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We study lightlike hypersurfaces𝑀 of an indefinite generalized Sasakian space form𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
), with indefinite trans-Sasakian

structure of type (𝛼, 𝛽), subject to the condition that the structure vector field of𝑀 is tangent to𝑀. First we study the general theory
for lightlike hypersurfaces of indefinite trans-Sasakian manifold of type (𝛼, 𝛽). Next we prove several characterization theorems for
lightlike hypersurfaces of an indefinite generalized Sasakian space form.

1. Introduction

Oubiña [1] introduced the notion of indefinite trans-Sasakian
manifold of type (𝛼, 𝛽). Indefinite Sasakian, Kenmotsu, and
cosymplectic manifolds are three important kinds of indefi-
nite trans-Sasakian manifold such that

𝛼 = 1, 𝛽 = 0; 𝛼 = 0, 𝛽 = 1; 𝛼 = 𝛽 = 0, (1)

respectively. Alegre et al. [2] introduced indefinite general-
ized Sasakian space form 𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
). Indefinite Sasakian,

Kenmotsu, and cosymplectic space forms are some kinds of
indefinite generalized Sasakian space form such that

𝑓
1
=
𝑐 + 3

4
, 𝑓

2
= 𝑓
3
=
𝑐 − 1

4
;

𝑓
1
=
𝑐 − 3

4
, 𝑓

2
= 𝑓
3
=
𝑐 + 1

4
;

𝑓
1
= 𝑓
2
= 𝑓
3
=
𝑐

4
,

(2)

respectively, where 𝑐 denotes constant 𝐽-sectional curvatures
of each of them.

Recently author has been studying the geometry of
lightlike hypersurfaces 𝑀 of indefinite Sasakian [3], Ken-
motsu [4], and cosymplectic [5] manifolds. In this paper, we

study lightlike hypersurfaces𝑀 of an indefinite generalized
Sasakian space form 𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
), with indefinite trans-

Sasakian structure of type (𝛼, 𝛽), subject to the condition
that the structure vector field of 𝑀 is tangent to 𝑀. First
we study lightlike hypersurfaces of indefinite trans-Sasakian
manifold of type (𝛼, 𝛽). Next we prove two characterization
theorems for lightlike hypersurfaces of an indefinite general-
ized Sasakian space form such that the following hold.

(i) Let 𝑀 be a lightlike hypersurface of an indefinite
generalized Sasakian space form𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
). Then

𝛼 is a constant, 𝛽 = 0, and

𝑓
1
− 𝑓
2
= 𝛼
2
, 𝑓

1
− 𝑓
3
= 𝛼
2
, 𝑓

2
= 𝑓
3
. (3)

(ii) Let 𝑀 be a screen conformal lightlike hypersurface
of an indefinite generalized Sasakian space form
𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
). Then 𝑓

1
= 𝑓
2
= 𝑓
3
= 0.

2. Preliminaries

An odd-dimensional semi-Riemannian manifold (𝑀, 𝑔) is
called an indefinite trans-Sasakianmanifold [1, 2] if there exist
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a (1, 1)-type tensor field 𝐽, a vector field 𝜁 which is called the
structure vector field, and a 1-form 𝜃 such that

𝐽
2
𝑋 = −𝑋 + 𝜃 (𝑋) 𝜁, 𝜃 (𝜁) = 1, 𝐽𝜁 = 0, 𝜃 ∘ 𝐽 = 0, (4)

𝑔 (𝐽𝑋, 𝐽𝑌) = 𝑔 (𝑋, 𝑌) − 𝜖𝜃 (𝑋) 𝜃 (𝑌) , 𝜖 = 𝑔 (𝜁, 𝜁) , (5)

(∇
𝑋
𝐽) 𝑌 = 𝛼 {𝑔 (𝑋, 𝑌) 𝜁 − 𝜖𝜃 (𝑌)𝑋}

+ 𝛽 {𝑔 (𝐽𝑋, 𝑌) 𝜁 − 𝜖𝜃 (𝑌) 𝐽𝑋} ,

(6)

for any vector fields 𝑋 and 𝑌 on 𝑀, where 𝜖 = 1 or −1
according to the fact that 𝜁 is spacelike or timelike, respec-
tively. In this case, the set {𝐽, 𝜁, 𝜃, 𝑔} is called an indefinite
trans-Sasakian structure of type (𝛼, 𝛽).

In the entire discussion of this paper, we may assume that
𝜁 is unit spacelike; that is, 𝜖 = 1, without loss of generality.
From (4) and (6), we get

∇
𝑋
𝜁 = −𝛼𝐽𝑋 + 𝛽 (𝑋 − 𝜃 (𝑋) 𝜁) , 𝑑𝜃 (𝑋, 𝑌) = 𝑔 (𝑋, 𝐽𝑌) .

(7)

Let (𝑀, 𝑔) be a lightlike hypersurface, with a screen
distribution 𝑆(𝑇𝑀), of an indefinite trans-Sasakian manifold
𝑀. Denote by 𝐹(𝑀) the algebra of smooth functions on
𝑀 and by Γ(𝐸) the 𝐹(𝑀) module of smooth sections of
a vector bundle 𝐸. Also donate by (Equation number)

𝑖
the

𝑖th equation of several equations in (Equation number), for
example, (7)

1
donates the first equation of the two equations

in (7). We use same notations for any others.
We followDuggal-Bejancu [6] for notations and structure

equations used in this paper. It is well known that, for any
null section 𝜉 of𝑇𝑀⊥ on a coordinate neighborhoodU ⊂ 𝑀,
there exists a unique null section𝑁 of a unique vector bundle
tr(𝑇𝑀) of rank 1 in 𝑆(𝑇𝑀)⊥ satisfying

𝑔 (𝜉,𝑁) = 1, 𝑔 (𝑁,𝑁) = 𝑔 (𝑁,𝑋) = 0,

∀𝑋 ∈ Γ (𝑆 (𝑇𝑀)) .

(8)

In the following, let 𝑋,𝑌, 𝑍, and 𝑊 be the vector fields
on 𝑀, unless otherwise specified. Let ∇ be the Levi-Civita
connection of𝑀 and 𝑃 the projection morphism of 𝑇𝑀 on
𝑆(𝑇M). Then the local Gauss and Weingarten formulas are
given by

∇
𝑋
𝑌 = ∇

𝑋
𝑌 + 𝐵 (𝑋, 𝑌)𝑁, (9)

∇
𝑋
𝑁 = −𝐴

𝑁
𝑋 + 𝜏 (𝑋)𝑁; (10)

∇
𝑋
𝑃𝑌 = ∇

∗

𝑋
𝑃𝑌 + 𝐶 (𝑋, 𝑃𝑌) 𝜉, (11)

∇
𝑋
𝜉 = −𝐴

∗

𝜉
𝑋 − 𝜏 (𝑋) 𝜉, (12)

where ∇ and ∇∗ are the liner connections on𝑀 and 𝑆(𝑇𝑀),
respectively, 𝐵 and 𝐶 are the local second fundamental forms
on 𝑀 and 𝑆(𝑇𝑀) respectively, 𝐴

𝑁
and 𝐴∗

𝜉
are the shape

operators on 𝑀 and 𝑆(𝑇𝑀), respectively, and 𝜏 is a 1-form
on 𝑇𝑀.

