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In discrete processes, as computational or genetic ones, there are many entities and each entity has a state at a given time. The
update of states of the entities constitutes an evolution in time of the system, that is, a discrete dynamical system. The relations
among entities are usually represented by a graph. The update of the states is determined by the relations of the entities and some
local functions which together constitute (global) evolution operator of the dynamical system. If the states of the entities are updated
in a synchronous manner, the system is called a parallel dynamical system. This paper is devoted to review the main results on the
dynamical behavior of parallel dynamical systems over graphs which constitute a generic tool for modeling discrete processes.

1. Introduction

Modeling discrete processes is one of the most important
tasks in modern mathematics. In fact, several mathematical
concepts have become fundamental in order to establish
discretemathematicalmodels for several phenomena coming
from science and engineering. Some of them are Boolean
algebras and functions [1, 2], together with other topics as
graphs [1, 2] and discrete dynamical systems [3–6].

Boolean algebras give symbolic form to Aristotle’s system
of logic. In the second half of the nineteenth century, the
English mathematician George Boole (1815–1864) defined
an algebraic structure which encodes several rules of rela-
tionship between mathematical quantities limited to two
possible values: true or false, mathematically modeled by 1
or 0. This algebraic structure is currently known as Boolean
algebra. The results of the study were published in a survey
[7] entitled “An Investigation of the Laws of Thought, on
Which Are Founded the MathematicalTheories of Logic and
Probabilities” in 1854. Nevertheless, after almost a century,
Claude E. Shannon was the first one who established how
Boolean algebras could be applied to on-off circuits, where
the presence of signal is characterized by 1 and the absence by
0. In the forties, his master’s thesis [8] entitled “A Symbolic
Analysis of Relay and Switching Circuits” made Boole’s

theoretical work become a fundamental mathematical tool
for designing and analyzing digital circuits.

Graphs appear in many different fields of science and
engineering as a tool to represent the relations among the
elements of a system [9–15].They constitute a powerful tool to
perceive more clearly problems and to face up to them, espe-
cially when there is a finite number of elements to deal with.
This occurs in discrete processes and so they are basic for the
mathematical formalization of many of these processes.

The notion of dynamical system is the mathematical for-
malization of the general scientific concept of deterministic
process [5, 6]. It involves a set of possible states of the process,
which is named state space or phase space, and a law of the
evolution or evolution operator in time. Thus, this notion
is fundamental in order to model any phenomenon whose
future asymptotic state needs to be known.

These three concepts are mixed properly to construct
a mathematical model named parallel dynamical system
(PDS) that allows us to formalize and analyze the dynamical
behavior of discrete processes.

This mathematical model constitutes a generalization
of other relevant ones which appeared previously in the
literature, as cellular automata (CA) [16–25] or Boolean
networks (BN) [14, 26–29]. (The abbreviations PDS, SDS, CA,
and BN will be written for the singular and plural forms of
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the corresponding terms, since it seems better from an aes-
thetic point of view).

A CA has been traditionally conceived as a grid of cells,
where each cell has a state belonging to a finite set (usually
{0, 1}), such that all the cells evolve synchronously in discrete
time steps. The updating of the state of every cell is realized
according to a common local function affecting only the
neighbors of such a cell. Thus, if 𝑥𝑡

𝑖
is the state value of a cell

𝑖 at the time 𝑡, the cell value is updating by applying a local
function on the cells in the neighborhood of the cell 𝑖.

CA has revealed as a suitable mathematical model to cap-
ture the essential features of digital computers: synchronicity,
regular distribution, and locality of iterations. Although they
were introduced for the first time in the works of Ulam and
von Neumann [30], they became of public interest in 1970,
when Martin Gardner published [31] with an explanation of
JohnConway’s “Game of Life” in ScientificAmerican (see also
[32]).

In [21], Wolfram analyzed a set of CA and showed that,
despite their simple construction, some of them are capable
of a complex behavior. Later, in [22], based on a deeper
research, he suggested that many one-dimensional cellular
automata fall into four basic behavior classes: three of them
exhibiting a similar behavior to fixed points, periodic orbits,
and chaotic attractors, and the fourth one such that its
asymptotic properties are undecidable. Wolfram published
other important papers which are compiled in [25].

A BN of size 𝑛 and connectivity 𝑘 consists of 𝑛 inter-
connected vertices, each one having 𝑘 inputs. The update
of the state of any vertex is determined by the (directed)
dependency relations and local rules which are given by
Boolean functions. Hence, BN are a generalization of (finite)
Boolean CA.

BN appeared, almost at the same time, in applied models
created for the simulation of aspects of the behavior of
biological systems. This occurred in [26], where Kauffman
constructed molecular automata for modeling a gene as a
binary (on-off) device and studied the behavior of large,
randomly constructed nets of these binary genes (see also
[27]). For this reason, BN are also known as Kauffman (net)
models. The results by Kauffman suggest that if each gene
is directly affected by two or three genes then the system
behaves with great order and stability and presents cycles.

In the last two decades, many works have focused their
attention on mathematical modeling of several computer
processes. The first one of a series of these works was [33],
which constituted an important step in the development of
mathematical foundations for the theory of computation. In
this work, sequentially updated cellular automata (SCA) over
arbitrary graphs are employed as a paradigmatic framework.
This first work was followed by [34–36], where the authors
developed this theory, analyzing the asymptotic behavior of
such mathematical models. The formal definition of PDS
appeared for the first time in [9] and it constitutes a funda-
mental issue for the posterior development of the results in
this research line.

Computer processes involve generation of dynamics by
iterating local mappings. In fact, a computer simulation is a
method for the composition of iterated mappings, typically

on local dependency regions [33]. It means that themappings
have to be updated in a specific manner, that is, an update
schedule. Update scheduling is also a commonly studied
aspect in discrete event simulations [37–39]. Mathematical
modeling of computer processes has resulted very useful
in order to predict what can occur after executing these
processes.

In the computational context, it is common to rename
the local mappings as entities (cells in the language of cellular
automata theory), which are the lowest level of aggregation
of the system. In computer processes, there are many entities
and each entity has a state at a given time (see [33–35]). The
update of states of the entities constitutes an evolution in
time of the system, that is, a discrete dynamical system (see
[9, 40]).

In this sense, each entity 𝑖 of the system could be activated
or deactivated.Thus, it is natural to consider that its state 𝑥

𝑖
∈

{0, 1}. The evolution or update of the system is implemented
by local functions which are restrictions of a global function
or together constitute this global one. That is, for updating
the state of any entity, the corresponding local function acts
only on the state of that entity itself and the states of the
entities related to it. The relations among entities are usually
represented by a graph which is called the dependency graph
of the system.

Thus, the update of the states is determined by the depen-
dency graph relations of the entities and the local functions
which together constitute the (global) evolution operator of
the dynamical system. If the states of the entities are updated
in a parallel (or synchronous) manner, the system is called
a parallel dynamical system [9, 41–43], while if they are
updated in a sequential (or asynchronous) order, the system is
named sequential dynamical system (SDS) [9, 33–36, 40, 44–
46].

CA, when finite, can be considered as a special kind of
PDS by considering cells as entities. On the other hand, BN
are a generalization of (finite) Boolean CA but, at the same
time, a particular case of PDS by considering nodes as enti-
ties. One of the main differences with CA is that, in BN, the
state of each node is not affected necessarily by its neighbors
but potentially by whichever node in the network. Thus,
the uniform structure of neighborhood in CA disappears.
However, some homogeneity remains, since each node is
affected by 𝑘 connections with other (or the same) entities.
This homogeneitymakes BN a particular case of PDS, since in
PDS connections can be totally arbitrary.

Since CA and BN are special cases of PDS, their applica-
tions can be assumed as applications of PDS. Some applica-
tions of CA and BN that appear in the literature are enu-
merated below in order to give an idea of the great interest
of this tool for modeling discrete processes from science and
engineering.

As said before, Boolean networks appear for the first time
in [26], where Kauffman constructed molecular automata
for modeling a gene as a binary (on-off) device (see also
[27]). Up to date, these results continue being developed
as can be seen in [11], where they consider asynchronous
stochastic update, [14], where probability is introduced in the
directed dependency graph which they call random Boolean
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network, or [47], where a Kauffman net model shows that
eukaryotic cells are dynamically ordered or critical but not
chaotic. Since Kauffman nets can be seen as particular cases
of directed dependency graphs that are considered here,
the results shown in this review article could be useful in
the development of some aspects of biological systems and
biochemical control networks.

In [48] the authors show different environments where
CA can be used to model several biological patterns. Most
recently, Boolean networks have been applied for modeling
epidemics in [15].

