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The reflection coefficients ofmonochromaticwaterwaves over trencheswith shear current are estimated analytically.Thediffraction
of waves by an abrupt depth change and shear current is formulated by the matched eigenfunction expansion method. The proper
number of steps and evanescent modes are proposed by a series of convergence tests. The accuracy of the predicted reflection
coefficients is checked by estimating the wave energy. Reflection and transmission characteristics are studied for various shear
current conditions. The different combinations of strength, width of shear current, and incident wave angle with constant water
depth topography are examined. The optimal figure of the trench with shear current is obtained by estimating the reflection
coefficients for various sloped transitions. The resonant reflection of the water waves is found by multiarrayed optimal trenches
and the interaction of sinusoidally varying topography with shear current.

1. Introduction

When water waves propagate over the nonuniform bottom
topography and shear current field, they undergomany phys-
ical phenomenon including refraction and partial reflection.
It is well known that the nearshore and coastal environ-
ments with the stability of coastal structures are significantly
affected by water waves [1]. Therefore, the prediction of wave
transformation is very important for coastal engineers to
design counter facilities that can protect coastal structures
from wave attacks. A number of wave-scattering theoretical
models treating bathymetry and shear current or both have
been developed.

A widely studied wave diffraction problem is abrupt
depth changes. Specifically, the analytic method based on the
potential flow theory has been used for decades because of
its simple but absolutely accurate characteristics. By employ-
ing the well-known semianalytic matched eigenfunction
expansion method to the potential flow theory, breakwaters
and trenches can be represented by a series of steps. One

of the earliest studies solving the scattering problem of
normal incident wave over discontinuous bathymetry was
given by Takano [2]. The linear integral equations were set
up by the matching boundary conditions and were solved
numerically for a truncated series. Miles [3] used a plane-
wave and variational approximations and solved a scattering
matrix for the case of discontinuity in depth. Kirby and
Dalrymple [4] extended the previous studies to involve the
obliquely incident water waves and asymmetric geometry of a
rectangular trench. By formulating the scattering problem in
terms of Schwinger’s type integrals, Lassiter III [5] has solved
the wave diffraction due to a trench containing two different
fluids. Bender and Dean [6] have considered scattering of
normally incident waves over a trench with sloping sides by
using three different methods and concluded that the step
method is valid for an arbitrary water depth, while other
methods are limited to the shallow water region. Recently,
several kinds of techniques for solving the scattering problem,
such as Galerkin method, the first and second kinds of Bessel
functions, perturbation method, have been employed [7–9].
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Also, several kinds of conditions that cause the scattering
problem, such as porous plates, floating plate, and cylinders,
have been studied [10–12].

Horizontally sheared currents such as those formed
at river mouths, tidal inlets, and tidal races and around
coastal structures are also one of the main factors of wave
transformation [13]. However, even within the linear theory
framework, the analysis of the water waves across a shear
current is remarkably intractable. Therefore, many approx-
imate methods based on mild-slope, mild-shear equations,
and vortex sheets have been developed. The case of incident
waves on a single vortex sheet representing a shear current
was studied by Evans [14] using a Galerkin approximation
and was extended to a two vortex sheets problem based
on conservation of wave action and vertical averaging by
Smith [15]. Smith [16] also presented a variety of approximate
solutions to thewave diffraction problem caused by a uniform
shear current and depth change. Kirby et al. [17] developed a
matched eigenfunction expansionmodel to study the effect of
shear current flowing along a trench in finite water depth, and
the model was verified with a boundary-integral-equation
method. Liu et al. [18] applied the eigenfunction expansion
method to the scattering problem of obliquely incident wave
groups over a trench with a shear current. An arbitrary
number of discontinuities of shear current were used by
McKee [19] to allow realistic representation of natural shear
current by gradual transitions in water of a constant depth.
The results were compared with the mild-shear equation
model [20] and the extendedmild-shear equationmodel [21].

