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We use a modified S-iterative process to prove some strong and Δ-convergence results for asymptotically nonexpansive type
mappings in uniformly convex hyperbolic spaces, which includes Banach spaces andCAT(0) spaces.Thus, our results can be viewed
as extension and generalization of several known results in Banach spaces and CAT(0) spaces (see, e.g., Abbas et al. (2012), Abbas
et al. (2013), Bruck et al. (1993), and Xin and Cui (2011)) and improve many results in the literature.

1. Introduction

Let 𝐶 be a nonempty subset of a metric space 𝑋 and let 𝑇 :

𝐶 → 𝐶 be a mapping. Then, 𝑇 is called

(i) nonexpansive if 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐶,

(ii) asymptotically nonexpansive [1] if, for each 𝑛 ∈ N,
there exists a constant 𝑘

𝑛
≥ 1 with lim

𝑛→∞
𝑘
𝑛
= 1

such that

𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
) ≤ 𝑘
𝑛
𝑑 (𝑥, 𝑦) (1)

for all 𝑥, 𝑦 ∈ 𝐶,

(iii) nearly Lipschitzian with respect to a fixed sequence
{𝑎
𝑛
}, introduced by Sahu [2], if, for each 𝑛 ∈ N, there

exists a constant 𝑘
𝑛
≥ 0 such that

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝑘
𝑛
(𝑑 (𝑥, 𝑦) + 𝑎

𝑛
) , (2)

for all 𝑥, 𝑦 ∈ 𝐶, where 𝑎
𝑛
∈ [0, 1) for each 𝑛 and 𝑎

𝑛
→

0. The infimum of constants 𝑘
𝑛
satisfying (2) is called

the nearly Lipschitz constant of 𝑇𝑛 and is denoted by
𝜂(𝑇
𝑛

),

(iv) asymptotically nonexpansive in the intermediate
sense [3] provided that 𝑇 is uniformly continuous
and

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) − 𝑑 (𝑥, 𝑦)) ≤ 0, (3)

(v) a mapping of asymptotically nonexpansive types [4] if

lim sup
𝑛→∞

sup
𝑦∈𝐶

(𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) − 𝑑 (𝑥, 𝑦)) ≤ 0 (4)

for all 𝑥 ∈ 𝐶.

In [3], Bruck et al. introduced the class of asymptotically
nonexpansive mappings in the intermediate sense which is
essentially wider than that of asymptotically nonexpansive
ones [1]. It is known that [4] that if 𝐶 is a nonempty
closed convex bounded subset of 𝑋 and 𝑇 : 𝐶 → 𝐶 is
asymptotically nonexpansive in the intermediate sense, then
𝑇 has a fixed point. Since then, many authors have studied
the existence and convergence theorems of fixed points for
these two classes of mappings in Banach spaces, for example,
Kaczor et al. [5], Xu [6], and references in their.
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On the other hand, if 𝑐
𝑛
= max{sup

𝑥,𝑦∈𝐶
(𝑑(𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) −

𝑑(𝑥, 𝑦)), 0}, then (3) reduces to relation

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) ≤ 𝑑 (𝑥, 𝑦) + 𝑐
𝑛

(5)

for all 𝑥, 𝑦 ∈ 𝐶 and 𝑛 ∈ N.

Remark 1. The class of nearly asymptotically nonexpansive
mappings are intermediate classes between the class of
asymptotically nonexpansivemappings that of asymptotically
nonexpansive in the intermediate sense mappings.

Throughout in this paper, we haveworked in the setting of
hyperbolic spaces introduced by Kohlenbach [7]. It is noted
that they are different from Gromov hyperbolic spaces [8] or
from other notions of hyperbolic spaces that can be found in
literature (see, e.g., [9–11]).

