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User friendly algorithm based on the optimal homotopy analysis transformmethod (OHATM) is proposed to find the approximate
solutions to generalized Abel’s integral equations. The classical theory of elasticity of material is modeled by the system of Abel
integral equations. It is observed that the approximate solutions converge rapidly to the exact solutions. Illustrative numerical
examples are given to demonstrate the efficiency and simplicity of the proposed method. Finally, several numerical examples are
given to illustrate the accuracy and stability of this method. Comparison of the approximate solution with the exact solutions shows
that the proposed method is very efficient and computationally attractive. We can use this method for solving more complicated
integral equations in mathematical physical.

1. Introduction

An integral equation is defined as an equation in which the
unknown function 𝑦(𝑥) to be determined appears under the
integral sign. The subject of integral equations is one of the
most useful mathematical tools in both pure and applied
mathematics. It has enormous applications in many phys-
ical problems. Many initial and boundary value problems
associated with ordinary differential equation (ODE) and
partial differential equation (PDE) can be transformed into
problems of solving some approximate integral equations.
Abel’s equation is one of the integral equations derived
directly from a concrete problem of physics, without passing
through a differential equation.This integral equation occurs
in the mathematical modeling of several models in physics,
astrophysics, solid mechanics, and applied sciences. The
great mathematician Niels Abel gave the initiative of integral
equations in 1823 in his study of mathematical physics [1–
4]. In 1924, generalized Abel’s integral equation on a finite

segment was studied by Zeilon [5].The different types of Abel
integral equation in physics have been solved by Pandey et al.
[6], Kumar and Singh [7], Kumar et al. [8], Dixit et al. [9],
Yousefi [10], Khan and Gondal [11], and Li and Zhao [12] by
applying various kinds of analytical and numerical methods.

The development of science has led to the formation of
many physical laws, which, when restated in mathematical
form, often appear as differential equations. Engineering
problems can be mathematically described by differential
equations, and thus differential equations play very important
roles in the solution of practical problems. For example,
Newton’s law, stating that the rate of change of themomentum
of a particle is equal to the force acting on it, can be translated
into mathematical language as a differential equation. Simi-
larly, problems arising in electric circuits, chemical kinetics,
and transfer of heat in a medium can all be represented
mathematically as differential equations.

The main aim of this paper is to present analytical and
approximate solution of integral equations by using new
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mathematical tool like optimal homotopy analysis transform
method. The proposed method is coupling of the homotopy
analysis method HAM and Laplace transform method. The
HAM, first proposed in 1992 by Liao, has been successfully
applied to solve many problems in physics and science [13–
18]. In recent years many authors have paid attention to
study the solutions of linear and nonlinear partial differential
equations by using variousmethods of approximate solutions
such as HAM, HPM, and ADM combined with the Laplace
transform [19–27].

A typical form of an integral equation in 𝑦(𝑥) is of the
form

y (x) = f (x) + 𝜆∫
𝛽(𝑥)

𝛼(𝑥)
K (x, t) y (t) dt, (1)

where 𝐾(𝑥, 𝑡) is called the kernel of integral equation (1) and
𝛼(𝑥) and 𝛽(𝑥) are the limits of integration. It can be easily
observed that the unknown function 𝑦(𝑥) appears under
the integral sign. It is to be noted here that both the kernel
𝐾(𝑥, 𝑡) and the function 𝑓(𝑥) in (1) are given functions;
and 𝜆 is a constant parameter. The prime objective of this
text is to determine the unknown function 𝑦(𝑥) that will
satisfy (1) using a number of solution techniques. We will
devote considerable efforts in exploring thesemethods to find
solutions of the unknown function, so that we can deduce the
exact solution of the integral equation (1).

2. Basic Idea of Optimal Homotopy Analysis
Transform Method

In order to elucidate the solution procedure of the optimal
homotopy analysis transform method, we consider the fol-
lowing integral equations of second kind:

y (x) = f (x) + ∫
x

0
K (x, t) y (t) dt, 0 ≤ x ≤ 1. (2)

Now operating the Laplace transformon both sides in (2),
we get

L [y (x)] = L [f (x)] + L{∫
x

0
K (x, t) y (t) dt} . (3)

We define the nonlinear operator

N [𝜙 (x; q)] = L [𝜙 (x; q)] − L [f (x)]

− L{∫
x

0
K (x, t)𝜙 (x; q) dt} ,

(4)

where 𝑞 ∈ [0, 1] is an embedding parameter and 𝜙(x; q) is
the real function of 𝑥 and 𝑞. By means of generalizing the
traditional homotopymethods, the greatmathematician Liao
[13, 14] constructed the zero order deformation equation