One of the most interesting topics in the wave scattering
problem is Bragg resonant reflection. When the bottom
topography contains the patches of periodic undulations and
the wavelength of the bottom ripple is one-half of the wave-
length of the incident wave, the so called Bragg conditions,
waves are scattered and amplified due to the resonant effect
[22]. Dalrymple and Kirby [23] used a boundary integral
equation method and calculated the wavenumber ratio for
the obliquely incident wave that could yield the resonant
reflection. Guazzelli et al. [24] compared the experimental
measurements with numerical predictions obtained from the
potential theory of linear waves. McKee [25] investigated the
Bragg reflection by sinusoidally varying the shear current
using amild-shear equation and compared the result with the
modulation theory. The model based on the eigenfunction
expansion method was developed by Cho and Lee [26]
and the obtained results were compared with the laboratory
measurements of singly and doubly sinusoidally varying
topographies. For a practical counter facility’s design using
the Bragg reflection concept, Kirby and Anton [27] and Hsu
et al. [28] investigated periodically spaced rectified sinu-
soidal and rectangular breakwaters, respectively. Although
multiarrayed breakwaters show good performance in wave
protection, these are not suitable for the region where vessel
seaway is required. For this problem, Kim et al. [29] studied
the reflection by multiarrayed trenches and suggested the
optimal figure of trench which reflects the incident wave
mostly. However, the proper number of steps and evanescent
modes are not proposed, and the effect of shear current is not
considered.
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Figure 1: Definition sketch of a computational domain.

The aim of the present study is to extend Cho and Lee
[30] by including shear current effects and to investigate
the role of shear current for several cases. In this study, the
semianalytic matched eigenfunction expansion technique is
used to calculate the reflection coefficients. Preceding the
investigation of shear current effects, after explaining the
methodology briefly for completeness, the proper number of
steps and evanescent modes are suggested to fully converge.
Next, the significance of shear current in the wave diffraction
problem is checked by adding several shear currents. The
investigation is carried out for finding the main factors of
the maximum reflection coefficient and its location, as well
as finding the optimal figure of trench. Case studies for ideal
conditions are conducted to identify the resonant re-flec-
tion.

2. Eigenfunction Expansion Method

The diffraction of monochromatic waves by an abrupt depth
change and shear current is formulated by the eigenfunction
expansion method. As shown in Figure 1, the variation of
the bottom topography is limited to the 𝑥-axis direction and
shear current occurs only in the 𝑦-axis direction. The origin
of the coordinate system is placed at the beginning point
where water depth or shear current differs from the incident
condition. The regions where the shear current and the
bottom topography change are represented by a finite number
of steps; thus, the parameters are constant at each region.The
relative strength of the shear current is represented by the
Froude number as

Fr =

𝑉

√𝑔ℎ

, (1)

where 𝑉 is the shear current velocity, 𝑔 is the gravity
acceleration, and ℎ is the water depth. By dividing the
domain into several steps and assuming that the shear current
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is small enough so that there would be no possibility of
turbulence flow, we could extend the scope of analysis to
various topographies with nonhomogeneous shear current
[15, 31].

FollowingCho andLee [30], the velocity potential defined
from incompressible and irrotational flow assumption sat-
isfies the Laplace equation. Solving the Laplace equation
with boundary conditions at each discontinuity, the velocity
potential functions of the monochromatic waves within each
region can be written as the combination of the propagating
mode and the evanescent modes like (2). The propagating
mode varies sinusoidally, and the evanescent modes are
the standing waves that decay exponentially in a horizontal
direction:
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(2)

where superscripts 𝑅 and 𝐿 represent the right and left
propagating directions, while subscripts 𝑚 and 𝑛 denote the
region number and the evanescent modes, respectively. 𝐴𝑅

𝑚
,

𝐵
𝑅

𝑚,𝑛
,𝐴𝐿
𝑚
, and𝐵

𝐿

𝑚,𝑛
are the complex amplitude functions, ℎ

𝑚
is

the water depth in the𝑚th region, 𝑧 is the vertical coordinate,
and 𝜔 is the angular frequency of the wave.

