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The aim of this work is to study a semidiscrete Crank-Nicolson type scheme in order to approximate numerically the Dirichlet-
to-Neumann semigroup. We construct an approximating family of operators for the Dirichlet-to-Neumann semigroup, which
satisfies the assumptions of Chernoff ’s product formula, and consequently the Crank-Nicolson scheme converges to the exact
solution. Finally, we write a 𝑃1 finite element scheme for the problem, and we illustrate this convergence by means of a FreeFem++
implementation.

1. Introduction

Let Ω be a bounded smooth domain Ω ⊂ R𝑛 and let
𝛾(𝑥) = [𝛾

𝑖,𝑗
(𝑥)]
𝑛

𝑖,𝑗=1 be a real-valued matrix function, which
is known as the electrical conductivity matrix. The matrix
𝛾(𝑥) is symmetric and smooth; that is, 𝛾

𝑖𝑗
= 𝛾
𝑗𝑖
∈ 𝐶
∞

(Ω).
Its positive eigenvalues are uniformly bounded; that is, there
exists 0 < 𝑐1 < 𝑐2 such that, for all (𝑥, 𝜉) ∈ Ω × R𝑛, one has
𝑐1‖𝜉‖

2
≤ 𝜉
𝑇

𝛾(𝑥)𝜉 ≤ 𝑐2‖𝜉‖
2, where ‖ ⋅ ‖ is the Euclidean norm

of R𝑛.
In this paper, we denote by 𝑋 = 𝐿2(Ω), with boundary

space 𝜕𝑋 = 𝐿
2
(𝜕Ω). It is well known that, for any 𝑓 ∈

𝐻
1/2
(𝜕Ω), the following Dirichlet problem,

div (𝛾∇𝑢) = 0, in Ω,

𝑢 = 𝑓, on 𝜕Ω,
(1)

has a unique solution 𝑢 = 𝐿
𝛾
𝑓 in𝐻1

(Ω), which is called the
𝛾-harmonic lifting of 𝑓; see [1] for more details.

Define the action of the Dirichlet-to-Neumann operator
on 𝑓 as the outward normal derivative of 𝑢 on the boundary;
that is,

Λ
𝛾
(𝑓) := (] ⋅ 𝛾∇𝑢)󵄨󵄨󵄨󵄨𝜕Ω , (2)

where ] is the outer normal vector to 𝜕Ω at 𝑥 ∈ 𝜕Ω.

This operator is defined on its domain:

𝐷(Λ
𝛾
) := {𝑓 ∈𝐻

1/2
(𝜕Ω) ; Λ

𝛾
𝑓∈𝐿

2
(𝜕Ω)} . (3)

The Dirichlet-to-Neumann semigroup is the trace of the fol-
lowing boundary value problem:

(BVP)

{{{{

{{{{

{

div (𝛾∇𝑢 (𝑡, ⋅)) = 0, in Ω,

𝜕
𝑡
𝑢 + ] ⋅ 𝛾∇𝑢 = 0, on 𝜕Ω,

𝑢 (0, ⋅) = 𝑓, on 𝜕Ω.

(4)

In [1], Lax has introduced a semigroup in 𝜕𝑋, whereΩ is the
unit ball 𝐵(0, 1) and 𝛾 is the identity matrix. Let V be the so-
lution of the problem:

ΔV = 0, in Ω,

𝐿V = 𝑓, on 𝜕Ω,
(5)

where 𝐿 is the trace operator on 𝜕Ω. The Lax semigroup is
defined by

𝑆 (𝑡) = 𝐿𝑇 (𝑡) 𝐿0, (6)

where 𝐿0 is the lifting operator and 𝑇(𝑡)V(𝑥) := V(𝑒−𝑡𝑥).
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Therefore, if 𝑓 ∈ 𝜕𝑋, then, for any 𝑤 ∈ 𝜕Ω,

(𝑆 (𝑡) 𝑓) (𝑤) = V (𝑒−𝑡𝑤) . (7)

It has been shown that the Lax semigroup is actually the Dir-
ichlet-to-Neumann semigroup.

In [2], it is shown that Lax’s representation cannot be gen-
eralized if Ω is not the unit ball. This was a motivation for
many authors to use Chernoff ’s formula in order to approxi-
mate the solution.

