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We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified
form of the Landau-Lifshitz-Gilbert (LLG) equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a
global existence result and characterize the long time behaviour of the obtained solutions.The sensitivity of the model with respect
to large and small nonlocal damping parameters is also discussed.

1. Introduction and Preliminary Results

In this work, we are dealing with a mathematical model aris-
ing in the theory of magnetization dynamics with nonlocal
damping. We will consider the model proposed by Nembach
et al. [1]. It is given by a modified LLG equation. The modifi-
cation lies in the presence of a second-order space derivative
of magnetization in the effective field. To describe the model
equations, we consider Ω ⊂ R3 a bounded and regular open
set ofR3.The generic point ofR3 is denoted by 𝑥. We assume
that a ferromagnetic material occupies the domainΩ.

In what follows, 𝑆2 represents the unit sphere of R3.
The magnetization field of the ferromagnetic material which
belongs to 𝑆

2 almost everywhere is denoted by 𝑀(𝑡, 𝑥).
Its evolution is governed by the following modified LLG
equation (see [1, 2]):

1
1 + 𝛼2

(𝜕
𝑡
𝑀−𝛼𝑀×𝜕

𝑡
𝑀) = −𝑀×H (𝑀)

in 𝑄 = (0, 𝑇) × Ω,
(1)

subject to initial conditions

𝑀(0, 𝑥) = 𝑀0 (𝑥) in Ω (2)

and boundary conditions

𝑀×(𝐷𝜕]𝑀+𝜁𝜕]𝜕𝑡𝑀) = 0 on (0, 𝑇) × 𝜕Ω, (3)

where the symbol × denotes the vector cross product in R3.
The positive constant 𝛼 represents the damping parameter.
The effective magnetic fieldH depends on𝑀 and is given by

H (𝑀) = 𝐷Δ𝑀+𝜁Δ𝜕
𝑡
𝑀+𝜙 (𝑀)+Hdem (𝑀) . (4)

The first term on the right-hand side of (4) is called the
exchange magnetic field, where the positive constant𝐷 is the
exchange coefficient and the term parameterized by the pos-
itive constant 𝜁 describes nonlocal damping in ferromagnets.
The 𝜁-term was introduced in [2]; see also [1]. The third term
is the bulk anisotropy field (which generally is taken as linear
with respect to 𝑀), and Hdem is the demagnetizing field,
satisfying in (0, 𝑇) ×R3 the stray field equation

div (Hdem +𝑀) = 0,

curlHdem = 0,

(5)

where 𝑀 is the extension by 0 of 𝑀 outside the magnetic
domainΩ.

Notice that, for the sake of simplicity, the bulk uniaxial
anisotropy field, generally taken as linear in 𝑀, and the
magnetostatic field which satisfy the stray field equation are
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not considered since they only induce more computations
and have no mathematical influence on the results we obtain.

We define the energy

E (𝑡) = 𝐷∫
Ω

|∇𝑀|
2 d𝑥. (6)

The following energy estimate holds.

Lemma 1. If𝑀 is a solution of problem (1), then it satisfies, at
least formally, the energy estimate

d
d𝑡
E (𝑡) + 2𝜁∫

Ω

∇𝜕𝑡𝑀


2 d𝑥+ 2𝛼
1 + 𝛼2

∫
Ω

𝜕𝑡𝑀


2 d𝑥

= 0.
(7)

Proof. The techniques to obtain (7) are analogous to those
used, for example, in [3, 4]. We rewrite LLG equation (1) in
the following form:

(𝛼𝜕
𝑡
𝑀−(1+𝛼2)H)

= 𝛼𝑀×(𝛼𝜕
𝑡
𝑀−(1+𝛼2)H) − (1+𝛼2)H.

