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Calculation of assortative mixing by degree in networks indicates whether nodes with similar degree are connected to each other.
In networks with scale-free distribution high values of assortative mixing by degree can be an indication of a hub-like core in
networks. Degree correlation has generally been used to measure assortative mixing of a network. But it has been shown that degree
correlation cannot always distinguish properly between different networks with nodes that have the same degrees. The so-called
s-metric has been shown to be a better choice to calculate assortative mixing. The s-metric is normalized with respect to the class of
networks without self-loops, multiple edges, and multiple components, while degree correlation is always normalized with respect
to unrestricted networks, where self-loops, multiple edges, and multiple components are allowed. The challenge in computing the
normalized s-metric is in obtaining the minimum and maximum value within a specific class of networks. We show that this can
be solved by using linear programming. We use Lagrangian relaxation and the subgradient algorithm to obtain a solution to the s-
metric problem. Several examples are given to illustrate the principles and some simulations indicate that the solutions are generally

accurate.

1. Introduction

Assortative mixing by node degree (i.e., the number of con-
nections of a node) is the tendency of nodes to be connected
to other nodes of similar degree and an important concept
in network analysis [1-3]. For example, assortative mixing in
social networks could reflect the notion that well-connected
people, who know many people, have a tendency to know
mainly other well-connected people [4]. Or in a network
of actors, where connections indicate that actors worked
together on a film, actors with many connections are likely
to have worked together with other well-connected actors [5].
As a final example, in symptom networks in psychopathology,
where connections represent symptoms belonging to the
same disorder, it appears that core symptoms, which are
common to multiple disorders, have a high tendency to
be mutually connected [6]. Assortative mixing is becoming

more and more important, because it points to relevant
network characteristics, such as self-similarity and other
emergent properties, if it is detected in networks with a
power-law degree distribution [1, 7]. Here we propose to
compute assortative mixing in undirected networks using
linear programming.

Several measures of assortative mixing for undirected
graphs exist [5]. One of the most popular ones is the Pearson
assortativity coefficient, or degree correlation r [1], which is
Pearson’s correlation applied to the degrees of each node in
the network. Degree correlation is a normalized metric and
obtains values between —1 and 1. However, Alderson and Li
[8] have shown that the same value of degree correlation can
occur from very different configurations of edges (topology)
of a network and that the use of degree correlation may lead
to incorrect conclusions. The reason for this is that degree
correlation is normalized with respect to general networks
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with a specific degree sequence (number of connections for
all nodes) that can have multiple edges, self-loops and can
even be disconnected (i.e., consist of multiple disconnected
components). However, in many situations the objective is
to compare assortativity with networks that are similar, that
is, that are connected and simple (no self-loops, connected,
and no multiple edges). To remedy this objection to degree
correlation, Li et al. [9] proposed the s-metric (first called L-
metric and later s-metric), which is a linear transformation
of the degree correlation. In the normalized version of the
s-metric, normalization is calculated with the maximal and
minimal values of s with respect to the class of networks that
have the desired properties of connectedness and simplicity
for the specified degree sequence. The minimal (s;,) and
maximal (s,,,,) possible values of s in the class of simple
and connected networks with the same degree sequence are
compared to the obtained s-value for the network at hand.
Then, in contrast to the degree correlation coeflicient r which
is normalized with respect to unrestricted networks of the
same degree sequence, the normalized s-metric is obtained
by comparing s of the network under consideration to similar
networks that are within the same class of networks of the
same degree sequence yet are maximal (s,,) or minimal
(Smin) With respect to assortative mixing.

