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We develop a canonical dual approach for solving the MIMO problem. First, a special linear transformation is introduced to
reformulate the original problem into a {−1, 1} constrained quadratic programming problem. Then, we derive a canonical dual
problem which is piecewise continuous problem with no duality gap. Under certain conditions, the canonical problem becomes a
concave maximization dual problem over a convex feasible domain. By getting the stationary point of the canonical dual problem,
we can find either an optimal or approximate solution of the original problem. A gradient decent algorithm is proposed to solve
the MIMO problem and simulation results are provided to demonstrate the effectiveness of the method.

1. Introduction

In the recent decade, multiple antennae communication sys-
tems have developed very fast since it could provide substan-
tial performance gain over their single antenna counterparts
[1]. Therefore, how to efficiently detect the signal vector of
transmitted symbols becomes an important issue. As a conse-
quent result, the problem of multiple-input-multiple-output
(MIMO) detection has been raised up and received consider-
able attention over several years.

Note that, in the communication scenarios, the signal
model is always written in the following form:

𝑦 = 𝐻𝑥 + V, (1)

where 𝑦 ∈ R𝑚 is a received signal vector, 𝑥 ∈ R𝑛 is a
transmitted symbol vector whose elements are drawn from a
symbol constellation set,𝐻 is𝑚×𝑛 realmatrix that character-
izes the input-output relation, and V ∈ R𝑚 is an additive white
Gaussian noise with unit variance. It is worth pointing out
that the signal model is sometimes represented in a complex-
valued form. But it is easy to reformulate the complex-valued
model to a real-valued model (please see [2] for details).
The MIMO problem aims to detect the transmitted vector 𝑥
based on the observations 𝑦 and𝐻. And the optimal symbol

vector which minimizes the error probability can be found
by solving the maximum-likelihood (ML) detection problem
[3]. It is a very fundamental problem in the communication
area. The corresponding problem is as follows:

min 󵄩󵄩󵄩󵄩𝑦 − 𝐻𝑥
󵄩󵄩󵄩󵄩
2

s.t. 𝑥
𝑖
∈ {±1, ±3, . . . , ±𝑢} , 𝑖 = 1, . . . , 𝑛,

(MIMO)

where ‖ ⋅ ‖ denotes the 2-norm and each symbol 𝑥
𝑖
is drawn

from a (𝑢 + 1)-QAM constellation set 𝑆 = {±1, ±3, . . . , ±𝑢}

(please see [4] for details). In this paper, we suppose 𝑢 ≥ 3.
Unfortunately, theMIMOproblem is NP-hard [5].Therefore,
researchers have developed a lot of approximation algo-
rithms.

Lattice decoding is an important research direction for
the MIMO detection. It has received a lot of attention for its
good tradeoffbetweendetection accuracy and complexity [6–
8]. Naive lattice decoding (NLD) method relaxes the symbol
bound constraints and finds the closest lattice point to the
received signal over thewhole lattice generated by the channel
[6]. In order to further improve the efficiency, some subopti-
mal lattice decoding methods, such as sampled decoding [9],
embedded decoding [10], and lattice reduction-aided (LRA)
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methods [11], can be combined with lattice decoding method
to accelerate the lattice point search. However, since the NLD
method completely ignores the symbol bounds, it fails to
achieve the optimal diversity-multiplexing tradeoff (DMT)
under general MIMO systemmodels [6, 8]. Then, in order to
prevent the lattice points going too far away from the origin
point, some researchers developed the regularized lattice
decoding (RLD)methodwhich adds a quadratic penalization
term to the lattice decoding metric [12]. Though the RLD
method has been empirically found to be computationally
fast for small to moderate problems sizes, its complexity
would be prohibitive for large 𝑛 and higher order QAM [13].

Another big family of MIMO detection algorithms is
based on semidefinite relaxation (SDR). The SDR method
relaxes the ML detection problem into a convex semidefinite
programming (SDP) problem which leads to a polynomial-
time complexity in the problemdimension.The SDRdetector
was first developed for the binary phase-shift keying (BPSK)
constellation [14] and then extended to QPSK (4-QAM)
constellation [15]. Researchers have verified that the SDR
detector can provide a constant factor approximation to the
optimal log-likelihood value in the low signal-to-noise ration
(SNR) region almost surely [16]. Based on that, Wiesel et al.
[17] proposed a polynomial-inspired SDR (PI-SDR) method
for 16-QAM and proved that PI-SDR achieves an optimal
Lagrangian dual lower bound of the ML. Sidiropoulos and
Luo [18] designed a bound-constrained SDR (BC-SDR)
method which has a special structure. Thus, compared to PI-
SDR, BC-SDR makes fast implementations more favorable.
Moreover,Mao et al. [19] developed a virtually antipodal SDR
(VA-SDR) method for any 4𝑞-QAM (where 𝑞 > 1). For the
relationship and comparisons between these SDR detectors,
please see [2]. Though SDP problem has a theoretical low
polynomial computational complexity, due to large problem
size and slow SDP solvers, the actual computation time is very
high in practice.