In the eighties, two important works appeared relating
CA and ecological modeling [18, 49]. In fact, [49] presents
CA as a paradigm for ecological modeling. Later, in [50] CA
were used to simplify spatial complexity in the geometry of
ecological interactions. Finally, in [51] the authors studied the
links between CA and population dynamics.

More recently, two works [10, 12] have been dedicated to
the study of the applications of CA in cryptography.

On the other hand, in [52] a parallel discrete dynamical
model with three evolution local functions is used in order
to analyze the structure of a partially ordered set (poset) of
signed integer partitions whose main properties are actually
not known. The authors affirm that this model is related to
the study of some extremal combinatorial sum problems.
Besides, in [53], a class of lattices and Boolean functions are
employed to study the truth of a mathematical conjecture.
Other related interesting works in this research line are [54–
57].

In the book [58], the use of CA for modeling some
problems of physics is studied in detail, while in the book [59],
the authors investigate the use of CA in modeling chemical
phenomena.

Also in sociology, there exist some works where CA
are used for modeling the corresponding systems (see, for
instance, [60, 61]). Besides, in the literature one can find other
works where this kind of systems are employed for other
applications as the simulation of two-lane traffic [62] or the
generation of rhythmic structure in music [63].

According to [6], one of the main goals in the study of
a dynamical system is to give a complete characterization
of its orbit structure. Actually, this is the main purpose
of the review paper in relation with parallel dynamical
systems over graphs: to show as much information about the
orbit structure as possible, based on the properties of the
dependency graph and the local Boolean functions which
constitute the evolution law of the system.

In this particular case, as the state space of the system is
finite, every orbit is periodic or eventually periodic. Note that,
for a system with 𝑛 entities, the number of possible states is
equal to 2

𝑛. Thus, for example, if 𝑛 = 20, then the number of
possible (initial) states of the system is greater than a million.
Therefore, computational studies become inefficient when 𝑛

is big enough and can only analyze small systems or a low
number of initial states.

In view of that, the unique way to give general results
for these systems is to find out their properties analytically,
as done in [41–43, 64, 65] in order to describe the different
coexistent periodic orbits of PDS. Following Derrida and

Pomeau [66], the most interesting questions about these
systems concerning their orbit structures are the following.

(1) What is the length of the limit cycles?
(2) What is the number of different limit cycles?
(3) If one considers two different initial states, when do

they arrive in the same limit cycle?

Actually, these are the main questions reviewed in this
paper for PDS. More specifically, this paper reviews the full
characterization of the orbit structure of PDS over undirected
graphs covering all the casuistry, since it shows the behavior
of any parallel dynamical system regardless the type of
graph, the number of entities, and the relationships among
them. Also, essential properties of the orbit structure of PDS
over directed dependency graphs are revised. Besides, two
extensions of the concept of PDS are shown.

The paper is organized as follows. In the next section we
present theoretical foundations of PDS and compare them
with CA and BN in detail. In Section 3, the most important
results on the dynamics of PDS are reviewed. Section 4 is
devoted to reviewing two extensions of this mathematical
model. A linearization algorithm for the computation of
orbits in PDS is addressed in Section 5. The paper finishes by
setting out several interesting future research directions for
the development of these kinds of models.

2. Theoretical Foundations of PDS and
Comparative Study with Related Topics

2.1. Theoretical Foundations

2.1.1. Dependency Graphs. In computer processes, there are
many entities and each entity has a state at a given time (see
[33–36]). Entities are related and they get information from
the entities in their neighborhood. Usually, in order to get
a graphical idea of the situation, every entity is represented
by a vertex of an undirected graph and two vertices are
adjacent if their states influence each other in the update
of the system. The undirected graph so built is called the
(undirected) dependency graph of the system (see [9]).

If we denominate this graph 𝐺 = (𝑉, 𝐸), where 𝑉 =

{1, 2, . . . , 𝑛} is the vertex set and 𝐸 is the edge set, then, for
each vertex/entity 𝑖, 1 ≤ 𝑖 ≤ 𝑛, it is natural to consider that
its state 𝑥

𝑖
∈ {0, 1}. That is, the entity can be activated or

deactivated.
On the other hand, for every vertex/entity 𝑖 and every

subset 𝑊 ⊂ 𝑉, we will consider all the vertices that interfere
with them. Thus, we denote by

𝐴
𝐺
(𝑖) = {𝑗 ∈ 𝑉 : {𝑗, 𝑖} ∈ 𝐸} (1)

the set of vertices that are adjacent to the vertex 𝑖.
Nevertheless, in many occasions, the process of informa-

tion exchange is not bidirectional [67]. This situation can be
represented by an arc whose initial vertex is the influencing
entity and the final vertex corresponds to the influenced
entity, obtaining a directed graph or digraph of relations.The
directed graph so built will be called the directed dependency



4 Journal of Applied Mathematics

graph of the system. In order to unify the notation, it will be
also denoted by 𝐺 = (𝑉, 𝐸), although in this case 𝐸 is a set
of arcs instead of edges. With the same aim, given a directed
dependency graph and 𝑖 ∈ 𝑉, 𝐴

𝐺
(𝑖) will stand for the set of

vertices 𝑗 ∈ 𝑉 such that there exists an arc from 𝑗 to 𝑖.
Recalling that, given vertices 𝑖, 𝑗 ∈ 𝑉, the distance 𝑑(𝑖, 𝑗)

between them is defined as the length of the shortest path
from 𝑖 to 𝑗, and the diameter of the digraph as

diam (𝐺) = max {𝑑 (𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉} . (2)

2.1.2. Boolean Algebra and Boolean Functions. As the natural
way to consider if the state of any entity is activated or deacti-
vated, the basic Boolean algebra {0, 1}will play a fundamental
role for the theoretical foundations of the model. Moreover,
the (general) structure of Boolean algebra is essential to
naturally capture the situation where entities are composed
by some subentities, such that each of them can be activated
or deactivated.

Mathematically, aBoolean algebra can be defined [2] as an
algebraic structure (𝐵, ∧, ∨,


, 𝑂, 𝐼) where 𝐵 is a set, ∧, ∨ are

two inner operations defined on 𝐵,  is an application from
𝐵 to 𝐵, and 𝑂, 𝐼 are two distinguished elements of 𝐵 such
that they satisfy certain laws (idempotence, commutative,
associative, absorption, distributive, existence of neutral and
universal elements, and existence of complement element).

It is common to denote the operation ∨ by + and to call
it addition operation of the Boolean algebra. Likewise, the
operation ∧ is usually denoted by ⋅ and called multiplication
operation of the Boolean algebra.

It is natural to introduce the algebraic structure of Bool-
ean algebra as a Boolean Lattice which is bounded, distribu-
tive, and complemented [1]. In fact, in [2] a definition where
only commutative, idempotence, distributive, and comple-
ment laws are required is given, which fits better the original
definition by George Boole.

If 𝐵 is any Boolean algebra, then 𝐵
𝑛

= {(𝑥
1
, . . . , 𝑥

𝑛
) :

𝑥
𝑖
∈ 𝐵, ∀𝑖} is also a Boolean algebra, where the operations

are performed coordinate by coordinate; that is,

(i) (𝑥
1
, . . . , 𝑥

𝑛
) ∨ (𝑦

1
, . . . , 𝑦

𝑛
) = (𝑥

1
∨ 𝑦
1
, . . . , 𝑥

𝑛
∨ 𝑦
𝑛
),

(ii) (𝑥
1
, . . . , 𝑥

𝑛
) ∧ (𝑦

1
, . . . , 𝑦

𝑛
) = (𝑥

1
∧ 𝑦
1
, . . . , 𝑥

𝑛
∧ 𝑦
𝑛
),

(iii) (𝑥
1
, . . . , 𝑥

𝑛
)

= (𝑥


1
, . . . , 𝑥



𝑛
).

In this Boolean algebra, the neutral and universal elements
are given, respectively, byO = (𝑂, . . . , 𝑂) and I = (𝐼, . . . , 𝐼).

Two Boolean algebras (𝐵
1
, ∧, ∨,

, 𝑂, 𝐼) and (𝐵

2
, ⋏, ⋎,

,

𝑂, 𝐼) are isomorphic (as Boolean algebras) [2] if there is a
bijection 𝜑 : 𝐵

1
→ 𝐵
2
such that, for all 𝑥, 𝑦 ∈ 𝐵

1
, it satisfies

(i) 𝜑(𝑥 ∨ 𝑦) = 𝜑(𝑥) ⋎ 𝜑(𝑦),
(ii) 𝜑(𝑥 ∧ 𝑦) = 𝜑(𝑥) ⋏ 𝜑(𝑦),

(iii) 𝜑(𝑥) = 𝜑(𝑥)
.