Obtaining the maximal and minimal network in the
class of simple (undirected networks without self-loops and
no multiple edges) and connected networks with the same
degree sequence is not trivial [8]. The algorithm introduced
in Alderson and Li [8] and described in van Mieghem et al.
[2] ranks all edges according to the product of degrees of the
pair of nodes and then connects nodes according to a nodes
degree such that the graph is connected. Unfortunately, this
algorithm does not always achieve the exact degree sequence
as desired. Alternatively, van Mieghem et al. [2] proposed
a rewiring approach increasing (or decreasing) the assorta-
tivity, while the degree sequence remains unchanged. The
constraint of a connected graph here is sacrificed, however,
resulting in possibly disconnected graphs. We propose to use
a linear program (LP) to identify s, ,, and s,;,. Obtaining
the minimum and maximum value of s within the class of
graphs with a specific degree sequence that are simple and
connected is formulated as a binary integer program (BIP).
A binary integer program is a program to optimize a linear
objective function given certain linear constraints for a binary
(0/1) solution (e.g., [10, 11]). Here the objective function to
be optimized is s and the constraints are that the optimal
graph is simple and connected and has the specified degree
sequence. The s-metric problem resembles the traveling sales-
man problem (e.g., [12]), except that the degree constraints
can be different from value 2. As a consequence we cannot
use the approach of Held and Karp [13], where the problem
is reformulated to a l-tree problem and was shown to lead
under certain circumstances to a linear program with the
same solution as the binary integer problem. We prove a
weaker result that leads to an efficient solution of the problem
by moving the degree constraints to a penalty term in the
optimization (Lagrangian relaxation), which is solved by a
subgradient algorithm.
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2. Correlation and the s-Metric

Let G = (V,E) be an undirected graph, where V is the
set of nodes {1,2,...,n} and E is the set of edges {(i,f) :
i,j € V} with size [E|] = m. The degree sequence d of
graph G is the n vector (d,,d,,...,d,) containing for each
node the number of connections and the degrees d; of the
nodes in G. The degrees d; are not necessarily ascending or
descending. We are mostly interested in simple connected
graphs, that is, no self-loops and no multiple edges with a
single component. This class of graphs with degree sequence
d is denoted by &'(d). The unconstrained class of graphs with
self-loops, multiple edges, and possibly multiple components
having degree sequence d is denoted by %(d). It is immediate
that $(d) c %(d).

The degree correlation or assortative mixing of an undi-
rected graph G is defined in terms of the degree sequence as
(1, 8]
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It is equivalent to the Pearson correlation coeflicient and its
value is between —1 < r < 1. The first term in the numerator
calculates assortativity by degree for the graph G [7]. The first
term in the denominator (1/2) ¥,.,, d; can be interpreted as
the maximal value for assortative mixing that can be obtained
within the class of graphs that may have multiple connections
and self-loops and need not be connected in %(d). The
second term in the numerator and in the denominator
m1((1/2) Yiev d?)2 can be seen as the central point in
the class of graphs in %(d) with minimal assortativity [8].
Hence, the Pearson degree correlation or assortativity can be
considered as the normalized assortativity within the general
class of graphs that may contain self-loops and multiple
edges and need not be connected that are in %(d) (see the
discussion on p. 502 of Li et al. [7] for more details).

Another insightful way of considering the degree correla-
tion is given by van Mieghem etal. [2]. Let A be the symmetric
nxnadjacency matrix with a1 if two nodes are connected and
0 otherwise, and let D be a diagonal matrix with the degrees
on the diagonal and zero otherwise. The matrix L = D — A is
called the Laplacian matrix. Then it is shown that the degree
correlation is
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From this version of degree correlation, it is easily seen that a
regular graph has degree correlation r = 1, since all degrees
are equal. Additionally, it is shown in van Mieghem et al.
[2] that a connected Erdés-Renyi random graph has zero
assortativity.
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FIGURE 1: Two example graphs with # = 10 nodes and m = 12 edges
(a) and n = 10 nodes and m = 13 edges (b) with the degrees inside
the nodes.

For a graph G = (V, E) the s-metric is defined by [7, 9]
(i,j)€E

It is clear from its definition that the s-metric can obtain
values between 0 and n(n — 1)* for the complete graph of
size n, K,,. It is therefore convenient to normalize the s-metric
such that it obtains values between 0 and 1. The normalized
s-metric of graph G = (V, E) is defined by [7, 9]

S = Smi
n min
S =——. (4)
Smax ~ Smin
where s ;) and s, refer to the minimal or maximal value of

s in a specific class, like §'(d). The value of the normalized
s-metric is between 0 < " < 1. The first term in the
nominator of s" is s = ¥; . d;d;, which is the same as that
of degree correlation above. The difference between s” and r
is the normalization. The s-metric is normalized with respect
to the maximum and minimum obtainable in a specific
class, whereas degree correlation is always normalized by
the central and maximal values of assortativity by degree
within the general class of graphs having self-loops, multiple
connections and being possibly disconnected in %(d).

