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For mixed uncertainties of random variables and fuzzy variables in engineering, three indices, that is, interval reliability index,
mean reliability index, and numerical reliability index, are proposed to measure safety of structure. Comparing to the reliability
membership function for measuring the safety in case of mixed uncertainties, the proposed indices are more intuitive and easier to
represent the safety degree of the engineering structure, and they are more suitable for the reliability design in the case of the mixed
uncertainties. The differences and relations among three proposed indices are investigated, and their applicability is compared.
Furthermore, a technique based on the probability density function evolution method is employed to improve the computational
efficiency of the proposed indices. At last, a numerical example and two engineering examples are illustrated to demonstrate the
feasibility, reasonability, and efficiency of the computational technique of the proposed indices.

1. Introduction

Uncertainty in engineering can be classified into two differ-
ent types: aleatory uncertainty and epistemic one. Aleatory
uncertainty, referred to as objective, stochastic, is due to
inherent variability in the system, and epistemic uncertainty,
referred to as subjective, is due to lack of knowledge and
information [1–3]. Epistemic uncertainty can be reduced by
acquiring knowledge and information in the system, while
the aleatory uncertainty cannot, and for this reason it is
sometimes called irreducible uncertainty.

Traditionally, the aleatory uncertainty is taken into con-
sideration in reliability-based design, named as random vari-
ables, which requires completely statistical information by
probability distribution to describe these aleatory uncertain-
ties [4–6]. However, the epistemic uncertainties may not be
appropriately represented by the probability distributions, in
the case where the fuzzy theory can be used to deal with these
epistemic uncertainties, usually named as fuzzy variables, by
the membership functions [7–10]. In engineering problems,
the random variables and the fuzzy ones exist simultaneously.
Therefore, it is important to establish a suitable reliability

model to measure the safety of the structure in case of the
mixture of random and fuzzy variables. Möller et al. [11]
introduced a methodology for estimating the membership
function of the safety index by considering fuzzy random-
ness. They formulated a Fuzzy First Order Reliability Method
(FFORM) that simultaneously permits the usage of fuzzy
variables and random variable. Using this method, the relia-
bilitymembership function can be estimated. But the calcula-
tion of the failure probability is prone to errors. And stability
approaches to the problems with uncertainty are also devel-
oped by Lai et al. [12],Matsveichuk et al. [13]. Adduri andPen-
metsa [14, 15] developed a technique to improve the efficiency
of propagating the fuzziness and randomness of the basic
variables to the corresponding response variables largely, in
which the transformation techniques and the convolution
integral by the Fast Fourier Transformation (FFT) are com-
bined to solve the membership function of the response vari-
able. However, the technique depends on the quadratic poly-
nomial without cross-terms (QPWCT); thus it is not suitable
for the high nonlinear response function, and the cross-term
of random variables and fuzzy variables cannot be included.
Furthermore, there is nomeasure about the safety in Adduri’s
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method. In summary, the existed methods dealing with mix-
ture of the fuzzy variables and the random variables are con-
cerned with themembership functions of the reliability index
and the response variable.Though themembership functions
are relatively complete to describe the fuzzy uncertainties of
the reliability and the response, their formulations are not
compact and cannot provide an intuitive evaluation of the dif-
ferent designs. Therefore, a series of reliability indices, which
can give an intuitive and compact result of the reliability, are
proposed in this paper, and a solution of the proposed indices
is proposed on the probability density evolution method
(PDEM) [16] and it can reduce the computational cost greatly
without losing accuracy.

2. New Reliability Indices with
Mixed Variables

Assuming the performance response function 𝑦 of the relia-
bility model is given by

𝑦 = 𝑔 (x) = 𝑔 (x
𝑅
, x
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According to the reliability theory, the reliability 𝑃
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and the failure probability 𝑃
𝑓
of the performance response

function 𝑔(x
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Since the performance function 𝑔(x
𝑅
, x
𝐹
) involves x

𝑅
and

x
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, 𝑃
𝑟
and 𝑃

𝑓
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𝑔(x
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The fuzzy variables can be evaluated by 𝜆-cuts [7], shown
in Figure 1, where 𝜆 is a given membership level. Different
𝜆-cuts correspond to different confidence bounds marked by
confidence 𝜆. Once the basic variables are defined by the
fuzzy membership functions, the 𝜆-cuts of the reliability 𝑃

𝑟

and the failure probability 𝑃
𝑓
at various membership level

𝜆 can be obtained according to the relations shown in (2).
Figure 2 shows the transformation from the membership
function of the basic fuzzy variables of x

𝐹
to that of the failure

probability 𝑃
𝑓
.