Besides, there are some other algorithms for the MIMO
problem. Sphere decoder method is a classical one [4, 20].
However, it exhibits exponential complexity with respect to
the problem size. Moreover, Goldberger and Leshem [21]
proposed a new detection algorithm based on an optimal
tree approximation in an unconstrained linear system. They
showed that this algorithm outperforms other methods for
the loop-free factor graph situation. Recently, Pan et al. [22]
proposed a Lagrangian dual relaxation (LDR) for the MIMO
problem. This method finds the best diagonally regularized
lattice decoder to approximate the ML detector. They proved
that the LDR problem yields a duality gap no worse than that
of the SDR method.

In this paper, we present a canonical duality approach to
the MIMO problem. The canonical duality theory is origi-
nally proposed for handling general nonconvex and/or nons-
mooth systems [23]. Canonical dual transformation and asso-
ciated triality theory play a key role in the implementation. It
is worth pointing out that the canonical dual transformation
may convert a nonconvex and/or nonsmooth primal problem
into a piecewise smooth canonical dual problem. And this
dual problem has no duality gap in each subregion. There-
fore, this powerful tool has a big potential in some global

optimization problems and nonconvex nonsmooth analysis
[24–28]. Particularly, the canonical duality theory can be
applied to the quadratic programming problem with integer
constraints. Fang et al. [29] proposed a more general global
optimization condition using the canonical duality approach.
Wang et al. [30] developed a canonical duality approach
for solving multi-integer quadratic programming problems.
Thus, this paper adopts the canonical duality approach to
study the MIMO problem.

The paper is arranged as follows. In Section 2, we
introduce a special linear transformation to reformulate the
original problem into a {−1, 1} constrained quadratic pro-
gramming problem. In Section 3, we develop the canonical
dual problem for the new reformulation. Then we show that
it has no duality gap under certain conditions. Moreover,
some global optimality conditions are presented. In Section 4,
we propose a gradient decent method to find the station-
ary points. Comparisons by simulations are provided in
Section 5. The last section summarizes the paper and points
out some future research directions.

2. Linear Transformation

TheMIMO problem can be written as follows:

min 𝑥
𝑇

(𝐻
𝑇

𝐻)𝑥 − 2𝑦
𝑇

𝐻𝑥 +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

s.t. 𝑥
𝑖
∈ {±1, ±3, . . . , ±𝑢} , 𝑖 = 1, . . . , 𝑛.

(MIMO1)

Let 𝑄 = 𝐻
𝑇

𝐻 and 𝑓 = 2𝐻
𝑇

𝑦. Note that 𝑄 is 𝑛 × 𝑛 real
symmetric matrix and 𝑓 is 𝑛-dimensional real vector. Since
‖𝑦‖
2 is a fixed scalar, problem (MIMO1) has the same optimal

solutions with the following problem:

min 𝑥
𝑇

𝑄𝑥 − 𝑓
𝑇

𝑥

s.t. 𝑥
𝑖
∈ {±1, ±3, . . . , ±𝑢} , 𝑖 = 1, . . . , 𝑛.

(MIMO2)

We first reformulate problem (MIMO2) into a {−1, 1} con-
strained quadratic programming problem. Note that the
set {±1, ±3, . . . , ±𝑢} forms an arithmetic series; that is, the
adjacent two elements in the set have a constant gap 2.
Therefore, we can take advantage of this special structure.

Let 𝑦
𝑖
= (𝑥
𝑖
+ 𝑢)/2 for 𝑖 = 1, . . . , 𝑛; then 𝑦

𝑖
∈ {0, 1, . . . , 𝑢}.

Let 𝑒 denote the 𝑛-dimensional vector with all elements
being 1. Then, it is easy to verify that problem (MIMO2) is
equivalent to the following problem:

min 4𝑦
𝑇

𝑄𝑦 − (4𝑢𝑒
𝑇

𝑄 + 2𝑓
𝑇

) 𝑦 + 𝑢
2

𝑒
𝑇

𝑄𝑒 + 𝑢𝑓
𝑇

𝑒

s.t. 𝑦
𝑖
∈ {0, 1, . . . , 𝑢} , 𝑖 = 1, . . . , 𝑛.