Example 1. We generated two topologically different graphs,
shown in Figure 1. The first graph, shown in Figure 1(a),
has n = 10 nodes, m = 12 edges, and ascending degree
sequence d' = (1,2,2,2,2,2,3,3,3,4). The other graph in
Figure 1(b) has n = 10 nodes, m = 13 edges, and ascending
degree sequence d = (1,2,2,2,2,2,3,3,4,5). The networks
have similar degree sequence but the topology is different,
as can be seen in Figure 1. However, both networks have
approximately zero degree correlation (assortativity), r; =
-0.04 and , = -0.05, respectively. This suggests that the
networks are similar in topology. The normalized s-metric
does pick up the topological differences. The values of the
normalized s-metric are s” = 0.60 and s" = 0.83, respectively,
indicating that the networks can be correctly distinguished
and may have a hub-like core. The values of s" are higher
because the normalization is made within the class of simple,

connected graphs, whereas the correlation coeflicient r is
approximately zero with respect to normalization within
the general class of graphs with self-loops and multiple
connections that are possibly disconnected. This example
shows that there are differences in degree sequence of a
connected graph that are not picked up at all by degree
correlation but are picked by the s-metric; and the reason
for this is that the normalization for the s-metric is within
& (d) whereas the normalization of the correlation is within
the larger class %(d).

The main practical difference between the correlation
coeflicient r and normalized s-metric is that the correlation
coeflicient does not distinguish certain graphs that are config-
urationally (topologically) different whereas the normalized
s-metric does distinguish between them. Alderson and Li
[8] show that two networks can have a completely different
topology but the correlations of both networks are approxi-
mately the same. Additionally, there is a large range of values
of the coefficient of variation for which the correlation is
approximately zero, whereas the s-metric shows clear changes
across the same range of values. There is also a set of graphs
for which both the degree corruption and the normalized
s-metric are approximately zero (see Figure 1 in [8]). One
solution to this is to compute the local assortativity [14].
Piraveenan et al. [3] show that assortative graphs can heave
locally disassortative hubs, and vice versa, suggesting that
local information can be relevant.

The main problem in calculating the normalized s-metric
identified by Alderson and Li [8] is that the normalization
requires calculation of s ;, and s,... The algorithm proposed
in Li et al. [7] orders all edges (i,j) € E according to
the weights d;d;. Nodes are then connected corresponding
to this ordering as long as the degree sequence remains
unchanged and the graph is connected. Such a heuristic
greedy search type algorithm seems to work reasonably well
for the maximum within §'(d) but does not always achieve the
exact degree sequence d [7]. Additionally, only the maximum
is obtained, not the minimum, with this algorithm [8]. The
minimum is usually approximated by a lower bound, the
minimum in the class %(d) of unrestricted graphs. The
alternative algorithm introduced in van Mieghem et al.
[2] randomly rewires two links simultaneously (leaving the
degree sequence unchanged) such that nodes with the highest
degree are connected and nodes with the lowest degrees are
connected, increasing assortativity. Although with this algo-
rithm the correct degree sequence is obtained, the resulting
graph is not necessarily connected. In the following sections
we present an integer program using a Lagrangian relaxation
that obtains both s;, and s, for simple, connected graphs
that have exactly the specified degree sequence.

Example 2. We continue with the two graphs from the
previous example with n = 10 nodes shown in Figure 1. The
graphs that maximize the s-metric within the class of simple,
connected graphs for G, and G, are shown in Figures 2(a)
and 2(b). It can be seen that node degree is similar to that
of neighbors, as the optimization requires. In contrast, the
graphs with minimal value s in Figures 2(c) and 2(d) have
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FIGURE 2: Graphs that have maximal value s ((a) and (b)) and
minimal values ((c) and (d)) for the graphs G, and G, corresponding
to the ones in Figure 1. Degrees are inside the nodes.

low degree nodes connected to high degree nodes. For G, the
value for the graph is s = 85 and the minimal and maximal

values within the class §(d) are s, = 79 and s,,,,, = 89, so
that
85-79
st = = 0.600. (5)
89 -79

The minimal and maximal values within % (d) are 79 and 93,
respectively. For G, the value for the graph is s = 122 and
the minimal and maximal values within the class &§(d) are

Smin = 108 and s, = 125, so that
122 - 108

= ——— =0.833. (6)
125 - 108

The minimal and maximal values within % (d) are 107 and
142, respectively. As expected the minimal values within
8(d), Spin> Were similar to the minimal values within %(d).
However, the maximal values are quite different for §'(d)
and %(d), indicating the importance that the maximal value
needs to be determined specifically for §(d).