(8)

Multiplying (8) by (𝛼𝜕
𝑡
𝑀 − (1 + 𝛼

2
)H) and using the

saturation constraint |𝑀|
2
= 1 almost everywhere yields to

𝛼

1 + 𝛼2
𝜕𝑡𝑀



2
=H ⋅ 𝜕

𝑡
𝑀. (9)

Integrating (9) onΩ, the right-hand side of (9) becomes

∫
Ω

H ⋅ 𝜕
𝑡
𝑀 d𝑥 = −𝐷∫

Ω

𝜕
𝑖
𝑀𝜕
𝑖
𝜕
𝑡
𝑀 d𝑥

− 𝜁∫
Ω

𝜕
𝑖
𝜕
𝑡
𝑀𝜕
𝑖
𝜕
𝑡
𝑀 d𝑥

+∫
𝜕Ω

(𝐷𝜕]𝑀+𝜁𝜕]𝜕𝑡𝑀)𝜕
𝑡
𝑀 d𝜎,

(10)

where we have used the summation convention that repeated
indices are summed over and 𝜕

𝑖
denotes the derivative with

respect to space variable 𝑥
𝑖
. Converting the two last terms of

the right-hand side of (10) allows us to get (7).
Before dealing with problem (1), let us first review some

previous results. We limit ourselves to mentioning a handful
of references concerning existence and we refer to the survey
[5] for a more detailed bibliographical account. The general
framework (although without nonlocal damping, i.e., the
case 𝜁 = 0) has been established in earlier papers (see, for
instance, [6, 7]) using Faedo-Galerkin/Penalization (FGP)
method. This method gives an approximated sequence of
solutions converging to a global solution of the problem.
Next results concern systems with further dissipation terms.
For example, the modification considered in [8] consists
in adding to the standard dissipation term in the LLG
equation another higher-order term of the type Δ2

𝑀. The
FGPmethod is also used to solve the problem. In [9], a model
with dry-friction dissipation, which is accounted by adding
a dry-friction-like term to the standard Gilbert damping,

is studied. Let us mention that a model of ferromagnetic
material with hysteresis effects is studied in [10]. In this
model, the magnetic moment behaviour is described by
the nonlinear Landau-Lifshitz equation with an additional
term modeling the hysteresis. This term takes the form of a
maximal monotone operator acting on the time derivative
of the magnetic moment. For this relaxed model, local
existence of regular solutions is proved. Note that in the
framework of current-induced magnetization dynamics the
work [11] addresses global existence of weak solutions to a
LLG equation where a transport term is added to effective
field taking into account the effect of the injected current.
A model of magnetization switching with inertial effects
modeled by means of a second-order time derivative term in
the effective field is considered in [12]where existence ofweak
solutions and their long time behaviour were established.
All these proofs are based on some penalization and using
various kind of regularizations.

To state the existence result, we start with the definition
of weak solutions to problem (1).

Definition 2. Given that 𝑀0 ∈ H1
(Ω) such that |𝑀0| = 1

almost everywhere in Ω we call 𝑀(𝑡, 𝑥) a weak solution to
LLG equation (1) if

(1) for all 𝑇 > 0, 𝑀 ∈ 𝐿
∞
((0, 𝑇);H1

(Ω)), 𝜕
𝑡
𝑀 ∈

𝐿
2
((0, 𝑇);L2

(Ω)) ∩ 𝐿
∞
((0, 𝑇);L2

(Ω)), and𝑀 satisfies
the saturation constraint |𝑀(𝑡, 𝑥)| = 1 for almost
everywhere in R+ × Ω;

(2) 𝑀(0, ⋅) = 𝑀0(⋅) in the trace sense;
(3) for all 𝐺 ∈ H1

(𝑄) ∩C0(𝑄), there holds
1

1 + 𝛼2
∫
𝑄

(𝜕
𝑡
𝑀−𝛼𝑀×𝜕

𝑡
𝑀) ⋅𝐺 d𝑥 d𝑡

= 𝐷∫
𝑄

𝑀×𝜕
𝑖
𝑀⋅ 𝜕
𝑖
𝐺 d𝑥 d𝑡

+ 𝜁∫
𝑄

𝑀×𝜕
𝑖
𝜕
𝑡
𝑀⋅ 𝜕
𝑖
𝐺 d𝑥 d𝑡;

(11)

(4) for all 𝑡 ≥ 0, we have

E (𝑡) + 2𝜁∫
𝑡

0
∫
Ω

∇𝜕𝑡𝑀


2 d𝑥

+
2𝛼

1 + 𝛼2
∫

𝑡

0
∫
Ω

𝜕𝑡𝑀


2 d𝑥 d𝑡 ≤ E (0) ,
(12)

where E(𝑡) is given by (6).