A hyperbolic space (𝑋, 𝑑,𝑊) is a metric space (𝑋, 𝑑)

together with a convexity mapping 𝑊 : 𝑋
2

× [0, 1] → 𝑋

satisfying

(𝑊
1
) 𝑑(𝑢,𝑊(𝑥, 𝑦, 𝛼)) ≤ 𝛼𝑑(𝑢, 𝑥) + (1 − 𝛼)𝑑(𝑢, 𝑦),

(𝑊
2
) 𝑑(𝑊(𝑥, 𝑦, 𝛼),𝑊(𝑥, 𝑦, 𝛽)) = |𝛼 − 𝛽|𝑑(𝑥, 𝑦),

(𝑊
3
) 𝑊(𝑥, 𝑦, 𝛼) = 𝑊(𝑦, 𝑥, 1 − 𝛼),

(𝑊
4
) 𝑑(𝑊(𝑥, 𝑧, 𝛼),𝑊(𝑦, 𝑤, 𝛼)) ≤ (1−𝛼)𝑑(𝑥, 𝑦)+𝛼𝑑(𝑧, 𝑤),

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 and 𝛼, 𝛽 ∈ [0, 1].
A metric space is said to be a convex metric space in the

sense of Takahashi [12], where a triple (𝑋, 𝑑,𝑊) satisfies only
(𝑊
1
). We get the notion of the space of hyperbolic type in

the sense of Goebel and Kirk [13], where a triple (𝑋, 𝑑,𝑊)

satisfies (𝑊
1
)–(𝑊
3
). The (𝑊

4
) was already considered by Itoh

[14] under the name of “condition III” and it is used by
Reich and Shafrir [11] and Kirk [10] to define their notions
of hyperbolic spaces.

The class of hyperbolic spaces includes normed space and
convex subsets thereof, the Hilbert space ball equipped with
the hyperbolic metric [9] and Hadrmard manifold as well as
the CAT(0) spaces in the sense of Gromov (see [8]).

If 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1], then we use the notation (1 −
𝜆)𝑥⊕𝜆𝑦 for𝑊(𝑥, 𝑦, 𝜆).The following holds even for themore
general setting of convex metric space [12]: for all 𝑥, 𝑦 ∈ 𝑋

and 𝜆 ∈ [0, 1],

𝑑 (𝑥, (1 − 𝜆) 𝑥 ⊕ 𝜆𝑦) = 𝜆𝑑 (𝑥, 𝑦) ,

𝑑 (𝑦, (1 − 𝜆) 𝑥 ⊕ 𝜆𝑦) = (1 − 𝜆) 𝑑 (𝑥, 𝑦) .

(6)

A hyperbolic space (𝑋, 𝑑,𝑊) is uniformly convex [15] if,
for any 𝑟 > 0 and 𝜀 ∈ (0, 2], there exists 𝛿 ∈ (0, 1] such that,
for all 𝑎, 𝑥, 𝑦 ∈ 𝑋,

𝑑(
1

2
𝑥 ⊕

1

2
𝑦, 𝑎) ≤ (1 − 𝛿) 𝑟. (7)

Provided that 𝑑(𝑥, 𝑎) ≤ 𝑟, 𝑑(𝑦, 𝑎) ≤ 𝑟, and 𝑑(𝑥, 𝑦) ≥ 𝜀𝑟.
A mapping 𝜂 : (0,∞) × (0, 2] → (0, 1], providing such a

𝛿 = 𝜂(𝑟, 𝜀) for given 𝑟 > 0 and 𝜀 ∈ (0, 2], is called a modulus
of uniform convexity. We call 𝜂 monotone if it decreases with
𝑟 (for fixed 𝜀).

In 1976, Lim [16] introduced a concept of convergence in a
generalmetric space settingwhich he called “Δ-convergence.”
In 2008, Kirk and Panyanak [17] specialized Lim’s concept to
CAT(0) spaces and showed that many Banach space results
involving weak convergence have precise analogs in this
setting.

In [15], Leustean proved thatCAT(0) spaces are uniformly
convex hyperbolic spaces withmodulus of uniform convexity
𝜂(𝑟, 𝜀) = 𝜀

2

/8 quadratic in 𝜀. Thus, the classes of uniformly
convex hyperbolic spaces are a natural generalization of both
uniformly convex Banach spaces and CAT(0) spaces.

In the view of the above facts, many researchers have paid
attention to the direction of existence and approximation of
fixed points via different iterative schemes for nonexpansive,
asymptotically nonexpansive, asymptotically nonexpansive
type mappings, and total asymptotically nonexpansive map-
pings in the surrounding work of uniformly convex hyper-
bolic spaces (see, e.g., [10, 18–26]).

