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Interest in variance estimation in nonparametric regression has grown greatly in the past several decades. Among the existing
methods, the least squares estimator in Tong and Wang (2005) is shown to have nice statistical properties and is also easy to
implement. Nevertheless, their method only applies to regression models with homoscedastic errors. In this paper, we propose two
least squares estimators for the error variance in heteroscedastic nonparametric regression: the intercept estimator and the slope
estimator. Both estimators are shown to be consistent and their asymptotic properties are investigated. Finally, we demonstrate
through simulation studies that the proposed estimators perform better than the existing competitor in various settings.

1. Introduction

Consider the nonparametric regression model

𝑦
𝑖
= 𝑓 (𝑥

𝑖
) + 𝜀
𝑖
, 𝑖 = 1, . . . , 𝑛, (1)

where 𝑦
𝑖
are observations, 𝑥

𝑖
are design points with 0 ≤ 𝑥

1
≤

⋅ ⋅ ⋅ ≤ 𝑥
𝑛

≤ 1, 𝑓(⋅) is an unknown mean function, and 𝜀
𝑖

are independent random errors with mean zero and variance
𝑐
𝑖
𝜎
2, respectively. In the special case when 𝑐

𝑖
are all the

same, model (1) reduces to a homoscedastic nonparametric
regression. In this paper, we are interested in estimating the
variance 𝜎

2 in the situation when 𝑐
𝑖
are not all the same

but known constants. Note that such a setting can arise in
various situations. As an illustration, we consider a regression
model with 𝑟

𝑖
repeated observations on design points 𝑥

𝑖
,

respectively, where the measurement errors are normal. If in
practice we only report the average values on each design
point, we have the new model as 𝑦

𝑖
= 𝑓(𝑥

𝑖
) + 𝜀
𝑖
, where

var(𝜀
𝑖
) = 𝑐
𝑖
𝜎
2 with 𝑐

𝑖
= 1/𝑟
𝑖
.

Needless to say, an accurate estimate of variance is
important in nonparametric regression. For instance, it is
required in constructing confidence bands, in choosing the
amount of smoothing, in testing the goodness of fit, and

in estimating the detection limits of immunoassay [1–8]. In
the past several decades, researchers have proposed many
methods for estimating 𝜎

2, especially when the regression
model is homoscedastic. Among the existing methods, one
popular class is referred to as difference-based estimators.The
first-order difference-based estimator was proposed in Rice
[9],

𝜎̂
2

𝑅
=

1

2 (𝑛 − 1)

𝑛

∑

𝑖=2

(𝑦
𝑖
− 𝑦
𝑖−1

)
2
. (2)

Assume that 𝑓(⋅) is a Lipschitz continuous function and
max
2≤𝑖≤𝑛

{𝑥
𝑖
− 𝑥
𝑖−1

} = 𝑂(1/𝑛). Note that 𝑦
𝑖
− 𝑦
𝑖−1

= 𝑓(𝑥
𝑖
) −

𝑓(𝑥
𝑖−1

) + 𝜀
𝑖
− 𝜀
𝑖−1

≈ 𝜀
𝑖
− 𝜀
𝑖−1

as 𝑛 → ∞. Therefore, 𝜎̂2
𝑅
is

an asymptotically unbiased estimator of 𝜎2. Since then, many
difference-based estimators have been proposed in the litera-
ture. For instance, Gasser et al. [10] proposed a second-order
difference-based estimator. Hall et al. [11] proposed an 𝑚th-
order difference-based estimator with𝑚 ≥ 2 a finite number.
Other significant works include Dette et al. [12], Müller et al.
[13], Tong et al. [14], Du and Schick [15], andWang et al. [16],
among others. Furthermore, Brown and Levine [17], Wang
et al. [18], and Cai and Wang [19] considered the difference-
based kernel and wavelet estimators for the variance function
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in nonparametric regression. Note that the difference-based
estimators do not require an estimate of the mean function
and so are popular in practice.