Since ∇ is torsion-free, ∇ is also torsion-free and 𝐵 is
symmetric. From the fact that 𝐵(𝑋, 𝑌) = 𝑔(∇

𝑋
𝑌, 𝜉), we show

that 𝐵 is independent of the choice of 𝑆(𝑇𝑀) and satisfies

𝐵 (𝑋, 𝜉) = 0. (13)

The induced connection∇ of𝑀 is notmetric and satisfies

(∇
𝑋
𝑔) (𝑌, 𝑍) = 𝐵 (𝑋, 𝑌) 𝜂 (𝑍) + 𝐵 (𝑋, 𝑍) 𝜂 (𝑌) , (14)

where 𝜂 is a 1-form such that

𝜂 (𝑋) = 𝑔 (𝑋,𝑁) . (15)

But the connection ∇∗ on 𝑆(𝑇𝑀) is metric. The above two
local second fundamental forms 𝐵 and 𝐶 are related to their
shape operators by

𝐵 (𝑋, 𝑌) = 𝑔 (𝐴
∗

𝜉
𝑋,𝑌) , 𝑔 (𝐴

∗

𝜉
𝑋,𝑁) = 0, (16)

𝐶 (𝑋, 𝑃𝑌) = 𝑔 (𝐴
𝑁
𝑋, 𝑃𝑌) , 𝑔 (𝐴

𝑁
𝑋,𝑁) = 0. (17)

Definition 1. A lightlike hypersurface𝑀 of𝑀 is said to be

(1) totally umbilical [6] if there is a smooth function 𝜌
on any coordinate neighborhood U in 𝑀 such that
𝐴
∗

𝜉
𝑋 = 𝜌𝑃𝑋, or equivalently,

𝐵 (𝑋, 𝑌) = 𝜌𝑔 (𝑋, 𝑌) . (18)

In case 𝜌 = 0 onU, we say that𝑀 is totally geodesic;

(2) screen totally umbilical [6] if there exists a smooth
function 𝛾 on U such that 𝐴

𝑁
𝑋 = 𝛾𝑃𝑋, or equiva-

lently,

𝐶 (𝑋, 𝑃𝑌) = 𝛾𝑔 (𝑋, 𝑌) . (19)

In case 𝛾 = 0 on U, we say that 𝑀 is screen totally
geodesic;

(3) screen conformal [7] if there exists a nonvanishing
smooth function 𝜑 on U such that 𝐴

𝑁
= 𝜑𝐴

∗

𝜉
, or

equivalently,

𝐶 (𝑋, 𝑃𝑌) = 𝜑𝐵 (𝑋, 𝑌) . (20)

Denote by 𝑅, 𝑅, and 𝑅∗ the curvature tensors of the Levi-
Civita connection ∇ of𝑀, the induced connection ∇ on𝑀,
and the induced connection∇∗ on 𝑆(𝑇𝑀), respectively. Using
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the Gauss-Weingarten formulas for𝑀 and 𝑆(𝑇𝑀), we obtain
the Gauss-Codazzi equations for𝑀 and 𝑆(𝑇𝑀) such that

𝑅 (𝑋, 𝑌)𝑍

= 𝑅 (𝑋, 𝑌)𝑍 + 𝐵 (𝑋,𝑍)𝐴
𝑁
𝑌 − 𝐵 (𝑌, 𝑍)𝐴

𝑁
𝑋

+ {(∇
𝑋
𝐵) (𝑌, 𝑍) − (∇

𝑌
𝐵) (𝑋, 𝑍)

+ 𝜏 (𝑋) 𝐵 (𝑌, 𝑍) − 𝜏 (𝑌) 𝐵 (𝑋, 𝑍) }𝑁,

(21)

𝑅 (𝑋, 𝑌)𝑁

= −∇
𝑋
(𝐴
𝑁
𝑌) + ∇

𝑌
(𝐴
𝑁
𝑋) + 𝐴

𝑁 [𝑋, 𝑌]

+ 𝜏 (𝑋)𝐴
𝑁
𝑌 − 𝜏 (𝑌)𝐴

𝑁
𝑋

+ {𝐵 (𝑌, 𝐴
𝑁
𝑋) − 𝐵 (𝑋,𝐴

𝑁
𝑌) + 2𝑑𝜏 (𝑋, 𝑌)}𝑁,

(22)

𝑅 (𝑋, 𝑌) 𝑃Z

= 𝑅
∗
(𝑋, 𝑌) 𝑃𝑍 + 𝐶 (𝑋, 𝑃𝑍)𝐴

∗

𝜉
𝑌

− 𝐶 (𝑌, 𝑃𝑍)𝐴
∗

𝜉
𝑋

+ {(∇
𝑋
𝐶) (𝑌, 𝑃𝑍) − (∇

𝑌
𝐶) (𝑋, 𝑃𝑍)

− 𝜏 (𝑋)𝐶 (𝑌, 𝑃𝑍) + 𝜏 (𝑌)𝐶 (𝑋, 𝑃𝑍) 𝜏 (𝑌) } 𝜉,

(23)

𝑅 (𝑋, 𝑌) 𝜉

= −∇
∗

𝑋
(𝐴
∗

𝜉
𝑌) + ∇

∗

𝑌
(𝐴
∗

𝜉
𝑋) + 𝐴

∗

𝜉
[𝑋, 𝑌]

− 𝜏 (𝑋)𝐴
∗

𝜉
𝑌 + 𝜏 (𝑌)𝐴

∗

𝜉
𝑋

+ {𝐶 (𝑌, 𝐴
∗

𝜉
𝑋) − 𝐶 (𝑋,𝐴

∗

𝜉
𝑌) − 2𝑑𝜏 (𝑋, 𝑌)} 𝜉.

(24)

3. Indefinite Trans-Sasakian Manifolds

Let 𝑀 be a lightlike hypersurface of a indefinite trans-
Sasakian manifold𝑀 such that 𝜁 is tangent to𝑀. Călin [8]
proved that if 𝜁 is tangent to 𝑀, then it belongs to 𝑆(𝑇𝑀)
which we assume in this paper. It is well known [3, 6] that, for
any lightlike hypersurface𝑀 of an indefinite almost contact
metric manifold𝑀, 𝐽(𝑇𝑀⊥) and 𝐽(tr(𝑇𝑀)) are subbundles
of 𝑆(𝑇𝑀), of rank 1, and 𝐽(𝑇𝑀⊥) ∩ 𝐽(tr(𝑇𝑀)) = {0}. Thus
𝐽(𝑇𝑀

⊥
)⊕𝐽(tr(𝑇𝑀)) is a subbundle of 𝑆(𝑇𝑀) of rank 2. First,

we prove the following results.

Theorem 2. (1) Let𝑀 be a totally umbilical lightlike hypersur-
face of an indefinite trans-Sasakian manifold𝑀. Then 𝛼 = 0
and𝑀 is totally geodesic.

(2) Let𝑀 be a screen conformal or screen totally umbilical
lightlike hypersurface of an indefinite trans-Sasakian manifold
𝑀. Then 𝛼 = 𝛽 = 0. In case𝑀 is screen totally umbilical,𝑀 is
totally geodesic.

Proof. Applying ∇
𝑋
to 𝑔(𝜁, 𝜉) = 0 and 𝑔(𝜁,𝑁) = 0, we have

𝐵 (𝑋, 𝜁) = 𝛼𝑔 (𝑋, 𝐽𝜉) , 𝐶 (𝑋, 𝜁) = 𝛼𝑔 (𝑋, 𝐽𝑁) + 𝛽𝜂 (𝑋) .

