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Consider the variational inequality VI(𝐶, 𝐹) of finding a point 𝑥∗ ∈ 𝐶 satisfying the property ⟨𝐹𝑥
∗

, 𝑥 −𝑥
∗

⟩ ≥ 0 for all 𝑥 ∈ 𝐶, where
𝐶 is a level set of a convex function defined on a real Hilbert space𝐻 and 𝐹 : 𝐻 → 𝐻 is a boundedly Lipschitzian (i.e., Lipschitzian
on bounded subsets of𝐻) and strongly monotone operator. He and Xu proved that this variational inequality has a unique solution
and devised iterative algorithms to approximate this solution (seeHe and Xu, 2009). In this paper, relaxed and self-adaptive iterative
algorithms are proposed for computing this unique solution. Since our algorithms avoid calculating the projection 𝑃

𝐶
(calculating

𝑃
𝐶
by computing a sequence of projections onto half-spaces containing the original domain 𝐶) directly and select the stepsizes

through a self-adaptive way (having no need to know any information of bounded Lipschitz constants of 𝐹 (i.e., Lipschitz constants
on some bounded subsets of 𝐻)), the implementations of our algorithms are very easy. The algorithms in this paper improve and
extend the corresponding results of He and Xu.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, let 𝐶 be a nonempty closed convex subset of 𝐻,
and let 𝐹 : 𝐶 → 𝐻 be a nonlinear operator. We consider the
problem of finding a point 𝑥∗ ∈ 𝐶 with the property

⟨𝐹𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (1)

This is known as the variational inequality problem VI(𝐶, 𝐹),
initially introduced and studied by Stampacchia [1] in 1964.
In recent years, variational inequality problems have been
extended to study a large variety of problems arising in struc-
tural analysis, economics, optimization, operations research,
and engineering sciences; see [1–21] and the references
therein. Using the projection technique, one can easily show
that VI(𝐶, 𝐹) is equivalent to a fixed-point problem (see, e.g.,
[15]).

Lemma1. 𝑥
∗ ∈ 𝐶 is a solution of𝑉𝐼(𝐶, 𝐹) if and only if𝑥∗ ∈ 𝐶

satisfies the fixed-point relation:

𝑥
∗

= 𝑃
𝐶
(𝐼 − 𝜆𝐹) 𝑥

∗

, (2)

where 𝜆 > 0 is an arbitrary constant, 𝑃
𝐶
is the orthogonal

projection onto 𝐶, and 𝐼 is the identity operator on 𝐻.

Recall that an operator 𝐹 : 𝐶 → 𝐻 is called monotone, if

⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 0 ∀𝑥, 𝑦 ∈ 𝐶. (3)

Moreover, a monotone operator 𝐹 is called strictly monotone
if the equality “=” holds only when 𝑥 = 𝑦 in the last relation.
It is easy to see that VI(𝐶, 𝐹) (1) has at most one solution if 𝐹
is strictly monotone.

For variational inequality (1),𝐹 is generally assumed to be
Lipschitzian and strongly monotone on 𝐶; that is, for some
constants 𝜅, 𝜂 > 0, 𝐹 satisfies the conditions

𝐹𝑥 − 𝐹𝑦
 ≤ 𝜅

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶, (4)

⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
𝑥 − 𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐶. (5)

In this case, 𝐹 is also called a 𝜅-Lipschitzian and 𝜂-strongly
monotone operator. It is not difficult to show the following
result.
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Lemma 2. Assume that 𝐹 satisfies conditions (4) and (5) and
𝜆 and 𝜇 are constants such that 𝜆 ∈ (0, 1) and 𝜇 ∈ (0, 2𝜂/𝜅2),
respectively. Let 𝑇𝜇 = 𝑃

𝐶
(𝐼−𝜇𝐹) (or 𝐼−𝜇𝐹) and 𝑇𝜆,𝜇 = 𝑃

𝐶
(𝐼−

𝜆𝜇𝐹) (or 𝐼 − 𝜆𝜇𝐹). Then 𝑇𝜇 and 𝑇𝜆,𝜇 are all contractions with
coefficients 1−𝜏 and 1−𝜆𝜏, respectively, where 𝜏 = (1/2)𝜇(2𝜂−

𝜇𝐿2).

By using the well-known Banach contraction mapping
principle, this fact together with Lemma 1 leads to the
following classical result.

Theorem 3. Assume that 𝐹 satisfies conditions (4) and (5).
Then 𝑉𝐼(𝐶, 𝐹) has a unique solution. Moreover, for any 0 <

𝜆 < 2𝜂/𝜅2, the sequence {𝑥
𝑛
} with initial guess 𝑥

0
∈ 𝐶 and

defined recursively by

𝑥
𝑛+1

= 𝑃
𝐶
(𝐼 − 𝜆𝐹) 𝑥

𝑛
, 𝑛 ≥ 0, (6)

converges strongly to the unique solution of 𝑉𝐼(𝐶, 𝐹).

Attempts are worth making to weaken the Lipschitz
condition (4) or the strong monotonicity condition (5) so
that existence of solutions of variational inequality (1) is
still guaranteed. In 2009, He and Xu [14] weakened the
Lipschitz condition (4) successfully to the bounded Lipschitz
condition. A mapping 𝐹 : 𝐶 → 𝐻 is boundedly Lipschitzian
on𝐶 if it is Lipschitzian on each bounded subset of𝐶; namely,
for each nonempty bounded subset 𝐵 of 𝐶, there exists a
positive constant 𝜅

𝐵
depending only on the set 𝐵 such that

𝐹𝑥 − 𝐹𝑦
 ≤ 𝜅
𝐵

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐵. (7)

He and Xu [14] not only proved existence and uniqueness
of solutions of VI(𝐶, 𝐹) under conditions (5) and (7) but also
estimated the range of this unique solution.