Denote 𝜆-cut x
𝐹
(𝜆) of the fuzzy variables x
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the traversal method with the traditional random reliability
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Figure 1: The membership function showing an 𝜆-cut.
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Figure 2: Transformation technique of membership function.
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𝑟
(𝜆), 𝑃
𝑓
(𝜆),

and x
𝐹
(𝜆) are listed, respectively, as follows:

𝑃
𝑟 (𝜆) = max (𝑃 {𝑔 (x

𝑅
, x
𝐹
) > 0 | x

𝐹
∈ x
𝐹 (𝜆)}) ,

𝑃
𝑟
(𝜆) = min (𝑃 {𝑔 (x

𝑅
, x
𝐹
) >0 | x

𝐹
∈ x
𝐹 (𝜆)}) ,

𝑃
𝑓 (𝜆) = max (𝑃 {𝑔 (x

𝑅
, x
𝐹
) ≤ 0 | x

𝐹
∈ x
𝐹 (𝜆)}) ,

𝑃
𝑓
(𝜆) = min (𝑃 {𝑔 (x

𝑅
, x
𝐹
) ≤ 0 | x

𝐹
∈ x
𝐹 (𝜆)}) .

(3)
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the following properties about the bounds of the 𝜆-cut of 𝑃
𝑟
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By taking the value of the membership level 𝜆 from 0 to
1, the membership functions 𝜇
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𝑃
𝑓
can be obtained by the decomposition theorem in the

fuzzy theory [17]. Obviously, the membership functions
𝜇
𝑃𝑟
(𝑃
𝑟
) and 𝜇
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(𝑃
𝑓
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reliability 𝑃
𝑟
and the failure probability 𝑃

𝑓
in the presence of

the random variables and the fuzzy variables, but the draw-
back is that the membership function cannot intuitively and
compactly reflect the degree of safety with mixed uncertain-
ties; it is inconvenient for comparing the safety degrees of the
different products and the reliability based design optimiza-
tion. Generally, it is not easy for the implicit performance
function to solve (3), either. According to these drawbacks of
themembership function of the reliability or the failure prob-
ability with mixed variables, the following new indices are
proposed on the basis of the membership function charac-
teristic.

2.1. Reliability Index I: Interval Reliability Index. The interval
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2.3. Reliability Index III: Numerical Reliability Index. The
above two new reliability indices require the optimization
methods or the transformationmethod to solve the upper and
the lower bounds of the reliability and the failure probability
at each membership level. However, it is difficult to compute
them for the implicit performance function 𝑔(x

𝑅
, x
𝐹
). In fact,

when x
𝐹
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𝐹
(𝜆), x
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𝐹
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𝐹
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as the uniform variables at the given 𝜆, the traditional relia-
bility analysis method can be used to compute the reliability
𝑃
𝑟
(𝜆) and the failure probability 𝑃

𝑓
(𝜆). Taking values of 𝜆

from0 to 1, the numerical reliability indices, that is, a new reli-
ability index 𝑃(III)

𝑟
and a new failure probability index 𝑃(III)

𝑓
,

are defined by
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where𝑓x𝐹(𝜆)(x𝐹(𝜆)) is the joint PDF of the assumed uniformly
distributed x

𝐹
(𝜆) and 𝑓x𝑅(x𝑅) is the joint PDF of the random

basic variables x
𝑅
.