(25)

(1) If𝑀 is totally umbilical, then, from (18) and (25)
1
, we

have

𝜌𝑔 (𝑋, 𝜁) = 𝛼𝑔 (𝑋, 𝐽𝜉) , ∀𝑋 ∈ Γ (𝑇𝑀) . (26)

Taking𝑋 = 𝜁 and𝑋 = 𝐽𝑁 by turns, we have 𝜌 = 0 and 𝛼 = 0,
respectively. As 𝜌 = 0,𝑀 is totally geodesic.

(2) If𝑀 is screen conformal, then, from (20) and (25)
1,2
,

we have

𝛼𝜑𝑔 (𝑋, 𝐽𝜉) = 𝛼𝑔 (𝑋, 𝐽𝑁) + 𝛽𝜂 (𝑋) . (27)

Taking𝑋 = 𝐽𝜉 and𝑋 = 𝜉 by turns, we have 𝛼 = 0 and 𝛽 = 0,
respectively.

If𝑀 is screen totally umbilical, then, from (19) and (25)
2
,

we have

𝛾𝑔 (𝑋, 𝜁) = 𝛼𝑔 (𝑋, 𝐽𝑁) + 𝛽𝜂 (𝑋) . (28)

Taking 𝑋 = 𝜁, 𝑋 = 𝐽𝜉 and 𝑋 = 𝜉 to this equation by turns,
we have 𝛾 = 0, 𝛼 = 0, and 𝛽 = 0, respectively. As 𝛾 = 0,𝑀 is
screen totally geodesic.

As 𝐽(𝑇𝑀⊥) ⊕ 𝐽(tr(𝑇𝑀)) is a subbundle of 𝑆(𝑇𝑀) of rank
2, there exists a nondegenerate almost complex distribution
𝐷
𝑜
with respect to 𝐽; that is, 𝐽(𝐷

𝑜
) = 𝐷

𝑜
, such that

𝑆 (𝑇𝑀) = {𝐽 (𝑇𝑀
⊥
) ⊕ 𝐽 (tr (𝑇𝑀))} ⊕orth𝐷𝑜,

𝑇𝑀 = {𝐽 (𝑇𝑀
⊥
) ⊕ 𝐽 (tr (𝑇𝑀))} ⊕orth𝐷𝑜⊕orth𝑇𝑀

⊥
.

(29)

Consider the 2-lightlike almost complex distribution 𝐷 such
that

𝐷 = 𝑇𝑀
⊥
⊕orth𝐽 (𝑇𝑀

⊥
) ⊕orth𝐷𝑜,

𝑇𝑀 = 𝐷 ⊕ 𝐽 (tr (𝑇𝑀))
(30)

and the local lightlike vector fields𝑈 and𝑉 and their 1-forms
such that

𝑈 = −𝐽𝑁, 𝑉 = −𝐽𝜉, 𝑢 (𝑋) = 𝑔 (𝑋,𝑉) ,

V (𝑋) = 𝑔 (𝑋,𝑈) .
(31)

Denote by 𝑆 the projection morphism of 𝑇𝑀 on 𝐷. Any
vector field𝑋 of𝑀 is expressed as𝑋 = 𝑆𝑋+𝑢(𝑋)𝑈. Applying
𝐽 to this, we have

𝐽𝑋 = 𝐹𝑋 + 𝑢 (𝑋)𝑁, (32)

where 𝐹 is a tensor field of type (1, 1) globally defined on𝑀
by

𝐹𝑋 = 𝐽𝑆𝑋. (33)
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Applying∇
𝑋
to the first two equations of (31) and (32) and

using (9), (10), (12), (13), (6), (31), and (32), for any 𝑋,𝑌 ∈

Γ(𝑇𝑀), we have

𝐵 (𝑋,𝑈) = 𝐶 (𝑋,𝑉) , (34)

∇
𝑋
𝑈 = 𝐹 (𝐴

𝑁
𝑋) + 𝜏 (𝑋)𝑈 − {𝛼𝜂 (𝑋) + 𝛽V (𝑋)} 𝜁, (35)

∇
𝑋
𝑉 = 𝐹 (𝐴

∗

𝜉
𝑋) − 𝜏 (𝑋)𝑉 − 𝛽𝑢 (𝑋) 𝜁, (36)

(∇
𝑋
𝐹) (𝑌) = 𝑢 (𝑌)𝐴

𝑁
𝑋 − 𝐵 (𝑋, 𝑌)𝑈

+ 𝛼 {𝑔 (𝑋, 𝑌) 𝜁 − 𝜃 (𝑌)𝑋}

+ 𝛽 {𝑔 (𝐽𝑋, 𝑌) 𝜁 − 𝜃 (𝑌) 𝐹𝑋} .

(37)

Theorem 3. Let𝑀 be a lightlike hypersurface of an indefinite
trans-Sasakianmanifold𝑀. If 𝑉 or𝑈 is parallel with respect to
∇, then 𝛼 = 𝛽 = 0 and 𝜏 = 0. If both 𝑉 and𝑈 are parallel with
respect to the induced connection ∇, then 𝑀 is screen totally
geodesic.

Proof. (1) If 𝑈 is parallel, then, from (32) and (35) we have

𝐽 (𝐴
𝑁
𝑋) − 𝑢 (𝐴

𝑁
𝑋)𝑁 + 𝜏 (𝑋)𝑈 − {𝛼𝜂 (𝑋) + 𝛽V (𝑋)} 𝜁

= 0.

(38)

Taking the scalar product with 𝑉 and 𝜁 to (38) by turns and
using (4), we have 𝜏 = 0 and 𝛼𝜂(𝑋)+𝛽V(𝑋) = 0, respectively.
Taking 𝑋 = 𝜉 and 𝑋 = 𝑉 to the second result by turns, we
have 𝛼 = 0 and 𝛽 = 0, respectively.

(2) If 𝑉 is parallel with respect to ∇, then, from (32) and
(36), we have

𝐽 (𝐴
∗

𝜉
𝑋) − 𝑢 (𝐴

∗

𝜉
𝑋)𝑁 − 𝜏 (𝑋)𝑉 − 𝛽𝑢 (𝑋) 𝜁 = 0. (39)

Taking the scalar product with 𝑈 to (39) and using (4), we
have 𝜏 = 0. Taking the scalar product with 𝜁 to (39) and using
(4) and 𝜃(𝑁) = 𝑔(𝜁,𝑁) = 0, we get 𝛽𝑢(𝑋) = 0. Taking𝑋 = 𝑈

to this result, we have 𝛽 = 0. From (25)
1
and (31)

3
, we obtain

𝐵 (𝑋, 𝜁) = −𝛼𝑢 (𝑋) . (40)

Applying 𝐽 to (39) and using (4) and the fact 𝜏 = 𝛽 = 0, we
have

𝐴
∗

𝜉
𝑋 = 𝜃 (𝐴

∗

𝜉
𝑋) 𝜁 + 𝑢 (𝐴

∗

𝜉
𝑋)𝑈. (41)

Taking the scalar product with 𝑈 to this equation, we get

𝐵 (𝑋,𝑈) = 𝑔 (𝐴
∗

𝜉
𝑋,𝑈) = V (𝐴∗

𝜉
𝑋) = 0. (42)

Replacing𝑋 by 𝑈 in (40) and using (42), we get

−𝛼 = −𝛼𝑢 (𝑈) = 𝐵 (𝑈, 𝜁) = 0. (43)

Thus 𝛼 = 𝛽 = 0. Then we have

𝐴
∗

𝜉
𝑋 = 𝑢 (𝐴

∗

𝜉
𝑋)𝑈. (44)

(3) In case 𝑉 and 𝑈 are parallel with respect to ∇, as 𝑈 is
parallel, applying 𝐽 to (38) and using (4), (25)

2
and the fact

𝜏 = 𝛼 = 𝛽 = 0, we obtain

𝐴
𝑁
𝑋 = 𝑢 (𝐴

𝑁
𝑋)𝑈, ∀𝑋 ∈ Γ (𝑇𝑀) . (45)

As 𝑉 is parallel, from (34) and (42), we show that 𝑢(𝐴
𝑁
𝑋) =

V(𝐴∗
𝜉
𝑋) = 0. Thus we obtain 𝐴

𝑁
= 0. Consequently 𝑀 is

screen totally geodesic.