The 𝑥-axis direction wave number of the propagating
mode and the evanescent modes 𝑙

𝑚
, 𝜆
𝑚,𝑛

are calculated,
respectively, by
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where 𝑘
𝑦
is the 𝑦-axis direction wavenumber component and

the propagating mode and evanescent modes wavenumbers
𝑘
𝑚
, 𝐾
𝑚,𝑛

are the real roots of the dispersion relations at the
𝑚th region. To consider the shear current effect, the intrinsic
angular frequency (or Doppler-shifted frequency) 𝜎

𝑚
and

dispersion relations are defined as follows:
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(4)

where 𝑉
𝑚
is the shear current velocity of 𝑚th region. In this

study, only considering 𝜎
𝑚

> 0, 𝑘
𝑚

> 𝑘
𝑦
condition for the

first regionwhere the restricted condition is identical toKirby
et al. [17].

To calculate the complex amplitude functions, there
should be twomatching conditions at the junctions where the
two stepsmeet. Two conditions are expressed as (5), which are
the continuity of the horizontal flux in the 𝑥-axis direction

and the continuity of pressure at each depth discontinuity
that is necessary to avoid infinite accelerations of the fluid
particles on the vortex sheet [19]. Detailed derivation of the
matching conditions has been reviewed in Evans [14] and
Kirby et al. [17]:
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(5)

By putting (2) to two matching conditions and integrating
them from bottom to top by using orthogonality, we could
solve the linear matrix equations numerically. Here, using
the boundary condition whose normal velocity on the rigid
wall is zero, the integral range was categorized into two
cases.
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Because there are two matching conditions with 𝑀 − 1

step junctions and 𝑁 + 1 modes consist of one propagating
mode and𝑁 evanescent modes, linear matrix that has 2(𝑀−

1)(𝑁 + 1) unknown could be derived where 𝑀 and 𝑁 are
the number of total steps and evanescent modes, respectively.
The complex amplitude functions were calculated by Gauss
elimination after LU factorization in this study. The absolute
values of the reflected amplitude of the first region and the
transmitted amplitude of the last region derive from the free
surface boundary condition as follows:
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By using the absolute value of the right-going initial complex
amplitude function as one (|𝐴
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1
| = 1), a reflection coefficient

(𝑅) and a transmission coefficient (𝑇) are simply calculated
by using
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In order to verify the values of the reflection and trans-
mission coefficients calculated by the method above, the
conservation of energy (also called the wave action flux)
consideration represented in (10) is applied [17, 26]:
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3. Numerical Results and Discussions

In this section, before investigating the resonant reflection
caused by trenches and shear currents, we investigate the
characteristics of the unity shear current and trench. First,
we show the role of the shear current by absenting or
changing the shear current, while keeping the bathymetry.
To find the characteristics of the reflection coefficient due
to the shear current, many combinations of the strength,
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Figure 2: A schematic sketch of constant water depth with sinu-
soidal shape shear current.
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Figure 3: A schematic sketch of a symmetric trapezoidal trenchwith
sinusoidal shape shear current.

width of the shear current, and incident wave angle with
uniform depth topography were generated (see Figure 2).
Also, by changing the slope of the symmetric and asymmetric
trapezoidal trench, the optimal figure of the trench where
the shear current flows along the trench are suggested (see
Figures 3 and 4). Although the step method is valid in the
arbitrary water depth, following Bender and Dean [6], we
limit the investigating domains from the shallow water to the
intermediate water regions to visualize the figures.