3. Linear and Integer Programming to
Obtain s"

In this section we first give the formulation of the s-metric
problem for binary integer programming. We use the cutset
formulation to ensure that the resulting graph is connected.
We then show that in general the polytope for a linear
program is not integral. However, we can relax the constraints
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and show that while constraining the solution to be integral,
we need not constrain it to be binary, which is what we
require.

The objective is to find a graph such that the minimal
and maximal values of g within the class of simple and
connected graphs with degree sequence d, §(d), can be
obtained to compute s, the normalized s-metric. We will
show that obtaining the minimum (or maximum) can be
reformulated into a binary integer program (BIP) with a
linear relaxation such that a solution can be obtained within
polynomial time.

3.1. Problem Formulation. The objective function

Z did; @

(i,j)€E

is to be optimized subject to two constraints to obtain a graph
in &(d). Since maximization is equivalent to minimizing
its negative, we limit our discussion to minimization. The
objective function can be rewritten in terms of an incidence
vector and the weights ¢; = d;d;, the product of degrees for
nodes i and j. Let E(V) = {(i, j) : i, j € V} denote the set of
all possible edges for the nodes in V' (Kronecker set). Then for
an edge e in the set E(V'), x, = 1 when an edge is present and
x, = 0 otherwise. We can then rewrite the objective function
s for preferential attachment as

Z CeXe- (8)

ecE(V,

To obtain a graph in the class of simple and connected graphs
with degree sequence d in §(d), we require several types of
constraint. The first is that the degree sequence of the graph
should be exactly d. Define, for any S ¢ V, the cut by the
partition SU S = V, where S = V' \ § is the complement of S.
Denote the edges in the cutby §(S) = {(i,j) e E:i€ S, j € S}
Then 6({i}) is the incidence set of node i, and the degree
constraint can be defined as } .5y X. = d;. The second
type of constraint is to ensure that the graph is connected,
for which we use the cutset formulation [11, 15, 16]. The idea is
that for any nonempty subset S € V of nodes at least one edge
has to connect both sets of vertices in S and S. This implies
that for any nonempty S ¢ V the cutset §(S) has to contain at
least one edge. Finally, we require that the optimal solution is
binary; that is, x should be in B? = {0, 1}¥. We now have the
binary integer program (BIP) as follows:

z= mxin Z CoXps 9)
ecE(V)
Y x,=d; VieV, (10)
e€d({ih)

n
erzl VSCV,ZSlSIS[—J, (1)

e€d(S) 2
xecB® p= M 12)

2
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FIGURE 3: Graph of Example 3. G has n = 5 nodes and m = 5 edges
(solid lines); all other possible edges including labels in E(V) are
shown as dotted lines.

where || means the integer part. The degree constraints
in (10) combined with the cutset constraints (11) imply
nonnegativity since d; > 1 foralli € V. The cutset constraints
(11) run to size |n/2] since we do not need to check subsets
twice. For any cut S we have [S| + IS| = |V| and so for a cut
IS| > [#n/2] + 1, we have that this S is the same as S when
IS| < [n/2].

Example 3. Consider a graph G with n = 5 nodes and
m = 5 edges shown in Figure 3 (solid lines). The edge set
E = {(1,2),(2,3),(3,4),(3,5),(4,5)} can be considered as
an instance of the incidence vector x of dimension 10. The
incidence vector in this case is

x=((1,2),(1,3),(1,4),(1,5),(2,3),(2,4),
(2,5),(3,4),(3,5),(4,5)) (13)
=(1,0,0,0,1,0,0,1,1,1).

