃�2𝜏1𝜏2 𝑄1 (𝑢) �̃�2 (𝑢) + �̃�2𝜏2 �̃�1 (𝑢)𝑄2 (𝑢) ,

(70)

in which the equal signs are from (64). We obtain𝑇3 (𝑥, 𝑡)= 𝑇𝑠+ ∫𝑡

0
[ℎ (𝑡 − 𝑧) (1 − 2𝜋 ∫∞

0
𝐹 (𝑥, 𝑧, 𝑢) 𝑑𝑢)] 𝑑𝑧

− 2 (𝑇𝑠 − 𝑇0)𝜋 ∫∞

0
𝐹 (𝑥, 𝑡, 𝑢) 𝑑𝑢,

(71)

where

𝐹 (𝑥, 𝑡, 𝑢) = 𝑒−𝑢2𝜅1𝑡 [cos (�̃�1�̃�2𝑢 (𝑥 − 𝑙3)) �̃� (𝑢) + sin (�̃�1�̃�2𝑢 (𝑥 − 𝑙3)) �̃� (𝑢)]𝑢 (�̃�2 (𝑢) + �̃�2 (𝑢)) , (72)

which is the analytical solution of the heat conduction
model with a two-protective-layered system. We can easily
generalize the results to the heat conduction problem of
an (𝑛 − 1) layered system under nonconstant boundary
conditions, which will not be listed here.

6.3. Numerical Example and Verification of the Solutions.
A heat conduction test was conducted using a timber box
(to simulate a residential house) [8]. An insulation material
called premixed rubberized insulation mortar (PRIM) was
applied on the exterior wall of the box. So, the wall has two
layers: the timber board and the PRIM insulation layer. The
box was placed in the environmental chamber, as shown
in Figure 4(a). The chamber temperature was programmed

to apply linear heating and linear cooling. Both chamber
temperature and the temperature in the box were monitored,
and the two temperature profiles were compared to examine
the effectiveness of the insulation material. One of the results
is shown in Figure 4(b). We simplified this problem to be a
one-dimensional heat conduction problem through the two-
layered wall of the timber box. The first layer is PRIM, with
a thickness of one inch, and the second layer is wood, with a
thickness of 11/16 inches.

The average values of material properties for the PRIM,
wood, and air are taken from literature as 𝜅1 = 0.373mm2/s,𝜅2 = 0.139mm2/s, and 𝜅3 = 22.000mm2/s, respectively. At
the exterior boundary, 𝑥 = 0mm; and at the two interfaces,
we have ℎ1 = 25.4mm and ℎ2 = 17.4625mm. For the linear
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Figure 5: The interior temperatures calculated by the analytical
solution (at 𝑥 = 150mm and 𝑥 = 250mm).

boundary conditions, we approximated the temperatures in
the chamber (outside of the box) by the following functions:

𝑔 (𝑡) = {{{{{{{{{
33𝑡 + 25, 0 ≤ 𝑡 < 1,58, 1 ≤ 𝑡 < 1.1,−33𝑡 + 94.3, 1.1 ≤ 𝑡 < 2.1,25, 2.1 ≤ 𝑡 < 3, (73)

which are the boundary conditions as shown in (68), with𝑇𝑠 = 25∘C. And 𝑇0 = 24∘C.
Substituting the above parameters 𝑘𝑖 (𝑖 = 1, 2, 3), ℎ𝑖 (𝑖 =1, 2),𝑇0,𝑇𝑠, 𝑔(𝑡) to (71) and by using the Gaussian quadrature

integration scheme, the interior temperatures at 𝑥 = 150mm
and 𝑥 = 250mm were calculated and shown in Figure 5.
Comparing the measured curves in Figure 4 with the cal-
culated curves in Figure 5, one can see that the analytical
solutions and the experimental results share the same trends,
which means that the solution, (71), can predict the heat
conduction problem quite well. Since the exact values of the
thermal properties of the materials used in the test were not
available, we can only compare the basic trend of the model
predictions with the test data.

7. Conclusions

In this paper, the chloride ion diffusion equations were
established for concrete structures with multiple layers of
protective system. By using Laplace transformation, we first
obtained an analytical solution for chloride concentration
profiles in two-layered system and then extended the solution
to multiple layered systems with nonconstant boundary
conditions, including the constant boundary and linear
boundary conditions.

Because ionic diffusion in saturated media and heat
conduction are governed by the same form of partial dif-
ferential equations with different materials parameters, we
further extended our results to the analytical solution of

heat conduction equation with multiple layered systems
under nonconstant boundary conditions. We used the heat
condition solution of a two-layered system as a numerical
example.The numerical results were compared with available
test data. The basic trends of the analytical solution and the
test data agreed quite well.

The analytical solutions developed in this paper are very
useful in the practice for predicting chloride penetration
into concrete structures with multiple layers of protective
systems. This method of analysis will be a great tool to
estimate the time for the chloride ions to reach the critical
chloride concentration at the rebar level and thus an effective
remedy measure can be taken to avoid the corrosion damage
in reinforced concrete structures. The analytical solution can
also be used in general for any ionic diffusion problems in
multilayered systems of porousmedia. As shown in the paper,
the solution can be extended to deal with the heat condition
in multilayered porous media.
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