(MIMO3)

Problem (MIMO2) and problem (MIMO3) have the same
optimal value. Moreover, once we get an optimal solution
of problem (MIMO3), we can use 𝑥 = 2𝑦 − 𝑢𝑒 to get the
corresponding optimal solution of problem (MIMO2). Now,
let 𝑄 = 4𝑄 and 𝑓 = 4𝑢𝑄

𝑇

𝑒 + 2𝑓. Since 𝑢2𝑒𝑇𝑄𝑒 + 𝑢𝑓
𝑇

𝑒 is
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also a fixed scalar, problem (MIMO3) has the same optimal
solutions with the following problem:

min 𝑦
𝑇

𝑄𝑦 − 𝑓
𝑇

𝑦

s.t. 𝑦
𝑖
∈ {0, 1, . . . , 𝑢} , 𝑖 = 1, . . . , 𝑛.

(MIMO4)

Let 𝑌 = {𝑦 ∈ R𝑛 | 𝑦
𝑖
is an integer, 0 ≤ 𝑦

𝑖
≤ 𝑢} denote the

feasible domain of problem (MIMO4). Set 𝑡 = ⌊log(𝑢 + 1)⌋;
then 𝑡 ≥ 2 and 𝑢 + 1 ≥ 2

𝑡. Now, we can define a new set 𝑍 as
follows:

Z = {𝑧 ∈ R
(𝑡+1)𝑛

| 𝑧 ∈ {−1, 1}
(𝑡+1)𝑛

} . (2)

Note that each element in set𝑍 is a (𝑡+1)𝑛-dimensional vector
with all elements being −1 or 1. Then, we have the following
theorem to show the relationship between 𝑌 and 𝑍.

Theorem 1. The transformation 𝑦
𝑖
(𝑧) = ∑

𝑡

𝑗=1
2
𝑗−2

𝑧
(𝑗−1)𝑛+𝑖

+

(1/2)(𝑢 + 1 − 2
𝑡

)𝑧
𝑡𝑛+𝑖

+ 𝑢/2 is a full mapping fromZ to 𝑌.

Proof. We first show that, for any 𝑧 ∈ 𝑍, the corresponding
𝑦 belongs to 𝑌. Note that 𝑦

𝑖
(𝑧) can also be written as 𝑦

𝑖
(𝑧) =

∑
𝑡

𝑗=2
2
𝑗−2

𝑧
(𝑗−1)𝑛+𝑖

−2
𝑡−1

𝑧
𝑡𝑛+𝑖

+(1/2)𝑧
𝑖
+((𝑢+1)/2)𝑧

𝑡𝑛+𝑖
+𝑢/2.The

first part∑𝑡
𝑗=2

2
𝑗−2

𝑧
(𝑗−1)𝑛+𝑖

− 2
𝑡−1

𝑧
𝑡𝑛+𝑖

is always an integer; the
possible fraction can only occur in the second part (1/2)𝑧

𝑖
+

((𝑢 + 1)/2)𝑧
𝑡𝑛+𝑖

+ 𝑢/2. However, it is easy to verify that this
part is always an integer as 𝑧

𝑖
, 𝑧
𝑡𝑛+𝑖

∈ {−1, 1} for 𝑢 ≥ 3, 𝑡 ≥ 2.
Moreover, for 𝑖 = 1, . . . , 𝑛,max{𝑦

𝑖
} = ∑

𝑡

𝑗=1
2
𝑗−2

+(𝑢+1−2
𝑡

)/2+

𝑢/2 = 𝑢 and min{𝑦
𝑖
} = −∑

𝑡

𝑗=1
2
𝑗−2

− (𝑢 + 1 − 2
𝑡

)/2 + 𝑢/2 = 0.
Therefore, 𝑦

𝑖
is an integer between 0 and 𝑢 and 𝑦 belongs to

𝑌.