Obviously, the following property holds by the definitions
of the numerical reliability indices:

𝑃
(III)
𝑟

+ 𝑃
(III)
𝑓

= 1. (10)

2.4. Comparison of New Indices. Comparing with the mem-
bership functions of the reliability and the failure probability,
the above three indices can provide more intuitive and
compact results to represent the safety degree in the case of
the mixed variables.They take the characters of the reliability
membership function from different perspectives; thus these
proposed indices can be named as the characteristic indices
of the reliabilitymembership function.The interval reliability
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index uses an interval to represent the safety degree of the
structure, which reflects the expectation of the extreme value
of the reliability and the failure probability as themembership
level obeying the uniform distribution in [0, 1]. The mean
reliability index evaluates the reliability from the perspective
of the mean of the interval reliability index, while the numer-
ical index directly transforms the fuzzy variables in the 𝜆-cuts
into the uniformly distributed random variables and then
uses the traditional random reliability analysis methods and
the fuzzy theory to obtain the numerical results. The numer-
ical reliability index is equivalent to the expectations of the
reliability, in which the membership level 𝜆 distributes in
[0, 1] uniformly and the fuzzy basic variables distribute in the
𝜆-cuts uniformly.

Analyzing their physical properties, we can find some
relations among the proposed three indices. The mean reli-
ability index is always the mean value of the interval one.The
definition of the numerical index is explicitly described by
the expectation of supposing the fuzzy basic variables as uni-
formly random variables, and it can be conveniently solved
by the traditional random reliability methods. When the
reliabilitymembership function is symmetrical or there exists
linear relation between the reliability and the fuzzy basic
variables, the mean reliability index is equal to the numerical
one. But in most engineering problems, the reliability mem-
bership functions are not symmetrical and there exists no
complete linear relation between the reliability and the fuzzy
basic variables; thus the mean reliability indices are not equal
to the numerical indices in this case.

In order to solve the interval reliability index and the
mean one, the extreme value of the reliability must be
obtained at eachmembership level 𝜆 by the optimummethod
or the traversal methods; their computational costs are
unacceptable for some implicit performance functions or
complex models. But the solution of the numerical reliability
index does not require the optimum or the traversal process.
By use of the traditional reliability methods, the solution of
the numerical reliability index is predigested largely. What is
more, the proposed numerical indices provide convenient
approaches to reliability optimization design. Firstly, in the
optimization design, it is difficult to optimize the member-
ship function but it is feasible to optimize the characteristic
indices of the reliability membership function. Secondly, the
sensitivity analysis of the characteristic indices of the reliabil-
ity membership function could give the proper optimization
directions, while it is impracticable to the membership
function index.

3. The PDEM-Based Solution of New
Reliability Indices

It is inevitable to compute the reliability or the failure prob-
ability in solving new reliability indices. The MCM and its
adaptivemethods are generalmethods to obtain the reliability
or the failure probability of structures with random variables
[18–20]. To obtain the interval reliability index and the mean
reliability index with mixed variables, when the member-
ship level is 𝜆, the fuzzy variables x

𝐹
take fixed value x∗

𝐹

within the 𝜆-cuts [x
𝐹
(𝜆), x
𝐹
(𝜆)], and the reliability 𝑃∗

𝑟
(𝜆) =

𝑃{𝑔(x
𝑅
, x∗
𝐹
) > 0} or the failure probability 𝑃∗

𝑓
(𝜆) = 𝑃{𝑔(x

𝑅
,

x∗
𝐹
) ≤ 0} can be got by the traditional reliability methods;

then the maximum and the minimum of the reliability or
the failure probability as x

𝐹
∈ [x
𝐹
(𝜆), x
𝐹
(𝜆)], that is, the

𝜆-cuts of the reliability or the failure probability, 𝑃
𝑟
(𝜆) and

𝑃
𝑓
(𝜆), can be obtained by using the optimization method

or the traversal method. Furthermore, the interval reliability
index [𝑃(I)

𝑟
, 𝑃
(I)
𝑟
] and [𝑃

(I)
𝑓
, 𝑃
(I)
𝑓
] can be obtained by (5); the

mean reliability index 𝑃(II)
𝑟

and 𝑃(II)
𝑓

can be obtained by (7).
To obtain the numerical reliability index, firstly, the fuzzy
variables x

𝐹
are transformed into the uniformly distributed

random variables in [x
𝐹
(𝜆), x
𝐹
(𝜆)]; namely, the performance

response function with mixed variables is transformed into
the performance response function with random variables;
the reliability 𝑃

𝑟
(𝜆) and the failure probability 𝑃

𝑓
(𝜆) can be

computed by the random reliability analysis methods; then
the numerical reliability index 𝑃

(III)
𝑟

and 𝑃
(III)
𝑓

with mixed
variables can be obtained by combining with the decompo-
sition theorem and (9).