We have the following global existence result.

Theorem 3. Let 𝑀0 ∈ H1
(Ω) be such that |𝑀0(𝑥)|

2
= 1

almost everywhere. Then there exists a global weak solution𝑀
of problem (1) in the sense of Definition 2.

Proof. The proof follows a standard scheme (Faedo-Galerkin
method with a penalization of the saturation constraint) as
usual in general Landau-Lifshitz-Gilbert equation; see [6, 7,
13].
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The rest of the paper is divided as follows. In the next sec-
tion we investigate the long time behaviour of the solutions.
Section 3 discusses the sensitivity of the obtained solutions
with respect to nonlocal damping factor 𝜁. More precisely we
characterize the limit problem for both high and small 𝜁. We
conclude the paper in Section 4 by giving some comments.

2. The Limit as 𝑡 Goes to +∞

We investigate the long time behaviour of the solutions.
More precisely, we study the 𝜔-limit set of the trajectories
and characterize the 𝜔-limit points as solutions of a suitable
stationary problem. We proceed as in Carbou-Fabrie [13].

Let𝑀 be a weak solution of (1). We call 𝜔-limit set of the
trajectory𝑀 the following set:

𝜔 (𝑀) = {m ∈H
1
(Ω) , ∃𝑡

𝑛
, lim
𝑛→+∞

𝑡
𝑛
=+∞, 𝑀(𝑡

𝑛
, ⋅)

⇀m in H
1
(Ω) weakly} .

(13)

Consider a weak solution 𝑀 of (1). From the energy
estimate (12), the𝜔-limit set𝜔(𝑀) is nonempty.We denote by
m a point of this set. There exists a nondecreasing sequence
(𝑡
𝑛
)
𝑛
such that 𝑡

𝑛
→ +∞ and 𝑀(𝑡

𝑛
, ⋅) ⇀ m in H1

(Ω)

weakly. Since Ω is a smooth bounded domain, then𝑀(𝑡
𝑛
, ⋅)

tends to m in L𝑝(Ω) strongly for 𝑝 ∈ [1, 6[,and extracting
a subsequence, we assume that 𝑀(𝑡

𝑛
, ⋅) tends to m almost

everywhere, so that the saturation constraint |m| = 1 is satis-
fied almost everywhere. In addition, we remark that, for all 𝑛,
|𝑀(𝑡
𝑛
, ⋅)| = 1 almost everywhere, so that ‖𝑀(𝑡

𝑛
, ⋅)‖
𝐿
∞
(Ω)

= 1.
By interpolation inequalities in L𝑝 spaces, we obtain that, for
all 𝑝 < +∞,𝑀(𝑡

𝑛
, ⋅) tends tom in L𝑝(Ω) strongly.

For 𝑠 ∈ (−1, 1) and 𝑥 ∈ Ω we define for 𝑛 large enough

𝑚
𝑛
(𝑠, 𝑥) = 𝑀(𝑡

𝑛
+ 𝑠, 𝑥) . (14)

We have the following convergence result.

Lemma4. The sequence (𝑚
𝑛
)
𝑛≥1 satisfies the following conver-

gences:

𝑚
𝑛
→ m 𝑖𝑛 L

2
((−1, 1) × Ω) 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦,

𝑚
𝑛
⇀ m 𝑖𝑛 L

2
((−1, 1) ;H

1
(Ω)) 𝑤𝑒𝑎𝑘𝑙𝑦.