In [3], Emamirad and Shariftabar proved that the Euler
Explicit scheme

div (𝛾∇𝑢𝑚+1) = 0, in Ω,

1
Δ𝑡
(𝑢
𝑚+1
−𝑢
𝑚

) +
𝜕𝑢
𝑚

𝜕]
𝛾

= 0, on 𝜕Ω,

𝑢
0
= 𝑓, on 𝜕Ω

(8)

converges to the solution of the (BVP).
Later, Cherif et al. proposed, in [4], the following Implicit

Euler Scheme:
div (𝛾∇𝑢𝑚+1) = 0, in Ω,

1
Δ𝑡
(𝑢
𝑚+1
−𝑢
𝑚

) +
𝜕𝑢
𝑚+1

𝜕]
𝛾

= 0, on 𝜕Ω,

𝑢
0
= 𝑓, on 𝜕Ω,

(9)

which converges to the solution of the (BVP).
After studying the implicit and explicit schemes, by the

same strategy, we are interested in studying the convergence
of theCrank-Nicolson type scheme.This paper is divided into
4 sections, as follows.

First, in Section 2, we introduce the Crank-Nicolson type
scheme for evolution equations.

In Section 3, we prove the convergence of a Crank-
Nicholson type scheme for the (BVP), by constructing an
approximating family, and use Chernoff ’s product formula in
order to prove the convergence in 𝐿2(𝜕Ω).

Finally, in Section 4, we present a numerical implementa-
tion of the Crank-Nicolson type scheme in the computational
framework of the finite element method.

2. The Crank-Nicolson Scheme

In numerical analysis, the Crank-Nicolson method is a finite
difference method used for numerically solving the heat
equation and similar partial differential equations. It is a
second-ordermethod in time and it is numerically stable.The
methodwas developed by JohnCrank and Phyllis Nicolson in
the mid-20th century.

Let 𝐴 be a 𝑚-accretive operator on the Hilbert space 𝐻
defined as 𝐴 : 𝐷(𝐴) → 𝐻.

Consider the evolution problem:
𝜕𝑢

𝜕𝑡
+𝐴𝑢 = 0, for 0 < 𝑡 < 𝑇,

𝑢 (0, 𝑥) = 𝑢0 (𝑥) .
(10)

We approximate the time derivative by using the finite differ-
ence method as follows:

𝑢 (𝑛Δ𝑡) ≈ 𝑢
𝑛

𝜕𝑢

𝜕𝑡
(𝑛Δ𝑡) =

1
Δ𝑡
(𝑢 (𝑛 + 1) Δ𝑡 − 𝑢 (𝑛Δ𝑡))

≈
1
Δ𝑡
(𝑢
𝑛+1
−𝑢
𝑛

) , for 𝑛 = 0, . . . , [ 𝑇
Δ𝑡
] .

(11)

Crank-Nicolson introduced the scheme:

𝑢
𝑛+1
− 𝑢
𝑛

Δ𝑡
+
1
2
𝐴𝑢
𝑛

+
1
2
𝐴𝑢
𝑛+1
= 0,

for 𝑛 = 0, . . . , [ 𝑇
Δ𝑡
] ,

𝑢0 given.

(12)

The Chernoff product formula holds not only in the case
of semigroup of contractions but also if the semigroup is
bounded, so that the Crank-Nicholson scheme for the (BVP)
can be written as

(CNS)

{{{{{

{{{{{

{

div (𝛾∇𝑢𝑚+1) + div (𝛾∇𝑢𝑚) = 0, in Ω,

1
Δ𝑡
(𝑢
𝑚+1
− 𝑢
𝑚

) +
1
2
(
𝜕𝑢
𝑚

𝜕]
𝛾

+
𝜕𝑢
𝑚+1

𝜕]
𝛾

) = 0, on 𝜕Ω,

𝑢
0
= 𝑓, on 𝜕Ω.

(13)

3. Convergence of the Crank-Nicholson
Type Scheme

In order to show the convergence of the (CNS), let us recall
the following Chernoff theorem.

Theorem 1 (Chernoff ’s product formula). Let X be a Banach
space, real or complex, and let {𝑉(𝑡); 𝑡 ≥ 0} be a family of
contractions on X with 𝑉(0) = 𝐼.

Assume that there exists 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑋 which
generates a 𝐶0-semigroup of contractions {𝑆(𝑡); 𝑡 ≥ 0} and that
for all 𝑥 ∈ 𝐷(𝐴) there exists

lim
ℎ→ 0

1
ℎ
(𝑉 (ℎ) − 𝐼) 𝑥 = 𝐴𝑥. (14)

Then, for each 𝑥 in𝑋, one has lim
𝑛→∞

𝑉
𝑛

(𝑡/𝑛)𝑥 = 𝑆(𝑡)𝑥.