(1 − q) L [𝜙 (x; q) − y0 (𝑥)] = ℏqH (𝑥)N [𝜙 (x; q)] , (5)

where is a nonzero auxiliary parameter, H(𝑥) ̸= 0 is an
auxiliary function, y0(x) is an initial guess of y(x), and

𝜙(x; q) is an unknown function. It is important that one
has great freedom to choose auxiliary thing in OHATM.
Obviously, when 𝑞 = 0 and 𝑞 = 1, it holds

𝜙 (x; 0) = y0 (𝑥) , 𝜙 (x; 1) = y (𝑥) , (6)

respectively. Thus, as 𝑞 increases from 0 to 1, the solution
varies from the initial guess to the solution. Expanding𝜙(𝑥; 𝑞)
in Taylor’s series with respect to 𝑞, we have

𝜙 (x; q) = y0 (x, t) +
∞

∑

m=1
q𝑚y𝑚 (x) , (7)

where

y𝑚 (x) =
1

𝑚!

𝜕
𝑚
𝜙 (x; q)
𝜕𝑞𝑚

𝑞=0

. (8)

If the auxiliary linear operator, the initial guess, the
auxiliary parameter ℏ, and the auxiliary function are properly
chosen, series (7) converges at 𝑞 = 1 and we have

y (x) = y0 (x) +
∞

∑

m=1
y𝑚 (x) , (9)

which must be one of the solutions of the original integral
equations. Define the vectors

⃗𝑦𝑛 = {y0 (𝑥) , y1 (𝑥) , . . . , y𝑛 (𝑥)} . (10)

Differentiating (6) 𝑚-times with respect to the embed-
ding parameter 𝑞, then setting 𝑞 = 0, and finally dividing
them by𝑚!, we obtain the𝑚th order deformation equation

L [y𝑚 (x) − 𝜒𝑚y𝑚−1 (x)] = ℏqH (x)R𝑚 (ỹ𝑚−1, 𝑥) , (11)

where

R𝑚 (ỹ𝑚−1, 𝑥) =
1

(𝑚 − 1)!

𝜕
𝑚−1
𝜙 (𝑥; 𝑞)

𝜕𝑞𝑚−1

q=0
,

𝜒𝑚 =
{

{

{

0 𝑚 ≤ 1,

1 𝑚 > 1.

(12)

In this way, it is easy to obtain y𝑚(x) for𝑚 ≥ 1, at𝑚th order;
we have

y (x) =
𝑀

∑

m=0
y𝑚 (x) . (13)

When𝑀 → ∞we get an accurate approximation of original
equation (2).

Many recently references such as [28–30] have applied the
homotopy analysis method to nonlinear ODEs and discussed
the optimizationmethod to find out the optimal convergence
control parameters by minimum of the square residual error
integrated in the whole region. Their approach is based on
the square residual error. Let Δ(ℎ) denote the square residual
error of governing equation (2) and it is expressed as

Δ (ℎ) = ∫
Ω
(𝑁 [𝑢𝑛 (𝑡)])

2
𝑑Ω, (14)
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where

𝑢𝑚 (𝑡) = 𝑢0 (𝑡) +

𝑚

∑

𝑘=1

𝑢𝑘 (𝑡) (15)

and the optimal value of ℎ is given by a nonlinear algebraic
equation as

𝑑Δ (ℎ)

𝑑ℎ
= 0. (16)

3. Numerical Results

In this section, we discuss the implementation of our pro-
posed algorithm and investigate its accuracy by applying the
homotopy analysis transform method. The simplicity and
accuracy of the proposed method are illustrated through
the following numerical examples by computing the absolute
error:

𝐸𝑖 (𝑥) = ↿ 𝑢𝑖 (𝑥) − 𝑢𝑖𝑚 (𝑥) ↿, 1 ≤ 𝑖 ≤ 𝑛, (17)

where 𝑢𝑖(𝑥) is the exact solution of the integral equations and
𝑢𝑖𝑚(𝑥) is the approximate solution of the integral equations.

To demonstrate the effectiveness of theHATMalgorithm,
we have discussed above, several examples for some integral
equations in this section. Here all the results are calculated by
using the symbolic calculus software Mathematica 7.