For this G we have degree sequence d = (1,2,3,2,2)" and so

Ty — -
cx= Zcexe = Z d;dx;j

e€E (i,j)€E

1:2:141-3-041-2-04-+-43-2-142-2-1=24.
(14)

With 5 nodes there are 5 constraints for the degrees to equal
d;, giving the degree constraints (10). For connectedness there
are sets S ¢ V of size 2 < |S| < [5/2] = 2, and so the number
of cutsets to be checked is (5 ) = 10. For this x the 10 cutsets
are shown in Table 1. For example, take the first partition S =
{1,2} and S = {3, 4, 5}. All elements in E(V) for this partition
are in the first row. Since nodes 1 and 2 are in the same set
S, no edge is required here for connectedness; nodes 1 and
3arein S and S, respectively, and so an edge is required for
connectedness. This is repeated for all different partitions S
and S. In total there are 15 constraints from the degrees and
the cutset constraints.

Note that the number of constraints for this formulation
is exponential in the size of the graph n, because all nonempty
subsets S C V are required for connectedness, with 2 <
IS| < [n/2] (see, e.g., [11], p. 471). Specifically, the number
of constraints to check whether all subsets S ¢ V of size
2 < |S] € [n/2] connect to at least one other node is r(n) =
2" _ h(n) - 1, where h(n) = |n/2]. One possibility is to

change formulation to obtain a connected graph, for example,
to a subtour elimination formulation, as used in minimal
spanning trees (e.g., [11, 12, 15]). The subtour elimination
formulation for the constraints in optimizing s is

Y x <ISI-1 vScV, 2g|3|g[fJ. (15)
ecE(S) 2

However, the subtour elimination formulation is in this case
inappropriate since the total number of edges can in general
exceed |V| — 1, which means we are not dealing with a tree.

3.2. Linear and Integer Program. We are interested in design-
ing a linear program that will result in incidence (binary)
vectors such that the constraints in (10) and (11) are satisfied.
We therefore need to bound the solution we obtain in R to
be at most 1; that is,

x, <1 VeeE(V). (16)

Let P = {x € Rf : x satisfies (10), (11)} be the polyhedron
associated with the s-metric problem. Let Q = {x € R’ :
x satisfies (11)} be the polyhedron of the cutset constraints.
The polyhedron P resembles the subtour elimination poly-
tope (SEP), associated with the symmetric traveling salesman
problem [12]. The difference is that for the s-metric problem
the degrees are not fixed to be 2 but are equal to the original
graph.

Example 4. Consider a graph with three nodes and two edges,
G = (V,E)withV = {1,2,3} and E = {(1,2),(1,3)}; see
Figure 4(a). Here, x = (1, 1,0) is the incidence vector. The
cutset constraints (11) and the degree constraints (10) are in
this example:

X+ X, =21
cutset 4 x; +x3 21
Xy +x3 21,

17)
X1+ X, >1
degree 4 x; +x3 21
Xy +x3 21,

This is a description of P in three dimensions. If we consider
the degree constraints only, then we see that the only extreme
point is x* = (1,1,0). This is because the face F =
{(1, 1, 0)} has dimension 0, since the three degree constraints
are supported and its associated matrix has rank 3 (see
Figure 4(b)). Note that this is not true for other points like
(1,0, 1). Itis also seen that the polytope P is not integral, since
the point x* = (1/2,1/2, 1/2) is an extreme point. This point
is in the center of the triangle in Figure 4(c).

From this example it is clear that in general we need
to consider points in P N Z* such that we only obtain
integral solutions. Our problem is different from the traveling
salesman problem approached by Held and Karp [13] as a
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TaBLE 1: The incidence vectors x for different cutsets §(S) showing edges between S and its complement S.