In particular, we have that 𝜑(𝑂) = 𝑂 and 𝜑(𝐼) = 𝐼.
One of themost important facts in the algebraic structure

of Boolean algebra is the existence of some basic elements,
named atoms of the Boolean algebra, which allowus to control

the rest of the elements of the structured and focus on them
the essence of the structure. An atom is every element 𝑎 ∈ 𝐵,
different from the neutral one𝑂, which verifies that 𝑥∧𝑎 = 𝑥

if and only if 𝑥 = 𝑎 or 𝑥 = 𝑂.
The atoms allow us to express any element of the Boolean

algebra, different from the neutral one 𝑂, as a disjunction of
them in a unique way (up to the order). Moreover, the well-
known Stone’s theorem (see [2]) asserts that all the Boolean
algebras with the same number of atoms are isomorphic. In
particular, every Boolean algebra with 𝑝 atoms is isomorphic
to the Cartesian product of𝑝 copies of the basic algebra {0, 1},
what is essential for obtaining more general results on this
model [65]. As a corollary, if a Boolean algebra𝐵 has 𝑝 atoms,
then 𝐵 has 2𝑝 elements.

Another important feature is the duality principle in
Boolean algebras, which means that if a statement is the
consequence of the definition of Boolean algebra, then the
dual statement is also true. The dual of a statement in a
Boolean algebra is the statement obtained by interchanging
the operations ∨ and ∧ and the elements 𝑂 and 𝐼 in the
original statement [2].

ConcerningBoolean algebras, another important concept
throughout this work is the following.

Definition 1. Let 𝐵 be a Boolean algebra and 𝑛 ∈ N. A Boolean
function of 𝑛 variables is a function of the form

𝐿 : 𝐵
𝑛
→ 𝐵, (3)

where𝐿(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐵 is obtained from𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝐵

using the inner operations ∧, ∨ defined on 𝐵, the application 
from 𝐵 to 𝐵, and the elements 𝑂, 𝐼 ∈ 𝐵.

A Boolean function describes how to determine a Bool-
ean output from some Boolean inputs. Thus, such functions
play a fundamental role in questions as design of circuits
or computer processes [68]. In our context, they correspond
to components of the evolution operator of the dynamical
system.

An important point is that the set of all the Boolean
functions of 𝑛 variables is also a Boolean algebra (see [2]).

Maxterms andminterms are both special cases of Boolean
functions.

Definition 2. ABoolean function of 𝑛 variables,𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
,

that only uses the disjunction operator ∨, where each of the 𝑛
variables appears once in either its direct or its complemented
form, is called amaxterm.

In this sense, the simplest maxterm corresponds to the
one where each of the 𝑛 variables appears once in its direct
form; that is,

OR (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥
1
∨ 𝑥
2
∨ ⋅ ⋅ ⋅ ∨ 𝑥

𝑛
. (4)

With all the variables in their complemented form, we
have the maxterm NAND:

NAND (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥


1
∨ 𝑥


2
∨ ⋅ ⋅ ⋅ ∨ 𝑥



𝑛
. (5)

Minterm is the dual concept of maxterm, changing the
disjunction operator for the conjunction one.
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Definition 3. A Boolean function of 𝑛 variables that only uses
the conjunction operator ∧, where each of the 𝑛 variables
appears once in either its direct or its complemented form,
is called aminterm.

The simplest minterm corresponds to the one where each
of the 𝑛 variables appears once in its direct form; that is,

AND (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥
1
∧ 𝑥
2
∧ ⋅ ⋅ ⋅ ∧ 𝑥

𝑛
. (6)

With all the variables in their complemented form, we
have the minterm NOR:

NOR (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥


1
∧ 𝑥


2
∧ ⋅ ⋅ ⋅ ∧ 𝑥



𝑛
. (7)

As one can check, there exist exactly 2
𝑛 maxterms of 𝑛

variables, since a variable in a maxterm expression can be
either in its direct or in its complemented form, and dually 2𝑛
minterms. Since the minterms are the atoms of the Boolean
algebra which is constituted by all the Boolean functions
of 𝑛 variables, there are exactly 2

2
𝑛

Boolean functions of 𝑛
variables.

In particular, see [2, 69], any Boolean function, except
𝐹 ≡ 𝐼 (resp., 𝐹 ≡ 𝑂), can be expressed in a canonical
form as a conjunction (resp., disjunction) of maxterms (resp.,
minterms). Therefore, it is natural to begin the study of the
dynamics with these basic Boolean functions.

2.1.3. Dynamical Systems. Mathematically, a dynamical sys-
tem is defined as a triple (𝑋, 𝑇, 𝐹) where 𝑋 is the state space,
𝑇 is the time set, and 𝐹 is the evolution operator, verifying the
following.

(1) 𝑋 is a set.
(2) 𝑇 is a number set.
(3) 𝐹 : 𝑇 × 𝑋 → 𝑋 is a map satisfying

𝐹 (0, 𝑥) = 𝑥 ∀𝑥 ∈ 𝑋

𝐹 (𝑡, 𝐹 (𝑠, 𝑥)) = 𝐹 (𝑡 + 𝑠, 𝑥) ∀𝑡, 𝑠 ∈ 𝑇, ∀𝑥 ∈ 𝑋.
(8)

The set 𝑋 is often a metric space in order to determine the
distances between two different states, and it is also called
phase space, due to classical mechanics.

The most general way in which the evolution operator is
given is by means of a family of maps depending on 𝑡:

𝐹
𝑡
: 𝑋 → 𝑋 (9)

which transforms any initial state𝑥0 into some state𝑥𝑡 at time
𝑡; that is 𝐹𝑡(𝑥0) = 𝑥

𝑡.
Depending on the time set 𝑇, it is distinguished between

discrete and continuous dynamical systems:

𝑇 = Z or N ∪ {0} or Z
−
∪ {0}  Discrete System

𝑇 = R or R
+
∪ {0} or

R
−
∪ {0}  Continuous System.

(10)

In this review, we deal with a special kind of discrete
dynamical systems. A discrete dynamical system is fully
specified by defining only one map 𝐹, named the time-one
map of the system, since for any other 𝑡,

𝐹
𝑡
= 𝐹∘

𝑡)

⋅ ⋅ ⋅ ∘𝐹. (11)

In our particular case, as the state space is finite, the time-
one map can be represented by a table which is called lookup
table for the state updating.

When the evolution operator is defined for both negative
and positive values of the time, the system is called invertible.
In such a system the initial state defines not only the future
states, but its past behavior as well. In our context, the invert-
ibility of the system appears associated to the reversibility
problem [70, 71].

We actually determine a dynamical system over a
(directed or undirected) dependency graph 𝐺 = (𝑉, 𝐸) by
associating to each vertex 𝑖 ∈ 𝑉 a state 𝑥

𝑖
∈ {0, 1} and a local

map 𝑓
𝑖
defined on the states of the vertices in 𝐴

𝐺
(𝑖) ∪ {𝑖} and

which returns its new state 𝑦
𝑖
∈ {0, 1}.

In fact, the evolution or update of a system over a
(directed or undirected) dependency graph is implemented
by local (Boolean) functions. These local functions are either
restrictions of a global function or jointly constitute the
(global) evolution operator of the system.

If the states of the entities are updated in a parallel
manner, the system is called a parallel dynamical system
(PDS) [9, 41, 42], while if they are updated in a sequential
order, the system is named a sequential dynamical system
(SDS) (see [9, 40, 46]). More precisely.

Definition 4. Let 𝐺 = (𝑉, 𝐸) be a (directed or undirected)
graph with 𝑉 = {1, 2, . . . , 𝑛}. Then a map

𝐹 : {0, 1}
𝑛
→ {0, 1}

𝑛
,

𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ,

(12)

where 𝑦
𝑖
is the updated state of the entity/vertex 𝑖 by applying

locally the function 𝐹 over the states of the vertices in {𝑖} ∪

𝐴
𝐺
(𝑖), constitutes a discrete dynamical system called a par-

allel (discrete) dynamical system (PDS) over 𝐺 with evolution
operator 𝐹, which will be denoted by [𝐺, 𝐹] or 𝐹-PDS when
specifying the dependency graph is not necessary.

Definition 5. Let 𝐺 = (𝑉, 𝐸) be a (directed or undirected)
graph with 𝑉 = {1, 2, . . . , 𝑛} and 𝜋 = 𝜋

1
𝜋
2
⋅ ⋅ ⋅ 𝜋
𝑛
a

permutation on 𝑉. Then a map

[𝐹, 𝜋] = 𝐹
𝜋
𝑛

∘ ⋅ ⋅ ⋅ ∘ 𝐹
𝜋
2

∘ 𝐹
𝜋
1

: {0, 1}
𝑛
→ {0, 1}

𝑛
, (13)

where 𝐹
𝜋
𝑖

: {0, 1}
𝑛

→ {0, 1}
𝑛 is the update function on the

state vector (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) which updates the state of the

vertex 𝜋
𝑖
while keeping the other states unchanged, consti-

tutes a discrete dynamical system called a sequential (discrete)
dynamical system (SDS) over 𝐺 with evolution operator
[𝐹, 𝜋], which will be denoted by [𝐺, 𝐹, 𝜋] or [𝐹, 𝜋]-SDS when
specifying the dependency graph is not necessary.
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Basic objects associated to a dynamical system are its
orbits and consequently the phase portrait, that is, the parti-
tioning of the state space into its orbits.