Example 1. Consider the following system of Abel’s integral
equations [31]:

u (x) + ∫
x

0

k (t)
√x − t

dt = 𝑥 + 𝜋
2
𝑥, 0 ≤ 𝑥 ≤ 1,

k (x) + 1
2
∫

x

0

u (t) + k (t)
√x − t

dt = √x + 2
3
𝑥
3/2
+
𝜋

4
𝑥,

(18)

with the initial condition

u (x, 0) = x + 𝜋
2
x,

k (x, 0) = √x + 2
3
𝑥
3/2
+
𝜋

4
𝑥

(19)

and the exact solution

u (x) = x,

k (x) = √x,
(20)

where

L [𝜙 (𝑥; 𝑞)] = 𝐿 [𝜙 (𝑥; 𝑞)] , (21)

with the property that

L [𝑐] = 0, 𝑐 is constants, (22)

which implies that

L
−1
(∙) = ∫

𝑡

0
(∙) 𝑑𝑡. (23)

Taking Laplace transform of (18) of both sides subject to
the initial condition, we get

L [u (x)] − L [x + 𝜋2
x] + √𝜋

s
(L [k (x)]) = 0,

L [k (x)] − L [√x + 2
3
x3/2 + 𝜋

4
x]

+
1

2
√
𝜋

s
(L [u (x)] + L [k (x)]) = 0.

(24)

We now define the nonlinear operator as

N [𝜙1 (x; q) ,𝜙2 (x; q)]

= L [𝜙1 (x; q)] − L [x +
𝜋

2
x] + √𝜋

s
L [𝜙2 (x; q)] = 0,

N [𝜙1 (x; q) ,𝜙2 (x; q)]

= L [𝜙2 (x; q)] − L [√x +
2
3
x3/2 + 𝜋

4
x]

+
1
2
√
𝜋

s
L [𝜙1 (x; q) + 𝜙2 (x; q)] = 0,

(25)

and then the𝑚th order deformation equation is given by

L [u𝑚 (x) − 𝜒𝑚u𝑚−1 (x)] = ℏ1H1 (x)R1𝑚 (�⃗�𝑚−1) ,

L [k𝑚 (x) − 𝜒𝑚k𝑚−1 (x)] = ℏ2H2 (x)R2𝑚 (V⃗𝑚−1) .
(26)

Taking inverse Laplace transform of (26), we get

u𝑚 (x) = 𝜒𝑚u𝑚−1 + ℏ1L
−1
[H1 (x)R1m (�⃗�m−1)] ,

k𝑚 (x) = 𝜒𝑚k𝑚−1 + ℏ2L
−1
[H1 (x)R2m (V⃗m−1)] ,

(27)

where

R1𝑚 (�⃗�𝑚−1) = L [um−1] − L [x +
𝜋

2
x] (1 − 𝜒𝑚)

+ √
𝜋

s
(L [k𝑚−1]) ,

R2𝑚 (V⃗𝑚−1) = L [km−1] − L [√x +
2
3
x3/2 + 𝜋

4
x] (1 − 𝜒𝑚)

+
1
2
√
𝜋

s
(L [um−1] + L [k𝑚−1]) ,

(28)

with the assumptionH1(x) = H2(x) = 1.
Let us take the initial approximation as

u0 (𝑥) = x + 𝜋
2
x,

k0 (𝑥) = √x +
2
3
x3/2 + 𝜋

4
x.

(29)



4 Journal of Applied Mathematics

The other components are given by

u1 (𝑥) =
ℎ𝜋x
2
+
1

3
ℎ𝜋x3/2 + 1

4
ℎ𝜋x2,

k1 (𝑥) =
ℎ𝜋x
4
+
1

6
ℎ (4 + 3𝜋) x3/2 + 1

8
ℎ𝜋x2,

u2 (𝑥) =
1

2
ℎ (1 + ℎ)𝜋x + 1

3
ℎ (1 + 2ℎ)𝜋x3/2

+
1

16
ℎ𝜋 (4 + ℎ (8 + 3𝜋)) x2 + 2

15
ℎ
2
𝜋x5/2,

k2 (𝑥) =
1

4
ℎ (1 + ℎ)𝜋x + 1

6
ℎ (4 + 3𝜋 + ℎ (4 + 6𝜋)) x3/2

+
1

32
ℎ𝜋 (4 + ℎ (8 + 5𝜋)) x2 + 1

5
ℎ
2
𝜋x5/2,

.

.

.

.

.

.