Theorem 4 (see [14]). Assume that 𝐹 : 𝐶 → 𝐻 is boundedly
Lipschitzian on 𝐶 (i.e., for each bounded subset 𝐵 of 𝐶, 𝐹 is
Lipschitzian on 𝐵). Assume also that 𝐹 is 𝜂-strongly monotone
on 𝐶. Then variational inequality (1) has a unique solution
𝑥
∗

∈ 𝐶 such that

𝑥
∗

− 𝑢
 ≤

1

𝜂
‖𝐹𝑢‖ , (8)

where 𝑢 ∈ 𝐶 is an arbitrary fixed element.

Similarly, we can also introduce bounded strong mono-
tonicity of an operator. An operator 𝐹 : 𝐶 → 𝐻 is called
boundedly strong monotone on 𝐶, if, for arbitrary bounded
subset 𝐵 of 𝐶, there exists a positive constant 𝜂

𝐵
depending

only on the set 𝐵 such that

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜂
𝐵

𝑥 − 𝑦

2

, ∀𝑥, 𝑦 ∈ 𝐵. (9)

So a natural question gives rise to this: is it possible also
to replace the strong monotonicity of 𝐹 by bounded strong
monotonicity so that the result of Theorem 4 is still guaran-
teed? Unfortunately, a simple example [14] gives us a negative
answer.

He and Xu [14] also consider the iterative algorithms for
solving VI(𝐶, 𝐹), where 𝐹 : 𝐶 → 𝐻 is boundedly Lipschitzi-
an and 𝜂-strongly monotone on 𝐶. Denote by 𝑢 an arbitrary
fixed element in 𝐶 and denote by 𝑟 a positive fixed constant
such that

𝑟 ≥
1

𝜂
‖𝐹𝑢‖ . (10)

Set 𝐶
𝑟
= 𝑆(𝑢, 𝑟) ∩𝐶 (𝑆(𝑢, 𝑟) is a closed ball of𝐻, i.e., 𝑆(𝑢, 𝑟) =

{𝑥 ∈ 𝐻 : ‖𝑥−𝑢‖ ≤ 𝑟}) and denote by 𝜅
𝑟
the Lipschitz constant

of 𝐹 on the bounded closed convex subset 𝐶
𝑟
.

Using Theorem 4, it is easy to see that VI(𝐶, 𝐹) and
VI(𝐶
𝑟
, 𝐹) have the same solution. Thus one can devise

iterative methods for VI(𝐶
𝑟
, 𝐹) and get the unique solution

of VI(𝐶, 𝐹).

Theorem 5 (see [14]). Define a sequence {𝑥
𝑛
} recursively by

the iterative algorithm

𝑥
0
∈ 𝐶
𝑟
arbitrarily,

𝑥
𝑛+1

= 𝑃
𝐶
𝑟

(𝐼 − 𝜆𝐹) 𝑥
𝑛
,

(11)

where 0 < 𝜆 < 2𝜂/𝜅2
𝑟
. Then {𝑥

𝑛
} converges strongly to the

unique solution 𝑥∗ of 𝑉𝐼(𝐶, 𝐹).

However, algorithms (6) and (11) all have two evident
weaknesses. On the one hand, they involve calculating the
projections𝑃

𝐶
and𝑃
𝐶
𝑟

, respectively, while the computation of
a projection onto a closed convex subset is generally difficult.
Particularly, the computation of 𝑃

𝐶
𝑟

is maybe more difficult
since the structure of 𝐶

𝑟
is more complicated. On the other

hand, the determination of the stepsize 𝜆 depends on the
constants 𝜅 (or 𝜅

𝑟
) and 𝜂. This means that, in order to

implement algorithm (6) (or algorithm (11)), one has first to
compute (or estimate) the constants 𝜅 (or 𝜅

𝑟
) and 𝜂, which is

sometimes not an easy work in practice.
He and Yang [22] proposed relaxed and self-adaptive

algorithms in order to overcome the above weaknesses of
algorithm (6) and proved strong convergence theorems.

In order to overcome the above weaknesses of algorithm
(11), new relaxed and self-adaptive algorithms are proposed
in this paper to solve VI(𝐶, 𝐹), where 𝐶 is a level set of a
convex function defined on 𝐻 and 𝐹 : 𝐻 → 𝐻 is a bound-
edly Lipschitzian and 𝜂-strongly monotone operator. Our
methods calculate 𝑃

𝐶
𝑟

by computing 𝑃
𝑆(𝑢,𝑟)

(the computation
of 𝑃
𝑆(𝑢,𝑟)

is very easy) and a sequence of projections onto
half-spaces containing the original level set 𝐶 and select the
stepsizes through a self-adaptive way. The implementations
of our algorithms are very easy since they avoid computing
𝑃
𝐶
𝑟

directly and have no need to know any information about
𝜅
𝑟
(but 𝜂 is assumed to be known, so our methods partly

overcome the secondweakness above).The algorithms in this
paper improve and extend the above corresponding result of
He and Xu.