Definition 6. The orbit of a dynamical system (𝑋, 𝑇, 𝐹)

starting at 𝑥0 ∈ 𝑋 is the ordered subset of the state space 𝑋
given by

Orb (𝑥0) = {𝑥 ∈ 𝑋 : 𝑥 = 𝐹
𝑡
(𝑥
0
) , ∀𝑡 ∈ 𝑇} ⊂ 𝑋. (14)

Orbits of a discrete dynamical system are ordered
sequences of states in the phase space that can be enumerated
by increasing integers.

It is worthwhile to recall that, given a discrete dynamical
system with global evolution function 𝐹 and an initial state
𝑥
0, the following terminology is used.

(i) 𝐹(𝑥0) is called the successor of the state 𝑥
0. Observe

that, since a dynamical system is deterministic, there
exists exactly one successor for each initial state, but
this initial state could be the successor of more than
one state of the system that are called its predecessors.
When this occurs the system is often called a dissi-
pative system and the in-degree of the initial state 𝑥

0

is the number of its predecessors (out-degree is 1 for
every initial state).

(ii) If 𝐹(𝑥
0
) = 𝑥

0, then 𝑥
0 is called a fixed point of

𝐹 or equilibrium state of the system. The notation
𝐹𝐼𝑋[𝐹] represents the set of all the fixed points of the
dynamical system with global evolution function 𝐹.

(iii) If there exists an integer 𝑝 > 1, such that 𝐹𝑝(𝑥0) = 𝑥
0

and for any integer 0 < 𝑙 < 𝑝, 𝐹𝑙(𝑥0) ̸= 𝑥
0, then 𝑥

0

is called a periodic point of 𝐹 or a periodic state of the
system and 𝑝 is called the period of the orbit of 𝑥0.
The notation 𝑃𝐸𝑅[𝐹] is adopted to denote the set of
all the periodic points of 𝐹. Usually, a periodic orbit
is called a cycle, but we do not use this name in order
to avoid confusions with the cycles of the dependency
graph.

(iv) When an initial state 𝑥0 ∉ 𝐹𝐼𝑋[𝐹] ∪ 𝑃𝐸𝑅[𝐹], then 𝑥
0

is called a transient point of𝐹 or a transient state of the
system. In the case of a finite space state, these points
are also called eventually fixed points (resp., eventually
periodic points) if their orbits finally arrive in a fixed
point (resp., periodic orbit).

(v) If there does not exist any state 𝑥0, such that 𝐹(𝑥0) =
𝑦, then 𝑦 is said to be a Garden-of-Eden (GOE) of 𝐹.
That is, 𝑦 is a state without predecessors. The set of
GOEs of 𝐹 is denoted by GOE[𝐹].

According to [6, 72], one of the main goals in the study
of a dynamical system is to give a complete characterization
of its orbit structure. In this particular case, as the state space
of the system is finite, every orbit is periodic or eventually
periodic. This means that the evolution from any initial state
always reaches an attractor [73]. If the attractor consists of one
state, it is called an attractor point, whereas if it consists of two
or more states, it is said to be an attractor cycle. All the states

2 3

1

Figure 1: Graphic representation of the dependency digraph𝐺with
vertex set 𝑉 = {1, 2, 3} and arc set 𝐸 = {(1, 2), (2, 3), (3, 1)}.
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111 000
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Figure 2: Transition diagram of the PDS [𝐺, 𝐹].

Table 1: Lookup table for the time-one-map of the PDS [𝐺, 𝐹].

𝑥
1
𝑥
2
𝑥
3

111 110 101 100 011 010 001 000
𝑦
1
𝑦
2
𝑦
3

000 101 011 111 110 111 111 111

that flow towards an attractor constitute what is called its
basin of attraction. The time that an initial state takes to reach
an attractor is named its transient.

The representation of the orbit structure of a system is
called phase portrait, phase diagram, or transition diagram
of the system. The phase portrait, when possible, gives a
complete visual idea of the asymptotic behavior of the system
from any initial state.

Example 7. In the next simple example, the different notions
related to PDS that were introduced before will be studied in
order to clarify them. Let us consider the PDS [𝐺, 𝐹] with

𝐹 : {0, 1}
3
→ {0, 1}

3
, 𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
) = (𝑦

1
, 𝑦
2
, 𝑦
3
) ,

(15)

over the directed graph 𝐺 shown in Figure 1, where the time-
one-map of the system is given by the following lookup table
(see Table 1).

This lookup table corresponds to the application of the
maxterm NAND as evolution operator, and the transition
diagram or phase portrait of the system is the one in Figure 2.

Note that the system is not invertible, since there are 3
initial states that have not any predecessor: 001, 010, and 100.
They constitute the GOE of the system and all of them are
in the basin of attraction of the attractor cycle {111, 000}. In
fact, they are predecessors of the state 111. Thus, these three
states are eventually 2-periodic and the transient to arrive in
the attractor cycle is equal to one.

On the other hand, the system does not present any
fixed point, although it has a 3-periodic orbit {110, 101, 011}.
As expected, the Sharkovsky order [4] for the periodic orbit
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structure of a discrete dynamical system where the evolution
operator is a continuous function of the interval does not
work here.

The absence of fixed points and the presence of periodic
orbits of period greater than two in this kind of PDS over
directed dependency graphs are two important breakpoints
with respect to the pattern followed by those defined over
undirected graph (see [41]), as explained in [42].

As shown before, in spite of their relation with classical
dynamical systems, the theory and analysis of PDS (and SDS)
are based on techniques from algebra, combinatorics, and
discrete mathematics in general. In fact, due to the especial
discrete per excellence character of PDS, some dynamical
topics, used to measure the intrinsic stability of a dynamical
system, as sensitivity dependence on initial conditions or chaos
[4, 72], are difficult to be translated into this context, since
they are established according to the topological properties
of the corresponding metric state space.

2.2. Comparative Study with Related Topics. In the specific
literature, several topics which are related to PDS appear. In
this section, an overview about them is given. The list of
related topics presented is reduced to the most similar ones.
The purpose is only to provide an introduction in order to
compare them with PDS. Specifically, the nearest concepts,
namely, cellular automata (CA) [21–25] and Boolean networks
(BN) [14, 28], are reviewed. Other topics related to PDS are,
for instance, finite-state machines [74, 75] and Petri nets [76–
78], but they will not be discussed here.

2.2.1. Cellular Automata. Following Wolfram [21], a CA
consists of a regular uniform lattice (or array), usually infinite
in extent, with a discrete variable at each site called cell. The
state of a CA at a time 𝑡 is completely determined by the
state value 𝑥

𝑖
of every cell 𝑖 at such time 𝑡. The evolution of

this system consists in the discrete time updating of the state
value of its cells in a synchronous manner. The updating of
the state value of each cell depends on a local function defined
on the state values, at the previous time step, of other cells in
its neighborhood. The neighborhood of a site in the uniform
lattice is typically constituted by the site itself and all the
immediately adjacent sites. These immediately adjacent cells
are determined by the lattice structure and a homogeneous
rule for the selection of neighbors.

Thus, CA can be contemplated as a particular case of
(infinite) PDS (the concept of PDS can be easily extended to
involve an infinite number of entities), if one considers cells as
entities. Nevertheless, CAhave amore restricted and uniform
structure and, in contrast to PDS, CA are usually considered
over inf of the system are fixed mple, Z𝑑, where 𝑑 ≥ 1 is said
to be the dimension of the CA.

The more restricted and uniform structure of CA is
reflected by both the neighborhood 𝐴(𝑖) of any cell 𝑖 and
the local functions 𝑓

𝑖
acting on it, which are determined

homogeneously. Certainly, in classical CA, every cell 𝑖 has a
neighborhood 𝐴(𝑖) which is some sequence of lattice sites,
which displays a homogeneous structure. If the CA is defined
overZ𝑑, this homogeneous structure in the neighborhood of

Figure 3: Three-neighborhood structure for one-dimensional CA.