S S e

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
1,2} (3,4,5} 0 1 1 1 1 1 1 0 0 0
1,3} {2,4,5} 1 0 1 1 1 0 0 1 1 0
{1,4} {2,3,5} 1 1 0 1 0 1 0 1 0 1
{1,5} (2,3,4} 1 1 1 0 0 0 1 0 1 1
2,3} {1,4,5} 1 1 0 0 0 1 1 1 1 0
(2,4} {1,3,5} 1 0 1 0 1 0 1 1 0 1
{2,5} {1,3,4} 1 0 0 1 1 1 0 0 1 1
(3,4} {1,2,5} 0 1 1 0 1 1 0 0 1 1
(3,5} {1,2,4} 0 1 0 1 1 0 1 1 0 1
{4,5} {1,2,3} 0 0 1 1 0 1 1 1 1 0

X3 *3
Xy +x3=1
X +x3=1 X1 +Xx,=2
X2
X2 X1 \ *2

X1

()

FIGURE 4: The graph G from Example 4 in (a) and the polytope in (b) obtained from the degree constraints, and the polyhedron Q in (c) from
only the cutset including the bound 1 constraints. The degree constraints in (b) show that their intersection at (1, 1,0) is the only possible
solution here. The line in (b) indicates where the faces induced by the constraints x, + x5 = 1 and x, + x5 = 1 intersect.

I-tree problem, because the degree sequence we seek for
the solution is in our case fixed to the one of the original
graph. It follows that any simple graph with the number of
edges >n will not lead to a I-tree. A general solution to the
s-metric problem cannot therefore be linked to a 1-tree. We
can establish a weaker result than integrality of P, though,
which allows us to use a linear program effectively but is not
guaranteed to lead to an integral result. When considering
only the cutset constraints in Q, we find that the constraints
of unity for each x, imply that considering the convex hull of
the integral solutions will result in binary solutions.

Theorem 5. Let conv (Q N ZF) be the convex hull over the
integer points in Q = {x € IRi7 : x satisfies (11), (16)}. An LP
can be used to find the optimal solution such that

min{ch:xE conv (QﬂZp)}zmin{ch:erﬂ[EBp}.
(18)

Proof. We can rewrite the polyhedron Q such that it is
associated with a set-covering problem. For such a set-
covering problem we use Proposition 6.3 of Nemhauser and
Wolsey [11] which, together with the constraint from cutset
(11), then proves the claim.

In a set-covering problem the edges cover all nodes and
can be described by a minimization over a polyhedron with
constraints of the form al,x > 1, where ay is a characteristic
binary vector representing a graph indexed by H. Let a set
B(%®) of subsets of nodes V such that (intersection) HNC # &
for all C € € and (minimality) if K ¢ H then KN C = & for
some C € € [11]. The set B() is called a blocking clutter and
@ is called a clutter. Then H € B(%) is a subset of the nodes
V which represents the edges that connect a partition V into
S and its complement S. For any path from s € Sto t € S the
vector (ay); = 1 if it connects one node from S to another
node from S and 0 otherwise. Let (x¢); = 1 if the edge is on a
path for some node s € Stot € S and 0 otherwise. Then the
characteristic vectors a; with H € B(%) and xo withC € €
are a blocking clutter and a clutter, respectively. Since a path
froms € Stot € Sforsome C € % coincides with an edge that
connects S to S for some H € B(%) (intersection property),
we have that a],x. > 1 for some C € &. This means that the
s-metric problem is a set-covering problem minf{c'x : x €
QN B}, where Q = {x € R : a/;,x > 1 for all H € B(¥)}.

If we show that the extreme points of conv(Q N Z?) are
exactly the paths from a node s € S to a nodet € S,
represented by the vectors x- with C € €, then we are done.
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By the intersection property we find that if x € Q N Z”, then
there is an H € B(®) such that a/;xc = 1 forallC € %.
This follows because a path from S to S coincides with exactly
one edge for an H € B(%). This shows that the incidence
vectors x are the extreme points of conv(Q N Z%). Since all
characteristic vectors x. are incidence vectors and so in B,
the claim of the theorem follows. O

This result, together with the fact that P = {x € [R{f :
x satisfies (10), (11)} is not integral, tells us that we may
consider a relaxation of the s-metric problem by dropping
the degree constraints (10) and considering optimizing only
over Q = {x € Rf x satisfies (11)}. One way of
doing this is to incorporate the degree constraints (10) in
the objective function; this is a Lagrangian relaxation of the
degree constraints. This is similar to the approach of Held and
Karp [13].