(15)

Proof. Following [14], we have the estimate

1
2
∫

1

−1
∫
Ω

𝑚𝑛 (𝑠, 𝑥) −𝑀(𝑡
𝑛
, 𝑥)



2 d𝑥 d𝑠

≤ ∫

+∞

𝑡
𝑛
−1
∫
Ω

𝜕𝑡𝑀(𝜏, 𝑥)


2 d𝑥 d𝜏.
(16)

As 𝜕
𝑡
𝑀 lies in L2

(R+ × Ω), one gets

lim
𝑛→+∞

1
2
∫

1

−1
∫
Ω

𝑚𝑛 (𝑠, 𝑥) −𝑀(𝑡
𝑛
, 𝑠)


2 d𝑥 d𝑠 = 0. (17)

Since𝑀(𝑡
𝑛
, ⋅) tends to m in L2

(Ω) strongly, 𝑚
𝑛
tend to m in

L2
((−1, 1);L2

(Ω)) strongly.Moreover, we have obviously seen

that (∇𝑚
𝑛
)
𝑛≥1 is bounded in L2

((−1, 1) × Ω) so there exists
a subsequence still denoted by (𝑚

𝑛
)
𝑛≥1 such that 𝑚

𝑛
tends

to m in L2
((−1, 1),H1

(Ω)) weakly and in L2
((−1, 1),L2

(Ω))

strongly almost everywhere in (−1, 1)×Ω.This ends the proof
of the lemma.

Now, we consider a function 𝜌 ∈ C∞0 ((−1, 1)) such that
0 ≤ 𝜌(𝜏) ≤ 1, |𝜌(𝜏)| ≤ 2. In the weak formulation (11)
we take as test function 𝐺(𝑡, 𝑥) = 𝜌(𝑡 − 𝑡

𝑛
)Ψ(𝑥), where Ψ

is a function lying in D(Ω) and 𝑛 fixed. We obtain after the
change of variables 𝑠 = 𝑡 − 𝑡

𝑛

1
1 + 𝛼2

(∫

1

−1
∫
Ω

(𝜕
𝑡
𝑚
𝑛
(𝑠, 𝑥) − 𝛼𝑚

𝑛
(𝑠, 𝑥) × 𝜕

𝑡
𝑚
𝑛
(𝑠, 𝑥))

⋅ Ψ (𝑥) 𝜌 (𝑠) d𝑥 d𝑠) −𝐷∫
1

−1
∫
Ω

𝑚
𝑛
(𝑠, 𝑥)

× 𝜕
𝑖
𝑚
𝑛
(𝑠, 𝑥) ⋅ 𝜕

𝑖
Ψ (𝑥) 𝜌 (𝑠) d𝑥 d𝑠

− 𝜁∫

1

−1
∫
Ω

𝑚
𝑛
(𝑠, 𝑥) × 𝜕

𝑖
(𝜕
𝑡
𝑚
𝑛
) (𝑠, 𝑥) ⋅ 𝜕

𝑖
Ψ (𝑥) 𝜌 (𝑠) d𝑥 d𝑠

= 0.

(18)

We take the limit of the previous equation when 𝑛 tends to
+∞. In order to pass to the limit, we bound each term of the
above formulation. For example, for the last term we have



∫

1

−1
∫
Ω

𝑚
𝑛
(𝑠, 𝑥) × 𝜕

𝑖
𝜕
𝑡
𝑚
𝑛
(𝑠, 𝑥) ⋅ 𝜕

𝑖
Ψ (𝑥) 𝜌 (𝑠) d𝑥 d𝑠



≤ ∫

1

−1
∫
Ω

𝑚𝑛 (𝑠, 𝑥) × 𝜕𝑖𝜕𝑡𝑚𝑛 (𝑠, 𝑥)

𝜕𝑖Ψ (𝑥)



⋅
𝜌 (𝑠)

 d𝑥 d𝑠 ≤ ∫
1

−1
∫
Ω

𝑚𝑛 (𝑠, 𝑥)

× 𝜕
𝑖
𝜕
𝑡
𝑚
𝑛
(𝑠, 𝑥)


𝜕𝑖Ψ (𝑥)

 d𝑥 d𝑠

≤ (∫

1

−1
∫
Ω

𝑚𝑛 (𝑠, 𝑥) × 𝜕𝑖𝜕𝑡𝑚𝑛 (𝑠, 𝑥)