Figure 4: Von Neumann neighborhood structure for two-dimen-
sional CA.

any cell 𝑖 is obtained bymeans of a (finite) subset {𝑗
1
, . . . , 𝑗

𝑘
} ⊂

Z𝑑 which provides a rule to have

𝐴 (𝑖) = {𝑖 + 𝑗
1
, 𝑖 + 𝑗
2
, . . . , 𝑖 + 𝑗

𝑘
} . (16)

Observe that in a CA over an infinite structure like Z𝑑, any
state of the system is given by a sequence (𝑥

𝑖
)
𝑖∈Z𝑑 , usually

named a configuration. At this point, one can state the
definition of a 𝑑-dimensional cellular automata, taking into
account the (finite) set 𝐵 of the state values that any cell can
have and the rule to define the neighborhood 𝐴(𝑖) of any cell
𝑖 over an infinite lattice Z𝑑, where the same local function is
applied. When the set 𝐵 is equal to the basic Boolean algebra
𝐵 = {0, 1} the CA is said to be a Boolean cellular automata.

One-dimensional (Boolean) CA with two possible values
for the state of the cells, 0 and 1, in which the neighborhood
of a given site is simply the site itself and the sites immediately
adjacent to it on its left and right, are studied in [21]. In such
a case, the subset to get a homogeneous neighborhood is
{−1, 0, 1} ⊂ Z, and it is called a three-neighborhood structure
(see Figure 3).

For two-dimensional CA, two of themost used neighbor-
hood structures are the von Neumann neighborhood [30] and
theMoore neighborhood [79] (see Figures 4 and 5). The finite
subset to obtain the von Neumann neighborhood is

{(0, 0) , (−1, 0) , (0, −1) , (1, 0) , (0, 1)} ⊂ Z
2
, (17)

while the one to get the Moore one is

{(0, 0) , (−1, 0) , (0, −1) , (1, 0) , (0, 1) , (1, 1) , (−1, −1) ,

(1, −1) , (−1, 1)} ⊂ Z
2
.

(18)

CAover finite lattices with 𝑛 sites can also be defined. Two
traditional ways to do that are as follows:

(i) by imposing periodic boundary conditions, which con-
sists in identifying the cells separated by 𝑛 positions,
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Figure 5: Moore neighborhood structure for two-dimensional CA.

giving a CA over Z/𝑛Z [80], an idea which can be
extended to higher dimensions, giving a CA over a 𝑘-
dimensional tori,

(ii) by imposing zero boundary conditions, which consists
in using a line graph as a lattice and adding two
additional extreme vertices whose states are always
equal to zero.

Local rules for the updating of Boolean CA are in fact
Boolean functions of 𝑘 variables, where 𝑘 is the number of
neighbors in any neighborhood𝐴(𝑖). Most of the research on
CA has been concerned with one-dimensional cases, which
are commonly known as elementary cellular automata (see
[10, 12, 21–23, 30, 49, 71, 79, 81–83]).

For a one-dimensional, three-neighborhood, Boolean
CA, a local function has to determine the (output) state
value of the central cell, from the (input) state values of the
central cell and its two immediately adjacent ones. As we are
considering Boolean values, there are only 2

3 possible input
state values for any neighborhood in the lattice, namely,

111 110 101 100 011 010 001 000. (19)

As from any input state values the output state value can
be 0 or 1; there are 22

3

= 256distinct local rules for elementary
three-neighborhood CA. Traditionally, each of these local
rules has a decimal number belonging to {0, 1, 2, . . . , 255}

assigned and it is known as the Wolfram enumeration of
elementary CA rules. The procedure to enumerate such rules
consists in considering the (output) value states of the triples
above in that order and then translating the corresponding
binary number into a decimal one. That is, if one has the
output value states of the triples above as in Table 2, then the
number of the local rule is

7

∑
𝑖=0

𝛼
𝑖
⋅ 2
𝑖
. (20)

This enumeration procedure can be generalized to other
classes of neighborhoods in CA.

Thus, the elementary CA rule 0 erases any initial configu-
ration, while 204 does not change any initial configuration;
that is, it corresponds to the identity transformation. One
of the most important elementary three-neighborhood CA

Table 2: Denomination of the updating of the state of any entity 𝑖 to
establish the procedure to enumerate elementary CA rules.

𝑥
𝑖−1

𝑥
𝑖
𝑥
𝑖+1

111 110 101 100 011 010 001 000
𝑦
𝑖

𝛼
7

𝛼
6

𝛼
5

𝛼
4

𝛼
3

𝛼
2

𝛼
1

𝛼
0

Table 3: Updating of the state of any entity 𝑖 corresponding to the
elementary CA rule number 150.

𝑥
𝑖−1

𝑥
𝑖
𝑥
𝑖+1

111 110 101 100 011 010 001 000
𝑦
𝑖

1 0 0 1 0 1 1 0

is the one given by the local function 𝑋𝑂𝑅, that is, the
elementary CA rule number 150 (see Table 3).

Its importance is due to its applications to cryptographic
protocols (see [10] or [12]).

CA, when finite, can be considered as a special kind of
PDS by considering cells as entities. It is easy to understand
that the lattice of a CA allows us to infer a PDS dependency
graph by considering the cells as entities, being any entity
adjacent to those that are its neighbors in the lattice. Even,
when infinite, CA can be consideredPDS, since the concept of
PDS can be easily extended for an infinite number of entities.

Also, CA are updated in a parallel or synchronousmanner
by applying local functions on a subset that contains the (state
value of the) cell. Nevertheless, in the last few years some
extensions of the concept of CA considering sequential or
asynchronous updating have appeared in the literature (see
[84–86]). In fact, the concept of sequential dynamical system
[9, 33–35, 40, 44, 45] constitutes a generalization of such CA
extension.

However, CA are restricted cases of PDS in several ways.
First of all, for a CA seen as a PDS, the dependency graph,
which is derived from the lattice and the neighborhood
structure, is regular, whereas the graph of a general PDS can
be arbitrary. Secondly, CA have the same local function or
rule associated with every cell, while general PDS can have
distinct local functions to update different entities, which can
be the restriction of a global one (see [9, 41]) or independently
defined (see [43]).Thus, general PDS can have more involved
update schemes.

Although theoretically the set 𝐵 of state values of any cell
can be whichever finite set, most of works in the literature
focus on Boolean CA [10, 12, 21–23, 30, 49, 71, 79, 81–83],
where 𝐵 = {0, 1}. In [87] and more recently in [88], a first
approach in the study of CA where 𝐵 is any finite set is given.
On the other hand, in [65], we study completely the problem
when the set 𝐵 is any Boolean algebra in the more general
context of PDS.

Summing up, PDS are a generalization of CA, where the
state value of each entity is not affected necessarily by its
neighbors (see Figure 6), but potentially by any entity in the
network, and the updating function 𝑓

𝑖
associated with an

entity 𝑖 can be given by any arbitrary local function.

2.2.2. Boolean Networks. A Boolean network (BN) of size
𝑛 and connectivity 𝑘 consists of 𝑛 interconnected vertices,
each one having 𝑘 inputs. The update of the state of any
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CA BN PDS

Figure 6:Graphic representation of comparative dependency graphs
for CA, BN, and PDS.

vertex is determined by the (directed) dependency relations
and local rules which are given by Boolean functions. Hence,
BN are a generalization of (finite) Boolean CA but, at the
same time, a particular case of PDS by considering nodes
as entities. One of the main differences with CA is that, in
BN, the state of each node is not affected necessarily by its
neighbors but potentially by any node in the network. Thus,
the uniform structure of neighborhood in CA disappears.
Nevertheless, some homogeneity remains, since each node is
affected by 𝑘 connections with other (or the same) entities.
This homogeneity makes BN a particular case of PDS where
the connections can be totally arbitrary (see Figure 6).

Another important difference with CA is that local
Boolean functions of 𝑘-variables are generated randomly,
which provides different lookup tables for each entity for the
updating process.This idea has been carried out and extended
for PDS in this work in two directions. Firstly, as can be seen
in [41], local Boolean functions acting on each entity can have
different number of variables (which cannot occur for BN);
and secondly, they can be totally independent for each entity.

BN with 𝑛 nodes and 𝑘 connectivity are known as 𝑛-𝑘
models or Kauffman models, since they were originally devel-
oped by him in [26] when modeling regulatory networks of
(on-off) genes. For this reason, nodes of BN are often called
genes. In particular, Kauffman models on complete networks
are usually called random maps.

As in PDS, the state space is finite with 2
𝑛 possible states.

Therefore, whichever the initial state is, eventually a state will
be repeated. However, the number of 𝑛-𝑘models, when 𝑛 and
𝑘 are fixed, is lower than the number of possible dependency
graphs that determine a PDS.

As for the case of CA, originally the updating of BN
was synchronous, but, also in this case, several recent works
provide some extensions of the concept, considering asyn-
chronous updating schedule [11, 85, 86]. Also in this case,
the concept of sequential dynamical system constitutes a
generalization of such asynchronous Boolean networks.