3.1. Convergence Test for Steps and Evanescent Modes. The
sinusoidal shape shear current was used in this study to
represent the natural shear current which has maximum
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Figure 4: A schematic sketch of an asymmetric trapezoidal trench
with sinusoidal shape shear current.

velocity at the center of the shear current. The shear current
profile is of the form in

Fr (𝑥) = Frmax sin(

𝑥

𝑏

𝜋) , 0 ≤ 𝑥 ≤ 𝑏. (11)

Preceding the analysis of the reflection coefficient, a
proper number of steps and evanescent modes should be
determined by a convergence test. This is significant because
the accuracy of the solution cannot be guaranteed if the
number of steps and evanescent modes are not enough to
converge. Otherwise, selecting the overestimated number of
steps and evanescent modes, the total running time will
increase drastically.

As shown in Figure 5, two cases were conducted to get an
accurate solution for the propagating mode which refers to
the plane wave approximate condition. We only used an odd
number of steps tomake a symmetric and asymmetric trench
and shear current.

Case 1. Trapezoidal trench without shear current: Incident
wave angle 𝜃 = 30

∘, dimensionless top width of a trench
𝑏/ℎ
1
= 10, dimensionless bottomwidth of a trench 𝑏

1
/ℎ
1
= 0,

and dimensionless depth of a trench ℎmax/ℎ1 = 2 were used.

Case 2. Constant water depth with sinusoidal shape shear
current: Incident wave angle 𝜃 = 30

∘, dimensionless width
of shear current 𝑏/ℎ

1
= 10, and maximum Froude number

Frmax = 0.2 were used.

Bender and Dean [6] used one step for the abrupt
transition trenches and ten steps for all the other slopes.
However, in this study, based on a convergence test, 27 steps of
one side slope (𝑚󸀠 = (𝑚−1)/2) for the mild slope symmetric
trench ((ℎmax − ℎ

1
)/(𝑏 − 𝑏

1
) < 0.5) and a gradually decreas-

ing number of steps for the steep slope symmetric trench
((ℎmax − ℎ

1
)/(𝑏 − 𝑏

1
) > 0.5) were used in the slope
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Figure 5: A convergence test for different number of steps.

approximation. Double steps were used for the asymmetric
trench.

The number of evanescent modes must also be large
enough to ensure the convergence of the solution. To visualize
the role of evanescent modes in an abrupt depth change,
another case was conducted.

Case 3. A rectangular trench with sinusoidal shape shear
current: Incident wave angle 𝜃 = 30

∘, dimensionless width
of trench and shear current 𝑏/ℎ

1
= 10, dimensionless depth

of trench ℎmax/ℎ1 = 2, maximum Froude number Frmax =

0.15708, and the number of steps𝑀 = 55 were used.

Figure 6 shows the variation of the reflection coefficient
𝑅 of Cases 2 and 3 versus the incident dimensionless water
depth 𝑘

1
ℎ
1
for a different number of evanescent modes with

a plane wave approximation solution. As shown in Case
2 in Figure 6, when there is no abrupt depth change and
the evanescent modes are taken into account, only four
evanescent modes are sufficient for the convergence, and the
same suggestion of the evanescent modes for constant water
depth can be found in Liu et al. [18]. However, when there is
an abrupt depth change, velocity potential without evanes-
cent modes cannot satisfy continuity or Laplace equation.
Thus, the plane wave approximation solution (black dash
line) drastically shows a different reflection coefficient from
𝑁 = 4 (black solid line), 𝑁 = 16 (black circle) results.
Four evanescent modes for Case 3 show good results in the
shallow water region (𝑘

1
ℎ
1
< 0.314) but not sufficient in the

intermediate region (𝑘
1
ℎ
1

≥ 0.314). Kirby and Dalrymple
[4] reported that 16 evanescent modes provided adequate
convergence for the trench problem.

Therefore, 27 steps of one side slope for the symmetric
trench, double steps for the asymmetric trench, and 55 steps
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Figure 6: A convergence test for different number of evanescent
modes.

for sinusoidal shape shear current gave graphically precise
results. Moreover, in order to take less time for computation,
truncating up to 16 evanescent modes for an abrupt water
depth change and 4 evanescent modes for constant water
depth and following Cho and Lee [30], 4 evanescent modes
for sinusoidally varying topography were used in the present
calculations.