The rest of this paper is organized as follows. Some useful
lemmas are listed in the next section. In the last section, a
relaxed algorithm for the case where 𝜂 and 𝜅

𝑟
are all known

and a relaxed self-adaptive algorithm for the case where 𝜂
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is known but 𝜅
𝑟
is unknown are proposed, respectively. The

strong convergence theorems of our algorithms are proved.

2. Preliminaries

Throughout the rest of this paper, we denote by 𝐻 a real
Hilbert space and by 𝐼 the identity operator on𝐻. If𝑓 : 𝐻 →

R is a differentiable functional, then we denote by ∇𝑓 the
gradient of 𝑓. We will also use the following notations.

(i) → denotes strong convergence.
(ii) ⇀ denotes weak convergence.
(iii) 𝑆(𝑢, 𝑟) = {𝑥 | ‖𝑥 − 𝑢‖ ≤ 𝑟} denotes a closed ball in 𝐻

with center 𝑢 and radius 𝑟.
(iv) 𝜔

𝑤
(𝑥
𝑛
) = {𝑥 | ∃{𝑥

𝑛
𝑘

} ⊂ {𝑥
𝑛
} such that 𝑥

𝑛
𝑘

⇀ 𝑥}

denotes the weak 𝜔-𝑙𝑖𝑚𝑖𝑡 set of {𝑥
𝑛
}.

Recall a trivial inequality, which is well known and in
common use.

Lemma 6. For all 𝑥, 𝑦 ∈ 𝐻, there holds the relation

𝑥 + 𝑦

2

≤ ‖𝑥‖
2

+ 2⟨𝑦, 𝑥 + 𝑦⟩. (12)

Recall that a mapping 𝑇 : 𝐻 → 𝐻 is said to be
nonexpansive if

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 , 𝑥, 𝑦 ∈ 𝐻. (13)

𝑇 : 𝐻 → 𝐻 is said to be firmly nonexpansive if, for 𝑥, 𝑦 ∈ 𝐻,

𝑇𝑥 − 𝑇𝑦

2

≤
𝑥 − 𝑦


2

−
(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦


2

. (14)

The following are characterizations of firmly nonexpan-
sive mappings (see [7] or [23]).

Lemma 7. Let 𝑇 : 𝐻 → 𝐻 be an operator. The following
statements are equivalent.

(i) 𝑇 is firmly nonexpansive.
(ii) 𝐼 − 𝑇 is firmly nonexpansive.
(iii) ‖𝑇𝑥 − 𝑇𝑦‖

2

≤ ⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩, 𝑥, 𝑦 ∈ 𝐻.

We know that the orthogonal projection 𝑃
𝐶
from 𝐻 onto

a nonempty closed convex subset 𝐶 ⊂ 𝐻 is a typical example
of a firmly nonexpansive mapping, which is defined by

𝑃
𝐶
𝑥 := argmin

𝑦∈𝐶

𝑥 − 𝑦

2

, 𝑥 ∈ 𝐻. (15)

It is well known that 𝑃
𝐶
𝑥 is characterized by the inequality

(for 𝑥 ∈ 𝐻)

𝑃
𝐶
𝑥 ∈ 𝐶, ⟨𝑥 − 𝑃

𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶. (16)

The following recent result [22] is likely to become a new
fundamental tool for proving strong convergence of some
algorithms. Its key effect on the proofs of our main results
will be illustrated in the next section.

Lemma 8 (see [22]). Assume 𝑠
𝑛
is a sequence of nonnegative

real numbers such that

𝑠
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑠
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (17)

𝑠
𝑛+1

≤ 𝑠
𝑛
− 𝜂
𝑛
+ 𝛼
𝑛
, 𝑛 ≥ 0, (18)

where (𝛾
𝑛
) is a sequence in (0, 1), (𝜂

𝑛
) is a sequence of

nonnegative real numbers, and (𝛿
𝑛
) and (𝛼

𝑛
) are two sequences

in R such that

(i) ∑
∞

𝑛=0
𝛾
𝑛
= ∞,

(ii) lim
𝑛→∞

𝛼
𝑛
= 0,

(iii) lim
𝑘→∞

𝜂
𝑛
𝑘

= 0 implies lim sup
𝑘→∞

𝛿
𝑛
𝑘

≤ 0 for any
subsequence (𝑛

𝑘
) ⊂ (𝑛).

Then lim
𝑛→∞

𝑠
𝑛
= 0.

Recall that a function 𝑓 : 𝐻 → R is called convex if

𝑓 (𝜆𝑥 + (1 − 𝜆) 𝑦) ≤ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) ,

∀𝜆 ∈ (0, 1) , ∀𝑥, 𝑦 ∈ 𝐻.
(19)

A differentiable function𝑓 is convex if and only if there holds
the relation

𝑓 (𝑧) ≥ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥) , 𝑧 − 𝑥⟩ , ∀𝑧 ∈ 𝐻. (20)

Recall that an element 𝑔 ∈ 𝐻 is said to be a subgradient of
𝑓 : 𝐻 → R at 𝑥 if

𝑓 (𝑧) ≥ 𝑓 (𝑥) + ⟨𝑔, 𝑧 − 𝑥⟩, ∀𝑧 ∈ 𝐻. (21)

A function𝑓 : 𝐻 → R is said to be subdifferentiable at 𝑥,
if it has at least one subgradient at 𝑥. The set of subgradients
of 𝑓 at the point 𝑥 is called the subdifferential of 𝑓 at 𝑥

and is denoted by 𝜕𝑓(𝑥). The last relation above is called the
subdifferential inequality of 𝑓 at 𝑥. A function 𝑓 is called
subdifferentiable, if it is subdifferentiable at all 𝑥 ∈ 𝐻. If a
function 𝑓 is differentiable and convex, then its gradient and
subgradient coincide.