The 𝑆-iteration process was introduced by Agarwal et al.
[27] and it has proved that the rate of convergence of 𝑆-
iteration process is faster than that of Picard iteration process
and Picard iteration process is faster than Mann iteration
process for contraction mapping (see, e.g., [28], page 307).

The purpose of the paper is to establish a Δ-convergence
and strong convergence theorem for a modified 𝑆-iteration
process for asymptotically nonexpansive type mappings in
uniformly convex hyperbolic spaces. Our results extend and
improve the corresponding ones announced by [3, 18, 19, 26]
in the sense of a modified 𝑆-iteration process.

2. Preliminaries

Let 𝐶 be a nonempty subset of metric space 𝑋 and let
{𝑥
𝑛
} be any bounded sequence in 𝐶. Consider a continuous

functional 𝑟
𝑎
(⋅, {𝑥
𝑛
}) : 𝑋 → R+ defined by

𝑟
𝑎
(𝑥, {𝑥

𝑛
}) = lim sup

𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) , 𝑥 ∈ 𝑋. (8)

Then, consider the following:

(a) the infimum of 𝑟
𝑎
(⋅, {𝑥
𝑛
}) over 𝐶 is said to be the

asymptotic radius of {𝑥
𝑛
} with respect to 𝐶 and is

denoted by 𝑟
𝑎
(𝐶, {𝑥

𝑛
});

(b) a point 𝑧 ∈ 𝐶 is said to be an asymptotic center of the
sequence {𝑥

𝑛
} with respect to 𝐶 if

𝑟
𝑎
(𝑧, {𝑥
𝑛
}) = inf {𝑟

𝑎
(𝑥, {𝑥

𝑛
}) : 𝑥 ∈ 𝐶} ; (9)

the set of all asymptotic centers of {𝑥
𝑛
}with respect to

𝐶 is denoted by 𝑍
𝑎
(𝐶, {𝑥

𝑛
});

(c) this set may be empty, a singleton, or certain infinitely
many points;

(d) if the asymptotic radius and the asymptotic center are
takenwith respect to𝑋, then these are simply denoted
by 𝑟
𝑎
(𝑋, {𝑥

𝑛
}) = 𝑟
𝑎
({𝑥
𝑛
}) and 𝑍

𝑎
(𝑋, {𝑥

𝑛
}) = 𝑍

𝑎
({𝑥
𝑛
}),

respectively;
(e) for 𝑥 ∈ 𝑋, 𝑟

𝑎
(𝑥, {𝑥
𝑛
}) = 0 ⇔ lim

𝑛→∞
𝑥
𝑛
= 𝑥.
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It is known that uniformly convex Banach spaces and
even CAT(0) spaces enjoy the property that bounded sequen-
ces have unique asymptotic centers with respect to closed
convex subsets. The following lemma is due to Leustean
[29] and ensures that this property also holds in a complete
uniformly convex hyperbolic space.

Lemma 2 (see [29, Proposition 3.3]). Let (𝑋, 𝑑,𝑊) be a
complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity 𝜂.Then, every bounded sequence
{𝑥
𝑛
} in 𝑋 has a unique asymptotic center with respect to any

nonempty closed convex subset 𝐶 of 𝑋.

Recall that a sequence {𝑥
𝑛
} in 𝑋 is said to Δ-converge to

𝑥 ∈ 𝑋, if 𝑥 is the unique asymptotic center of {𝑢
𝑛
} for every

subsequence {𝑢
𝑛
} of {𝑥

𝑛
}. In this case, we write Δ-lim

𝑛
𝑥
𝑛
= 𝑥

and call 𝑥 the Δ-limit of {𝑥
𝑛
}.

Lemma3 (see [22]). Let𝐶 be a nonempty closed convex subset
of uniformly convex hyperbolic space (𝑋, 𝑑,𝑊) and let {𝑥

𝑛
} be

a bounded sequence in 𝐶 such that 𝑍
𝑎
(𝑋, {𝑥

𝑛
}) = {𝑥}. If {V

𝑚
}

is any other sequence in 𝐶 such that lim
𝑚→∞

𝑟
𝑎
(V
𝑚
, {𝑥
𝑛
}) =

𝑟
𝑎
(𝑥, {𝑥
𝑛
}), then lim

𝑚→∞
V
𝑚
= 𝑥.