However, the MCM and its adaptive methods involve
tremendous computational cost, which is impossible in most
engineering problems.Therefore, there is a clear requirement
to develop probability integration schemes that are applicable
for these problems.

Recently developed PDEM provides a high efficient
method to solve the PDF 𝑓

𝑌
(𝑦) of the performance response

function 𝑌 = 𝑔(x). If the PDF 𝑓
𝑌
(𝑦) can be obtained, the

reliability 𝑃
𝑟
and the failure probability 𝑃

𝑓
can be computed

conveniently by

𝑃
𝑟
= 𝑃 (𝑔 (x) > 0) = ∫

+∞

0

𝑓
𝑌
(𝑦) 𝑑𝑦,

𝑃
𝑓
= 𝑃 (𝑔 (x) ≤ 0) = ∫

0

−∞

𝑓
𝑌
(𝑦) 𝑑𝑦.

(11)

Due to the uncertainty of the performance function 𝑔(x)
completely originating from uncertain input basic variable,
a virtual stochastic process with 𝜏 as the virtual time can be
constructed as

𝑌 (𝜏) = 𝜑 (𝑔 (x) , 𝜏) = 𝜙 (x, 𝜏) (12)

and the virtual stochastic process satisfies the conditions
𝑌(𝜏)|
𝜏=0

= 0 and 𝑌(𝜏)|
𝜏=𝜏𝑐

= 𝑔(x), where 𝜏
𝑐
is the end of

the virtual time.
Denote𝑓

𝑌X(𝑦, x, 𝜏) as the joint PDF of variables𝑌(𝜏) and
x; then according to the probability conservation law [21],
the generalized probability density evolution equation can be
constructed as

𝜕𝑓
𝑌X (𝑦, x, 𝜏)

𝜕𝜏
+ ̇𝜙 (x, 𝜏)

𝜕𝑓
𝑌X (𝑦, x, 𝜏)

𝜕𝑦
= 0 (13)

and the initial condition is

𝑓
𝑌X (𝑦, x, 𝜏)

󵄨󵄨󵄨󵄨𝜏=0 = 𝛿 (𝑦) 𝑓X (x) , (14)

where ̇𝜙(x, 𝜏) = 𝜕𝜙(x, 𝜏)/𝜕𝜏 and 𝛿(⋅) is the Dirac function.



Journal of Applied Mathematics 5

𝑓
𝑌X(𝑦, x, 𝜏) can be obtained by solving the above partial

derivative equation, and 𝑓
𝑌
(𝑦, 𝜏) also can be obtained by

𝑓
𝑌
(𝑦, 𝜏) = ∫

ΩX

𝑓
𝑌X (𝑦, x, 𝜏) 𝑑x. (15)

Since 𝑌(𝜏
𝑐
) = 𝑔(x) = 𝑌, the PDF 𝑓

𝑌
(𝑦) of the perform-

ance response function 𝑌 = 𝑔(x) can be got by

𝑓
𝑌
(𝑦) = 𝑓

𝑌
(𝑦, 𝜏)

󵄨󵄨󵄨󵄨𝜏=𝜏𝑐
. (16)

In computational fluid dynamics [22], there are many
algorithms to solve the hyperbolic conservational partial
derivative equation as (13). Among the strategies of selecting
representative points of x, the number theoreticalmethod can
improve computational efficiency by reducing the dimension
of the input basic variables [23, 24]. In the finite difference
method for solving the equation, the difference scheme with
TVD nature or combined difference scheme can obtain
more precise result and reduce oscillatory and dissipation in
process of difference [16].

4. Examples

Three examples including a numerical example and two
engineering examples are used to demonstrate the feasibility
precision of the proposed indices and the efficiency of the
presented PDEM-based solution. For comparison, results of
three indices calculated by the Monte Carlo method (MCM)
are referred to as exact ones.