Then, we show that, for an arbitrary integer 0 ≤ 𝑦
𝑖
≤ 𝑢,

there exist 𝑧
(𝑗−1)𝑛+𝑖

∈ −1, 1 for 𝑗 = 1, . . . , 𝑡 + 1 such that the
transformation holds. If 0 ≤ 𝑦

𝑖
≤ 2
𝑡

−1, then 𝑦
𝑖
can be written

as 𝑦
𝑖
= 2
𝑡−1

𝑎
𝑡−1

+ 2
𝑡−2

𝑎
𝑡−2

+ ⋅ ⋅ ⋅ + 2𝑎
1
+ 1𝑎
0
for particular

𝑎
𝑖
∈ {0, 1} and 𝑗 = 0, . . . , 𝑡 − 1. Then, let 𝑧

𝑗𝑛+𝑖
= 2𝑎
𝑗
− 1 for

𝑗 = 0, . . . , 𝑡 − 1 and 𝑦
𝑡𝑛+𝑖

= −1. Thus, 𝑧
(𝑗−1)𝑛+𝑖

∈ {−1, 1} for
𝑗 = 1, . . . , 𝑡 + 1. It is easy to verify that ∑𝑡

𝑗=1
2
𝑗−2

𝑧
(𝑗−1)𝑛+𝑖

+

((𝑢 + 1 − 2
𝑡

)/2)𝑧
𝑡𝑛+𝑖

+ 𝑢/2 = ∑
𝑡−1

𝑗=0
2
𝑗

𝑎
𝑗
= 𝑦
𝑖
. If 2𝑡 − 1 < 𝑦

𝑖
≤ 𝑢,

since 2𝑡 ≤ 𝑢 + 1 ≤ 2
𝑡+1, we have −2𝑡 ≤ 2

𝑡

− (𝑢 + 1) ≤ 0.
Therefore, 0 ≤ 𝑦

𝑖
+ 2
𝑡

− (𝑢 + 1) ≤ 2
𝑡

− 1. Then following the
similar way, we can write 𝑦

𝑖
+2
𝑡

− (𝑢+ 1) as 𝑦
𝑖
+2
𝑡

− (𝑢+ 1) =

2
𝑡−1

𝑎
𝑡−1

+ 2
𝑡−2

𝑎
𝑡−2

+ ⋅ ⋅ ⋅ + 2𝑎
1
+ 1𝑎
0
for particular 𝑎

𝑖
∈ 0, 1,

𝑗 = 0, . . . , 𝑡−1.This time, let 𝑧
𝑗𝑛+𝑖

= 2𝑎
𝑗
−1 for 𝑗 = 0, . . . , 𝑡−1

and 𝑧
𝑡𝑛+𝑖

= 1. Thus, 𝑧
(𝑗−1)𝑛+𝑖

∈ {−1, 1} for 𝑗 = 1, . . . , 𝑡 + 1.
Consequently, we have∑𝑡

𝑗=1
2
𝑗−2

𝑧
(𝑗−1)𝑛+𝑖

+((𝑢+1−2
𝑡

)/2)𝑧
𝑡𝑛+𝑖

+

𝑢/2 = ∑
𝑡−1

𝑗=0
2
𝑗

𝑎
𝑗
+ (𝑢 + 1) − 2

𝑡

= 𝑥
𝑖
.

Therefore, the transformation is a full mapping from𝑍 to
𝑌.

It is worth pointing out that this transformation is a
linear mapping. Moreover, since we use the advantage of
the special structure of the original problem, the size of the
reformulated problem is smaller than the problems derived
by some traditional transformation methods [3].

Now, replacing 𝑦 by 𝑧 in problem (MIMO4), we can get
the following problem:

min 𝑧
𝑇

𝑀𝑧 − 𝑏
𝑇

𝑧 + 𝑐

s.t. 𝑧
𝑖
∈ {−1, 1} , 𝑖 = 1, . . . , (𝑡 + 1) 𝑛,

(MIMO5)

where

𝑀 =

(
(
(
(
(
(
(

(

1

4
𝑄

1

2
𝑄 ⋅ ⋅ ⋅ 2

𝑡−3

𝑄
1

4
(𝑢 + 1 − 2

𝑡

) 𝑄

1

2
𝑄 𝑄 ⋅ ⋅ ⋅ 2

𝑡−2

𝑄
1

2
(𝑢 + 1 − 2

𝑡

) 𝑄

...
... d

...
...

2
𝑡−3

𝑄 2
𝑡−2

𝑄 ⋅ ⋅ ⋅ 2
2𝑡−4

𝑄 2
𝑡−3

(𝑢 + 1 − 2
𝑡

) 𝑄

1

4
(𝑢 + 1 − 2

𝑡

) 𝑄
1

2
(𝑢 + 1 − 2

𝑡

) 𝑄 ⋅ ⋅ ⋅ 2
𝑡−3

(𝑢 + 1 − 2
𝑡

) 𝑄
1

4
(𝑢 + 1 − 2

𝑡

)
2

𝑄

)
)
)
)
)
)
)

)

,

𝑏 =

(
(
(
(
(
(
(
(

(

1

4
[2𝑓 − 𝑢𝑄𝑒]

1

2
[2𝑓 − 𝑢𝑄𝑒]

...

2
𝑡−3

[2𝑓 − 𝑢𝑄𝑒]

1

4
(𝑢 + 1 − 2

𝑡

) [2𝑓 − 𝑢𝑄𝑒]

)
)
)
)
)
)
)
)

)

,

𝑐 =
1

8
𝑢
2

𝑒
𝑇

𝑄𝑒 −
𝑢

2
𝑓
𝑇

𝑒.

(3)
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Therefore, from Theorem 1, solving problem (MIMO5) is
equivalent to solving problem (MIMO4).

Let 𝑟 = (𝑡 + 1)𝑛 and ignore the fixed scalar 𝑐; we focus on
the following problem:

min 𝐹 (𝑧) = 𝑧
𝑇

𝑀𝑧 − 𝑏
𝑇

𝑧

s.t. 𝑧
𝑖
∈ {−1, 1} , 𝑖 = 1, . . . , 𝑟.