Recall that a function 𝑓 : 𝐻 → R is said to be weakly
lower semicontinuous (𝑤 − 𝑙𝑠𝑐) at 𝑥 if 𝑥

𝑛
⇀ 𝑥 implies

𝑓 (𝑥) ≤ lim inf
𝑛→∞

𝑓 (𝑥
𝑛
) . (22)

3. Iterative Algorithms

In this section, we consider the iterative algorithms for
solving a particular kind of variational inequality (1) in which
the closed convex subset 𝐶 is of the particular structure, that
is, the level set of a convex function given as follows:

𝐶 = {𝑥 ∈ 𝐻 : 𝑐 (𝑥) ≤ 0} , (23)

where 𝑐 : 𝐻 → R is a convex function. We always
assume that 𝑐 is subdifferentiable on 𝐻 and 𝜕𝑐 is bounded
operator (i.e., bounded on bounded sets). We also assume
that 𝐹 : 𝐻 → 𝐻 is a boundedly Lipschitzian and 𝜂-strongly
monotone operator. Using Theorem 4, we assert that in this
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case VI(𝐶, 𝐹) has a unique solution, henceforth, which is
denoted by 𝑥∗.

The computation of a projection onto a closed convex
subset is generally difficult. To overcome this difficulty,
Fukushima [21] suggested a way to calculate the projection
onto a level set of a convex function by computing a sequence
of projections onto half-spaces containing the original level
set. This idea is followed by Yang [24] and Lopez et al. and
so forth [25], respectively, who introduced the relaxed 𝐶𝑄

algorithms for solving the split feasibility problem in a finite-
dimensional and infinite-dimensional Hilbert space, respec-
tively. He and Yang [22] also used this idea to devise iterative
algorithms for solving variational inequalities governed by
Lipschitzian and strongly monotone operators.

In the sequel, we always assume that 𝜂 is known and
denote by 𝑥

0
∈ 𝐻 a selected arbitrarily fixed element. Using

Theorem 4, the unique solution 𝑥∗ of VI(𝐶, 𝐹) belongs to a
closed ball 𝑆(𝑥

0
, 𝑟), where 𝑟 is a fixed positive constant such

that 𝑟 > ‖𝐹𝑥
0
‖/𝜂. We also always denote by 𝜅

𝑟
the Lipschitz

constant of 𝐹 on 𝑆(𝑥
0
, 𝑟).

Based on Theorem 4, we are now in a position to
introduce a relaxed algorithm for computing the unique
solution 𝑥

∗ of VI(𝐶, 𝐹), where 𝐶 is given as in (23). This
scheme applies to the case where 𝜅

𝑟
is easy to be determined.

Algorithm 9. Choose an arbitrary initial guess 𝑥
0

∈ 𝐻 and
the sequence (𝑥

𝑛
) is constructed via the formula

𝑥
𝑛+1

= 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

(𝐼 − 𝜆
𝑛
𝜇
𝑟
𝐹) 𝑥
𝑛
, 𝑛 ≥ 0, (24)

where

𝐶
𝑛
= {𝑥 ∈ 𝐻 : 𝑐 (𝑥

𝑛
) ≤ ⟨𝜉

𝑛
, 𝑥
𝑛
− 𝑥⟩} , (25)

where 𝜉
𝑛

∈ 𝜕𝑐(𝑥
𝑛
), the sequence (𝜆

𝑛
) in (0, 1), and 𝜇

𝑟
is a

constant such that 𝜇
𝑟
∈ (0, 2𝜂/𝜅2

𝑟
).

We now analyze strong convergence of Algorithm 9,
which also illustrates the application of Lemma 8.

Theorem 10. Assume that 𝜆
𝑛

→ 0 (𝑛 → ∞) and∑
+∞

𝑛=1
𝜆
𝑛
=

+∞. Then the sequence (𝑥
𝑛
) generated by Algorithm 9 con-

verges strongly to the unique solution 𝑥∗ of 𝑉𝐼(𝐶, 𝐹).

Proof. Obviously, it follows from (24) that (𝑥
𝑛
) is bounded

(indeed (𝑥
𝑛
) ⊂ 𝑆(𝑥

0
, 𝑟)) and so is (𝐹𝑥

𝑛
) noting the bounded

Lipschitz condition of𝐹. It is easy to see from the subdifferen-
tial inequality and the definition of 𝐶