3.2. Effects of Shear Current Shape. A comparison of the
results for various conditions was made in order to visualize
the significance of the shear current shape (see Figure 7). For
Case 1, a top-hat shear current, uniform water depth (ℎ

1
=

ℎmax following the nomenclature in Figure 1), and uniform
shear current (Frmax = 0.1) were used. The water depth was
fixed as ℎmax = 2ℎ

1
for Case 2, a trench without the shear

current, where the same result could be found in Liu et al.
[18]. Case 3 is a combination of the trench and top-hat shear
current. And Case 4 is the same trench as Case 3 but with a
different shear current shape. In order to investigate the shear
current shape effect, the sinusoidal shape shear current with
maximum Froude number Frmax = 0.15708 calculated by
(1/ℎ
1
) ∫

𝑏

0
Fr(𝑥)𝑑𝑥 was used in Case 4 to have the same cross

section area of the shear current with Case 3.
As shown in Case 1 (line), although only a small amount

of reflection occurs, the shear current could diffract the
water wave in constant water depth. In Case 2 (dot), the
reflection coefficients oscillate with the decreasing peaks and
the transmission coefficients oscillate with increasing peaks
as incident dimensionlesswater depth 𝑘

1
ℎ
1
increases. InCase

3 (dash line), the tendency of the peaks is similar to Case
2, whereas the peaks and the complete transmission points
change. Reflection coefficients and transmission coefficients
at 𝑘
1
ℎ
1
= 1.0 taken from Liu et al. [18] show good agreement
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Figure 7: Comparison of reflection coefficients with transmission
coefficients for various conditions.

Table 1: Maximum reflection coefficients with transmission coeffi-
cients, incident dimensionless water depth, and the conservation of
the energy requirements.

Type 𝑘
1
ℎ
1

𝑅max 𝑇 𝑅
2

max + (𝑛
𝑗
𝑘
1
cos 𝜃
𝑗
/𝑛
1
𝑘
𝑗
cos 𝜃
1
) 𝑇
2

Case 1 0.58 0.02698 0.99963 1.00000
Case 2 0.40 0.14773 0.98903 1.00000
Case 3 0.50 0.13239 0.99120 1.00000
Case 4 1.09 0.12618 0.99201 1.00000

with the present results of Cases 1 and 3. Comparing Case
3 with Case 4 (line with circle), the trend of reflection
coefficients and transmission coefficients shows a completely
different aspect. In Case 4, the first and third maximum
reflection coefficients decrease while the second maximum
reflection coefficient is enhanced. Thus, when solving the
wave diffraction problem in the shear current affecting
domain, it is important to apply the right shape of shear
current even though it has small velocity.

The transmission coefficients and incident dimensionless
water depth 𝑘

1
ℎ
1
when the reflection coefficients show max-

imum value are listed for each case in Table 1. The energy
conservation relation obtained theoretically was checked to
verify the reflection and transmission coefficients obtained
from the numerical computation and also represented in
Table 1. In this study, the reflection and transmission coef-
ficients through all the incident dimensionless water depth
𝑘
1
ℎ
1
satisfy the conservation of the energy requirements.

3.3. Characteristics of Shear Current. In order to focus on
the effect of the shear current, the water depth ℎ

1
was set to

constant. Several modifications were conducted to find the
characteristics of the reflection coefficient due to the shear
current.
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Figure 8: Reflection coefficients for constant water depth with
different strength of shear current.