Theorem 4. Let𝑀 be a lightlike hypersurface of an indefinite
trans-Sasakian manifold𝑀. If 𝐹 is parallel with respect to the
connection ∇, then we have 𝛼 = 𝛽 = 0. Furthermore 𝐷 and
𝐽(tr(𝑇𝑀)) are parallel distributions on𝑀 and𝑀 is locally a
product manifold C

𝑢
× 𝑀

#, where C
𝑢
is a null curve tangent

to 𝐽(tr(𝑇𝑀)) and𝑀# is a leaf of𝐷.

Proof. If 𝐹 is parallel with respect to∇, then, taking the scalar
product with 𝑈 to (37) and using the facts 𝑔(𝜁, 𝑈) = 0 and
𝑔(𝐹𝑋,𝑈) = −𝜂(𝑋), we get

𝑢 (𝑌) V (𝐴
𝑁
𝑋) − 𝜃 (𝑌) {𝛼V (𝑋) − 𝛽𝜂 (𝑋)} = 0. (46)

Taking 𝑌 = 𝑈 and 𝑌 = 𝜁 by turns, we get V(𝐴
𝑁
𝑋) = 0 and

𝛼V(𝑋) − 𝛽𝜂(𝑋) = 0. Taking 𝑋 = 𝑉 and 𝑋 = 𝜉 to the second
equation, we have 𝛼 = 𝛽 = 0.

From (37) we have

𝑢 (𝑌)𝐴
𝑁
𝑋 = 𝐵 (𝑋, 𝑌)𝑈, 𝐵 (𝑋, 𝑌) = 𝑢 (𝑌) 𝑢 (𝐴

𝑁
𝑋) .

(47)

Taking 𝑌 = 𝑉 and 𝑌 ∈ Γ(𝐷
𝑜
) in (47)

2
by turns, we have

𝐵(𝑋,𝑉) = 0 and 𝐵(𝑋, 𝑌) = 0. These results and (13) imply
that

𝐵 (𝑋, 𝑌) = 0, ∀𝑋 ∈ Γ (𝑇𝑀) , 𝑌 ∈ Γ (𝐷) . (48)

By using (4), (9), (12), (14), (32), and (36), we derive

𝑔 (∇
𝑋
𝜉, 𝑉) = −𝑔 (𝜉, ∇

𝑋
𝑉) = 𝐵 (𝑋,𝑉) = 0,

𝑔 (∇
𝑋
𝑉,𝑉) = 0,

𝑔 (∇
𝑋
𝑌,𝑉) = −𝑔 (𝑌, ∇

𝑋
𝑉) = 𝑔 (𝐴

∗

𝜉
𝑋, 𝐽𝑌) = 𝐵 (𝑋, 𝐹𝑌) = 0,

(49)

for all𝑋 ∈ Γ(𝑇𝑀) and 𝑌 ∈ Γ(𝐷
𝑜
), or equivalently, we get

∇
𝑋
𝑌 ∈ Γ (𝐷) , ∀𝑋 ∈ Γ (𝑇𝑀) , ∀𝑌 ∈ Γ (𝐷) . (50)

This result implies that𝐷 is a parallel distribution on𝑀.
Taking the scalar product with𝑍 ∈ Γ(𝐷

𝑜
) to (47)

1
, we get

𝑢(𝑌)𝐶(𝑋, 𝑍) = 0 for all𝑋,𝑌 ∈ Γ(𝑇𝑀). Taking 𝑌 = 𝑈 to this,
we have

𝐶 (𝑋, 𝑌) = 0, ∀𝑋 ∈ Γ (𝑇𝑀) , 𝑌 ∈ Γ (𝐷
𝑜
) . (51)

For all𝑋 ∈ Γ(𝑇𝑀) and 𝑌 ∈ Γ(𝐷
𝑜
), using (35) we derive

𝑔 (∇
𝑋
𝑈,𝑁) = V (𝐴

𝑁
𝑋) = 0,

𝑔 (∇
𝑋
𝑈,𝑈) = −𝑔 (𝐴

𝑁
𝑋,𝑁) = 0,

𝑔 (∇
𝑋
𝑈,𝑌) = 𝑔 (𝐹 (𝐴

𝑁
𝑋) , 𝑌)

= −𝑔 (𝐴
𝑁
𝑋, 𝐽𝑌) = 𝐶 (𝑋, 𝐹𝑌) = 0;

(52)
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that is, ∇
𝑋
𝑈 ∈ Γ(𝐽(tr(𝑇𝑀))) for all 𝑋 ∈ Γ(𝑇𝑀). Thus

𝐽(tr(𝑇𝑀)) is also parallel. As𝑇𝑀 = 𝐷⊕𝐽(tr(𝑇𝑀)), and𝐷 and
𝐽(tr(𝑇𝑀)) are parallel distributions, by the decomposition
theorem of de Rham [9] we have𝑀 = C

𝑢
×𝑀

#, whereC
𝑢
is

a null curve tangent to 𝐽(tr(𝑇𝑀)) and𝑀# is a leaf of𝐷.

Corollary 5. Let𝑀 be a lightlike hypersurface of an indefinite
trans-Sasakianmanifold𝑀. If𝐹 and𝑉 are parallel with respect
to ∇, then𝑀 is totally geodesic and screen totally geodesic.

Proof. As 𝐹 is parallel with respect to ∇, we get the two
equations of (47). As 𝑉 is also parallel with respect to ∇,
substituting (34) to (47)

2
and using (42), we have 𝐵 = 0. Thus

𝑀 is totally geodesic. Replacing 𝑌 by 𝑈 to (47)
1
, we obtain

𝐴
𝑁
= 0. Thus𝑀 is also screen totally geodesic.

4. Indefinite Generalized Sasakian Space Form

An indefinite almost contact metric manifold (𝑀, 𝐽, 𝜁, 𝜃, 𝑔)
is said to be an indefinite generalized Sasakian space form
[2] and denote it by𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
) if there exist three smooth

functions 𝑓
1
, 𝑓
2
, and 𝑓

3
on𝑀 such that

𝑅 (𝑋, 𝑌)𝑍

= 𝑓
1
{𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋,𝑍) 𝑌}

+ 𝑓
2
{𝑔 (𝑋, 𝐽𝑍) 𝐽𝑌 − 𝑔 (𝑌, 𝐽𝑍) 𝐽𝑋 + 2𝑔 (𝑋, 𝐽𝑌) 𝐽𝑍}

+ 𝑓
3
{𝜃 (𝑋) 𝜃 (𝑍) 𝑌 − 𝜃 (𝑌) 𝜃 (𝑍)𝑋

+ 𝑔 (𝑋, 𝑍) 𝜃 (𝑌) 𝜁 − 𝑔 (𝑌, 𝑍) 𝜃 (𝑋) 𝜁} ,

(53)

for any vector fields𝑋, 𝑌, and 𝑍 on𝑀.