Remark 2. Note that Chernoff ’s product formula holds not
only in the case of semigroup of contractions but also if the
semigroup is bounded (see [5]).

This theorem was used to prove the convergence of both
implicit and explicit schemes.

Now, in order to prove the convergence of the Crank-
Nicolson scheme, wewill show that the operator𝑍(𝑡), defined
below, satisfies the 3 conditions of Chernoff ’s theorem.
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For any 𝑥 ∈ 𝜕Ω, we have

𝜕𝑢
𝑚+1

𝜕]
𝛾

=
1
Δ𝑥
[𝑢
𝑚+1
(𝑥) − 𝑢

𝑚+1
(𝑥 −Δ𝑥𝛾 (𝑥) ])] ,

𝜕𝑢
𝑚

𝜕]
𝛾

=
1
Δ𝑥
[𝑢
𝑚

(𝑥) − 𝑢
𝑚

(𝑥 −Δ𝑥𝛾 (𝑥) ])] .

(15)

Using in (CNS) the approximation given in (15), we get

[1+ 1
2
Δ𝑡

Δ𝑥
] 𝑢
𝑚+1
(𝑥) − [1− 1

2
Δ𝑡

Δ𝑥
] 𝑢
𝑚

(𝑥)

−
1
2
Δ𝑡

Δ𝑥
𝑢
𝑚+1
(𝑥 −Δ𝑥𝛾 (𝑥) ])

−
1
2
Δ𝑡

Δ𝑥
𝑢
𝑚+1
(𝑥 −Δ𝑥𝛾 (])) = 0.

(16)

Taking 𝛼 = Δ𝑡/Δ𝑥, we get

[1+ 𝛼
2
] 𝑢
𝑚+1
(𝑥) −

𝛼

2
𝑢
𝑚+1
(𝑥 −Δ𝑥𝛾 (𝑥) ])

= [1− 𝛼
2
] 𝑢
𝑚

(𝑥) +
𝛼

2
𝑢
𝑚+1
(𝑥 −Δ𝑥𝛾 (𝑥) ])

(17)

which can be written as

𝑊(Δ𝑡) 𝑢
𝑚+1

= 𝑉 (Δ𝑡) 𝑢
𝑚

, (18)

where

𝑊(Δ𝑡) 𝑓 = [1+ 𝛼
2
] 𝑢 −

𝛼

2
𝑢 (𝑥−𝛼

−1
𝑡𝛾 (𝑥) ]) ,

𝑉 (Δ𝑡) 𝑓 = [1− 𝛼
2
] 𝑢 +

𝛼

2
𝑢 (𝑥−𝛼

−1
𝑡𝛾 (𝑥) ]) .

(19)

Now, we define the family 𝑄(𝑡) as the inverse of𝑊(𝑡) in the
following sense:

𝑊(Δ𝑡)𝑄 (Δ𝑡) 𝑓 (𝑥) = 𝑓 (𝑥) , (20)

and we show that 𝑍(𝑡) = 𝑄(Δ𝑡)𝑉(Δ𝑡) satisfies all the
assumptions of Chernoff ’s product formula.

(i) 𝑍(0)𝑓 = 𝑓. For any 𝑥 ∈ 𝜕Ω, we have

𝑊(0) 𝑓 (𝑥) = (1+ 𝛼
2
) 𝑢 (𝑥) −

𝛼

2
𝑢 (𝑥) = 𝑢 (𝑥)

= 𝑓 (𝑥)

(21)

so, 𝑓(𝑥) = 𝑊(0)[𝑄(0)𝑓(𝑥)] = 𝑄(0)𝑓(𝑥).
Moreover,

𝑉 (0) 𝑓 (𝑥) = (1− 𝛼
2
) 𝑢 (𝑥) +

𝛼

2
𝑢 (𝑥) = 𝑢 (𝑥)

= 𝑓 (𝑥)

(22)

so,

𝑉 (0) 𝑓 (𝑥) = 𝑓 (𝑥) . (23)

Using (6) and (7), we get

𝑊(0) 𝑓 (𝑥) = 𝑉 (0) 𝑓 (𝑥) . (24)

Therefore, 𝑓(𝑥) = 𝑄(0)𝑉(0)𝑓(𝑥) = 𝑍(0)𝑓(𝑥).