(MIMO6)

Note that problem (MIMO6) has no linear constraints
and its feasible domain is merely defined by 𝑍 = {𝑧 ∈ R𝑟 |

𝑧 ∈ {−1, 1}
𝑟

}.

3. Canonical Dual Problem and
Global Optimality

Let 𝜌 ∈ R𝑟 be a vector and let Diag(𝜌) denote an 𝑟×𝑟 diagonal
matrix with 𝜌

𝑖
being the 𝑖th diagonal element. Let

𝑀
𝜌
= 𝑀 + Diag (𝜌) ,

𝑃 (𝜌) = −
1

4
𝑏
𝑇

(𝑀
𝜌
)
−1

𝑏 − 𝑒
𝑇

𝜌.

(4)

Moreover, we define a set as follows:

D
𝑀

= {𝜌 ∈ R
𝑟

| 𝜌 ≥ 0,
󵄨󵄨󵄨󵄨󵄨
𝑀
𝜌

󵄨󵄨󵄨󵄨󵄨
̸= 0} , (5)

where |𝑀
𝜌
| is the determinant of the matrix𝑀

𝜌
.

Then following the work of [30, 31], we can get the
canonical dual problem of problem (MIMO6) as follows:

sta {𝑃 (𝜌) | 𝜌 ∈ D
𝑀
} , (CDP)

where 𝑒 is an 𝑟-dimensional vector with all elements being 1.
sta{𝑃(𝜌) | 𝜌 ∈ D

𝑀
} represents finding all stationary points

(critical points) of 𝑃(𝜌) overD
𝑀
.

Moreover, for two vectors 𝑎, 𝑏 ∈ R𝑛, let 𝑎 ∘ 𝑏 denote the
standard Hadamard product 𝑎 ∘ 𝑏 ≜ (𝑎

1
𝑏
1
, 𝑎
2
𝑏
2
, . . . , 𝑎

𝑟
𝑏
𝑟
)
𝑇.

Then, for the relationship between the primal problem and
the dual problem, we have the next two important theorems.

Theorem 2. If 𝜌∗ ∈ D
𝑀

is a stationary point of the dual
objective function 𝑃(𝜌), then 𝑧(𝜌

∗

) = (1/2)(𝑀
𝜌
∗)
−1

𝑏 is an
integer vector in {−1, 1}

𝑟. Moreover, if 𝑀
𝜌
∗ is positive definite,

then the Hessian matrix of 𝑃(𝜌∗) is negative definite.

Proof. Note that since 𝑧 = (1/2)(𝑀
𝜌
∗)
−1

𝑏, we have 𝑀
𝜌
∗𝑧 =

(1/2)𝑏. Thus, (𝑑(𝑀
𝜌
𝑧)/𝑑𝜌)|

𝜌=𝜌
∗ = (𝑑(𝑀𝑧 + Diag(𝜌)𝑧)/

𝑑𝜌)|
𝜌=𝜌
∗ =𝑀(𝑑𝑧/𝑑𝜌)|

𝜌=𝜌
∗ +Diag(𝑧) +Diag(𝜌∗)(𝑑𝑧/𝑑𝜌)|

𝜌=𝜌
∗

= 0. Hence, we have (𝑑𝑧/𝑑𝜌)|
𝜌=𝜌
∗ = −(𝑀

𝜌
∗)
−1Diag(𝑧).

Therefore, (𝑑𝑃(𝜌)/𝑑𝜌)|
𝜌=𝜌
∗ = −(1/2)(𝑑[(𝑏

𝑇

(𝑀
𝜌
)
−1

𝑀
𝜌
𝑧) +

2𝑒
𝑇

𝜌]/𝑑𝜌)|
𝜌=𝜌
∗ = −(1/2)(𝑑(𝑏

𝑇

𝑧)/𝑑𝜌)|
𝜌=𝜌
∗ − 𝑒 = −(1/2)(𝑑𝑧/

𝑑𝜌)
𝑇

|
𝜌=𝜌
∗𝑏 − 𝑒 = (1/2)Diag(𝑧)(𝑀

𝜌
∗)
−1

𝑏 − 𝑒 = Diag(𝑧)𝑧 − 𝑒 =

𝑧 ∘ 𝑧 − 𝑒. Therefore, if 𝜌∗ is a stationary point of 𝑃(𝜌), then
𝑧(𝜌
∗

) ∘ 𝑧(𝜌
∗

) − 𝑒 = 0. This implies that the vector 𝑧(𝜌∗) =

(1/2)(𝑀
𝜌
∗)
−1

𝑏 ∈ {−1, 1}
𝑟.