Theorem 6. Let𝑀 be a lightlike hypersurface of an indefinite
generalized Sasakian space form 𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
). Then 𝛼 is a

constant, 𝛽 = 0, and

𝑓
1
− 𝑓
2
= 𝛼
2
, 𝑓

1
− 𝑓
3
= 𝛼
2
, 𝑓

2
= 𝑓
3
. (54)

Proof. Comparing the tangential and transversal components
of (21) and (53), and using (32), we get

𝑅 (𝑋, 𝑌)𝑍

= 𝑓
1
{𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌}

+ 𝑓
2
{𝑔 (𝑋, 𝐽𝑍) 𝐹𝑌 − 𝑔 (𝑌, 𝐽𝑍) 𝐹𝑋 + 2𝑔 (𝑋, 𝐽𝑌) 𝐹𝑍}

+ 𝑓
3
{𝜃 (𝑋) 𝜃 (𝑍) 𝑌 − 𝜃 (𝑌) 𝜃 (𝑍)𝑋

+ 𝑔 (𝑋, 𝑍) 𝜃 (𝑌) 𝜁 − 𝑔 (𝑌, 𝑍) 𝜃 (𝑋) 𝜁}

+ 𝐵 (𝑌, 𝑍)𝐴
𝑁
𝑋 − 𝐵 (𝑋,𝑍)𝐴

𝑁
𝑌,

(55)

(∇
𝑋
𝐵) (𝑌, 𝑍) − (∇

𝑌
𝐵) (𝑋, 𝑍)

+ 𝜏 (𝑋) 𝐵 (𝑌, 𝑍) − 𝜏 (𝑌) 𝐵 (𝑋, 𝑍)

= 𝑓
2
{𝑢 (𝑌) 𝑔 (𝑋, 𝐽𝑍) − 𝑢 (𝑋) 𝑔 (𝑌, 𝐽𝑍)

+ 2𝑢 (𝑍) 𝑔 (𝑋, 𝐽𝑌)} .

(56)

Taking the scalar product with𝑁 to (23), we have

𝑔 (𝑅 (𝑋, 𝑌) 𝑃𝑍,𝑁) = (∇
𝑋
𝐶) (𝑌, 𝑃𝑍) − (∇

𝑌
𝐶) (𝑋, 𝑃𝑍)

− 𝜏 (𝑋)𝐶 (𝑌, 𝑃𝑍) + 𝜏 (𝑌) 𝐶 (𝑋, 𝑃𝑍) .

(57)

Substituting (55) into the last equation and using (17)
2
, we

obtain
(∇
𝑋
𝐶) (𝑌, 𝑃𝑍) − (∇

𝑌
𝐶) (𝑋, 𝑃𝑍)

− 𝜏 (𝑋)𝐶 (𝑌, 𝑃𝑍) + 𝜏 (𝑌)𝐶 (𝑋, 𝑃𝑍)

= 𝑓
1
{𝑔 (𝑌, 𝑃𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑃𝑍) 𝜂 (𝑌)}

+ 𝑓
2
{V (𝑌) 𝑔 (𝑋, 𝐽𝑃𝑍) − V (𝑋) 𝑔 (𝑌, 𝐽𝑃𝑍)

+ 2V (𝑃𝑍) 𝑔 (𝑋, 𝐽𝑌)}

+ 𝑓
3
{𝜃 (𝑋) 𝜂 (𝑌) − 𝜃 (𝑌) 𝜂 (𝑋)} 𝜃 (𝑃𝑍) .

(58)

Applying ∇
𝑋
to (34)

1
: 𝐵(𝑌,𝑈) = 𝐶(𝑌, 𝑉), we have

(∇
𝑋
𝐵) (𝑌, 𝑈)

= (∇
𝑋
𝐶) (𝑌, 𝑉) + 𝑔 (𝐴

𝑁
𝑌, ∇
𝑋
𝑉) − 𝑔 (𝐴

∗

𝜉
𝑌, ∇
𝑋
𝑈) .

(59)

Using (25), (32), (34), (35), and (36), the above equation is
reduced to
(∇
𝑋
𝐵) (𝑌, 𝑈) = (∇

𝑋
𝐶) (𝑌, 𝑉) − 2𝜏 (𝑋)𝐶 (𝑌, 𝑉)

− 𝛼
2
𝑢 (𝑌) 𝜂 (𝑋) − 𝛽

2
𝑢 (𝑋) 𝜂 (𝑌)

+ 𝛼𝛽 {𝑢 (𝑋) V (𝑌) − 𝑢 (𝑌) V (𝑋)}

− 𝑔 (𝐴
∗

𝜉
𝑋, 𝐹 (𝐴

𝑁
𝑌)) − 𝑔 (𝐴

∗

𝜉
𝑌, 𝐹 (𝐴

𝑁
𝑋)) .

(60)

Substituting this equation and (34) into (56) such that𝑍 = 𝑈,
we get

(∇
𝑋
𝐶) (𝑌, 𝑉) − (∇

𝑌
𝐶) (𝑋,𝑉) − 𝜏 (𝑋)𝐶 (𝑌, 𝑉)

+ 𝜏 (𝑌) 𝐶 (𝑋,𝑉) + (𝛼
2
− 𝛽
2
) {𝑢 (𝑋) 𝜂 (𝑌) − 𝑢 (𝑌) 𝜂 (𝑋)}

+ 2𝛼𝛽 {𝑢 (𝑋) V (𝑌) − 𝑢 (𝑌) V (𝑋)}

= 𝑓
2
{𝑢 (𝑌) 𝜂 (𝑋) − 𝑢 (𝑋) 𝜂 (𝑌) + 2𝑔 (𝑋, 𝐽𝑌)} .

(61)

Comparing this equation with (58) such that 𝑃𝑍 = 𝑉, we
obtain

{𝑓
1
− 𝑓
2
− (𝛼
2
− 𝛽
2
)} [𝑢 (𝑌) 𝜂 (𝑋) − 𝑢 (𝑋) 𝜂 (𝑌)]

= 2𝛼𝛽 {𝑢 (𝑌) V (𝑋) − 𝑢 (𝑋) V (𝑌)} .
(62)
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Taking 𝑋 = 𝜉 and 𝑌 = 𝑈 and 𝑋 = 𝑉 and 𝑌 = 𝑈 by turns, we
have

𝑓
1
− 𝑓
2
= 𝛼
2
− 𝛽
2
, 𝛼𝛽 = 0. (63)

Substituting (32) into (7) and using (9), we have

∇
𝑋
𝜁 = −𝛼𝐹𝑋 + 𝛽 (𝑋 − 𝜃 (𝑋) 𝜁) , ∀𝑋 ∈ Γ (𝑇𝑀) . (64)

Applying ∇
𝑋
to V(𝑌) = 𝑔(𝑌,𝑈) and using (9), (32), (34), and

(35), we get

(∇
𝑋
V) (𝑌) = V (𝑌) 𝜏 (𝑋) − 𝜃 (𝑌) {𝛼𝜂 (𝑋) + 𝛽V (𝑋)}

− 𝑔 (𝐴
𝑁
𝑋, 𝐹𝑌) .