As shown in Figure 8, while the incident dimensionless
water depth 𝑘

1
ℎ
1
values of zero reflection maintain almost

the same positions, the maximum value of the reflection
coefficient is proportional to the maximum Froude number
Frmax when the incident angle and the width of shear current
are fixed (𝜃 = 30

∘, 𝑏/ℎ
1
= 10). On the other hand, retaining

the incident angle 𝜃 and the maximum Froude number
Frmax to 30

∘ and 0.20, Figure 9 shows that the maximum
reflection coefficient shifts towards a small value of the
incident dimensionlesswater depth 𝑘

1
ℎ
1
as the dimensionless

width of shear current 𝑏/ℎ
1
increases from 5 to 20. If the cross

section of the shear current calculated by (1/ℎ
1
) ∫

𝑏

0
Fr(𝑥)𝑑𝑥 is

uniform, the first increasing slope of the reflection coefficient
𝑅 versus the incident dimensionless water depth 𝑘

1
ℎ
1
is

equal until meeting the slightly small value of the maximum
reflection coefficient as plotted in Figure 10. Figure 11 shows
the reflection coefficients as the incident angle 𝜃 changes from
0∘ to 45∘. As discussed by McKee [25], zero reflection can
be found in normally incident waves when the maximum
Froude number Frmax and dimensionless width of shear
current 𝑏/ℎ

1
are fixed to 0.20 and 10. The local maximum

reflection coefficient occurs at 𝜃 ≈ 27
∘. From this result,

we can say that the main factor of the maximum reflection
coefficient is the magnitude of shear current and the dimen-
sionless width of the shear current determines the location of
the maximum reflection coefficient.

3.4. Symmetric and Asymmetric Trapezoidal Trenches with
Shear Current. In this subsection, both symmetric and asym-
metric trenches were examined by changing the bottom
width of a trench 𝑏

1
/ℎ
1
while keeping the top width, dimen-

sionless depth of a trench ℎmax/ℎ1, and the incident angle 𝜃 as
10, 2, and 30

∘ to find the optimal figure of a trench that could
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Figure 9: Reflection coefficients for constant water depth with
different dimensionless width of shear current.
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Figure 10: Reflection coefficients for constant water depth with
different cross section of shear current.

reflect the water waves most highly when the shear current
(Frmax = 0.1) flows along the trench.

Figure 12 illustrates the reflection coefficients for different
symmetric trench configurations. The reflection coefficients
oscillate with decreasing peaks as the incident dimensionless
water depth 𝑘

1
ℎ
1
increases. Increasing the transition slope

(or the bottom width of trench 𝑏
1
/ℎ
1
) is found to cause a

high reflection coefficient. When the reflection coefficients
near 𝑘

1
ℎ
1
= 0.4 are preserved, the reflection coefficients near
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Figure 11: Reflection coefficients for constant water depth with a
different incident angle.
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Figure 12: Reflection coefficients of a symmetric trapezoidal trench
with shear current by sloped transitions.

𝑘
1
ℎ
1

= 1.0 decrease rapidly as the bottom width of trench
𝑏
1
/ℎ
1
becomes narrow. The maximum reflection coefficient

could be found at 𝑘
1
ℎ
1
= 0.45, 𝑏

1
/ℎ
1
= 10. Thus, the optimal

figure of a symmetric trench is a rectangular shape where the
top width and the bottom width of the trench are equal. This
result agrees well with the trench without the shear current
case of Bender and Dean [6].

Figure 13 shows the reflection coefficients for different
asymmetric trench configurations for both the right (con-
tour) and the left steep-slope trench (dashed line). The maxi-
mum reflection coefficient of the right and the left steep-slope
trench could be found at the same conditionwith a symmetric
trench. Bender and Dean [6] reported that the order of the
transition slopes has no effect on the reflection coefficients
when there is no shear current. However, when the shear
current flows along the trench, the reflection coefficients of
the left steep-slope trench are shown at the vicinities but
slightly shifted than those of the right steep-slope trench.
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Figure 13: Reflection coefficients of an asymmetric trapezoidal
trench with shear current by sloped transitions.
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Figure 14: A schematic sketch of multiarrayed trenches with shear
current.

This is due to the fact that the water waves passing the shear
current experience changes in the phase speed and direction.
Thus, when water waves have passed the right steep slope
and shear current, the direction of water waves is different
from the opposite case passing the left steep slope and shear
current.