(ii) 𝑍󸀠(0)𝑓 = −Λ
𝛾
𝑓. The derivative of𝑊(𝑡) with respect to 𝑡

is

𝑊
󸀠

(𝑡) 𝑓 = −
𝛼

2
(−𝛼
−1
𝛾]) ⋅ ∇𝑢 (V−𝛼−1𝑡𝛾]) . (25)

At point 𝑡 = 0, we have𝑊󸀠(0)𝑓 = 1/2Λ
𝛾
𝑓.

Similarly, the derivative of 𝑉(𝑡) with respect to 𝑡 is

𝑉
󸀠

(𝑡) 𝑓 =
𝛼

2
(−𝛼
−1
𝛾]) ⋅ ∇𝑢 (V−𝛼−1𝑡𝛾]) . (26)

At point 𝑡 = 0, we have 𝑉󸀠(0)𝑓 = −(1/2)Λ
𝛾
𝑓.

But𝑊(𝑡)𝑄(𝑡)𝑓 = 𝑓, so𝑊󸀠(𝑡)𝑄(0)𝑓 + 𝑊(0)𝑄󸀠(0)𝑓 = 0,
and then 𝑄󸀠(0)𝑓 = −(1/2)Λ

𝛾
𝑓.

Now, the derivative of 𝑍(𝑡) with respect to 𝑡 is

𝑍
󸀠

(𝑡) 𝑓 = 𝑄
󸀠

(𝑡) 𝑉 (𝑡) 𝑓 +𝑄 (𝑡) 𝑉
󸀠

(𝑡) 𝑓. (27)

At 𝑡 = 0, 𝑍󸀠(0)𝑓 = 𝑄󸀠(0)𝑉(0)𝑓 + 𝑄(0)𝑉󸀠(0)𝑓 = −Λ
𝛾
𝑓.

Therefore,

𝑍
󸀠

(0) 𝑓 = Λ
𝛾
𝑓. (28)

(iii) 𝑍(𝑡) Is a Contraction. In fact,
󵄩󵄩󵄩󵄩𝑊 (𝑡) 𝑓

󵄩󵄩󵄩󵄩

2
𝐿
2
(𝜕Ω)

= ∫
𝜕Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑥) +

𝛼

2
(𝑢 (𝑥) − 𝑢 (𝑥 − 𝛼

−1
𝑡𝛾]))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝜎

(29)

but (𝑢(𝑥)−𝑢(𝑥−𝛼−1𝑡𝛾]))/𝛼−1 is an upper boundof the normal
derivative 𝜕𝑢/𝜕]

𝛾
, so that this term is positive according to

Hopf ’s lemma, and, consequently,

∫
𝜕Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑥) +

𝛼

2
(𝑢 (𝑥) − 𝑢 (𝑥 − 𝛼

−1
𝑡𝛾]))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝜎

≥ ∫
𝜕Ω

|𝑢 (𝑥)|
2

𝑑𝜎 =
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
𝐿
2
(𝜕Ω)

(30)

which implies that
󵄩󵄩󵄩󵄩𝑊 (𝑡) 𝑓

󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) ≥
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) . (31)

Now
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) =

󵄩󵄩󵄩󵄩𝑊 (𝑡) 𝑄 (𝑡) 𝑓
󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) ≥

󵄩󵄩󵄩󵄩𝑄 (𝑡) 𝑓
󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) . (32)

Thus, 𝑄(𝑡) is of contraction.
Similarly 𝑉(𝑡) is also of contraction.
Finally,

󵄩󵄩󵄩󵄩𝑍 (𝑡) 𝑓
󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) =

󵄩󵄩󵄩󵄩𝑄 (𝑡) 𝑉 (𝑡) 𝑓
󵄩󵄩󵄩󵄩𝐿2(𝜕Ω)

≤
󵄩󵄩󵄩󵄩𝑄 (𝑡) 𝑓

󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) ≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) .

(33)

Therefore, 𝑍(𝑡) is of contraction.
So, we have proved that 𝑍(𝑡) satisfies all the assumptions

of Chernoff ’s product formula, and, consequently, the Crank-
Nicholson scheme converges to its exact solution.