(65)

Applying∇
𝑋
to 𝜂(𝑌) = 𝑔(𝑌,𝑁) and using (4) and (6) we have

(∇
𝑋
𝜂) (𝑌) = −𝑔 (𝐴

𝑁
𝑋,𝑌) + 𝜏 (𝑋) 𝜂 (𝑌) . (66)

Using (31), the equation (25)
2
is reduced to

𝐶 (𝑌, 𝜁) = −𝛼V (𝑌) + 𝛽𝜂 (𝑌) . (67)

Applying ∇
𝑋
to this equation and using (64), (65), and (66),

we have

(∇
𝑋
𝐶) (𝑌, 𝜁)

= − (𝑋𝛼) V (𝑌) + (𝑋𝛽) 𝜂 (𝑌) − 𝛼𝜏 (𝑋) V (𝑌)

+ 𝛼
2
𝜃 (𝑌) 𝜂 (𝑋) + 𝛽

2
𝜃 (𝑋) 𝜂 (𝑌)

− 𝛽 {𝑔 (𝑋,𝐴
𝑁
𝑌) + 𝑔 (𝐴

𝑁
𝑋,𝑌) − 𝜏 (𝑋) 𝜂 (𝑌)}

+ 𝛼 {𝑔 (𝐴
𝑁
𝑋, 𝐹𝑌) + 𝑔 (𝐴

𝑁
𝑌, 𝐹𝑋)} .

(68)

Substituting this and (67) into (58) such that 𝑃𝑍 = 𝜁, we get

{𝑋𝛽 + 𝐴𝜃 (𝑋)} 𝜂 (𝑌) − {𝑌𝛽 + 𝐴𝜃 (𝑌)} 𝜂 (𝑋)

= (𝑋𝛼) V (𝑌) − (𝑌𝛼) V (𝑋) ,
(69)

where 𝐴 = 𝑓
1
− 𝑓
3
− (𝛼
2
− 𝛽
2
). Taking 𝑋 = 𝜉 and 𝑌 = 𝜁 and

then taking𝑋 = 𝑈 and 𝑌 = 𝑉 to this equation, we obtain

𝑓
1
− 𝑓
3
= (𝛼
2
− 𝛽
2
) − 𝜁𝛽, 𝑈𝛼 = 0. (70)

Applying ∇
𝑋
to 𝑢(𝑌) = 𝑔(𝑌, 𝑉) and using (9), (32), and

(36), we get

(∇
𝑋
𝑢) (𝑌) = −𝑢 (𝑌) 𝜏 (𝑋) − 𝛽𝜃 (𝑌) 𝑢 (𝑋) − 𝐵 (𝑋, 𝐹𝑌) . (71)

Applying∇
𝑌
to (40) and using (40) and (64) and (71), we have

(∇
𝑋
𝐵) (𝑌, 𝜁) = − (𝑋𝛼) 𝑢 (𝑌) − 𝛽𝐵 (𝑋, 𝑌)

+ 𝛼 {𝑢 (𝑌) 𝜏 (𝑋) + 𝐵 (𝑋, 𝐹𝑌) + 𝐵 (𝑌, 𝐹𝑋)} .

(72)

Substituting this into (56) such that 𝑍 = 𝜁 and using the fact
that𝑈𝛼 = 0, we have (𝑋𝛼)𝑢(𝑌) = 0. Therefore the function 𝛼
is a constant.

From the facts that 𝛼 is a constant and 𝛼𝛽 = 0, if 𝛼 ̸= 0,
then we get 𝛽 = 0.

Assume that 𝛼 = 0. Then (64) is reduced to

∇
𝑌
𝜁 = 𝛽 (𝑌 − 𝜃 (𝑌) 𝜁) . (73)

By straightforward calculations form this equation, we obtain

𝑅 (𝑋, 𝑌) 𝜁 = (𝑋𝛽)𝑌 − (𝑌𝛽)𝑋 − {(𝑋𝛽) 𝜃 (𝑌) − (𝑌𝛽) 𝜃 (𝑋)} 𝜁

+ 𝛽
2
{𝜃 (𝑋) 𝑌 − 𝜃 (𝑌)𝑋} − 2𝛽𝑑𝜃 (𝑋, 𝑌) 𝜁.

(74)

Comparing this equationwith (55) such that𝑍 = 𝜁, we obtain

(𝑋𝛽)𝑌 − (𝑌𝛽)𝑋 − {(𝑋𝛽) 𝜃 (𝑌) − (𝑌𝛽) 𝜃 (𝑋)} 𝜁

+ 𝛽
2
{𝜃 (𝑋)𝑌 − 𝜃 (𝑌)𝑋} − 2𝛽𝑑𝜃 (𝑋, 𝑌) 𝜁

= (𝑓
1
− 𝑓
3
) {𝜃 (𝑌)𝑋 − 𝜃 (𝑋)𝑌} .

(75)

Taking the scalar product with 𝜁 to this equation, we get
𝛽𝑑𝜃(𝑋, 𝑌) = 0; that is,

𝛽𝑔 (𝑋, 𝐽𝑌) = 0, ∀𝑋, 𝑌 ∈ Γ (𝑇𝑀) , (76)

due to (32)
2
. Taking 𝑋 = 𝑈 and 𝑌 = 𝜉 to this equation, we

have 𝛽 = 0.
As 𝛽 = 0, (63) and (70) are reduced to 𝑓

1
− 𝑓
2
= 𝛼
2 and

𝑓
1
−𝑓
3
= 𝛼
2, respectively. From these two results, we get 𝑓

2
=

𝑓
3
.

Corollary 7. There exist no indefinite generalized Sasakian
space forms, endowed with 𝛽-Kenmotsu structure, admitting
a lightlike hypersurface.

Corollary 8. Let𝑀 be a lightlike hypersurface of an indefinite
Sasakian space form 𝑀(𝑐), endowed with 𝛼-Sasakian struc-
ture. Then 𝛼 = ±1.

Theorem 9. Let 𝑀 is lightlike hypersurface of an indefinite
generalized Sasakian space form𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
). If𝑀 is screen

totally umbilical, then 𝑓
1
= 𝑓
2
= 𝑓
3
= 0.

Proof. As𝑀 is screen totally umbilical, 𝛼 = 𝛽 = 𝐶 = 0 by (2)
of Theorem 2. Thus (58) is reduced to

𝑓
1
{𝑔 (𝑌, 𝑃𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑃𝑍) 𝜂 (𝑌)}

+ 𝑓
2
{V (𝑌) 𝑔 (𝑋, 𝐽𝑃𝑍) − V (𝑋) 𝑔 (𝑌, 𝐽𝑃𝑍)

+ 2V (𝑃𝑍) 𝑔 (𝑋, 𝐽𝑌)}

+ 𝑓
3
{𝜃 (𝑋) 𝜃 (𝑃𝑍) 𝜂 (𝑌) − 𝜃 (𝑌) 𝜃 (𝑃𝑍) 𝜂 (𝑋)} = 0,

(77)

for all𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀). Replacing 𝑌 by 𝜉 to this equation, we
obtain

𝑓
1
𝑔 (𝑋, 𝑃𝑍) + 𝑓

2
{V (𝑋) 𝑢 (𝑃𝑍) + 2𝑢 (𝑋) V (𝑃𝑍)}

− 𝑓
3
𝜃 (𝑋) 𝜃 (𝑃𝑍) = 0.

(78)



Journal of Applied Mathematics 7

Taking𝑋 = 𝑉, 𝑃𝑍 = 𝑈;𝑋 = 𝑈, 𝑃𝑍 = 𝑉, and𝑋 = 𝑃𝑍 = 𝜁 by
turns, we have

𝑓
1
+ 𝑓
2
= 0, 𝑓

1
+ 2𝑓
2
= 0, 𝑓

1
= 𝑓
3
. (79)

From the first two equations we show that 𝑓
2
= 0. As 𝛼 = 𝛽 =

0,𝑀 is an indefinite cosymplectic manifold. Thus 𝑓
1
= 𝑓
2
=

𝑓
3
= 𝑐/4. This implies 𝑓

1
= 𝑓
2
= 𝑓
3
= 0.