4. Resonant Reflection due to Multiarrayed
Trenches with Shear Current

We have investigated the characteristic of shear current and
found the optimal figure of trench. In this section, two cases
are conducted to find the resonant reflection while using the
optimal figure of a trench (see Figure 14) and sinusoidally
varying topography with shear current (see Figure 15).

4.1. Multiarrayed Trenches with Shear Current. Mattioli [32]
studied when the submerged breakwater arrays were in a
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Figure 16: A target area image with a sketch diagram of multiar-
rayed trenches with shear current.

series whether the effects similar to the Bragg reflection
would occur. When a water depth is required for waterways,
trenches are more proper than submerged breakwaters. Most
of the nuclear power plants in Korea are located in coastal
region rather than in river region due to the high value of the
coefficient of river regime that could limit the cooling water
supply. The shear current caused by the drain of a nuclear
plant could change the direction of the water waves coming
to coastal region. Thus, when constructing trenches near the
shear current affecting domain as shown in Figure 16, the
interaction of the shear current and multiarrayed trenches
should be investigated simultaneously. In this subsection, we
studied the resonant reflection due to the idealized multiar-
rayed trenches configuration by taking the shear current into
account.

When sinusoidal shape shear current (Frmax = 0.2) flows
antecedently, a comparison between the three cases charac-
terized by the number of trenches was carried out. Figure 17
is a plot of the reflection coefficient as the dimensionless
distance of trenches 𝑑

2
/ℎ
1
varies where 𝑑

2
is the distance
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Figure 17: Reflection coefficients of multiarrayed trenches with
shear current and without shear current.

between trenches. In order to investigate the effect of the
shear current, we have plotted the results without the shear
current. The optimal figure of the trench (ℎmax/ℎ1 = 1.5,
𝑏
1
/ℎ
1
= 10), the incident dimensionless water depth (𝑘

1
ℎ
1
=

0.2), the dimensionless distance between the shear current
and trenches (𝑑

1
/ℎ
1

= 10), and the incident angle (𝜃 =

30
∘
) were kept fixed throughout the computations. When

the shear current flows antecedently, the reflection coefficient
increases by about 0.06 for all dimensionless distance of
trenches (𝑑

2
/ℎ
1
). It is clear that the number of trenches

is associated with the maximum reflection coefficient and
oscillating period of reflection coefficients. As the distance
between trenches increases, the reflection coefficients oscil-
late and show the maximum value when the dimensionless
distance of trenches 𝑑

2
/ℎ
1
is close to about 10.5.

In Figure 18, the reflection coefficients for the multiar-
rayed trenches in an optimal shape are shown without the
shear current (black line) and with the shear current aside
from the trenches (blue dashed line with rectangles). For
both cases, decreasing local maximum reflection coefficients
could be found as the incident dimensionless water depth
𝑘
1
ℎ
1
increases.Themain discrepancy due to the shear current

is changing the reflection coefficients in shallow water region
(𝑘
1
ℎ
1

< 0.314) and deep water region (𝑘
1
ℎ
1

> 3.14).
When considering the shear current, the local maximum
reflection coefficients occur at the vicinities but a little small
and slightly shifted toward left.This is not a general result that
could be used for everymultiarrayed trenches configurations;
however, it should be noted that the shear current could affect
the efficiency of multiarrayed trenches.
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4.2. Sinusoidally Varying Topography and Shear Current. The
shear current previously considered was unidirectional with
a sinusoidal shape. However, the edge wave crossing the
periodic rip current area or the complex region where the
stream water and current flow in several directions cannot
be interpreted in the unidirectional shear current. Thus,
we idealized the bidirectional shear current as sinusoidally
varying shape and employed the model to simulate the res-
onant reflection caused by sinusoidally varying topography
and sinusoidally varying shear current. The water depth and
the shear current are defined as shown in Table 2. ℎ

0
is the

amplitude of ripple and 𝑙topo, 𝑙current are the wavenumber of
the ripple and shear current, respectively.