4. Relaxation of the Integer Problem

The linear relaxation of the s-metric problem with the cutset
formulation means dropping constraint (12) that x is 0/1 [17].
The LP problem is then z;, = min{c'x : x € P}. Linear
relaxation, however, does not guarantee an integral solution,
and in fact we know that P is not integral (see Example 4).
As in the traveling salesman problem, the combinations of
the degree (equality) constraints and the cutset constraints
make optimization difficult (see, e.g., [12, 13, 18, 19]). Here
we consider Lagrangian relaxation of the degree constraints.
We use the subgradient method to find the optimal solution
with the step size for the subgradient as suggested in Held and
Karp [13] (see also Fisher [18]).

4.1. Lagrangian Relaxation. We consider Lagrangian relax-
ation where the degree constraints (10) are considered hard
and so are entered as a penalty in the function to optimize. For
fixed u € R" (positive or negative) we have the Lagrangian
relaxation:

zLR(u)=min{ch+uT(d—Dx):eran}. (19)

Since we are dealing with equality constraints of degree Dx =
d we have that a solution x(u) for the Lagrange multiplier u
is also a solution to the original IP, because d — Dx = 0 for
this solution. It follows that z; (1) < z;p. To obtain the bound
closest to the original problem, the greatest lower bound is of
interest, which is the Lagrangian dual max{z z (1) : u € R"}.
Combining this gives the Lagrangian dual [11]:

Z;p = min {ch :Dx=d,x € conv(Qn Zp)} . (20

This means that we can use an LP to find the Lagrangian
dual. We know from Theorem 5 that this results in a binary
solution, which is required; we cannot drop the integrality
constraint in general since Q is not integral. One way to
obtain a solution to the Lagrangian dual is by subgradient
optimization.

4.2. Subgradient Optimization. For differentiable functions,
minimization over convex functions is relatively straightfor-
ward [20]. If f: R? — R is differentiable and convex, then

fE)z f(x7)+Vf (%) (x-x7) 2y

forall x,x" € R?, and Vf(x") is the gradient of f atx™. If x"
is a local minimum then the gradient is 0 and it follows from
convexity that x* is also a global minimum. For nonsmooth
and/or nondifferentiable functions the gradient cannot be
defined everywhere [18]. In the subgradient algorithm the
gradient vector is replaced by a subgradient. Let the vector
u € R? be a subgradient at x™ if

f) = f(x*)+u (x-x%) (22)

for all x € RP. Since the function z (1) is piecewise
linear and convex, we can define a subgradient by the degree
constraints d — Dx(u) [11, 21].

The essential step in this algorithm is to determine how
to change the subgradient u correctly. Like in the gradient
method the subgradient is adjusted at each iteration in the
direction most favorable to the constraints. A sequence of

subgradients (%) is generated by
W=k gk (d - Dx (uk)) . (23)

We then have that when d — Dx(uk) = 0 € Ou, the set of
all subgradients (subdifferential), we have obtained the global
minimum. The subdifferential du contains 0 if the step size
0¥ — 0 [22]. The most often used way to determine the step
size is by the so-called Held-Karp method (see, e.g., [18, 21]):

k
z(u)—w
o~ = ykLz, (24)
[d — Dx(u®)|
where 0 < yo < 2,w < zip, and | - || denotes the Euclidean

norm. The sequence y* is halved whenever z(u*) remains
unchanged for some number of iterations [18].

The subgradient algorithm for the Lagrangian dual is
presented in Algorithm 1.

4.3. Computational Results. Computations were done with
IpSolve (version 5.5) in R [23]. The IpSolve software is a mixed
integer linear programming solver that uses (revised) simplex
methods for linear programming and branch and bound
methods for integer programming [24].

We generated 100 connected random graphs (Erdos-
Renyi) of nodes with size n = 100. Edges between each
pair of nodes were determined by a probability of around 0.4
(requiring that the graph be connected), resulting in graphs
with |E| approximately 4470.

For the subgradient algorithm we used 6° = 2 and
y" = 1.8, which was halved if the objective value did not
improve [18]. The Lagrange multiplier starting value was u” =
max;{d;}1,, the maximum of degrees for all nodes.