𝑛
that 𝐶

𝑛
⊃ 𝐶 holds for

all 𝑛 ≥ 0, and hence it follows that 𝑆(𝑥
0
, 𝑟)∩𝐶

𝑛
⊃ 𝑆(𝑥
0
, 𝑟)∩𝐶 =

𝐶
𝑟
. Observing that 𝑥∗ ∈ 𝐶

𝑟
, a projection is nonexpansive,

and 𝑇𝜆𝑛 = 𝐼 − 𝜆
𝑛
𝜇
𝑟
𝐹 : 𝑆(𝑥

0
, 𝑟) → 𝐻 is a contraction with

coefficient 1 − 𝜆
𝑛
𝜏
𝑟
for all 𝑛 ≥ 0 (using Lemma 2), where

𝜏
𝑟
= (1/2)𝜇

𝑟
(2𝜂 − 𝜇

𝑟
𝜅2
𝑟
), we obtain using (24) and Lemma 6

that
𝑥𝑛+1 − 𝑥

∗
2

=

𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

(𝐼 − 𝜆
𝑛
𝜇
𝑟
𝐹)𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
∗


2

≤
(𝐼 − 𝜆

𝑛
𝜇
𝑟
𝐹)𝑥
𝑛
− (𝐼 − 𝜆

𝑛
𝜇
𝑟
𝐹)𝑥
∗

− 𝜆
𝑛
𝜇
𝑟
𝐹𝑥
∗
2

≤ (1− 𝜏
𝑟
𝜆
𝑛
)
𝑥𝑛 − 𝑥

∗
2

− 2𝜆
𝑛
𝜇
𝑟
⟨𝐹𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

− 𝜆
𝑛
𝜇
𝑟
𝐹𝑥
𝑛
⟩

≤ (1 − 𝜏
𝑟
𝜆
𝑛
)
𝑥𝑛 − 𝑥

∗
2

− 2𝜆
𝑛
𝜇
𝑟
⟨𝐹𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

+ 2𝜆
2

𝑛
𝜇
2

𝑟

𝐹𝑥
∗

𝐹𝑥𝑛
 .

(26)

On the other hand, we also have

𝑥𝑛+1 − 𝑥
∗
2

=

𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

(𝐼 − 𝜆
𝑛
𝜇
𝑟
𝐹)𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
∗


2

=

𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

(𝐼 − 𝜆
𝑛
𝜇
𝑟
𝐹) 𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛

+𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
∗


2

≤

𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
∗


2

+ 2𝜆
𝑛
𝜇
𝑟

𝐹𝑥𝑛
 ⋅

𝑥𝑛 − 𝑥
∗ + 𝜆

2

𝑛
𝜇
2

𝑟

𝐹𝑥𝑛

2

≤

𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
∗


2

+ 𝜆
𝑛
𝑀,

(27)

where𝑀 is a positive constant such that𝑀 ≥ sup
𝑛
{2𝜇
𝑟
‖𝐹𝑥
𝑛
‖⋅

‖𝑥
𝑛
−𝑥∗‖+𝜆

𝑛
𝜇2
𝑟
‖𝐹𝑥
𝑛
‖
2

}. Observing that a projection is firmly
nonexpansive, we have


𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
∗


2

≤

𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝐶
𝑛

𝑥
∗


2

−

𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛



2

≤
𝑥𝑛 − 𝑥

∗
2

−

𝑥
𝑛
− 𝑃
𝐶
𝑛

𝑥
𝑛



2

−

𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛



2

,

(28)

and the combination of (27) and (28) leads to

𝑥𝑛+1 − 𝑥
∗
2

≤
𝑥𝑛 − 𝑥

∗
2

−

𝑥
𝑛
− 𝑃
𝐶
𝑛

𝑥
𝑛



2

−

𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛



2

+ 𝜆
𝑛
𝑀.

(29)

Setting

𝑠
𝑛
=

𝑥𝑛 − 𝑥
∗
2

, 𝛾
𝑛
= 𝜏
𝑟
𝜆
𝑛
,

𝛿
𝑛
= −

2𝜇
𝑟

𝜏
𝑟

⟨𝐹𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩ + 2𝜆
𝑛

𝜇2
𝑟

𝜏
𝑟

𝐹𝑥
∗

𝐹𝑥𝑛
 ,

𝜂
𝑛
=


𝑥
𝑛
− 𝑃
𝐶
𝑛

𝑥
𝑛



2

+

𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛



2

,

𝛼
𝑛
= 𝑀𝜆

𝑛
,

(30)

then (26) and (29) can be rewritten as the following forms,
respectively:

𝑠
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑠
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, (31)

𝑠
𝑛+1

≤ 𝑠
𝑛
− 𝜂
𝑛
+ 𝛼
𝑛
. (32)
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Since ∑
∞

𝑛=1
𝛾
𝑛

= ∞ and 𝛼
𝑛

→ 0 hold, in order to complete
the proof using Lemma 8, it suffices to verify that

lim
𝑘→∞

𝜂
𝑛
𝑘

= 0 (33)

implies

lim sup
𝑘→∞

𝛿
𝑛
𝑘

≤ 0 (34)

for any subsequence (𝑛
𝑘
) ⊂ (𝑛). In fact, if 𝜂

𝑛
𝑘

→ 0 as
𝑘 → ∞, then ‖𝑥

𝑛
𝑘

− 𝑃
𝐶
𝑛
𝑘

𝑥
𝑛
𝑘

‖ → 0 and ‖𝑃
𝐶
𝑛
𝑘

𝑥
𝑛
𝑘

−

𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛
𝑘

𝑥
𝑛
𝑘

‖ → 0 hold. Since 𝜕𝑐 is bounded on bounded
sets, we have a positive constant 𝜎 such that ‖𝜉

𝑛
𝑘

‖ ≤ 𝜎 for all
𝑘 ≥ 0. From (25) and the trivial fact that 𝑃

𝐶
𝑛
𝑘

𝑥
𝑛
𝑘

∈ 𝐶
𝑛
𝑘

, it
follows that

𝑐 (𝑥
𝑛
𝑘

) ≤ ⟨𝜉
𝑛
𝑘

, 𝑥
𝑛
𝑘

− 𝑃
𝐶
𝑛
𝑘

𝑥
𝑛
𝑘

⟩ ≤ 𝜎

𝑥
𝑛
𝑘

− 𝑃
𝐶
𝑛
𝑘

𝑥
𝑛
𝑘


. (35)