Although first Kauffman models were deterministic, in
the last decade some authors have studied an extension of
the concept considering a probabilistic updating schedule [14,
66, 89]. In this context, they are named probabilistic Boolean
networks and cannot be described from the perspective of
dynamical systems, with Markov chains being the natural
framework to set out their evolution. This idea of extension
was provided for the first time in [66] and it will be explained
in the following paragraphs.

Let 0 ≤ 𝑝 ≤ 1, 𝑖 a gene or node of a BN, and denote
by 𝑓
𝑖
a local function to update the state value of 𝑖 for all

𝑖 = 1, . . . , 𝑛. On the other hand, let 𝑓


𝑖
be another local

function related to the updating of the node 𝑖. If any node
𝑖 is updating by means of 𝑓

𝑖
with probability 𝑝 and by means

of 𝑓
𝑖
with probability (1 − 𝑝), then a basic probabilistic BN is

obtained. Thus, this stochastic construction may be viewed
as a weighted superposition of two deterministic BN, that
is, the one obtained with the global evolution operator 𝐹 =

(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
) and the other one achieved with the time-

one-map 𝐹

= (𝑓


1
, 𝑓


2
, . . . , 𝑓



𝑛
). That is, by updating the BN

with the evolution operator 𝐹, a transition diagram could
be determined, namely Γ, while updating with 𝐹

 another
transition diagram, namely Γ, could be also obtained. Then,
by superposing the transition diagrams (which are in fact
direct graphs), one can construct a digraph, assigning the
weight𝑝 to the arcs which are only in Γ, the weight 1−𝑝 to the
arcswhich are only in Γ, and theweight 1 to the arcswhich are
in both diagrams.This fused weighted digraph is often called
the probabilistic phase space and its weighted matrix can be
considered as the corresponding Markov chain matrix. The
(probabilistic) evolution of the BN from an initial state can
be then identified with a random walk over this probabilistic
phase space that starts at this initial state of the BN.

The construction explained before is basic in the sense
that only two kinds of functions with two probabilities are
considered to update the nodes of the BN. Obviously, more
functions could be considered and then the probabilistic
phase space would be the result of the superposition of all
the transitions diagrams obtained deterministically with any
global operator, considering for any arc that appears in more
than one of this transitions diagrams the weight resulting of
the sumof all the probabilities assigned to any of the diagrams
where this arc appears.

Finally, observe that the PDS notion could be extended in
order to capture probabilistic updating in the same sense that
probabilistic BN do. Nevertheless, in this case, they would
lose the structure of (deterministic) dynamical systems.

3. Analytical Results on the Orbital
Structure of PDS

3.1. PDS over Undirected Dependency Graphs. This section
is devoted to review the orbit structure of parallel discrete
dynamical systems with maxterms and minterms Boolean
functions as global evolution operators. As a result, it is shown
that the orbit structure does not remain when the system is
perturbed.

In [9], it is proved that, for a parallel dynamical system
OR-PDS associated with the maxterm OR, all the orbits of
the system are fixed points or eventually fixed points. More
precisely, the system has exactly two fixed points and the
maximumnumber of iterations needed by an eventually fixed
point to reach the corresponding fixed one is at most as large
as the diameter of the dependency graph.

Dually, for a parallel dynamical system AND-PDS asso-
ciated with the minterm AND, all the orbits of the system
are fixed points or eventually fixed points, and the system
has exactly two fixed points and the maximum number of
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iterations needed by an eventually fixed point to reach the
corresponding fixed one is at most as large as the diameter
of the dependency graph.

Observe that the orbit structures of OR-PDS and
AND-PDS do not depend on the dependency graphs over
which they are defined, covering all the possible casuistry of
them.

In [41], it is proved that, for a parallel dynamical system
MAX-PDS associated with an arbitrary maxterm MAX, all
the periodic orbits of this system are fixed points or 2-
periodic orbits, while the rest of the orbits are eventually
fixed points or eventually 2-periodic orbits. In fact, from the
demonstration, the following can be deduced.

(i) If all the variables are in their direct form, only fixed
points or eventually fixed points can appear.

(ii) If all the variables are in their complemented form,
only 2-periodic orbits or eventually 2-periodic orbits
can appear.

(iii) Otherwise, both kinds of situations coexist.

As before, dually, for a parallel dynamical system
MIN-PDS associated with an arbitrary mintermMIN, all the
periodic orbits of this system are fixed points or 2-periodic
orbits, while the rest of the orbits are eventually fixed points
or eventually 2-periodic orbits.

These results provide a complete characterization of the
orbit structure of parallel discrete dynamical systems with
maxterms and minterms Boolean functions as global evolu-
tion operators. In particular, one can infer that when other
maxterms (resp., minterms) different from OR (resp., AND)
are considered as global functions to define the evolution of a
system, the dynamics can change, giving as a result a certain
absence of structural stability of the system so perturbed.

3.2. PDS over Directed Dependency Graphs. In this section,
the orbit structure of parallel discrete dynamical systems over
directed dependency graphs (PDDS) (the abbreviation PDDS
will be written for the singular and plural forms of the corre-
sponding term, since it seems better from an aesthetic point
of view) with Boolean functions as global evolution operators
is reviewed. In this sense, for the cases corresponding to the
simplest Boolean functions AND and OR, it is explained
that only fixed or eventually fixed points appear, as occurs
over undirected dependency graphs. However, for general
Boolean functions, it is shown that the pattern found for the
undirected case breaks down.

In [42], it is proved that for a parallel dynamical system
OR-PDDS over a directed dependency graph associated
with the maxterm OR, all the orbits of this system are
fixed points or eventually fixed points. Dually, for a parallel
dynamical system AND-PDDS over a directed dependency
graph associated with the minterm AND, we have also that
all the orbits of this system are fixed points or eventually fixed
points.

Nevertheless, comparingwith the undirected case studied
in the previous section, for the directed one the number of
fixed points can increase significantly, except if the digraph
is strongly connected (i.e., if for all pairs of vertices 𝑖, 𝑗 ∈ 𝑉,

there exists a path from 𝑖 to 𝑗 and another one from 𝑗 to 𝑖),
where only two equilibrium states are possible, namely, the
state with all the entities activated and the one with all the
entities deactivated. In general, this number of possibilities
depends on the structure of the directed dependency graph
of the system and it is not possible to give a generic result as
in the undirected case.

Besides, also in [42], it is demonstrated that for the gen-
eral case of PDDS associated withmaxterms andminterms as
global evolution operators any period can appear, breaking
the pattern found for the undirected case where only fixed
points or 2-periodic orbits can exist [41]. In order to prove
that, amethod is developed to provide, for every given period,
a PDDS which presents a periodic orbit of such a period.

Subsequent research [64] allows us to check that this
breakdown is due to the existence of directed cycles in the
dependency digraph, while for PDDS over acyclic depen-
dency digraphs the periodic orbits continue being only fixed
points or 2-periodic ones. Moreover, the orbit structure of
special digraph classes as line digraphs, arborescences, and star
digraphs is similar and it is possible to specify the number of
iterations needed by an eventually periodic point to reach the
corresponding periodic orbit.

However, it is not easy to control the orbit structure when
the dependency graph has cycles. In such a case, the orbital
structure depends on both the global evolution operator and
the structure of the digraph. In particular, in [64], it is shown
that NAND-PDDS over circle digraphs can present periodic
orbits of any period except fixed points and periods 4 and 6,
and the same occurs for NOR-PDDS.

4. Extensions of the Concept of PDS

In this section, two extensions on parallel dynamical systems
are reviewed.The first one is related to themanner of defining
the evolution update and the second one to consider that the
states of the entities can take values in an arbitrary Boolean
algebra.

4.1. PDS on Independent Local Functions. When Kauffman
introduced BN for the first time [26], he contemplated
the possibility of updating any entity using independent
local functions. This idea is extended to PDS in [43], since
Boolean functions acting on each entity can have different
number of variables (which cannot occur for BN) due to the
random (connections) structure of the dependency graph.
This extension of the update method widely generalizes the
traditional one, where only a global Boolean function is
considered for establishing the evolution operator of the
system. Besides, this analysis allows us to show a richer
dynamics in these new kinds of parallel dynamical systems.

In particular, for a PDS [𝐺, {𝑓
𝑖
}] over an undirected or

directed graph 𝐺 where each local function 𝑓
𝑖
is either AND

or OR, it is demonstrated that all the orbits of this system
are fixed points or eventually fixed points. Although the
orbit structure coincides with the corresponding one for a
PDS where the updating global Boolean function is either
AND or OR, for a PDS [𝐺, {𝑓

𝑖
}] as the one described above,

the number of fixed points of the system (and therefore
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the complexity of the system) may increase depending on
the election of the local functions 𝑓

𝑖
and the structure of the

dependency graph. In order to illustrate this, we show the
following example.