2 d𝑥 d𝑠)
1/2

⋅ (∫

1

−1
∫
Ω

𝜕𝑖Ψ (𝑥)


2 d𝑥 d𝑠)
1/2

≤ (∫

1

−1
∫
Ω

𝜕𝑖𝜕𝑡𝑚𝑛 (𝑠, 𝑥)


2 d𝑥 d𝑠)
1/2

⋅ (∫

1

−1
∫
Ω

𝜕𝑖Ψ (𝑥)


2 d𝑥 d𝑠)
1/2

≤ √2(∫
𝑡
𝑛
+1

𝑡
𝑛
−1
∫
Ω

𝜕𝑖𝜕𝑡𝑀(𝑠, 𝑥)


2 d𝑥 d𝑠)
1/2

⋅ (∫
Ω

𝜕𝑖Ψ (𝑥)


2 d𝑥)
1/2
.

(19)
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Since∇𝜕
𝑡
𝑀 belongs toL2

(R+×Ω), this last term tends to zero
as 𝑛 goes to +∞. In the same way we pass to the limit in the
other terms to obtain

∫

1

−1
𝜌 (𝑠) d𝑠 ∫

Ω

m (𝑥) × 𝜕
𝑖
m (𝑥) ⋅ 𝜕

𝑖
Ψ (𝑥) d𝑥 = 0, (20)

which implies

∫
Ω

m (𝑥) × 𝜕
𝑖
m (𝑥) ⋅ 𝜕

𝑖
Ψ (𝑥) d𝑥 = 0, (21)

for all Ψ ∈ D(Ω).
We proved the following.

Theorem 5. If𝑀 is a weak solution of (1), then each point m
in 𝜔(𝑀) is a weak solution of the steady state system

m ∈ H
1
(Ω) ; |m| = 1, 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒V𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒

m×Δm = 0 𝑖𝑛 Ω

(22)

which should be understood in the weak sense (21).

Remark 6. The solutions of (22) are known as harmonic
maps to the unit sphere, which turn up in several equations
in physics, such as Ginzburg-Landau equation, and were
extensively investigated mathematically in the past decades
due to their importance both in mathematics and in many
applied fields; see, for example, [15, 16]. For the links between
harmonic maps and the solutions of the LLG equation we
refer to the book [17, Chapter 4]. Some results on the dynamic
version of (22) can be found in [18].

3. Limiting Process for High and
Small Nonlocal Damping

We first analyze the limiting process when 𝜁 goes to +∞. We
denote by 𝑀𝜁 a global weak solution of LLG equation (1)
associated with 𝜁 and the initial data 𝑀0 and satisfying the
energy inequality (7). We have the estimates.

Lemma 7. There exists 𝐶 > 0 independent of 𝜁 such that the
sequence𝑀𝜁 satisfies the estimates


𝑀
𝜁
(𝑡, 𝑥)



2
= 1 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒V𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒,


∇𝑀
𝜁𝐿∞(R+ ;𝐿2(Ω))

≤ 𝐶,


∇𝜕
𝑡
𝑀
𝜁𝐿2(R+ ;𝐿2(Ω))

≤ 𝐶𝜁
−1
,


𝜕
𝑡
𝑀
𝜁𝐿2(R+ ;𝐿2(Ω))

≤ 𝐶.

(23)

We also have the following.

Lemma 8. The sequence𝑀𝜁 is compact in 𝐿2loc(R
+
; 𝐿

2
(Ω)).

Lemmas 7 and 8 imply the following convergence results.

Lemma 9. There exists a subsequence still denoted by𝑚𝜁 such
that

𝑀
𝜁
⇀𝑀 𝑤𝑒𝑎𝑘𝑙𝑦 −⋆ 𝑖𝑛 𝐿

∞
(R
+
;H

1
(Ω)) ,

𝜕
𝑡
𝑀
𝜁
⇀ 𝜕
𝑡
𝑀 𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛 𝐿

2
(R
+
;H
−1
(Ω)) ,

∇𝑀
𝜁
⇀ ∇𝑀 𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛 𝐿

2
(R
+
;L

2
(Ω)) ,

∇𝜕
𝑡
𝑀
𝜁
→ 0 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿

2
loc (R

+
;L

2
(Ω)) ,

𝜕
𝑡
𝑀
𝜁
→ 0 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿

2
loc (R

+
;L

2
(Ω)) ,

𝑀
𝜁
→ 𝑀 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿

2
loc (R

+
;L

2
(Ω)) .