Take 𝑥 ∈ 𝜔
𝑤
(𝑥
𝑛
𝑘

) arbitrarily and assume that 𝑥
𝑛
𝑘

⇀ 𝑥

without loss of the generality; then the 𝑤 − 𝑙𝑠𝑐 of 𝑐 and (35)
imply that

𝑐 (𝑥


) ≤ lim inf
𝑘→∞

𝑐 (𝑥
𝑛
𝑘

) ≤ 0. (36)

This means that 𝑥 ∈ 𝐶 holds. On the other hand, we assert
from (𝑥

𝑛
) ⊂ 𝑆(𝑥

0
, 𝑟) that 𝑥 ∈ 𝑆(𝑥

0
, 𝑟). Moreover, we obtain

that 𝑥 ∈ 𝑆(𝑥
0
, 𝑟) ∩ 𝐶 = 𝐶

𝑟
and hence 𝜔

𝑤
(𝑥
𝑛
𝑘

) ⊂ 𝐶
𝑟
.

Noting the fact that 2𝜆
𝑛
(𝜇2
𝑟
/𝜏
𝑟
)‖𝐹𝑥∗‖‖𝐹𝑥

𝑛
‖ → 0 (𝑛 →

∞) and 𝑥∗ is the unique solution of VI(𝐶
𝑟
, 𝐹) (i.e., the unique

solution of VI(𝐶, 𝐹)), it turns out that

lim sup
𝑘→∞

𝛿
𝑛
𝑘

= −
2𝜇

𝜏
lim inf
𝑘→∞

⟨𝐹𝑥
∗

, 𝑥
𝑛
𝑘
+1

− 𝑥
∗

⟩

≤ −
2𝜇

𝜏
lim inf
𝑘→∞

⟨𝐹𝑥
∗

, 𝑥
𝑛
𝑘

− 𝑥
∗

⟩

= −
2𝜇

𝜏
inf ⟨𝐹𝑥∗, 𝑤 − 𝑥

∗

⟩ ≤ 0,

(37)

𝑤 ∈ 𝜔
𝑤
(𝑥
𝑛
𝑘

).

It is worth mentioning that if 𝑃
𝐶
is easy to be calculated,

then 𝑃
𝐶
𝑛

in Algorithm 9 can be replaced with 𝑃
𝐶
and it is easy

to see that the whole proof of Theorem 10 is valid for this
case. Therefore, if 𝐶 = 𝐻, VI(𝐶, 𝐹) reduces to the operator
equation problem: finding 𝑥

∗ ∈ 𝐻 such that 𝐹𝑥∗ = 0, and the
following result holds.

Corollary 11. Assume that 𝜆
𝑛

→ 0 (𝑛 → ∞), ∑+∞
𝑛=1

𝜆
𝑛

=

+∞, and 𝐶 = 𝐻. Then the sequence (𝑥
𝑛
) generated by

algorithm

𝑥
𝑛+1

= 𝑃
𝑆(𝑥
0
,𝑟)

(𝐼 − 𝜆
𝑛
𝜇
𝑟
𝐹) 𝑥
𝑛
, 𝑛 ≥ 0, (38)

converges strongly to the unique solution 𝑥∗ of the operator
equation 𝐹𝑥 = 0.

Sometimes, the constant 𝜅
𝑟
is difficult to be obtained

or estimated in practice (but we assume that 𝜂 has been
obtained). In this case, Algorithm 9 is indeed not fit for
solving VI(𝐶

𝑟
, 𝐹) (i.e., VI(𝐶, 𝐹)). Then we now turn to

introducing a relaxed and self-adaptive algorithm for the case
where constant 𝜅

𝑟
is unknown.

Algorithm 12. Choose an arbitrary initial guess 𝑥
0

∈ 𝐶 and
an arbitrary element 𝑥

1
∈ 𝑆(𝑥
0
, 𝑟) such that 𝑥

1
̸= 𝑥
0
. Assume

that the 𝑛th iterate 𝑥
𝑛
(𝑛 ≥ 1) has been constructed. Continue

and calculate the (𝑛 + 1)th iterate 𝑥
𝑛+1

via the formula

𝑥
𝑛+1

= 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

(𝐼 − 𝜆
𝑛
𝜇
𝑛
𝐹) 𝑥
𝑛
, 𝑛 ≥ 1, (39)

where 𝐶
𝑛
is given as in (25), the sequence (𝜆

𝑛
) is in (0, 1), 𝑟

is a constant such that 𝑟 > ‖𝐹𝑥
0
‖/𝜂, and the sequence (𝜇

𝑛
) is

determined via the relation

𝜇
𝑛

=

{{

{{

{

𝜂
𝑥𝑛 − 𝑥

𝑛−1


2

𝐹𝑥𝑛 − 𝐹𝑥
𝑛−1


2

, if 𝑥
𝑛

̸= 𝑥
𝑛−1

,

𝜇
𝑛−1

, if 𝑥
𝑛
= 𝑥
𝑛−1

,

𝑛 ≥ 1.

(40)

Firstly, we show that the sequence (𝑥
𝑛
) is well defined.