Example 8. Consider the undirected dependency graph
given by 𝑉 = {1, 2, 3} and 𝐸 = {{1, 2}, {2, 3}}. If we consider
the PDS defined by the global Boolean function AND (resp.,
OR), then the fixed points are (1, 1, 1) and (0, 0, 0). On the
other hand, if we consider the PDS defined by the local
functions

𝑓
1
= AND, 𝑓

2
= OR, 𝑓

3
= AND (21)

then the fixed points are (1, 1, 1), (0, 0, 0), (0, 1, 0), (1, 1, 0),
and (0, 1, 1).

Moreover, for a PDS [𝐺, {𝑓
𝑖
}] over an undirected graph

where each local function 𝑓
𝑖
is either NOR or NAND, the

periodic orbits are fixed points or 2-periodic orbits and the
only possible fixed point is the one where 𝑥

𝑖
= 0 if 𝑓

𝑖
= NOR

and 𝑥
𝑖
= 1 if𝑓

𝑖
= NAND.Nevertheless, a PDS over a directed

graph where each local function 𝑓
𝑖
is either NOR or NAND

can present periodic orbits of any period 𝑛 ∈ N.
Finally, also in [43], it is demonstrated that for a PDS

[𝐺, {𝑓
𝑖
}] over an undirected graph where each local function

𝑓
𝑖
∈ {AND,OR,NOR,NAND}, the periodic orbits of this

system are fixed points or 2-periodic orbits, while over a
directed graph periodic orbits of any period 𝑛 ∈ N can appear.

4.2. PDS with General Boolean State Values. In [65], another
extension of PDS is provided, by considering that the states of
the vertices can take values in an arbitrary Boolean algebra 𝐵
of 2𝑝 elements, 𝑝 ∈ N, 𝑝 ≥ 1.This situation naturally appears,
for instance, when each entity is composed of 𝑝 subentities
which can be activated or deactivated, and consequently the
states of the entities belong to the Boolean algebra {0, 1}

𝑝.
This definition widely extends the traditional one where it
is assumed that every entity can take values in the simplest
Boolean algebra {0, 1}. To study the orbit structure of these
more general PDS, in view of the Stone’s Theorem (see
[2]), an isomorphism as Boolean algebras of 𝐵 and {0, 1}

𝑝

is considered. Then, since the operations and complement
elements are obtained coordinate by coordinate in {0, 1}

𝑝,
it is shown how one can translate all the results previously
achieved to this new context.

5. Algorithms for the Computation of Orbits

As said before, in [42], it is demonstrated that for the general
case of PDDS associated with maxterms and minterms as
global evolution operators any period can appear, breaking
the pattern found for the undirected case. Since we have
a finite state space, it is obvious that every orbit is either
periodic or eventually periodic. However, it is not so easy
to determine a priori the different coexistent periods of its
orbits, because it depends fundamentally on the structure
of the directed dependency graph. In this sense, in [90],
algorithms for computing the (eventually) period of any orbit
are given.

Since the coexistence of periodic orbits depends on the
number of entities, their connections, and the Boolean oper-
ator, several matrix algorithms for the computation of orbits
in PDDS over directed dependency graph are developed in
[90]. These algorithms constitute a new tool for the study of
orbits of these dynamical systems. The algorithms are also
valid for PDS over undirected dependency graphs. Likewise,
the methods are extended to the case of SDS, even when the
local functions that are considered for the updating of any
entity are independent.

These matrix methods of computation of orbits provide
an especial mathematical linearization of the system, by
means of particular products of the adapted adjacencymatrix
of the dependency graph and the state vectors.

We think the algorithms established can help to infer
some analytical results on the orbit structure of PDS and SDS
over special classes of digraphs, since they can be used to
reveal some orbit patterns.

6. Conclusions and Future Research Directions

The results on PDS reviewed provide a full characterization
of the orbit structure of PDS over undirected graphs covering
all the casuistry, since it studies the behavior of any parallel
dynamical system regardless the type of graph, the number of
entities, and the relationships among them. Specifically, when
the evolution functions are OR or AND or a combination
of both, the orbits are fixed points. But when considering
other maxterm or minterms dynamics can change, due to the
appearance of 2-periodic orbits, resulting in a certain absence
of structural stability when systems are slightly perturbed.

On the other hand, essential properties of the orbit struc-
ture of PDS over directed dependency graphs are achieved. In
fact, evolutions with OR and AND continue giving only fixed
or eventually fixed points. But, on the contrary, for general
maxterm or minterm functions, it is shown that any period
can appear, so breaking the pattern found for the undirected
case. Actually, several PDS over especial digraph class are
characterized. Besides, it is shown that this disappearance
of the general pattern is due to presence of cycles in the
dependency digraph.

Motivated by these findings, computation methods for
calculating orbits in PDS are also developed. Besides, two
extensions of the PDS concept are shown.

The study developed so far opens several future research
directions. Most of the problems that can arise after this
study of PDS correspond to extensions of the model, some
of which have already begun to be studied in some works in
the narrower context of CA or BN. It would be interesting to
extend this study to themore general context of PDS (or SDS).

One of the initial questions posed by this work is to check
if the results for PDS are transferable to the case of SDS. Paper
[9] shows a first approach to the problem, since the authors
carried out a parallel study of the orbital structure of PDS and
SDSwith evolutionORandNORoperators, obtaining similar
results in both cases, that is, fixed points when the evolution
operator is OR and periodic points of period 2 when the
evolution operator is NOR. By duality, these results are also
valid for the case of AND and NAND operators.
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Results in [41] solve the problemof the orbital structure of
PDS over undirected graphs for which the evolution operator
is any maxterm or minterm, including the former OR, AND,
NOR, and NAND. Therefore, a possible new line of research
in view of this work is to study if the results obtained for PDS
can be translated to the case of SDS, fundamentally in the case
inwhich the systems are defined over undirected dependency
graphs.

In the case of directed dependency graphs, the extension
of the results to SDS seems much more complicated, as one
can check with simple examples.

When modeling discrete processes, it can occur that the
entities are updated in a mixed manner between parallel and
sequential one. This happens when there exists a partition of
the set of entities 𝑉 of the system such that every set of this
partition consists of entities that are updated synchronously,
but the updating of these sets is asynchronous. That is, once
the partition of the vertex set is known, the subsets can be
ordered by a permutation that indicates how these subsets
are sequentially updated. This means that given an ordered
partition 𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑘
⊂ 𝑉, firstly the entities of the subset

𝑉
1
are updating in a parallel manner; then the entities of 𝑉

2

are also updated in a parallel manner, but taking into account
the new states values of the entities in 𝑉

1
, and so on. These

systems can be called mixed dynamical systems (MDS). This
new updating scheme could be used as an intermediate step
between PDS and SDS. In fact, SDS can be considered asMDS
where the partition of the set𝑉 is given by all the subsets with
only one element.This notion should be investigated not only
for the natural interest to model mixed computer processes,
but also for the possible repercussions in the translation of
results from PDS to SDS.

The original definition of CA [21] contemplates the pos-
sibility that the cells take state values in a finite set, although
subsequently the majority of studies have been made in the
case of Boolean CA. The studies that have appeared so far in
this direction ([87, 88]) consider someuniformity, since every
entity can have all the state values in the finite set. This can
have the physical sense of assuming that the entities can have
different levels of intensity. In this sense, considering that the
entities of a systemmaynot have necessarily the samenumber
of states, it could be encouraging to establish a consistent
update schedule when the states of the different entities of the
system do not belong to the same finite set.

In [65], we study completely the problemwhen the set𝐵 is
any Boolean algebra in the more general context of PDS.This
constitutes an important issue, since it can model the case
where entities are composed of a finite number of parts that
can be activated or deactivated. In this context, the problem
above concerning entities with different set of state values is
maybe more suitable, since any set with structure of Boolean
algebra is isomorphic to a subalgebra of {0, 1}𝑛 and then one
could establish a surjection from this algebra to one smaller
in order tomake a correspondence among states of this bigger
Boolean algebra and the smaller one.

On the other hand, to give a fair explanation about how
a system evolves when the entities can have state values in a
finite set would open the door to the definition and posterior
study of a fuzzy version of PDS.

Of course, one can also think in the possibility of consid-
ering an infinite set of state values for the entities. But, again,
this is not a natural situation in the processes modeled by
PDS.

Also in the original definition of CA in [21], it is allowed
to have an infinite number of cells in the system. Although
computer processes depend on a finite number of entities, the
concept of PDS and the results obtained in this work can be
extended to the case of infinite number of entities.

In the same sense as before, one can also think in the
possibility of considering an infinite number of entities and
a finite or infinite set of state values for the entities.