(24)

Moreover,𝑀 satisfies the saturation condition |𝑀| = 1.

The above convergences allow one to conclude.

Theorem 10. Let𝑀 be the limit of a subsequence of𝑀𝜁 as 𝜁
goes to +∞. Then, the domain Ω is uniformly magnetized.

Remark 11. The result of Theorem 10 is of interest. In fact,
the added term in the effective field can act as a control for
magnetization switching.

Our aim now is to pass to the limit as 𝜁 goes to zero
in (1). We denote by 𝑀𝜁 a global weak solution of LLG
equation (1) associated with 𝜁 and the initial data 𝑀0 and
satisfying the energy inequality (7). The bound on√𝜁∇𝜕

𝑡
𝑀
𝜁

in 𝐿2(0, 𝑇;L2
(Ω)) (see (7)) allows one to get the following.

Theorem 12. Let𝑀 be the limit of a subsequence of𝑀𝜁. Then,
𝑀 satisfies

𝜕
𝑡
𝑀−𝛼𝑀×𝜕

𝑡
𝑀 = −(1+𝛼2)𝑀× (𝐷Δ𝑀)

𝑖𝑛 R
+
× Ω

𝑀(0) = 𝑀0 𝑖𝑛 Ω,

𝑀×𝐷𝜕
𝑛
𝑀 = 0 𝑜𝑛 𝜕Ω.

(25)

Moreover, 𝑀 satisfies the saturation condition |𝑀(𝑡, 𝑥)| = 1
almost everywhere.

Remark 13. From (25), we can say that, for lower values
of 𝜁, the magnetic nonlocal damping vanishes and the
classical switching continues for ever. In other words, the
magnetization precesses several times around the effective
field direction before it reaches equilibrium.

4. Concluding Remarks

In this paper, we have considered nonlocal damping in
magnetization dynamics.Themodel consists of a generalized
LLG equation that contains a term characterizing nonlocal
damping expressed in terms of Δ𝜕

𝑡
𝑀 in the effective field.

The long time behaviour of the solutions is characterized and
the sensitivity of the model to nonlocal damping parameter
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𝜁 is discussed. The results obtained can be applied without
difficulty to the case of effective field with anisotropy and
demagnetizing fields. Note that the model considered in this
paper neglects the additional damping due to transversal spin
currents whose form is 𝜕

𝑖
𝑀 × 𝜕

𝑖
𝜕
𝑡
𝑀. In this case the LLG

equation takes the following form (see Nembach et al. [1]):

𝜕
𝑡
𝑀−𝛼𝑀×𝜕

𝑡
𝑀 = −(1+𝛼2)𝑀

× (𝐷Δ𝑀+𝜁Δ𝜕
𝑡
𝑀)+ 𝜁𝜕

𝑖
𝑀

×𝜕
𝑖
𝜕
𝑡
𝑀.

(26)

Interestingly, the additional damping cannot be written in
terms of the free energy, and therefore it cannot be derived
from the functional derivative of the free energy with respect
to the local magnetization. This new term can significantly
change the domain-wall structure in ferromagneticmaterials.
It would be interesting to consider this problem from both
the theoretical and the numerical points of view. In particular,
global existence of weak solutions will require more detailed
studies.

We finally mention that an important progress was done
to design schemes constructing the weak solutions to the
general LLG equation. Several schemes were proposed and
their convergence to weak solutions was proved. A significant
step forward in the convergence theory of numerical schemes
has been done recently; see [19–21].Thiswill be helpful to give
a strategy for efficient computer implementation which may
reflect the true nature of the augmentation of the LLGmodel
considered in this paper.
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