Moreover, the Hessian matrix (𝑑
2

𝑃(𝜌)/𝑑(𝜌)
2

)|
𝜌=𝜌
∗ =

(𝑑(𝑧 ∘ 𝑧 − 𝑒)/𝑑𝜌)|
𝜌=𝜌
∗ = 2Diag(𝑧)(𝑑𝑧/𝑑𝜌)|

𝜌=𝜌
∗ =

−2Diag(𝑧)(𝑀
𝜌
∗)
−1Diag(𝑧). Thus, if 𝑀

𝜌
∗ is positive definite,

then the Hessian matrix of 𝑃(𝜌∗) is negative definite.

Theorem 2 indicates that a stationary point 𝜌∗ of 𝑃(𝜌)
overD

𝑀
is corresponding to a feasible solution of the primal

problem (MIMO6).

Theorem 3. The canonical dual problem (CDP) is perfectly
dual to the primal problem (MIMO6) in the sense that if 𝜌 ∈

D
𝑀

is a stationary point of 𝑃(𝜌), then 𝑧 = (1/2)(𝑀
𝜌
)
−1

𝑏 is a
KKT point of problem (MIMO6) and 𝐹(𝑧) = 𝑃(𝜌).

Proof. Note that problem (MIMO6) can bewritten as follows:

min 𝐹 (𝑧) = 𝑧
𝑇

𝑀𝑧 − 𝑏
𝑇

𝑧

s.t. 𝑧 ∘ 𝑧 − 𝑒 = 0,

𝑧 ∈ R
𝑟

.

(6)

Its corresponding Lagrangian function is

𝐿 (𝑧, 𝜌) = 𝑧
𝑇

𝑀𝑧 − 𝑏
𝑇

𝑧 + (𝜌)
𝑇

(𝑧 ∘ 𝑧 − 𝑒) . (7)

Therefore, the KKT conditions are as follows:

𝜕𝐿

𝜕𝑧
= 2𝑀𝑧 − 𝑏 + 2Diag (𝜌) 𝑧 = 2𝑀

𝜌
𝑧 − 𝑏 = 0,

𝜕𝐿

𝜕𝜌
= 𝑧 ∘ 𝑧 − 𝑒 = 0.

(8)

Thus, fromTheorem 2 and the definition of 𝑧(𝜌), it is easy to
verify that 𝑧(𝜌) is a KKT point if 𝜌 is a stationary point of
𝑃(𝜌).

Moreover, we have

𝑧
𝑇

𝑀𝑧 − 𝑏
𝑇

𝑧

= 𝑧
𝑇

(𝑀 + Diag (𝜌)) 𝑧 − 𝑏
𝑇

𝑧 − 𝑧
𝑇Diag (𝜌) 𝑧

=
1

2
𝑧
𝑇

𝑏 − 𝑏
𝑇

𝑧 − 𝑧
𝑇Diag (𝜌) 𝑧

= −
1

2
𝑏
𝑇

𝑧 − 𝑧
𝑇Diag (𝜌) 𝑧

= −
1

2
𝑏
𝑇

𝑧 − 𝑒
𝑇

𝜌

= −
1

4
𝑏
𝑇

(𝑀
𝜌
)
−1

𝑏 − 𝑒
𝑇

𝜌

= 𝑃 (𝜌) .

(9)

The result follows.

KKT conditions provide necessary conditions for local
minimizers in a nonconvex programming problem. Next, we
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show that the canonical dual problem is a concave maxi-
mization dual problem over a convex feasible domain under
certain conditions. First, we define a subset of set D

𝑀
as

follows:

D
+

𝑀
= {𝜌 ∈ R

𝑟

| 𝜌 ≥ 0,𝑀
𝜌
≻ 0} , (10)

where 𝑀
𝜌
∗ ≻ 0 indicates that 𝑀

𝜌
∗ is positive definite. Then,

we present the sufficient global optimal conditions.

Theorem 4. Assume that 𝜌∗ ∈ D
𝑀

is a stationary point of
𝑃(𝜌) and 𝑧(𝜌

∗

) = (1/2)(𝑀
𝜌
∗)
−1

𝑏. If 𝜌∗ ∈ D+
𝑀
, then 𝑧 is

a unique global minimizer of 𝐹(𝑧) over 𝑍 and 𝜌
∗ is a global

maximizer of 𝑃(𝜌∗) overD+
𝑀
with

𝑧
𝑇

𝑀𝑧 − 𝑏
𝑇

𝑧 = min
𝑧∈𝑍

𝑧
𝑇

𝑀𝑧 − 𝑏
𝑇

𝑧 = max
𝜌
∗
∈D+
𝑀

𝐶 (𝜌
∗

) = 𝐶 (𝜌
∗

) .