Similar to Fisher [18] we report the percentage of prob-
lems for which the IP solution is exactly the same as
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(2) while s # 0 do
(3) solve

(4) s« d-Dx(u)

andw <z,
(6) ke—k+1
(7) end while
(8) the optimal solution is x(u
(9) end

Due—u’eR"0—6cR,andk — 0

z(u*) = min {ch + (uk)T (d-Dx):x €conv(Qn ZP)}
and x(u*) is the optimal solution
(5) ! — max{u* — 65,0}, where

2t - w

k _ k
~ Y ld - DxGAIP

k*l)

ALGORITHM 1: Subgradient algorithm for Lagrangian dual.

the LD solution, the ratio of the average of the LD solutions
and the average of the IP solutions, to indicate the sharpness
of the bound, and the maximum of the subgradient, which
should be (close to) 0. For the 100 simulations the percentage
of exact solutions z;p = z;p is 81.48 and the ratio 100 x
ave(zyp)/ave(zp) is 99.96. This suggests that in many cases
the result is exact and that if it is not exact then the bound
using the Lagrangian dual is sharp. The subgradient was in
all cases 0 or close to 0; the maximum subgradient over
all simulations was 2.665 - 10~", indicating that the degree
constraints were satisfied in all cases.

5. Application to Psychopathology
and the DSM IV

The diagnostic statistical manual (DSM) IV contains criteria
to diagnose people as having certain disorders like general
anxiety (GA) or major depression (MD) disorder. These
criteria are a set of symptoms which need to be ascertained
for a candidate patient. Many of the symptoms are part
of different disorders and so it is “easy” to have multiple
disorders. For instance, both GA and MD have a set of nine
symptoms of which any five must be valid for a person to
be suffering from that disorder. But GA and MD have four
symptoms in common, and hence, many patients suffering
from GA also suffer from MD (see [25] for an elaborate
discussion on this).

A network can be created from the DSM IV by connecting
symptoms that belong to the same disorder [6]. This network
contains n = 439 nodes and m = 2621 edges. In this
network approximately 47% of the nodes is connected, giving
rise to a giant component. This giant component has n =
208 nodes and m = 1944 edges. The network is shown
in Figure 5. The range of the degree sequence is between
0 and 71 with median 17, and its distribution seems to fit
an exponential distribution [6]. The degree correlation of
the giant component is 0.18, while the normalized s-metric
is 0.56, suggesting that the graph is assortative. Again the

FIGURE 5: The DSM IV graph constructed by connecting all
symptoms that belong to the same disorder. The 208 white nodes
belong the giant component and the remaining 231 gray nodes
consist of 28 components.

degree correlation and normalized s-metric obtain different
numbers for the same graph, due to the comparison in either
the general class of graphs for the degree correlation or in the
restricted class of graphs for the normalized s-metric.

The DSM IV graph constructed by connecting all symp-
toms that belong to the same disorder. The 208 white nodes
belong the giant component and the remaining 231 gray
nodes consist of 28 components.

6. Discussion

Assortativity is for certain classes of graphs best calculated
by the normalized s-metric [8]. The existing algorithms by
Li et al. [7] and van Mieghem et al. [2] to determine the
normalized s-metric are not optimal in the sense that the first
one does not always obtain the desired degree sequence and
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the second does not necessarily result in a connected graph.
Here we used a linear program to calculate the minimal and
maximal value graphs with respect to the s-metric. This is a
binary integer program which we showed can be solved by
a linear program. Any solution satisfies the constraints, and
hence, the obtained minimal or maximal graph with respect
to the s-metric is simple and connected with specified degree.

In this paper we considered the class of simple and
connected graphs with specified degree sequence. Although
the ideas used here can be used for other types of graphs, gen-
eralization is not immediate for all variations. For instance,
if multiple edges were allowed between any pairs of nodes,
then showing that a linear program can be used is less
straightforward, indicating that some solutions are difficult to
find. Also, generalizations to other metrics, like shortest path
betweenness, are not straightforward because to compute the
shortest path length is not linear in the adjacency matrix.

Since there exists a class of graphs for which both the
degree correlation and the s-metric are approximately zero
[8], it may be more appropriate to consider local assortativity
as introduced by Piraveenan et al. [14]. In Piraveenan et al.
[3] it is shown that many networks that are disassortative
have many hubs that are assortative, so revealing interesting
structure at a local scale.
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