(30)

Proceeding in this manner, the rest of the components
𝑦𝑛(𝑥) for 𝑛 ≥ 5 can be completely obtained and the series
solutions are thus entirely determined. The solution of the
problem is given as

y (x) = y0 (𝑥) +
∞

∑

m=1
y𝑚 (x) ; (31)

however, mostly, the results given by the Laplace decom-
position method and homotopy analysis transform method
converge to the corresponding numerical solutions in a rather
small region. But, different from those two methods, the
homotopy analysis transform method provides us with a
simple way to adjust and control the convergence region of
solution series by choosing a proper value for the auxiliary ℎ;
if we select ℎ = −1, then

u (x) = u0 (𝑥) +
∞

∑

m=1
u𝑚 (x)

=

𝑛

∑

i=0
y𝑖 (x) +O (x

3/2+𝑛/2
)

→ 𝑥 as 𝑛 → ∞, ℎ = −1,

k (x) = k0 (𝑥) +
∞

∑

m=1
k𝑚 (x)

=

𝑛

∑

i=0
k𝑖 (x) +O (x

3/2+𝑛/2
)

→ √x as 𝑛 → ∞, ℎ = −1.

(32)

The above result is in complete agreement with [31].
The graphical comparison between the exact solution and

the approximate solution which obtained by the HATM at

ℎoptimal = −0.98. It can be seen that the solution obtained by
the present method nearly identical to the exact solution.The
above result is in complete agreement with [31].

Example 2. In this example, we considered the following
system of Abel integral equations of second kind as

u (x) + 1
4
∫

x

0

k (t) − u (t)
√x − t

dt = √𝑥 + 3𝜋
32
𝑥
2
−
𝜋

8
𝑥,

0 ≤ 𝑥 ≤ 1,

k (x) + 2∫
x

0

u (t)
√x − t

dt = 𝑥3/2 + 𝜋𝑥,

(33)

with the initial condition

u0 (𝑥) = √x +
3𝜋
32

x2 − 𝜋
8
x,

k0 (𝑥) = x3/2 + 𝜋x,
(34)

with the exact solution
u (x) = √x,

k (x) = x3/2,
(35)

where

L [𝜙 (𝑥; 𝑞)] = 𝐿 [𝜙 (𝑥; 𝑞)] , (36)

with the property that

L [𝑐] = 0, 𝑐 is constants, (37)

which implies that

L
−1
(∙) = ∫

𝑡

0
(∙) 𝑑𝑡. (38)

Taking Laplace transform of (33) of both sides subject to
the initial condition, we get

L [u (x)] − L [√x + 3𝜋
32

x2 − 𝜋
8
x]

+
1

4
√
𝜋

s
(L [k (x)] − L [y (x)]) = 0,

L [k (x)] − L [x3/2 + 𝜋x] + 2√𝜋s
(L [u (x)]) = 0.

(39)

We now define the nonlinear operator as

N [𝜙1 (x; q) ,𝜙2 (x; q)]

= L [𝜙1 (x; q)] − L [√x +
3𝜋
32

x2 − 𝜋
8
x]

+
1
4
√
𝜋

s
(L [𝜙2 (x; q)] − L [𝜙1 (x; q)]) = 0,

N [𝜙1 (x; q) ,𝜙2 (x; q)]

= L [𝜙2 (x; q)] − L [x
3/2
+ 𝜋x] + 2√𝜋

s
L [𝜙1 (x; q)] = 0,

(40)
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and then the𝑚th order deformation equation is given by

L [u𝑚 (x) − 𝜒𝑚u𝑚−1 (x)] = ℏ1H1 (x)R1𝑚 (�⃗�𝑚−1) ,

L [k𝑚 (x) − 𝜒𝑚k𝑚−1 (x)] = ℏ2H2 (x)R2𝑚 (V⃗𝑚−1) .
(41)

Taking inverse Laplace transform of (41), we get

u𝑚 (x) = 𝜒𝑚u𝑚−1 + ℏ1L
−1
[H1 (x)R1m (�⃗�m−1)] ,

k𝑚 (x) = 𝜒𝑚k𝑚−1 + ℏ2L
−1
[H1 (x)R2m (V⃗m−1)] ,

(42)

where

R1𝑚 (�⃗�𝑚−1) = L [um−1] − L [√x +
3𝜋
32

x2 − 𝜋
8
x] (1 − 𝜒𝑚)

+ √
𝜋

s
(L [k𝑚−1]) ,

R2𝑚 (V⃗𝑚−1) = L [km−1] − L [x
3/2
+ 𝜋x] (1 − 𝜒𝑚)

+
1
2
√
𝜋

s
(L [um−1] + L [k𝑚−1]) ,

(43)

with the assumptionH1(x) = H2(x) = 1.
Let us take the initial approximation as

u0 (𝑥) = √x +
3𝜋
32

x2 − 𝜋
8
x,

k0 (𝑥) = x3/2 + 𝜋x.
(44)