Lemma 4 (see [22]). Let (𝑋, 𝑑,𝑊) be a uniformly convex
hyperbolic space with monotone modulus of uniform convexity
𝜂. Let 𝑥 ∈ 𝑋 and {𝑡

𝑛
} be a sequence in [𝑎, 𝑏] for some 𝑎, 𝑏 ∈

(0, 1). If {𝑥
𝑛
} and {𝑦

𝑛
} are sequences in𝑋 such that

lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) ≤ 𝑐, lim sup

𝑛→∞

𝑑 (𝑦
𝑛
, 𝑥) ≤ 𝑐,

lim
𝑛→∞

𝑑 (𝑊 (𝑥
𝑛
, 𝑦
𝑛
, 𝑡
𝑛
) , 𝑥) = 𝑐

(10)

for some 𝑐 ≥ 0, then lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0.

Lemma 5 (see [30]). Let {𝑎
𝑛
} and {𝑏

𝑛
} be two nonnegative real

sequences such that

𝑎
𝑛+1

≤ 𝑎
𝑛
+ 𝑏
𝑛

∀𝑛 ∈ N. (11)

If ∑∞
𝑛=1

𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists.

Let 𝐶 be a nonempty convex subset of uniformly convex
subset of hyperbolic space𝑋 and let𝑇 : 𝐶 → 𝐶 be amapping
with the set of fixed points 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥} ̸= 𝜙 and
let {𝑥
𝑛
} be sequence in 𝐶; we say that {𝑥

𝑛
} has

(𝐷
1
) limited existence property for 𝑇, lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑝)

existing for all 𝑝 ∈ 𝐹(𝑇);
(𝐷
2
) approximate fixed point property for 𝑇, if lim

𝑛→∞
𝑑

(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0.

Proposition 6. Let (𝑋, 𝑑,𝑊) be a complete uniformly convex
hyperbolic space. Let 𝐶 be a nonempty, closed, convex subset of
𝑋 and let 𝑇 : 𝐶 → 𝐶 be asymptotically nonexpansive in the
intermediate sense (provided that 𝑇 is uniformly continuous).
Put

𝑐
𝑛
= max{0, sup

𝑥,𝑦∈𝐶

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) − 𝑑 (𝑥, 𝑦)} . (12)

If ∑∞
𝑛=1

𝑐
𝑛
< ∞ and if {𝑦

𝑛
} is a bounded sequence in 𝐶 such

that (𝐷
2
) holds (i.e., approximate fixed property), then 𝑇 has a

fixed point.

Proof. Let 𝐶 be a nonempty, closed, and convex subset of
a uniformly convex hyperbolic space 𝑋 and let {𝑦

𝑛
} be a

bounded sequence in 𝐶; therefore, by Lemma 2, 𝑍
𝑎
(𝐶, {𝑦

𝑛
})

consists exactly of one point ] (say). We now show that ] is a
fixed point of 𝑇. Since {𝑦

𝑛
} has an approximate sequence for

𝑇, therefore, by the uniform continuity of 𝑇, it implies that

lim
𝑛→∞

𝑑 (𝑇
𝑖

𝑦
𝑛
, 𝑇
𝑖+1

𝑦
𝑛
) = 0 for 𝑖 = 0, 1, 2, . . . . (13)

We define a sequence in 𝐶 by 𝑧
𝑚
= 𝑇
𝑚],𝑚 ∈ N. For integers

𝑚, 𝑛 ∈ N, we have

𝑑 (𝑧
𝑚
, 𝑦
𝑛
) ≤ 𝑑 (𝑇

𝑚], 𝑇𝑚𝑦
𝑛
) + 𝑑 (𝑇

𝑚

𝑦
𝑛
, 𝑇
𝑚−1

𝑦
𝑛
)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑇𝑦, 𝑦
𝑛
)

≤ 𝑑 (], 𝑦
𝑚
) + 𝑐
𝑚
+

𝑚−1

∑

𝑖=0

𝑑 (𝑇
𝑖

𝑦
𝑛
, 𝑇
𝑖+1

𝑦
𝑛
) .