Noting strong monotonicity of 𝐹, 𝑥
1

̸= 𝑥
0
implies that

𝐹𝑥
1

̸= 𝐹𝑥
0
and 𝜇

1
is well defined via the first formula of

(40). Consequently, 𝜇
𝑛
(𝑛 ≥ 2) is well defined inductively

according to (40) and thus the sequence (𝑥
𝑛
) is also well

defined using (39).
Next, we estimate (𝜇

𝑛
) roughly. If 𝑥

𝑛
̸= 𝑥
𝑛−1

(i.e., 𝐹𝑥
𝑛

̸=

𝐹𝑥
𝑛−1

), set

𝜅
𝑛
=

𝐹𝑥𝑛 − 𝐹𝑥
𝑛−1


𝑥𝑛 − 𝑥

𝑛−1


. (41)

Observing the fact that (𝑥
𝑛
) ⊂ 𝑆(𝑥

0
, 𝑟) from (39), it turns out

that

𝜂 ≤

⟨𝐹𝑥𝑛 − 𝐹𝑥
𝑛−1

, 𝑥
𝑛
− 𝑥
𝑛−1

⟩


𝑥𝑛 − 𝑥
𝑛−1


2

≤

𝐹𝑥𝑛 − 𝐹𝑥
𝑛−1


𝑥𝑛 − 𝑥

𝑛−1


= 𝜅
𝑛
≤ 𝜅
𝑟
.

(42)

Consequently

𝜂

𝜅2
𝑟

≤ 𝜇
𝑛
=

𝜂

𝜅2
𝑛

≤
1

𝜂
. (43)

By the definition of (𝜇
𝑛
), we can assert that (43) holds for all

𝑛 ≥ 1.
Now we analyze the strong convergence of Algorithm 12.

Theorem 13. Assume that 𝜆
𝑛

→ 0 (𝑛 → ∞) and∑
+∞

𝑛=1
𝜆
𝑛
=

+∞. Then the sequence (𝑥
𝑛
) generated by Algorithm 12

converges strongly to the unique solution 𝑥∗ of VI(𝐶, 𝐹).

Proof. Obviously, (𝑥
𝑛
) is bounded and so is (𝐹𝑥

𝑛
). Setting

𝛾
𝑛
= 𝜆
𝑛
𝜇
𝑛
and 𝛽

𝑛
= (1/2)(2𝜂 − 𝛾

𝑛
𝜅2
𝑟
), observing 𝜆

𝑛
→ 0 and
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(43), it is concluded that there exists some positive integer 𝑛
0

such that

0 < 𝛾
𝑛
<

𝜂

𝜅2
𝑟

, 𝑛 ≥ 𝑛
0
, (44)

and consequently

1

2
𝜂 ≤ 𝛽
𝑛
≤ 𝜂, 𝑛 ≥ 𝑛

0
. (45)

Using Lemma 2, we have from (44) that, for all 𝑛 ≥ 𝑛
0
, 𝐼 −

𝛾
𝑛
𝐹 : 𝑆(𝑥

0
, 𝑟) → 𝐻 is a contraction with coefficient 1 − 𝛾

𝑛
𝛽
𝑛
.

This concludes that, for all 𝑛 ≥ 𝑛
0
,

𝑥𝑛+1 − 𝑥
∗
2

=

𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

(𝐼 − 𝛾
𝑛
𝐹)𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
∗


2

≤
(𝐼 − 𝛾

𝑛
𝐹)𝑥
𝑛
− (𝐼 − 𝛾

𝑛
𝐹)𝑥
∗

− 𝛾
𝑛
𝐹𝑥
∗
2

≤ (1 − 𝛾
𝑛
𝛽
𝑛
)
𝑥𝑛 − 𝑥

∗
2

− 2𝛾
𝑛
⟨𝐹𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

− 𝛾
𝑛
𝐹𝑥
𝑛
⟩.

≤ (1 − 𝛾
𝑛
𝛽
𝑛
)
𝑥𝑛 − 𝑥

∗
2

− 2𝛾
𝑛
⟨𝐹𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

+ 2𝛾
2

𝑛

𝐹𝑥
∗

𝐹𝑥𝑛
 .

(46)

By an argument similar to getting (27)–(29), we have

𝑥𝑛+1 − 𝑥
∗
2

≤
𝑥𝑛 − 𝑥

∗
2

−

𝑥
𝑛
− 𝑃
𝐶
𝑛

𝑥
𝑛



2

−

𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛



2

+ 𝛾
𝑛
𝑀,

(47)

where𝑀 is a positive constant, which has nothing to do with
𝑛. Setting

𝑠
𝑛
=

𝑥𝑛 − 𝑥
∗
2

,

𝛿
𝑛
= −

2

𝛽
𝑛

⟨𝐹𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩ +
2𝛾
𝑛

𝛽
𝑛

𝐹𝑥
∗

𝐹𝑥𝑛
 ,

𝜎
𝑛
=


𝑥
𝑛
− 𝑃
𝐶
𝑛

𝑥
𝑛



2

+

𝑃
𝐶
𝑛

𝑥
𝑛
− 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
𝑛

𝑥
𝑛



2

,

𝛼
𝑛
= 𝑀𝛾

𝑛
,

(48)

then (46) and (47) can be rewritten as the following forms,
respectively:

𝑠
𝑛+1

≤ (1 − 𝛾
𝑛
𝛽
𝑛
) 𝑠
𝑛
+ 𝛾
𝑛
𝛽
𝑛
𝛿
𝑛
, (49)

𝑠
𝑛+1

≤ 𝑠
𝑛
− 𝜎
𝑛
+ 𝛼
𝑛
. (50)

Clearly, 𝜆
𝑛

→ 0 and ∑
∞

𝑛=1
𝜆
𝑛
= ∞, together with (43)–(45),

imply that 𝛼
𝑛

→ 0 and ∑
∞

𝑛=1
𝛾
𝑛
𝛽
𝑛
= ∞.