(11)

Proof. Note that if 𝜌 ∈ D+
𝑀
, then 𝑀

𝜌
≻ 0. Thus, Theorem 2

indicates that the Hessian matrix of 𝑃(𝜌) is negative definite
over D+

𝑀
. Then we know that the canonical dual function

𝑃(𝜌) is strictly concave overD+
𝑀
.Therefore, a stationary point

of 𝑃(𝜌) must be a global maximizer of 𝑃(𝜌) over D+
𝑀
. Since

the stationary point 𝜌∗ ∈ D+
𝑀
, Theorem 3 indicates that

𝐹(𝑧) = 𝑃(𝜌
∗

).
On the other hand, since 𝑧 is a KKT point assured by

Theorem 3, we have 𝑧 ∘ 𝑧 − 𝑒 = 0. Therefore, 𝐹(𝑧) =

𝑧
𝑇

𝑀𝑧 − 𝑏
𝑇

𝑧 + (𝜌
∗

)
𝑇

(𝑧 ∘ 𝑧 − 𝑒) = 𝑧
𝑇

(𝑄 +Diag(𝜌∗))𝑧 − 𝑏
𝑇

𝑧 −

𝑒
𝑇

𝜌
∗. Note that 𝑄 + Diag(𝜌∗) is positive definite; therefore

𝑧 = (1/2)(𝑀
𝜌
∗)
−1

𝑏 is a global minimizer. Therefore, 𝑧𝑇(𝑄 +

Diag(𝜌∗))𝑧−𝑏𝑇𝑧−𝑒𝑇𝜌∗ =min
𝑧∈R𝑟{𝑧

𝑇

(𝑄+Diag(𝜌∗))𝑧−𝑏𝑇𝑧−
𝑒
𝑇

𝜌
∗

} ≤ min
{𝑧∈R𝑟,𝑧∘𝑧=𝑒}𝑧

𝑇

𝑄𝑧 − 𝑏
𝑇

𝑧. Therefore, 𝑧 is a global
minimizer of 𝐹(𝑧) over 𝑍.

Above all, we transform the original problem which is a
multi-integer quadratic programming problem into a piece-
wise continuous canonical dual problem by using the canon-
ical duality theory. It is worth pointing out that the original
problem and the canonical dual problem have no duality gap
overD

𝑀
. Moreover, if 𝜌∗ ∈ D+

𝑀
, the canonical dual problem

becomes a concave maximization problem over a convex
feasible domain which can be solved very efficiently. To the
best of our knowledge, among all the existingmethods, strong
duality only holds for the Lagrangian dual relaxation (LDR)
in the special 2-PAM case [22]. However, the canonical dual
problem holds for any order PAM problem overD

𝑀
. There-

fore, in some sense, the canonical dual problem provides the
best dual problem of all.

4. Algorithm

Note that if 𝜌∗ is a stationary point of 𝑃(𝜌) over D
𝑀
, then

𝑧(𝜌
∗

) = (1/2)(𝑀
𝜌
∗)
−1

𝑏 is a feasible solution of problem
(MIMO6). Moreover, if 𝜌

∗

∈ D+
𝑀
, the corresponding

solution 𝑧(𝜌
∗

) is the global optimal solution of problem
(MIMO6).Therefore, the solution of the dual problem (CDP)

is corresponding to an optimal or approximation solution of
problem (MIMO6).

The key issue for solving the problem (CDP) is to avoid
the matrix 𝑀

𝜌
∗ becoming a singular matrix. Since 𝑧(𝜌∗) =

(1/2)(𝑀
𝜌
∗)
−1

𝑏, we have 2(𝑀 + Diag(𝜌∗))𝑧(𝜌∗) = 𝑏. Thus,
2Diag(𝑧(𝜌∗))𝜌∗ = 𝑏 − 2𝑀𝑧(𝜌

∗

). Note that (Diag(𝑧))−1 =

Diag(𝑧) for 𝑧 ∈ 𝑍. Therefore, 𝜌∗ = (1/2)(Diag(𝑧(𝜌∗))𝑏 −

2Diag(𝑧(𝜌∗))𝑀𝑧(𝜌
∗

)). Hence, 𝜌
∗

= (1/2)(𝑧(𝜌
∗

) ∘ 𝑏 −

2(𝑀𝑧(𝜌
∗

)) ∘ 𝑧(𝜌
∗

)). Therefore, if the matrix 𝑀
𝜌
∗ is close to

a singular matrix, we can perturb the vector 𝑏 to change the
value of 𝜌∗ and avoid the situation.

Let ‖𝑧‖
∞

denote the infinity norm of vector 𝑧. Then, we
propose an algorithm based on the gradient methods to solve
problem (CDP).

Canonical Dual Algorithm

Step 1 (initialization step). Let 𝑇 = max𝑛
𝑖=1

∑
𝑛

𝑗=1
𝑀
𝑖𝑗
, 𝜖 > 0 be

a sufficiently small number. Let 𝑘 = 0, 𝜌0 = 4(𝑇 + 𝜖)𝑒 be the
initial feasible solution of problem (CDP).