(14)

Taking limit as superior as𝑚 → ∞ on both sides, using (13)
and (14), we have

𝑟
𝑎
(𝑧
𝑚
, {𝑦
𝑛
})

= lim sup
𝑚→∞

𝑑 (𝑧
𝑚
, 𝑦
𝑛
)

≤ lim sup
𝑚→∞

[𝑑 (], 𝑦
𝑛
) + 𝑐
𝑚
+

𝑚−1

∑

𝑖=0

𝑑 (𝑇
𝑖

𝑦
𝑛
, 𝑇
𝑖+1

𝑦
𝑛
)] .

(15)

Hence,

𝑟
𝑎
(𝑧
𝑚
, {𝑦
𝑛
}) ≤ 𝑟

𝑎
(], {𝑦
𝑛
}) . (16)

This implies that
𝑟𝑎 (𝑧𝑚, {𝑦𝑛}) − 𝑟𝑎 (], {𝑦𝑛})

 → 0 as 𝑚 → ∞. (17)

It follows from Lemma 3 that 𝑇𝑚] → ] as 𝑚 → ∞. Since
𝐶 is closed, therefore, lim

𝑛→∞
𝑇
𝑚] = ] ∈ 𝐶. By continuity of

𝑇, we have

𝑇] = 𝑇( lim
𝑚→∞

𝑇
𝑚]) = lim

𝑚→∞

𝑇
𝑚+1] = ]; (18)

that is, 𝑇 has fixed point.

3. Δ-Convergence and Strong Convergence
Theorems in Hyperbolic Space

Now we establish Δ-convergence and strong convergence
theorems for a modified 𝑆-iteration process in uniformly
convex hyperbolic spaces.

In [27], Agarwal et al. introduced a modified 𝑆-iteration
process in the setting of a Banach space. Now, we define a
modified 𝑆-iteration process in the notion of a uniformly
convex hyperbolic space as follows.
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Let 𝐶 be a nonempty closed convex subset of a uniformly
convex hyperbolic space 𝑋 and let 𝑇 : 𝐶 → 𝐶 be total
asymptotically nonexpansive mappings. Then, for arbitrarily
chosen 𝑥

1
∈ 𝐶, we construct a sequence {𝑥

𝑛
} in 𝐶 such that

𝑥
𝑛+1

= 𝑊(𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
, 𝛼
𝑛
) ,

𝑦
𝑛
= 𝑊(𝑥

𝑛
, 𝑇
𝑛

𝑥
𝑛
, 𝛽
𝑛
) , 𝑛 ∈ N,

(19)

where {𝛼
𝑛
} and {𝛽

𝑛
} are sequences in (0, 1) which is called a

modified 𝑆-iteration process.

Lemma 7. Let 𝐶 be a nonempty closed convex subset of a
uniformly convex hyperbolic space 𝑋. Let 𝑇 : 𝐶 → 𝐶 be
uniformly continuous asymptotically nonexpansive in the inter-
mediate sense. Put

𝑐
𝑛
= max{0, sup

𝑥,𝑦∈𝐶

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) − 𝑑 (𝑥, 𝑦)} . (20)

If∑∞
𝑛=1

𝑐
𝑛
< ∞, let {𝑥

𝑛
} be the modified 𝑆-iteration process in𝐶

defined by (19) having limited existence property for 𝑇, where
{𝛼
𝑛
} and {𝛽

𝑛
} are real sequences in (0, 1) such that 0 < 𝑎 ≤

𝛼
𝑛
≤ 𝛽
𝑛
≤ 𝑏 < 1.

Proof. Let 𝑝 ∈ Fix(𝑇). From (19), we have

𝑑 (𝑥
𝑛+1

, 𝑝) = 𝑑 (𝑊 (𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
, 𝛼
𝑛
) , 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑇

𝑛

𝑥
𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑇
𝑛

𝑦
𝑛
, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑦
𝑛
, 𝑝) + 𝑐

𝑛

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑦
𝑛
, 𝑝) + 𝑐

𝑛
,

(21)

𝑑 (𝑦
𝑛
, 𝑝) = 𝑑 (𝑊 (𝑥

𝑛
, 𝑇
𝑛

𝑥
𝑛
, 𝛽
𝑛
) , 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
(𝑑 (𝑥
𝑛
, 𝑝) + 𝑐

𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝑐
𝑛
,

(22)

from (21) and (22), we have

𝑑 (𝑥
𝑛+1

, 𝑝) ≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝)

+ 𝛼
𝑛
(𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝑐
𝑛
) + 𝑐
𝑛

≤ 𝑑 (𝑥
𝑛
, 𝑝) + 𝑐

𝑛
(1 + 𝛼

𝑛
𝛽
𝑛
) .