As a variation of the difference-based estimation, Tong
and wang [20] proposed a least squares estimator of 𝜎2. Let
the lag-𝑘 Rice estimator be

𝜎̂
2

𝑅
(𝑘) =

1

2 (𝑛 − 𝑘)

𝑛

∑

𝑖=𝑘+1

(𝑦
𝑖
− 𝑦
𝑖−𝑘

)
2
. (3)

For the equally spaced design with 𝑥
𝑖
= 𝑖/𝑛, it can be shown

that 𝜎̂2
𝑅
(𝑘) = 𝜎

2
+ 𝐽𝑑
𝑘
+ 𝑜(𝑑
𝑘
) for any 𝑘 = 𝑜(𝑛), where 𝐽 =

∫
1

0
(𝑓
󸀠
(𝑥))
2
𝑑𝑥/2 and 𝑑

𝑘
= 𝑘
2
/𝑛
2. This indicates that the lag-

𝑘 Rice estimators are always positively biased estimators of
𝜎
2, especially when the sample size 𝑛 is small. To reduce bias,

Tong and Wang regressed 𝜎̂
2

𝑅
(𝑘) on 𝑑

𝑘
using a simple linear

regression and then estimate 𝜎
2 as the intercept. The least

squares estimator achieves the asymptotically optimal rate
that is usually possessed by residual-based estimators only. In
addition, Tong et al. [21] established the asymptotic normality
and also demonstrated the efficiency of the least squares
estimator. We also note that Park et al. [22] investigated
the least squares method in small sample nonparametric
regression via a local quadratic approximation to determine
the regressor and weights.

The aforementionedmethods have significantly advanced
our understanding on the difference-based estimation of the
error variance. Nevertheless, most of the above methods,
including the least squares method, only applied to non-
parametric regression models with homoscedastic errors.
In practice, it is not uncommon that the errors may have
different variances. In such situations, we note that the bias
term of the least squares estimator in Tong and Wang [20]
will be significantly enlarged; for more details, see Sections
2 and 3. Inspired by this, we propose two adaptive least
squares estimators for the residual variance in heteroscedastic
nonparametric regression.

The remainder of this paper is organized as follows. In
Section 2, we propose two least squares estimators for the
error variance: the intercept estimator and the slope estima-
tor. In Section 3, we investigate the asymptotic properties of
the proposed estimators and present some theoretical results
including the asymptotic normalities of the estimators. In
Section 4, we conduct simulation studies to evaluate the
proposed estimators and compare them with the existing
competitor in the literature. We then conclude the paper in
Section 5 with a brief discussion and provide the technical
proofs in Section 6.

2. Methodology

For model (1), without loss of generality, we assume that
∑
𝑛

𝑖=1
𝑐
𝑖
= 𝑛. In matrix notation, the model is written as

y = f + 𝜀, (4)

where y = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)
󸀠, f = (𝑓(𝑥

1
), 𝑓(𝑥

2
), . . . , 𝑓(𝑥

𝑛
))
󸀠,

and 𝜀 = (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
)
󸀠. The covariance matrix of 𝜀 is 𝜎

2
Σ,

where

Σ = (

𝑐
1

0 ⋅ ⋅ ⋅ 0

0 𝑐
2

⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝑐
𝑛

). (5)

When Σ = 𝐼, namely, 𝑐
𝑖

= 1 for all 𝑖, it reduced to the
homoscedastic setting in Tong and Wang [20]. In this paper,
we assume that the 𝑐

𝑖
values are not all the same.

For this setting, one naive approach is to apply the
transformation Σ

−1/2y = Σ
−1/2f + Σ

−1/2
𝜀. Through this trans-

formation the errors become homogeneous. Nevertheless,
meanwhile, it makes the transformed mean function Σ

−1/2f
no longer a Lipschitz continuous function. Specifically, if
𝑐
𝑖

̸= 𝑐
𝑖−1

and𝑓(𝑥
𝑖
) ̸= 0, the difference𝑓(𝑥

𝑖
)/√𝑐
𝑖
−𝑓(𝑥
𝑖−1

)/√𝑐
𝑖−1

will not be negligible when 𝑥
𝑖
− 𝑥
𝑖−1

tends to be zero. As a
consequence, the difference-based methods fail to apply in
such situations.

To advance the research project, we reconsider the lag-𝑘
Rice estimator defined inTong andWang [20]. Suppose that𝑓
has a bounded first derivative. For model (4), the expectation
of the lag-𝑘 Rice estimator is