Theorem 10. Let 𝑀 be a screen conformal lightlike hyper-
surface of an indefinite generalized Sasakian space form
𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
). Then 𝑓

1
= 𝑓
2
= 𝑓
3
= 0.

Proof. Substituting (55) into (57) and using (56), we have

𝑓
1
{𝑔 (𝑌, 𝑃𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑃𝑍) 𝜂 (𝑌)}

+ 𝑓
2
{[V (𝑌) − 𝑢 (𝑌)] 𝑔 (𝑋, 𝐽𝑃𝑍)

− [V (𝑋) − 𝑢 (𝑋)] 𝑔 (𝑌, 𝐽𝑃𝑍)

+ 2 [V (𝑃𝑍) − 𝑢 (𝑃𝑍)] 𝑔 (𝑋, 𝐽𝑌)}

+ 𝑓
3
{𝜃 (𝑋) 𝜃 (𝑃𝑍) 𝜂 (𝑌) − 𝜃 (𝑌) 𝜃 (𝑃𝑍) 𝜂 (𝑋)}

= {𝑋 [𝜑] − 2𝜑𝜏 (𝑋)} 𝐵 (𝑌, 𝑃𝑍)

− {𝑌 [𝜑] − 2𝜑𝜏 (𝑌)} 𝐵 (𝑋, 𝑃𝑍) .

(80)

Replacing 𝑌 by 𝜉 to the last equation, we obtain

{𝜉 [𝜑] − 2𝜑𝜏 (𝜉)} 𝐵 (𝑋, 𝑃𝑍)

= 𝑓
1
𝑔 (𝑋, 𝑃𝑍) + 𝑓

2
{V (𝑋) − 𝑢 (𝑋)} 𝑢 (𝑃𝑍)

+ 2𝑓
2
{V (𝑃𝑍) − 𝑢 (𝑃𝑍)} 𝑢 (𝑋) − 𝑓

3
𝜃 (𝑋) 𝜃 (𝑃𝑍) .

(81)

Taking𝑋 = 𝑃𝑍 = 𝜁 to this equation and using (40), we obtain
𝑓
1
= 𝑓
3
. Also taking𝑋 = 𝑉, 𝑃𝑍 = 𝑈, and𝑋 = 𝑈, 𝑃𝑍 = 𝑉 by

turns, we have

{𝜉 [𝜑] − 2𝜑𝜏 (𝜉)} 𝐵 (𝑉,𝑈) = 𝑓
1
+ 𝑓
2
,

{𝜉 [𝜑] − 2𝜑𝜏 (𝜉)} 𝐵 (𝑈, 𝑉) = 𝑓
1
+ 2𝑓
2
,

(82)

respectively. Comparing these two equations, we obtain 𝑓
2
=

0.
As 𝑀 is screen conformal, we obtain 𝛼 = 𝛽 = 0 by

Theorem 2. As 𝛼 = 𝛽 = 0, we show that𝑀 is a cosymplectic
manifold and 𝑓

1
= 𝑓
2
= 𝑓
3
= 𝑐/4. Therefore we get 𝑓

1
= 𝑓
2
=

𝑓
3
= 0.
Let 𝑅(0,2) denote the induced Ricci type tensor of𝑀 given

by

𝑅
(0,2)

(𝑋, 𝑌) = trace {𝑍 󳨀→ 𝑅 (𝑍,𝑋)𝑌} , (83)

for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀). Consider the induced quasi-ortho-
normal frame field {𝜉;𝑊

𝑎
} on𝑀 such that 𝑇𝑀⊥ = Span{𝜉}

and 𝑆(𝑇𝑀) = Span{𝑊
𝑎
}. Put 𝑚 = rank(𝑆(𝑇𝑀)). Using this

quasi-orthonormal frame field, we obtain

𝑅
(0,2)

(𝑋, 𝑌) =

𝑚

∑

𝑎=1

𝜖
𝑎
𝑔 (𝑅 (𝑊

𝑎
, 𝑋) 𝑌,𝑊

𝑎
) + 𝑔 (𝑅 (𝜉, 𝑋) 𝑌,𝑁) ,

(84)

for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀), where 𝜖
𝑎
= 𝑔(𝑊

𝑎
,𝑊
𝑎
) is the causal

character of 𝑊
𝑎
. In general, the induced Ricci type tensor

𝑅
(0,2) is not symmetric [6, 7]. A tensor field 𝑅(0,2) of lightlike

submanifolds 𝑀 is called its induced Ricci tensor if it is
symmetric. A symmetric 𝑅(0,2) tensor will be denoted by
Ric. A lightlike manifold𝑀 equipped with an induced Ricci
tensor is calledRicci flat if its Ricci tensor vanishes.𝑀 is called
anEinsteinmanifold if the Ricci tensor of𝑀 satisfies𝑅𝑖𝑐 = 𝛾𝑔.

If 𝑀 is a screen conformal lightlike hypersurface of
𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
), then, using (55) and the fact that 𝑓

1
= 𝑓
2
=

𝑓
3
= 0, we have

𝑅
(0,2)

(𝑋, 𝑌) = 𝜑 {𝐵 (𝑋, 𝑌) tr𝐴∗
𝜉
− 𝑔 (𝐴

∗

𝜉
𝑋,𝐴
∗

𝜉
𝑌)} . (85)

This implies that 𝑅(0,2) is a symmetric induced Ricci tensor
Ric.

Theorem 11. Any screen conformal Einstein lightlike hyper-
surface of an indefinite generalized Sasakian space form
𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
) is Ricci flat.

Proof. As𝑀 is Einstein, from (85) and the fact 𝑅(0,2) = 𝛾𝑔

𝑔 (𝐴
∗

𝜉
𝑋,𝐴
∗

𝜉
𝑌) − 𝛼𝑔 (𝐴

∗

𝜉
𝑋,𝑌) − 𝛾𝜑

−1
𝑔 (X, 𝑌) = 0, (86)

where 𝛼 = tr𝐴∗
𝜉
is trace of 𝐴∗

𝜉
. Define a nonnull vector field

𝜇 on 𝑆(𝑇𝑀) by

𝜇 = 𝑈 − 𝜑𝑉. (87)

Then 𝜇 belongs to 𝐽(𝑇𝑀⊥) ⊕ 𝐽(tr(𝑇𝑀)). Using (20) and (34),
𝜇 satisfies

𝐵 (𝑋, 𝜇) = 0, ∀𝑋 ∈ Γ (𝑇𝑀) . (88)

From this equation and (16), we show that

𝐴
∗

𝜉
𝜇 = 0. (89)

Taking 𝑋 = 𝑌 = 𝜇 to (86) and using (89), we get 𝛾 = 0.
Therefore,𝑀 is Ricci flat.

5. Parallel Structure Fields

Definition 12. Let ∇⊥
𝑋
𝑁 = 𝜋(∇

𝑋
𝑁) for any 𝑋 ∈ Γ(𝑇𝑀),

where 𝜋 is the projection morphism of 𝑇𝑀 on tr(𝑇𝑀). Then
∇
⊥ is a linear connection on ltr(𝑇𝑀). We say that ∇⊥ is the

transversal connection of𝑀. We define the curvature tensor
𝑅
⊥ of tr(𝑇𝑀) by

𝑅
⊥
(𝑋, 𝑌)𝑁 = ∇

⊥

𝑋
∇
⊥

𝑌
𝑁 − ∇

⊥

𝑌
∇
⊥

𝑋
𝑁 − ∇

⊥

[𝑋,𝑌]
𝑁. (90)

The transversal connection of𝑀 is flat [3] if 𝑅⊥ vanishes.