(23)

It follows that

𝑑 (𝑥
𝑛+1

, 𝑝) ≤ 𝑑 (𝑥
𝑛
, 𝑝) + 𝑎

𝑛
𝑀 (24)

for some 𝑀 ≥ 0. Hence, by Lemma 5, we observe that
lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exists for each 𝑝 ∈ 𝐹(𝑇). Hence, sequence

{𝑥
𝑛
} has limited existence property formap𝑇.This completes

the proof.

Lemma 8. Let 𝐶 be a nonempty closed and convex subset of a
uniformly convex hyperbolic space 𝑋 with monotone modulus
of uniform convexity 𝜂 and let 𝑇 : 𝐶 → 𝐶 be uniformly

continuous asymptotically nonexpansive in the intermediate
sense. Put

𝑐
𝑛
= max{0, sup

𝑥,𝑦∈𝐶

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) − 𝑑 (𝑥, 𝑦)} . (25)

If∑∞
𝑛=1

𝑐
𝑛
< ∞, let {𝑥

𝑛
} be the modified 𝑆-iteration process in𝐶

defined by (19) having approximate fixed point property, where
{𝛼
𝑛
} and {𝛽

𝑛
} are real sequences in (0, 1) such that 0 < 𝑎 ≤

𝛼
𝑛
≤ 𝛽
𝑛
≤ 𝑏 < 1.

Proof. It follows from Lemma 7 that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exists

and {𝑥
𝑛
} is bounded, so, without loss of generality, we can

assume that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) = 𝑐 for some 𝑐 ∈ R. If 𝑟 = 0,

then we immediately obtain

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ≤ 𝑑 (𝑥, 𝑝) + 𝑑 (𝑇𝑥

𝑛
, 𝑝) (26)

and, hence, by uniform continuity of 𝑇, we have lim
𝑛→∞

𝑑

(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. If 𝑐 > 0, then, from definition of 𝑇, we get

𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑝) = 𝑑 (𝑇

𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑝)

≤ 𝑑 (𝑥
𝑛
, 𝑝) + 𝑐

𝑛

(27)

for all 𝑛 ∈ N. Taking limit as superior as 𝑛 → ∞ on both
sides, we get

lim sup
𝑛→∞

𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑝) ≤ 𝑐. (28)

From (22), we have

𝑑 (𝑦
𝑛
, 𝑝) ≤ 𝑑 (𝑥

𝑛
, 𝑝) + 𝛽

𝑛
𝑐
𝑛

(29)

for all 𝑛 ∈ N. Taking limit as superior as 𝑛 → ∞ on both
sides, we get

lim sup
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑝) ≤ 𝑐. (30)

Hence, from (30), we have

lim sup
𝑛→∞

𝑑 (𝑇
𝑛

𝑦
𝑛
, 𝑝) ≤ lim sup

𝑛→∞

[𝑑 (𝑦
𝑛
, 𝑝) + 𝑐

𝑛
] ≤ 𝑐. (31)

Since

𝑐 = lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑝)

= lim
𝑛→∞

𝑑 (𝑊 (𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
, 𝛼
𝑛
) , 𝑝) ,

(32)

using Lemma 4, (28), and (31), it follows that

lim
𝑛→∞

𝑑 (𝑇
𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
) = 0. (33)
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From (19) and (33), we get

𝑑 (𝑥
𝑛+1

, 𝑇
𝑛

𝑥
𝑛
) = 𝑑 (𝑊 (𝑇

𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
, 𝛼
𝑛
) , 𝑇
𝑛

𝑥
𝑛
)

≤ 𝑏𝑑 (𝑇
𝑛

𝑦
𝑛
, 𝑇
𝑛

𝑥
𝑛
) → 0 as 𝑛 → ∞.