Example 1 (numerical example). The performance response
function [6] is given as

𝑔 (x) = 𝑥
2

1
+ 5𝑥
1
+ 2𝑥
2

2
+ 7𝑥
2
+ 𝑥
2

3
− 8𝑥
3
+ 𝑥
2

4
− 10𝑥

4
− 200,

(17)

where 𝑥
1
and 𝑥

2
are assumed to be normally distributed with

a mean of 10.0 and a standard deviation of 2.0. The variables
𝑥
3
and 𝑥

4
are assumed to be fuzzy variables, and their

membership functions are given by

𝜇
𝑥𝑖
(𝑥
𝑖
) =

{{{

{{{

{

(𝑥
𝑖
− 5)

5
5 ≤ 𝑥
𝑖
≤ 10

(15 − 𝑥
𝑖
)

5
10 ≤ 𝑥

𝑖
≤ 15

(𝑖 = 3, 4) . (18)

Figure 3 shows the membership functions of the failure
probability 𝑃

𝑓
estimated using the proposed PDEM-based

methodology and the Monte Carlo method (MCM), and
Table 1 displays three proposed reliability indices computed
by two methods, respectively. The results computed by two
methods are matched approximately, which testify that the
PDEM-based solution can improve the computational effi-
ciency largely without losing accuracy. For example, each fail-
ure probability needs to compute the performance function at
least 106 runs by the MCM, while that only needs 192 runs by
the PDEM-based solution. It also can be found that the mean
reliability index 𝑃(II)

𝑓
is the mean value of the interval relia-

bility index 𝑃(I)
𝑓
; the numerical reliability index 𝑃(III)

𝑓
reflects
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Figure 3: The membership function of 𝑃
𝑓
of Example 1.

Table 1: The reliability indices of Example 1.

𝑃
(I)
𝑓

𝑃
(II)
𝑓

𝑃
(III)
𝑓

PDEM [0.000559, 0.014275] 0.007417 0.003549

MCM [0.000636, 0.014555] 0.007595 0.003870

the safety degree in case of the mixture of random variables
and fuzzy variables from the perspective of supposing the
fuzzy variables 𝑥

3
and 𝑥

4
obeying the uniform distribution

in their 𝜆-cuts, and it is more approximate to the left side of
the above membership function in Figure 3.

Example 2 (roof truss structure). A roof truss [25] is shown
in Figure 4, the top boom and the compression bars are
reinforced by concrete, and the bottom boom and the tension
bars are steel. The uniform load 𝑞 (units: N/m) is applied
on the roof truss, it is assumed as a fuzzy set due to lack of
information and its membership function is constructed as

𝜇
𝑞
(𝑞) =

{{{

{{{

{

(𝑞 − 19000)

1000
19000 ≤ 𝑞 ≤ 20000

(21000 − 𝑞)

1000
20000 ≤ 𝑞 ≤ 21000.

(19)

Considering the safety and applicability, the perpen-
dicular deflection Δ

𝐶
of the peak of structure node 𝐶

not exceeding 3 cm is taken as the constraint condition,
where Δ

𝐶
is the function of the basic variables, and Δ

𝐶
=

(𝑞𝑙
2
/2)(3.81/𝐴

𝐶
𝐸
𝐶
+ 1.13/𝐴

𝑆
𝐸
𝑆
); 𝐴
𝐶
, 𝐴
𝑆
, 𝐸
𝐶
, 𝐸
𝑆
, and 𝑙 are

sectional area, elastic modulus, and length of the concrete
and steel bars, respectively; the distribution parameters of the
independent normally random variables are given in Table 2.

Figure 5 displays the membership functions of the failure
probability and Table 3 lists results of the proposed indices of
the roof truss structure by two methods, respectively.
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Figure 4: The schematic diagram of a roof truss.
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Figure 5:Themembership function of𝑃
𝑓
of the roof truss structure.

Table 2:Thedistributional parameters of the basic randomvariables
of roof truss.

Random
variable 𝑙 (m) 𝐴

𝑆
(m2) 𝐴

𝐶
(m2) 𝐸

𝑆
(N/m2) 𝐸

𝐶
(N/m2)

Mean 𝜇
𝑥

12 9.82 × 10
−4

0.04 1 × 10
11

2 × 10
10

Coefficient of
variance cov

𝑥

0.01 0.06 0.12 0.06 0.06

Table 3: The reliability indices of roof truss structure.