As ∇⊥
𝑋
𝑁 = 𝜏(𝑋)𝑁, we show that the transversal connec-

tion of𝑀 is flat if and only if the 1-form 𝜏 is closed; that is,
𝑑𝜏 = 0, on anyU ⊂ 𝑀 [3].

Denote 𝜆 and 𝜇 by the 1-forms such that

𝜆 (𝑋) = 𝐵 (𝑋,𝑈) = 𝐶 (𝑋,𝑉) , 𝛿 (𝑋) = 𝐵 (𝑋,𝑉) . (91)
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Theorem 13. Let𝑀 be a lightlike hypersurface of an indefinite
generalized Sasakian space form 𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
). If one of the

following conditions,

(1) 𝐹 is parallel with respect to the connection ∇,
(2) 𝑈 is parallel with respect to the connection ∇,
(3) 𝑉 is parallel with respect to the connection ∇,

is satisfied, then𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
) is a flat manifold with indefinite

cosymplectic structure and the lightlike transversal connection
of𝑀 is flat. In case (1),𝑀 is also a flat manifold.

Proof. (1) Assume that𝐹 is parallel with respect to∇.Thenwe
get 𝛼 = 𝛽 = 0 byTheorem 4.Thus𝑓

1
= 𝑓
2
= 𝑓
3
byTheorem 6

and (37) is reduced to

𝑢 (𝑌)𝐴
𝑁
𝑋 − 𝐵 (𝑋, 𝑌)𝑈 = 0. (92)

Taking 𝑌 = 𝑈 to (92) and using (31), we have

𝐴
𝑁
𝑋 = 𝜆 (𝑋)𝑈. (93)

Taking the scalar product with 𝑉 to (92) and using (17) and
(31), we have

𝑔 (𝐴
∗

𝜉
𝑋,𝑌) = 𝑔 (𝜆 (𝑋)𝑉, 𝑌) . (94)

As𝐴∗
𝜉
𝑋 and𝑉 belong to 𝑆(𝑇𝑀) and 𝑆(𝑇𝑀) is nondegenerate,

we have

𝐴
∗

𝜉
𝑋 = 𝜆 (𝑋)𝑉. (95)

Taking the scalar product with 𝑈 to (93), we obtain

𝐶 (𝑋,𝑈) = 0. (96)

Applying ∇
𝑋
to 𝐶(𝑌,𝑈) = 0 and using (37), (93) and 𝐹𝑈 = 0,

we get

(∇
𝑋
𝐶) (𝑌,𝑈) = 0. (97)

Replacing 𝑃𝑍 by 𝑈 to (58) and using the last two equations,
we have

𝑓
1
{V (𝑌) 𝜂 (𝑋) − V (𝑋) 𝜂 (𝑌)} = 0. (98)

Taking 𝑋 = 𝑉 and 𝑌 = 𝜉 to this equation, we get 𝑓
1
= 0.

Therefore, 𝑓
1
= 𝑓
2
= 𝑓
3
= 0 and𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
) is flat.

As 𝑓
1
= 𝑓
2
= 𝑓
3
= 0, substituting (93) and (95) into (55),

we get

𝑅 (𝑋, 𝑌)𝑍 = {𝜆 (𝑌) 𝜆 (𝑋) − 𝜆 (𝑋) 𝜆 (𝑌)} 𝑢 (𝑍)𝑈

+ {𝜎 (𝑌) 𝜎 (𝑋) − 𝜎 (𝑋) 𝜎 (𝑌)} 𝑤 (𝑍)𝑊 = 0.

(99)

Thus𝑀 is flat. From (37), (93) and the fact that 𝐹𝑈 = 𝜌 = 0,
we get

∇
𝑋
𝑈 = 𝜏 (𝑋)𝑈. (100)

Substituting this equation into∇
𝑋
∇
𝑌
𝑈−∇
𝑌
∇
𝑋
𝑈−∇
[𝑋,𝑌]

𝑈 = 0,
we get 𝑑𝜏 = 0. Thus the transversal connection of𝑀 is flat.

(2) If 𝑈 is parallel with respect to ∇, then, 𝛼 = 𝛽 = 𝜏 = 0
by Theorem 3. Thus 𝑓

1
= 𝑓
2
= 𝑓
3
by Theorem 6 and (35) is

reduced to

𝐽 (𝐴
𝑁
𝑋) − 𝑢 (𝐴

𝑁
𝑋)𝑁 = 0. (101)

Applying 𝐽 to (101) and using (4), (31), and (67), we have

𝐴
𝑁
𝑋 = 𝜆 (𝑋)𝑈. (102)

Taking the scalar product with 𝑈 to (102), we get

𝐶 (𝑋,𝑈) = 0. (103)

Applying ∇
𝑌
to this and using (35), (102) and the fact that

𝐹𝑈 = 0, we get

(∇
𝑋
𝐶) (𝑌,𝑈) = 0. (104)

Substituting the last two equation into (58) such that𝑃𝑍 = 𝑈,
we have

𝑓
1
{V (𝑌) 𝜂 (𝑋) − V (𝑋) 𝜂 (𝑌)} = 0. (105)

Taking 𝑋 = 𝑉 and 𝑌 = 𝜉 to this equation, we obtain 𝑓
1
= 0.

Therefore,𝑓
1
= 𝑓
2
= 𝑓
3
= 0 and𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
) is flat. As 𝜏 = 0,

we obtain𝑑𝜏 = 0.Thus the transversal connection of𝑀 is flat.
(3) If 𝑉 is parallel with respect to ∇, then, 𝛼 = 𝛽 = 𝜏 = 0

by Theorem 3. Thus 𝑓
1
= 𝑓
2
= 𝑓
3
by Theorem 6 and (35) is

reduced to

𝐽 (𝐴
∗

𝜉
𝑋) − 𝑢 (𝐴

∗

𝜉
𝑋)𝑁 = 0. (106)

Applying 𝐽 to (106) and using (4) and (40), we have

𝐴
∗

𝜉
𝑋 = 𝜇 (𝑋)𝑈. (107)

Taking the scalar product with 𝑈 to this equation, we get

𝐵 (𝑋,𝑈) = 0. (108)

Applying ∇
𝑌
to this equation and using (35), we have

(∇
𝑋
𝐵) (𝑌, 𝑈) = −𝐵 (𝑌, 𝐹 (𝐴

𝑁
𝑋)) . (109)

Substituting the last two equations into (56), we obtain

𝐵 (𝑋, 𝐹 (𝐴
𝑁
𝑌)) − 𝐵 (𝑌, 𝐹 (𝐴

𝑁
𝑋))

= 𝑓
2
{𝑢 (𝑌) 𝜂 (𝑋) − 𝑢 (𝑋) 𝜂 (𝑌) + 2𝑔 (𝑋, 𝐽𝑌)} .

(110)

Taking 𝑋 = 𝜉 and 𝑌 = 𝑈 to this equation and using (14) and
(108), we obtain 𝑓

2
= 0. Therefore, 𝑓

1
= 𝑓
2
= 𝑓
3
= 0 and

𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
) is flat. As 𝜏 = 0, we obtain 𝑑𝜏 = 0. Thus the

lightlike transversal connection of𝑀 is flat.
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