Step 2. Let 𝑧(𝜌𝑘) = (1/2)(𝑀
𝜌
∗)
−1

𝑏. If ‖∇𝑃(𝜌𝑘)‖
∞

≤ 𝜖, go to
Step 4. Otherwise, 𝜌𝑘+1 = 𝜌

𝑘

− 𝛼
𝑘

𝑔
𝑘, where 𝛼𝑘 = ‖∇𝑃(𝜌

𝑘

)‖
∞

is a nonnegative scalar and 𝑔𝑘 = ∇𝑃(𝜌
𝑘

); 𝑘 = 𝑘 + 1.

Step 3. If |𝑀
𝜌
𝑘 | < 𝜖, then let 𝑏 = (1 + 1/‖𝑏‖

∞
)𝑏 and 𝜌

𝑘

=

(1/2)(𝑧(𝜌
𝑘

) ∘ 𝑏 − 2(𝑀𝑧(𝜌
𝑘

)) ∘ 𝑧(𝜌
𝑘

)). Go back to Step 2.

Step 4. Return 𝑧(𝜌
𝑘

) and use Theorem 1 to get the corre-
sponding solution 𝑦

∗.

5. Comparisons by Simulations

In this section, we use simulations to compare the canon-
ical dual method (CDM) with some other benchmarked
approximatingmethods, such as inexactML sphere decoding
(ML-SD) [4], semidefinite relaxation (SDR) [18], and inexact
MMSE lattice decoding (MMSE-LD) [11].

The channel matrix 𝐻 comprises i.i.d. elements drawn
from a zero-mean normal distribution of unit variance. The
symbol vector 𝑥 is element-wise i.i.d. uniformly distributed
with each element 𝑠

𝑖
drawn from the standard (𝑢 + 1)

2-QAM
constellation set. Moreover, V is the additive white Gaussian
noisewith zeromean and variance𝜎2V . Note that the signal-to-
noise ratio (SNR) is defined as𝐸(‖𝐻𝑥‖

2

)/𝐸(‖V‖2) = 𝑛(𝜎
2

𝑥
/𝜎
2

V ),
where 𝜎2

𝑥
is the variance of the elements of 𝑥.

We use two different problem sizes as (𝑚
1
, 𝑛
1
) = (8, 8)

and (𝑚
2
, 𝑛
2
) = (16, 16). And for each case, we test every

numerical example under two situations: 16-QAM and 64-
QAM. All the simulations are implemented using MATLAB
7.9.0 on a computer with Intel Core 2 CPU 2.50Ghz and 2G
memory. Moreover, the solvers of cvx [32] are incorporated
in solving the SDP problems.

Figures 1 and 2 plot the SERs of the various methods
versus SNR under different problem sizes for 16-QAM con-
stellations and 64-QAM constellations, respectively.
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Figure 1: Symbol error rate comparison for different methods, (𝑚, 𝑛) = (8, 8).
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Figure 2: Symbol error rate comparison for different methods, (𝑚, 𝑛) = (16, 16).

Table 1 provides the average computational time in sec-
onds for each method under different cases. Note that the
notation “8 16-QAM” denotes the 16-QAM problem whose
size is (𝑚, 𝑛) = (8, 8). The other notations follow the same
way.

From the simulation results, we can see that the CDM
method outperforms all other methods in all situations. And
the SER gaps between the CDM method and other methods
are significantly wide. Moreover, the computation time indi-
cates that the CDM method is quite efficient compared with
othermethods. It is worth pointing out that theCDMmethod
is much more effective for the high order QAM problem.

6. Conclusion

In this paper, we have developed a canonical dual method
to solve the MIMO problem. By introducing a tricky linear
transformation, the original problem can be reformulated as
a {−1, 1} constrained quadratic programming problem with
the smallest size. Then, a canonical dual problem has been
developed. The stationary points of the canonical dual prob-
lem correspond to the KKT points of the original problem.
And there is no duality gap between the primal problem and
its canonical dual problem under some conditions. Solving
the canonical dual problem can lead to either an exact or
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Table 1: Average computational time for different methods under
different cases.

Methods Cases
8 16-QAM 16 16-QAM 8 64-QAM 16 64-QAM

ML-SD 8.04 s 31.2 s 15.39 s 38.44 s
SDR 6.21 s 28.17 s 10.32 s 36.45 s
MMSE-LD 10.42 s 35.76 s 18.47 s 54.53 s
CDM 7.27 s 36.89 s 14.23 s 45.17 s

approximate solution of the original problem.The simulation
results indicate that the canonical dual method performs
quite well compared with other benchmark methods.

The canonical dual approach offers a different angle to
study the MIMO problem. It sheds some light on designing
a new but more efficient algorithm. For the future study,
some searchingmethods can be combined in the algorithm to
improve the efficiency for finding the stationary points. And
we aim to figure out which subclass of the MIMO problem
can be exactly solved by the canonical duality theory.
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