𝐸 (𝜎̂
2

𝑅
(𝑘)) = 𝑎

𝑘
𝜎
2
+ 𝑏
𝑘
𝐽 + 𝑂(

𝑘
3

𝑛2 (𝑛 − 𝑘)
) + 𝑜 (

1

𝑛2
) , (6)

where 𝑎
𝑘

= ∑
𝑛

𝑖=𝑘+1
(𝑐
𝑖
+ 𝑐
𝑖−𝑘

)/2(𝑛 − 𝑘), 𝑏
𝑘

= 𝑘
2
/𝑛
2, and 𝐽 =

∫
1

0
(𝑓
󸀠
(𝑥))
2
𝑑𝑥/2. Note that 𝑎

𝑘
= (𝑛 + 𝑐

𝑘+1
+ ⋅ ⋅ ⋅ + 𝑐

𝑛−𝑘
)/(𝑛 + 𝑛 −

2𝑘) ̸= 1when 𝑐
𝑘+1

+⋅ ⋅ ⋅+𝑐
𝑛−𝑘

̸= 𝑛−2𝑘.Therefore, for model (4)
with heteroscedastic errors, it is not guaranteed that 𝜎̂2

𝑅
(𝑘) is

an asymptotically unbiased estimator of 𝜎2.
In what follows, we develop two new estimators for 𝜎

2:
(i) the first method estimates 𝜎2 as the intercept and (ii) the
secondmethod estimates𝜎2 as the slope. For the firstmethod,
we let 𝑧

𝑘
= 𝜎̂
2

𝑅
(𝑘)/𝑎
𝑘
and 𝑡
𝑘
= 𝑏
𝑘
/𝑎
𝑘
. Then, for any 𝑘 = 𝑜(𝑛),

we have

𝐸 (𝑧
𝑘
) = 𝜎
2
+ 𝐽𝑡
𝑘
+ 𝑜 (𝑡
𝑘
) . (7)

Now treating 𝑧
𝑘
as the response variable and 𝑡

𝑘
as the

independent variable, we fit the following simple linear
regression and estimate 𝜎2 as the fitted intercept,

𝑧
𝑘
= 𝛼 + 𝛽𝑡

𝑘
+ 𝑒
𝑘
, 𝑘 = 1, 2, . . . , 𝑚, (8)

where 𝑒
𝑘
are the random errors and 𝑚 is the total number

of pairs used for the fit. Note that 𝑧
𝑘
involves (𝑛 − 𝑘) pairs

of difference; we assign weights 𝑤
𝑘

= (𝑛 − 𝑘)/𝑁, where
𝑁 = (𝑛 − 1) + ⋅ ⋅ ⋅ + (𝑛 − 𝑚) = 𝑚𝑛 − 𝑚(𝑚 + 1)/2, to the
response variable 𝑧

𝑘
. We then fit the linear model (8) using

the weight least squares that minimizes the weighted sum of
squares∑𝑚

𝑘=1
𝑤
𝑘
(𝑧
𝑘
−𝛼−𝛽𝑡

𝑘
)
2. Specifically, the estimated error

variance is

𝜎̂
2

1
= 𝛼̂ = 𝑧

𝑤
− 𝛽 𝑡
𝑤
, (9)
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where 𝑧
𝑤

= ∑
𝑚

𝑘=1
𝑤
𝑘
𝑧
𝑘
, 𝑡
𝑤

= ∑
𝑚

𝑘=1
𝑤
𝑘
𝑡
𝑘
, and 𝛽 =

∑
𝑚

𝑘=1
𝑤
𝑘
𝑧
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)/∑
𝑚

𝑘=1
𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2. Let 𝑑

0
= 0 and

𝑑
𝑘
=

1

𝑎
𝑘

(1 −
(𝑡
𝑘
− 𝑡
𝑤
) 𝑡
𝑤

∑
𝑚

𝑘=1
𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2
) , 𝑘 = 1, . . . , 𝑚. (10)

The quadratic form of 𝜎̂
2

1
can be represented as 𝜎̂

2

1
=

y󸀠𝐷y/ tr(𝐷Σ), where𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

is a symmetric matrix with
𝑑
𝑖𝑗

= ∑
𝑚

𝑘=1
𝑑
𝑘
+ ∑

min{𝑖−1,𝑛−𝑖,𝑚}
𝑘=0

𝑑
𝑘
for 𝑖 = 𝑗, 𝑑

𝑖𝑗
= −𝑑
|𝑖−𝑗|

for
0 < |𝑖 − 𝑗| ≤ 𝑚, and 𝑑

𝑖𝑗
= 0 otherwise.