(34)

Hence,

𝑑 (𝑥
𝑛+1

, 𝑇
𝑛

𝑦
𝑛
)

≤ 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛

𝑥
𝑛
) + 𝑑 (𝑇

𝑛

𝑥
𝑛
, 𝑇
𝑛

𝑦
𝑛
) → 0 as 𝑛 → ∞.

(35)

Now, we observe that

𝑑 (𝑥
𝑛+1

, 𝑝) ≤ 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛

𝑦
𝑛
) + 𝑑 (𝑇

𝑛

𝑦
𝑛
, 𝑝)

≤ 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛

𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑝) + 𝑐

𝑛
,

(36)

which gives from (36) that

𝑐 ≤ lim inf
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑝) . (37)

The estimates of (30) and (37) imply that

𝑐 = lim
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑝)

= lim
𝑛→∞

𝑑 (𝑊 (𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
, 𝛽
𝑛
) , 𝑝) .

(38)

It follows from Lemma 4 that we have

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇
𝑛

𝑥
𝑛
) = 0. (39)

From (33) and (39), we get

lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (40)

Thus, we have

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛+1

)

+ 𝑑 (𝑇
𝑛+1

𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛
)

+ 𝑑 (𝑇
𝑛+1

𝑥
𝑛
, 𝑇𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛+1

𝑥
𝑛+1

)

+ 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)

+ 𝑐
𝑛+1

+ 𝑑 (𝑇
𝑛+1

𝑥
𝑛
, 𝑇𝑥
𝑛
) .

(41)

By (34), (40), and the uniform continuity of 𝑇, 𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) →

0 as 𝑛 → ∞ implies that 𝑑(𝑇𝑛𝑥
𝑛
, 𝑇
𝑛+1

𝑥
𝑛
) → 0 as 𝑛 → ∞;

we conclude that

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) → 0 as 𝑛 → ∞. (42)

It shows that sequence {𝑥
𝑛
} has an approximate fixed point

property for map 𝑇 (i.e., (𝐷
2
) holds).

Theorem 9. Let 𝐶 be a nonempty closed, convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂 and let 𝑇 : 𝐶 → 𝐶 be
uniformly continuous asymptotically nonexpansive in the inter-
mediate sense. Put

𝑐
𝑛
= max{0, sup

𝑥,𝑦∈𝐶

𝑑 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦) − 𝑑 (𝑥, 𝑦)} . (43)

If∑∞
𝑛=1

𝑐
𝑛
< ∞. Let {𝑥

𝑛
} be themodified 𝑆-iteration process in𝐶

defined by (19), where {𝛼
𝑛
} and {𝛽

𝑛
} are real sequences in (0, 1)

such that 0 < 𝑎 ≤ 𝛼
𝑛
≤ 𝛽
𝑛
≤ 𝑏 < 1. Then, {𝑥

𝑛
} is Δ-convergent

to an element of 𝐹(𝑇).

Proof. It follows from Lemma 7 that {𝑥
𝑛
} is bounded. There-

fore, by Lemma 2, one has unique asymptotic center that
𝑍
𝑎
(𝐶, {𝑥

𝑛
}) = {𝑥}. Let {𝑢

𝑛
} be any subsequence of {𝑥

𝑛
} such

that 𝑍
𝑎
(𝐶, {𝑢

𝑛
}) = {𝑢} and, hence, by Lemma 8, we have

lim
𝑛→∞

𝑑(𝑢
𝑛
, 𝑇𝑢
𝑛
) = 0. Hence, by Proposition 6, we have,

𝑢 ∈ 𝐹(𝑇).
Next, we claim that V is the unique asymptotic center for

each subsequence {𝑢
𝑛
} of {𝑥

𝑛
}. Assume contrarily that 𝑥 ̸= V.