Theorem 3. The operator 𝑍(𝑡) satisfies the Chernoff condi-
tions; hence, the Crank-Nicolson method is convergent.
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4. Numerical Results

In the last section of this paper, we present the resolution of
(CNS) in the particular case where 𝛾 is the unit matrix and
Ω is the open unit disk. The point in dealing with this case is
that the exact solution is known to be V(𝑒−𝑡𝑥, 𝑒−𝑡𝑦), where V
is the solution of the Laplace equation ΔV = 0, with V = 𝑢0
on the boundary (𝑢0 is any regular function). Thus, we can
compare this exact solution with the approximate solution
obtained via our Crank-Nicolson scheme. For this test, we
choose 𝑢0(𝑥, 𝑦) = 0.5(𝑥2 − 𝑦2) + 𝑦 + 0.5. The variational
formulation of the (CNS) can be derived by multiplying both
sides of the problem by a test function V:

∫
Ω

𝛾Δ𝑢
𝑚+1V 𝑑𝑥+∫

Ω

𝛾Δ𝑢
𝑚V 𝑑𝑥 = 0. (34)

Using Green’s formula, we get

−∫
Ω

𝛾∇𝑢
𝑚+1
∇V 𝑑𝑥−∫

𝜕Ω

2
Δ𝑡
[𝑢
𝑚+1
−𝑢
𝑚

] V 𝑑𝜎

−∫
Ω

𝛾∇𝑢
𝑚

∇V 𝑑𝑥 = 0.
(35)

Multiplying by Δ𝑡, we get

∫
Ω

Δ𝑡𝛾∇𝑢
𝑚+1
∇V 𝑑𝑥+ 2∫

𝜕Ω

𝑢
𝑚+1V 𝑑𝜎

= −∫
Ω

Δ𝑡𝛾∇𝑢
𝑚

∇V 𝑑𝑥+ 2∫
𝜕Ω

𝑢
𝑚V 𝑑𝜎

(36)

which is of the form

𝑎 (𝑢
𝑚+1
, V) = 𝑙 (V) , (37)

where the bilinear form

𝑎 (𝑢
𝑚+1
, V) = ∫

Ω

Δ𝑡𝛾∇𝑢
𝑚+1
∇V 𝑑𝑥+ 2∫

𝜕Ω

𝑢
𝑚+1V 𝑑𝜎,

𝑙 (V) = −∫
Ω

Δ𝑡𝛾∇𝑢
𝑚

∇V 𝑑𝑥+ 2∫
𝜕Ω

𝑢
𝑚V 𝑑𝜎

(38)

is the linear form.
Using this variational formulation, the problem can

be approximate via 𝑃1-finite elements implemented in
Freefem++.

The actual algorithm is as follows.
Choose an initial 𝑢0 and, for a given Δ𝑡, where 𝑡 < 𝑁Δ𝑡,

we have the following:
for (𝑡 = 0; 𝑡 < 𝑁Δ𝑡) do

(i) 𝑢𝑛+1 = 𝑍(𝑢𝑛)
(ii) compute 𝑢𝑛+1 via the variational problem
(iii) 𝑛 ← 𝑛 + 1

end do.
As an illustration, let us represent the exact (Figure 1) and

the approximate solution (Figure 2), the 𝐿2-error between
the exact and the approximate solutions (Figure 3), and the
decrement of this 𝐿2-error according to the fineness of the
meshing (Figure 4).

Iso value
−0.0870784
−0.00320263
0.0527145
0.108632
0.164549
0.220466
0.276383
0.3323
0.388218
0.444135
0.500052
0.555969
0.611886
0.667803
0.723721
0.779638
0.835555
0.891472
0.947389
1.08718

Figure 1: The exact solution.

Iso value
−0.0877051
−0.00374476
0.0522288
0.108202
0.164176
0.220149
0.276123
0.332097
0.38807
0.444044
0.500017
0.555991
0.611964
0.667938
0.723912
0.779885
0.835859
0.891832
0.947806
1.08774

Figure 2: The numerical solution.

Iso value
−0.000897199
−0.00077366
−0.000691301
−0.000608942
−0.000526582
−0.000444223
−0.000361864
−0.000279505
−0.000197145
−0.000114786

0.000132292
0.000214651
0.000297011
0.00037937
0.000461729
0.000544088
0.000626448
0.000832346

−3.24266e − 05

4.99327e − 05

Figure 3: The difference between the exact and the numerical
solutions.
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Figure 4: The 𝐿2-error according to the fineness of the mesh.

5. Conclusion

As a conclusion, we have proved the convergence of the
(CNS) by showing that the constructed family of operators
satisfies the assumptions of Chernoff ’s product formula and
consequently approximated numerically the Dirichlet-to-
Neumann semigroup.
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