The other components are given by

u1 (𝑥) = −
1

8
ℎ𝜋x + 3

8
ℎ𝜋x3/2 + 3

32
ℎ𝜋x2 − 1

40
ℎ𝜋x5/2,

k1 (𝑥) = ℎ𝜋x −
1

3
ℎ𝜋x3/2 + 1

5
ℎ𝜋x5/2,

u2 (𝑥) = −
1

8
ℎ (1 + ℎ)𝜋x + 3

8
ℎ (1 + 2ℎ)𝜋x3/2

+
1

256
ℎ (24 + ℎ (24 − 17𝜋))𝜋x2

−
1

40
ℎ (1 + 2ℎ)𝜋x5/2 + 9

512
ℎ
2
𝜋
2
𝑥
3
,

k2 (𝑥) = ℎ (1 + ℎ)𝜋x −
1

3
ℎ (1 + 2ℎ)𝜋x3/2

+
9

32
ℎ
2
𝜋
2
𝑥
2
+
1

5
ℎ (1 + 2ℎ)𝜋x5/2 − 1

64
ℎ
2
𝜋
2
𝑥
3
,

.

.

.

.

.

.

(45)

Table 1: The values of ℎ.

The values of ℎ-curve derived from Figures 2 and 3
𝑢(𝑥) −1.15 ≤ ℎ ≤−0.4
V(𝑥) −1.11 ≤ ℎ ≤−0.4

Table 2: The values of ℎ.

The values of ℎ-curve derived from Figures 5 and 6
𝑢(𝑥) −1.2 ≤ ℎ ≤−0.8
V(𝑥) −1.1 ≤ ℎ ≤−0.94

Hence the solution of (41) is given as

u (x) = u0 (𝑥) +
∞

∑

m=1
u𝑚 (x)

=

𝑛

∑

i=0
y𝑖 (x) +O (x

2+𝑛/2
)

→ √x as 𝑛 → ∞, ℎ = −1,

k (x) = k0 (𝑥) +
∞

∑

m=1
k𝑚 (x)

=

𝑛

∑

i=0
k𝑖 (x) +O (x

2+𝑛/2
)

→ x3/2 as 𝑛 → ∞, ℎ = −1.

(46)

The homotopy analysis transformmethod provides us with a
simple way to adjust and control the convergence region of
solution series by choosing a proper value for the auxiliary
parameter ℎ; if we select ℎ = −1, then the above result is in
complete agreement with [31].

In general, by means of the so-called ℎ-curve, it is
straightforward to choose an appropriate range for ℎ which
ensures the convergence of the solution series. To study the
influence of ℎ on the convergence of solution, the ℎ-curves
of 𝑢(0.1) and V(0.1) are sketched, as shown in Figures 5 and
6 (see Table 1). For better presentation, these valid regions
have been listed in Table 2. The absolute error 𝐸(𝑥) = 𝑢exact −
𝑢OHATM is exhibited in Figure 4 and also from Figures 1 to 6
we show the graphical comparison between the exact solution
and the approximate solution obtained by the OHATM. It
can be seen that the solution obtained by the present method
nearly identical to the exact solution. The above result is in
complete agreement with [31].

4. Conclusions

The main aim of this work is to provide the system of
Abel integral equations of the second kind which has been
studied by the optimal homotopy analysis transformmethod
OHATM. The OHATM is more suitable than other analytic
methods. OHATM is coupling of homotopy analysis and
Laplace transform method. The new modification is a pow-
erful tool to search for solutions of Abel’s integral equation.
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Figure 1: The absolute error between the exact solution and the approximate solution of Abel integral equation (18) at ℎoptimal = −0.98.
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Figure 2: The HATM approximate solutions 𝑢(𝑥) with 𝑥 = 0.1 lead to the ℎ-curves.
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Figure 3: The HATM approximate solutions V(𝑥) with 𝑥 = 0.1 lead to the ℎ-curves.
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Figure 5: The curves are gotten from the HATM approximate solutions of 𝑢(𝑥) with 𝑥 = 0.1.
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An excellent agreement is achieved. The proposed method
is employed without using linearization, discretization, or
transformation. It may be concluded that the OHATM is
very powerful and efficient in finding the analytical solutions
for a wide class of differential and integral equations. The
approximate solution of this system is calculated in this form
of series whose components are computed by applying a
recursive relation. Results indicate that the solution obtained
by this method converges rapidly to an exact solution. The
graphs plotted confirm the results.
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