𝑃
(I)
𝑓

𝑃
(II)
𝑓

𝑃
(III)
𝑓

PDEM [0.000583, 0.002516] 0.001549 0.001270

MCM [0.000382, 0.003427] 0.001905 0.001220

Example 3 (the shaper mechanism). The shaper mechanism
[26] (in Figure 6) is a leader-slider mechanism; the mecha-
nism makes the linkage 𝑙

2
swing left and right around the

point𝑂
2
by turning thewinch 𝑙

1
at angular velocity and taking

the slider Amoving along the straight line, which finishes two
work processes including a work stroke and a void stroke. In
the mechanism, 𝑙

1
, 𝑙
2
, 𝑙
3
are modeled as normally distributed

random variables with mean values of 0.1m, 0.75m, 0.738m

d

x

y

A
l1

l2

l 3

O1

O2

Figure 6: The shaper mechanism scheme.

and the coefficients of variation are assumed to be 0.001 for all
of these random variables. The distance 𝑑 (units: m) between
points𝑂

1
and𝑂

2
is assumed as a fuzzy variable due to lack of

knowledge; its fuzzy membership function is

𝜇
𝑑 (𝑑) =

{{{

{{{

{

(𝑑 − 0.3988)

0.0012
0.3988 ≤ 𝑑 ≤ 0.4

(0.4012 − 𝑑)

0.0012
0.4 ≤ 𝑑 ≤ 0.4012.

(20)

To keep high process precision in its work stroke namely
that the error of the shave’s velocity must not exceed the
allowable value. Denote [𝑉] as the allowable value, x as the
basic input variables, V(x, 𝑡) as practical velocity response, and
V∗(x, 𝑡) as the ideal velocity response within its work stroke.
Construct the performance response function as

𝑌 (x, 𝑡) = 𝑔 (x, 𝑡) = [𝑉] −
󵄨󵄨󵄨󵄨V (x, 𝑡) − V∗ (x, 𝑡)󵄨󵄨󵄨󵄨 , 𝑡 ∈ [𝑡

1
, 𝑡
2
] .

(21)

Obviously, since inputs x are input variables with uncer-
tainty, the output response 𝑌(x, 𝑡) must be an uncertain
process; namely, the performance function is an uncertain
performance process, which also can be called the perfor-
mance response uncertain process. Generally, the solution of
𝑔(x, 𝑡) needs to solve infinite uncertain function, which is
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impossible in fact. But if at any point 𝑡
𝑖
of the process, the

performance function 𝑔(x, 𝑡
𝑖
) > 0, the mechanism’s motion

must be safe [27]. That is to say, in whole work stroke, if
theminimumof the performance response uncertain process
min
𝑡∈[𝑡1 ,𝑡2]

(𝑔(x, 𝑡)) > 0, the mechanism must be safe and reli-
able in its work stroke.Therefore, the reliability ofmechanism
kinematic accuracy 𝑃

𝑟
is computed as

𝑃
𝑟
= 𝑃( ⋂

𝑡𝑖∈[𝑡1 ,𝑡2]

𝑔 (x, 𝑡
𝑖
) > 0) = 𝑃( min

𝑡∈[𝑡1,𝑡2]

(𝑔 (x, 𝑡)) > 0) .

(22)

Similarly, the failure probability of mechanism kinematic
accuracy 𝑃

𝑓
is computed as

𝑃
𝑓
= 𝑃( ⋃

𝑡𝑖∈[𝑡1 ,𝑡2]

𝑔 (x, 𝑡
𝑖
) ≤ 0) = 𝑃( min

𝑡∈[𝑡1 ,𝑡2]

(𝑔 (x, 𝑡)) ≤ 0)

= 1 − 𝑅.

(23)

As 𝑡 ∈ [𝑡
1
, 𝑡
2
], denote the minimum of 𝑔(x, 𝑡) as 𝑧min,𝑇;

namely,

𝑧min,𝑇 = min
𝑡∈[𝑡1 ,𝑡2]

(𝑔 (x, 𝑡)) = min
𝑡∈[𝑡1 ,𝑡2]

([𝑉] −
󵄨󵄨󵄨󵄨V (x, 𝑡) − V∗ (x, 𝑡)󵄨󵄨󵄨󵄨) .