The notion of dynamically equivalent systems allows us to
describe theoretically the class of all dynamically equivalent
systems. Therefore, it should be desirable to find out some
properties in the dependency graph and the evolution oper-
ator which provide or characterize PDS equivalent to a given
one. A first approach in this sense appears in [91], where finite
sequential dynamical systems on binary strings are studied.
Several equivalence relations notions as isomorphic and stably
isomorphic are introduced, and the resulting equivalence
classes are studied. In this same sense, researching in the
conditions that provoke bifurcations is a compiling need.
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2004.

[49] P. Hogeweg, “Cellular automata as a paradigm for ecological
modeling,” Applied Mathematics and Computation, vol. 27, no.
1, pp. 81–100, 1988.

[50] U. Dieckman, R. Law, and J. A. J. Metz, The Geometry of Eco-
logical Interactions. Simplifying Spatial Complexity, Cambridge
University Press, Cambridge, UK, 2000.

[51] J. Hofbauer and K. Sigmund, Evolutionary Games and Popula-
tion Dynamics, Cambridge University Press, Cambridge, UK,
2003.

[52] G. Chiaselotti, G. Marino, P. A. Oliverio, and D. Petrassi,
“A discrete dynamical model of signed partitions,” Journal of
Applied Mathematics, vol. 2013, Article ID 973501, 10 pages,
2013.



14 Journal of Applied Mathematics

[53] C. Bisi and G. Chiaselotti, “A class of lattices and boolean
functions related to the Manickam-Miklös-Singhi conjecture,”
Advances in Geometry, vol. 13, no. 1, pp. 1–27, 2013.

[54] C. Bisi, G. Chiaselotti, and P. A. Oliverio, “Sand piles models of
signed partitions with d piles,” ISRN Combinatorics, vol. 2013,
Article ID 615703, 7 pages, 2013.

[55] G.Chiaselotti, T.Gentile, G.Marino, andP.A.Oliverio, “Parallel
rank of two sandpile models of signed integer partitions,”
Journal of Applied Mathematics, vol. 2013, Article ID 292143, 12
pages, 2013.

[56] G. Chiaselotti, T. Gentile, and P. A. Oliverio, “Parallel and
sequential dynamics of two discrete models of signed integer
partitions,”Applied Mathematics and Computation, vol. 232, pp.
1249–1261, 2014.

[57] G. Chiaselotti, W. Keith, and P. A. Oliverio, “Two self-dual
lattices of signed integer partitions,” Applied Mathematics &
Information Sciences, vol. 8, no. 6, pp. 3191–3199, 2014.

[58] B. Chopard and M. Droz, Cellular Automata for Modeling
Physics, Cambridge University Press, Cambridge, UK, 1998.

[59] L. B. Kier, P. G. Seybold, and C.-K. Cheng, Modeling Chemical
SystemsUsing Cellular Automata, Springer, NewYork, NY,USA,
2005.

[60] M. Schnegg and D. Stauffer, “Dynamics of networks and
opinions,” International Journal of Bifurcation and Chaos, vol.
17, no. 7, pp. 2399–2409, 2007.

[61] T. C. Shelling, “Dynamic models of segregation,” Journal of
Mathematical Sociology, vol. 1, pp. 143–186, 1971.

[62] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, “Two
lane traffic simulations using cellular automata,” Physica A, vol.
231, no. 4, pp. 534–550, 1996.

[63] A. Dorin, “Boolean networks for the generation of rhythmic
structure,” in Proceedings of the Australian Computer Music
Conference, pp. 38–45, 2000.

[64] J. A. Aledo, S. Mart́ınez, and J. C. Valverde, “Parallel dynamical
systems over special digraph classes,” International Journal of
Computer Mathematics, vol. 90, no. 10, pp. 2039–2048, 2013.

[65] J. A. Aledo, S. Mart́ınez, and J. C. Valverde, “Graph dynamical
systems with general boolean states,” Applied Mathematics &
Information Sciences, vol. 9, no. 4, pp. 1–6, 2015.

[66] B. Derrida and Y. Pomeau, “Randomnetworks of automata: a
simple annealed approximation,” Europhysics Letters, vol. 1, no.
2, pp. 45–49, 1986.

[67] W. Y. C. Chen, X. Li, and J. Zheng, “Matrix method for linear
sequential dynamical systems on digraphs,” Applied Mathemat-
ics and Computation, vol. 160, no. 1, pp. 197–212, 2005.

[68] O. Colón-Reyes, R. Laubenbacher, and B. Pareigis, “Boolean
monomial dynamical systems,” Annals of Combinatorics, vol. 8,
no. 4, pp. 425–439, 2004.

[69] E. A. Bender and S. G. Williamson, A Short Course in Discrete
Mathematics, Dover Publications, New York, NY, USA, 2005.

[70] K.Morita, “Reversible cellular automata,” Journal of Information
Processing, vol. 35, pp. 315–321, 1994.

[71] T. Toffoli and N. H. Margolus, “Invertible cellular automata: a
review,” Physica D: Nonlinear Phenomena, vol. 45, no. 1–3, pp.
229–253, 1990.

[72] S. Wiggins, Introduction to Applied Nonlinear Systems and
Chaos, vol. 2 of Texts in Applied Mathematics, Springer, New
York, NY, USA, 1990.

[73] R. A. Hernández Toledo, “Linear finite dynamical systems,”
Communications in Algebra, vol. 33, no. 9, pp. 2977–2989, 2005.

[74] J. E. Hopcroft and J. D. Ullman, Introduction to Automata
Theory, Languages and Computation, Addison-Wesley, Reading,
Mass, USA, 1979.

[75] M. Sipser, Introduction to the Theory of Computation, PWS
Publishing Company, Boston, Mass, USA, 1997.

[76] J. L. Guirao, F. L. Pelayo, and J. C. Valverde, “Modeling the
dynamics of concurrent computing systems,” Computers &
Mathematics with Applications, vol. 61, no. 5, pp. 1402–1406,
2011.

[77] F. L. Pelayo and J. C.Valverde, “Notes onmodeling the dynamics
of concurrent computing systems,” Computers & Mathematics
with Applications, vol. 64, no. 4, pp. 661–663, 2012.

[78] W. Reisig and G. Rozenberg, Lectures on Petri Nets I: Basic
Models: Advances in Petri Nets, vol. 1491 of Lecture Notes in
Computer Science, Springer, New York, NY, USA, 1998.

[79] E. F. Moore, “Machine models of self-reproduction,” inMathe-
matical Problems in the Biological Sciences, vol. 14 of Proceedings
of Symposia in Applied Mathematics, pp. 17–33, 1962.

[80] T. W. Hungerford, Algebra, vol. 73 of Graduate Texts in Mathe-
matics, Springer, New York, NY, USA, 1974.

[81] M. Gardner, “On cellular automat, self-reproduction, the Gar-
den of Eden and the game life,” Scientic American, vol. 224, pp.
112–117, 1971.

[82] T. Toffoli, “Cellular automata as an alternative to (rather than an
approximation of) differential equations in modeling physics,”
Physica D, vol. 10, no. 1-2, pp. 117–127, 1984.

[83] T. Toffoli and N. Margolus, Cellular Automata Machines, MIT
Press, Cambridge, Mass, USA, 1987.

[84] H. J. Blok and B. Bergersen, “Synchronous versus asynchronous
updating in the ‘game of Life’,” Physical Review E: Statistical
Physics, Plasmas, Fluids, and Related Interdisciplinary Topics,
vol. 59, no. 4, pp. 3876–3879, 1999.

[85] T. Mihaela, T. Matache, and J. Heidel, “Asynchronous random
Boolean network model based on elementary cellular automata
rule 126,” Physical Review E, vol. 71, no. 2, Article ID 026232, pp.
1–13, 2005.

[86] B. Schönfisch and A. de Roos, “Synchronous and asynchronous
updating in cellular automata,” BioSystems, vol. 51, no. 3, pp.
123–143, 1999.

[87] R. V. Sole, B. Luque, and S. A. Kauffman, “Phase transitions in
random networks with multiple states,” Tech. Rep. 00-02-011,
Santa Fe Institute, 2000.

[88] B. Luque and F. J. Ballesteros, “Randomwalk networks,” Physica
A, vol. 342, no. 1-2, pp. 207–213, 2004.

[89] I. Shmulevich and E. R. Dougherty, Probabilistic Boolean Net-
works: The Modeling and Control of Gene Regulatory Networks,
SIAM, Philadelphia, Pa, USA, 2010.

[90] J. A. Aledo, S. Mart́ınez, and J. C. Valverde, “Updating method
for the computation of orbits in parallel and sequential dynam-
ical systems,” International Journal of Computer Mathematics,
vol. 90, no. 9, pp. 1796–1808, 2013.

[91] R. Laubenbacher and B. Pareigis, “Equivalence relations on
finite dynamical systems,” Advances in Applied Mathematics,
vol. 26, no. 3, pp. 237–251, 2001.