Case 5 is of the propagation of water waves over corru-
gated bottoms without shear current (Frmax = 0) and it was
set up for the dimensionless amplitude of ripple ℎ

0
/ℎ
1

=

0.32, the wavenumber of ripple 𝑙topo = 0.628. Case 6 is
the sinusoidally varying shear current flowing the constant
water depth (ℎ

0
/ℎ
1
= 0), and the maximum Froude number

Frmax = 0.2; the wavenumber of shear current 𝑙current =

0.314 was used. For both cases, the width of the topography
and the shear current 𝑏/ℎ

1
was 80, and the incident angle

𝜃 was kept in 30
∘. Case 7 is the combination of Cases 5

and 6 where sinusoidally varying topography interacts with
sinusoidally varying shear current.

In Figure 19, the reflection coefficients of the three cases
are plotted as a function of the dimensionless wavenumber of
topography 2𝑘/𝑙topo. According to Dalrymple and Kirby [23],
the resonant reflection of oblique incident water waves that
pass sinusoidally varying topography occurs in the following
condition:

2𝑘
1
cos 𝜃

𝑙topo
= 𝑛
󸀠
, (12)

where 𝑛
󸀠 is the order of resonant reflection. Case 5 (black

circle) and Case 6 (white circle) are found to yield the same
value as the Bragg reflection condition (2𝑘/𝑙topo ≈ 1.15,
2𝑘/𝑙current ≈ 1.15) based on the theoretical prediction. When
the above cases are combined, that is, Case 7 (line), a double
resonant reflection occurs. Also, the second order resonant

Table 2: Profiles of sinusoidally varying topography and sinu-
soidally varying topography shear current.

Type Water depth Shear current
Case 5 ℎ(𝑥) = ℎ

1
− ℎ
0
sin(𝑙topo𝑥) Fr(𝑥) = 0

Case 6 ℎ(𝑥) = ℎ
1

Fr(𝑥) = Frmax sin(𝑙current𝑥)
Case 7 ℎ(𝑥) = ℎ

1
− ℎ
0
sin(𝑙topo𝑥) Fr(𝑥) = Frmax sin(𝑙current𝑥)
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Figure 19: Reflection coefficients of sinusoidally varying topogra-
phy and sinusoidally varying shear current.

reflection is enhanced by the interaction of sinusoidally
varying topography and shear current. In Case 7, the sinu-
soidally varying shear current peak shifts, while the resonant
reflection by the bottom corrugationmoves little with limited
reduction. This discrepancy could be thought of as the same
reason as Figure 18 which showed a shift of the peaks with
reduction caused by the shear current.

5. Conclusions

The eigenfunction expansion method model describing the
diffraction of the monochromatic waves by the shear current
at various topographies is presented. The model shows good
agreement when checking the wave energy conservation
and comparing the model with previous results. By the
convergence test, 27 steps of one side slope for symmetric
trench, double steps for asymmetric trench, and 55 steps
for sinusoidal shape shear current are suggested for steps.
And 16 evanescent modes for abrupt water depth change, 4
evanescent modes for constant water depth, and sinusoidally
varying topography are suggested for evanescent modes.

Several new results were found in this study: The maxi-
mum reflection coefficient is proportional to the magnitude
of the shear current, and its location is mainly affected by
the dimensionless width of the shear current. When the
shear current condition is fixed, an orthogonal sloped trench
shows the maximum reflection coefficient. The resonant
reflection was checked by multiarrayed trenches with shear
current. By superposing sinusoidally varying topography
and sinusoidally varying shear current that have different
wavenumbers, double resonant reflection occurs and the
second order resonant reflection is enhanced.
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Because the shear current could shift and change the
aspect of the reflection coefficients, shear current should not
be omitted while investigating the wave diffraction problem.
Hence, the result of this study could provide a possible means
for designing counter facilities to protect coastal structures
from wave attacks by reflecting the wave energy, especially
when the shear current plays a role.
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