By an argument very similar to the proof of Theorem 10,
it is not difficult to verify that

lim
𝑘→∞

𝜎
𝑛
𝑘

= 0 (51)

implies

lim sup
𝑘→∞

𝛿
𝑛
𝑘

≤ 0 (52)

for any subsequence (𝑛
𝑘
) ⊂ (𝑛). Thus we can complete the

proof by using Lemma 8.

Similar to Algorithm 9, if 𝑃
𝐶
is easy to be calculated, then

𝑃
𝐶
𝑛

in Algorithm 12 can also be replaced with 𝑃
𝐶
and it is easy

to see that the whole proof ofTheorem 13 is valid for this case.
The following result similar to Corollary 11 also holds.

Corollary 14. Assume that 𝜆
𝑛

→ 0 (𝑛 → ∞), ∑+∞
𝑛=1

𝜆
𝑛

=

+∞, and 𝐶 = 𝐻. Then the sequence (𝑥
𝑛
) generated by algo-

rithm

𝑥
𝑛+1

= 𝑃
𝑆(𝑥
0
,𝑟)

(𝐼 − 𝜆
𝑛
𝜇
𝑛
𝐹) 𝑥
𝑛
, 𝑛 ≥ 0, (53)

where 𝜇
𝑛
is given as in (40), converges strongly to the unique

solution 𝑥
∗ of the operator equation 𝐹𝑥 = 0.

Finally, we give an iterative algorithm for solving a
class VI(𝐶, 𝐹), in which the closed convex subset 𝐶 is the
intersection of finite level sets of convex functions given as
follows:

𝐶 =

𝑚

⋂
𝑖=1

{𝑥 ∈ 𝐻 : 𝑐
𝑖
(𝑥) ≤ 0} , (54)

where 𝑚 is a positive integer and 𝑐
𝑖
: 𝐻 → R (𝑖 = 1, . . . , 𝑚)

is a convex function. We always assume that 𝑐
𝑖
(𝑖 = 1, . . . , 𝑚)

is subdifferentiable on 𝐻 and 𝜕𝑐
𝑖
(𝑖 = 1, . . . , 𝑚) is bounded

operator (i.e., bounded on bounded sets).
Without loss of generality, we will consider only the case

𝑚 = 2; that is, 𝐶 = 𝐶1 ∩ 𝐶2, where

𝐶
1

= {𝑥 ∈ 𝐻 : 𝑐
1
(𝑥) ≤ 0} , 𝐶

2

= {𝑥 ∈ 𝐻 : 𝑐
2
(𝑥) ≤ 0} .

(55)

Algorithm 15. Choose an arbitrary initial guess 𝑥
0

∈ 𝐶 and
an arbitrary element 𝑥

1
∈ 𝑆(𝑥
0
, 𝑟) such that 𝑥

1
̸= 𝑥
0
. Assume

that the 𝑛th iterate 𝑥
𝑛
(𝑛 ≥ 1) has been constructed. Continue

and calculate the (𝑛 + 1)th iterate 𝑥
𝑛+1

via the formula

𝑥
𝑛+1

= 𝑃
𝑆(𝑥
0
,𝑟)
𝑃
𝐶
2

𝑛

𝑃
𝐶
1

𝑛

(𝐼 − 𝜆
𝑛
𝜇
𝑛
𝐹) 𝑥
𝑛
, 𝑛 ≥ 1, (56)

where the sequence (𝜆
𝑛
) is in (0, 1), 𝑟 is a constant such that

𝑟 > ‖𝐹𝑥
0
‖/𝜂, the sequence (𝜇

𝑛
) is given as in (40), and𝐶𝑖

𝑛
(𝑖 =

1, 2) is determined via the relation

𝐶
1

𝑛
= {𝑥 ∈ 𝐻 : 𝑐

1
(𝑥
𝑛
) ≤ ⟨𝜉

1

𝑛
, 𝑥
𝑛
− 𝑥⟩} ,

𝐶
2

𝑛
= {𝑥 ∈ 𝐻 : 𝑐

2
(𝑃
𝐶
1

𝑛

𝑥
𝑛
) ≤ ⟨𝜉

2

𝑛
, 𝑃
𝐶
1

𝑛

𝑥
𝑛
− 𝑥⟩} .

(57)

By an argument similar to the proof of Theorem 13
(together with the proof of Theorem 3.4 of [22]), we have the
following result.

Theorem 16. Assume that 𝜆
𝑛

→ 0 (𝑛 → ∞) and∑
+∞

𝑛=1
𝜆
𝑛
=

+∞. Then the sequence (𝑥
𝑛
) generated by Algorithm 15

converges strongly to the unique solution 𝑥∗ of VI(𝐶, 𝐹), where
𝐶 = 𝐶1 ∩ 𝐶2 and 𝐶𝑖 (𝑖 = 1, 2) is given as in (55).
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