(24)

If PDF of the minimum of the performance stochastic
process 𝑔(x, 𝑡), that is, 𝑓

𝑧min,𝑇
(𝑧), can be solved, the reliability

𝑃
𝑟
and the failure probability 𝑃

𝑓
of the mechanism kinematic

accuracy can be computed by

𝑃
𝑟
= 𝑃( ⋂

𝑡𝑖∈[𝑡1 ,𝑡2]

𝑔 (x, 𝑡
𝑖
) > 0) = 𝑃( min

𝑡∈[𝑡1 ,𝑡2]

(𝑔 (x, 𝑡)) > 0)

= ∫

+∞

0

𝑓
𝑧min,𝑇

(𝑧) 𝑑𝑧,

𝑃
𝑓
= 𝑃( ⋃

𝑡𝑖∈[𝑡1 ,𝑡2]

𝑔 (x, 𝑡
𝑖
) ≤ 0) = 𝑃( min

𝑡∈[𝑡1 ,𝑡2]

(𝑔 (x, 𝑡)) ≤ 0)

= ∫

0

−∞

𝑓
𝑧min,𝑇

(𝑧) 𝑑𝑧.

(25)

According to the requirement of the shaper mechanism,
the allowable error of the velocity can be assumed as [𝑉] =
0.0016m/s. The membership functions of the failure prob-
ability and the reliability indices proposed in the paper can
be computed by the PDEM-based solution and the MCM,
respectively, and their results are shown in Figure 7 and
Table 4.

Examples 1 and 3 applied the proposed reliability indices
and presented methods into two engineering reliability mod-
els with mixture of random variables and fuzzy variables.
Three indices including the interval reliability index, the
mean reliability index, and the numerical reliability index are
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Figure 7: The membership function of 𝑃
𝑓
of Example 2.

Table 4: The reliability indices of Example 1.

𝑃
(I)
𝑓

𝑃
(II)
𝑓

𝑃
(III)
𝑓

PDEM [0, 0.019983] 0.010042 0.003638

MCM [0, 0.016791] 0.008395 0.003486

listed in Tables 3 and 4, and membership functions of two
examples are displayed in Figures 5 and 7. From that some
conclusions can be drawn. Firstly, the proposed indices can
reflect the safe degree of the structure and mechanism cor-
rectly. Among these reliability indices, the interval reliability
index reflects the safe degree in case of the structure with
mixed variables from the perspective of the expectation of
maximumand theminimumof the failure probability and the
mean reliability index provides the mean value of the interval
reliability index, while the numerical reliability index reflects
the safety degree of the structure/mechanism as supposing
the fuzzy basic variables as the uniformly distributed random
variables in their 𝜆-cuts. Secondly, results computed by the
PDEM-based method are approximate to that computed by
the MCM but which have a large advancement in compu-
tational efficiency, which provide an efficient and precise
solution to solve the reliability of structure or mechanism
in case of mixed variables. Of course, the more complex the
model is, the larger the computational error of the PDEM-
based method is, which can be solved by enhancing their
computational costs and net density in difference arithmetic.
Thirdly, examples show that the provided methods combin-
ingwith the extreme value transmission theory can solve both
the time-invariant problems like Example 2 and the time-
variant problems like Example 3, which provide a general and
feasible solution to these problems. Finally, the new proposed
indices can provide more intuitive and compact index than
ever, which establishes basement to have parametric relia-
bility sensitivity analysis and importance analysis in further
research.
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5. Summary

Based on the amount and type of available information,
either probability theory or possibility theory can be used
to describe different uncertainties. Whereas in most realistic
applications, the uncertain variables cannot completely be
assumed to be random variables or fuzzy variables in nature;
random and fuzzy variables often exist simultaneously in
engineering. Three reliability indices are proposed to intu-
itively and compactly represent the propagation of the uncer-
tainty through the performance response function with a
combination of random and fuzzy variables.

The PDEM-based solution is provided to avoid the
tremendously computational cost in the process of comput-
ing these indices. The reasonability of the proposed indices
and the efficiency of the presented PDEM-based method-
ology are demonstrated by the numerical and engineering
examples through the comparison of the results of the
PDEM-based method and those of Monte Carlo method.

In addition, the proposed reliability indices can provide
intuitive and compact information to reflect the safety degree
of the structure or mechanism containing mixed variables,
which could provide a convenient approach to the reliability
sensitivity analysis and importance analysis of parameters for
such problems in engineering.
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