Since lim
𝑛→∞

𝑑(𝑥
𝑛
, V) exists by Lemma 7, therefore, by the

uniqueness of asymptotic centers, we have

lim sup
𝑛→∞

𝑑 (𝑢
𝑛
, V) < lim sup

𝑛→∞

𝑑 (𝑢
𝑛
, 𝑥)

≤ lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥)

< lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, V)

= lim sup 𝑑 (𝑢
𝑛
, V) ,

(44)

a contradiction and, hence, 𝑥 = V. Since {𝑢
𝑛
} is an

arbitrary subsequence of {𝑥
𝑛
}, therefore, 𝑍

𝑎
(𝐶, {𝑢

𝑛
}) = {𝑢}

for all subsequences of {𝑢
𝑛
} of {𝑥

𝑛
}. This proves that {𝑥

𝑛
} Δ-

converges to a fixed point of 𝑇.

Theorem 10. Let𝑋,𝐶,𝑇, and {𝑥
𝑛
} be defined as inTheorem 9.

Then, {𝑥
𝑛
} converges strongly to a fixed point of 𝑇 if and only if

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0.

Proof. Necessity is obvious. We only prove the sufficiency.
Suppose that lim inf

𝑛→∞
𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0, from (24), we

have

𝑑 (𝑥
𝑛+1

, 𝐹 (𝑇)) ≤ 𝑑 (𝑥
𝑛
, 𝐹 (𝑇)) + 𝑀𝑐

𝑛
, 𝑛 ∈ N, (45)

for some 𝑀 ≥ 0. It follows, from Lemma 5, that lim
𝑛→∞

𝑑

(𝑥
𝑛
, 𝐹(𝑇)) exists. It follows that lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0.

Next, we show that {𝑥
𝑛
} is a Cauchy sequence. Now, we can

choose a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} such that

𝑑 (𝑥
𝑛𝑘
, 𝑝) < 2

−𝑘 (46)

for all integer 𝑘 ≥ 1 and some 𝑝
𝑘
on 𝐹(𝑇). Again, from (24),

applying Lemma 5, we have

𝑑 (𝑥
𝑛𝑘+1

, 𝑝
𝑘
) ≤ 𝑑 (𝑥

𝑛𝑘
, 𝑝
𝑘
) +𝑀𝑐

𝑛𝑘
< 2
−𝑘 (47)
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and, hence,

𝑑 (𝑝
𝑘+1

, 𝑝
𝑘
) ≤ 𝑑 (𝑝

𝑘+1
, 𝑥
𝑛𝑘+1

) + 𝑑 (𝑥
𝑛𝑘+1

, 𝑝
𝑘
)

≤ 2
−(𝑘+1)

+ 2
−𝑘

< 2
−𝑘+1

,

(48)

which shows that {𝑝
𝑘
} is a Cauchy sequence in closed subset

𝐶 of a complete uniformly convex hyperbolic space and so it
must converge strongly to a point 𝑝 in 𝐹(𝑇). It is readily seen
that {𝑥

𝑛𝑘
} and {𝑥

𝑛
} converge strongly to 𝑝.

Recall that a mapping 𝑇 from a subset of a metric space
(𝑋, 𝑑) into itself with 𝐹(𝑇) ̸= 𝜙 is said to satisfy condition
(𝐴) (see [31]) if there exists a nondecreasing function 𝑓 :

[0,∞) → [0,∞) with 𝑓(0) = 0 and 𝑓(𝑡) > 0 for 𝑡 ∈ (0,∞)

such that

𝑑 (𝑥, 𝑇𝑥) ≥ 𝑓 (𝑑 (𝑥, 𝐹 (𝑇))) (49)

for all 𝑥 ∈ 𝐶.

Theorem 11. Let𝑋,𝐶,𝑇, and {𝑥
𝑛
} be defined as inTheorem 9.

Suppose that 𝑇 satisfies condition (𝐴). Then, {𝑥
𝑛
} converges

strongly to a fixed point of 𝑇.

Proof. Note that sequence {𝑥
𝑛
} has approximate fixed point

property for 𝑇; that is, lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. Further, by

condition (𝐴),

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ≥ lim
𝑛→∞

𝑓 (𝑑 (𝑥
𝑛
, 𝐹 (𝑇))) . (50)

It follows that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0. Therefore, the result

follows fromTheorem 10.

Remark 12. In the view of Remark 1, Theorems 9, 10, and
11 generalize and extend the results of [3, 18, 19, 26] in the
sense a modified 𝑆-iteration process which is faster than
other iteration processes (see, e.g., Mann and Ishikawa) in the
setting of unifromly convex hyperbolic spaces.
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