For the second method, we fit the linear regression with
two independent variables 𝑎

𝑘
and 𝑏
𝑘
and with no intercept

term. Specifically, we fit

𝜎̂
2

𝑅
(𝑘) = 𝛽

1
𝑎
𝑘
+ 𝛽
2
𝑏
𝑘
+ 𝜉
𝑘
, 𝑘 = 1, 2, . . . , 𝑚, (11)

where 𝜉
𝑘
are the random errors associated with the linear

regression.We then estimate 𝜎2 as the fitted slope 𝛽
1
. For ease

of notation, let 𝑠
𝑘
= 𝜎̂
2

𝑅
(𝑘). By minimizing the weighted sum

of squares ∑
𝑚

𝑘=1
𝑤
𝑘
(𝑠
𝑘
− 𝛽
1
𝑎
𝑘
− 𝛽
2
𝑏
𝑘
)
2, we have the second

estimator of 𝜎2 as

𝜎̂
2

2
= 𝛽
1

=
∑
𝑚

𝑘=1
𝑤
𝑘
𝑎
𝑘
𝑏
𝑘
∑
𝑚

𝑘=1
𝑤
𝑘
𝑏
𝑘
𝑠
𝑘
− ∑
𝑚

𝑘=1
𝑤
𝑘
𝑏
2

𝑘
∑
𝑚

𝑘=1
𝑤
𝑘
𝑎
𝑘
𝑠
𝑘

(∑
𝑚

𝑘=1
𝑤
𝑘
𝑎
𝑘
𝑏
𝑘
)
2
− ∑
𝑚

𝑘=1
𝑤
𝑘
𝑎2
𝑘
∑
𝑚

𝑘=1
𝑤
𝑘
𝑏2
𝑘

.

(12)

Let V
0
= 0 and

V
𝑘
=

𝑏
𝑘
∑
𝑚

𝑘=1
𝑤
𝑘
𝑎
𝑘
𝑏
𝑘
− 𝑎
𝑘
∑
𝑚

𝑘=1
𝑤
𝑘
𝑏
2

𝑘

(∑
𝑚

𝑘=1
𝑤
𝑘
𝑎
𝑘
𝑏
𝑘
)
2
− ∑
𝑚

𝑘=1
𝑤
𝑘
𝑎2
𝑘
∑
𝑚

𝑘=1
𝑤
𝑘
𝑏2
𝑘

,

𝑘 = 1, . . . , 𝑚.

(13)

It is easy to verify that 𝜎̂
2

2
has the quadratic form 𝜎̂

2

2
=

y󸀠𝐻y/ tr(𝐻Σ), where𝐻 = (ℎ
𝑖𝑗
)
𝑛×𝑛

is a symmetric matrix with
ℎ
𝑖𝑗

= ∑
𝑚

𝑘=1
V
𝑘
+ ∑

min{𝑖−1,𝑛−𝑖,𝑚}
𝑘=0

V
𝑘
for 𝑖 = 𝑗, ℎ

𝑖𝑗
= −V
|𝑖−𝑗|

for
0 < |𝑖 − 𝑗| ≤ 𝑚, and ℎ

𝑖𝑗
= 0 otherwise.

3. Main Results

This section investigates the statistical properties of the
proposed least squares estimators. Note that 𝜎̂

2

1
in (9) and

𝜎̂
2

2
in (12) are two similar estimators, except that (9) treats

𝑒
𝑘
as i.i.d. random errors and (12) treats 𝜉

𝑘
= 𝑎
𝑘
𝑒
𝑘
as i.i.d.

random errors. For simplicity, in what follows, we present the
asymptotic results for 𝜎̂2

1
only. To evaluate the achievement of

the proposed estimators, we will also investigate the behavior
of 𝜎̂
2

TW in Tong and Wang [20] under the new model (4).
Recall that for 𝜎̂2TW, we have

𝜎̂
2

TW =
y󸀠𝐷y
2𝑁

, (14)

where 𝑑
𝑘

= 1 − 𝑏
𝑤
(𝑏
𝑘

− 𝑏
𝑤
)/∑
𝑚

𝑘=1
𝑤
𝑘
(𝑏
𝑘

− 𝑏
𝑤
)
2, 𝑏
𝑤

=

∑
𝑚

𝑘=1
𝑤
𝑘
𝑏
𝑘
, and 𝐷 = (𝑑

𝑖𝑗
)
𝑛×𝑛

is a symmetric matrix with

𝑑
𝑖𝑗
= ∑
𝑚

𝑘=1
𝑑
𝑘
+∑

min{𝑖−1,𝑛−𝑖,𝑚}
𝑘=0

𝑑
𝑘
for 1 ≤ 𝑖 = 𝑗 ≤ 𝑛, 𝑑

𝑖𝑗
= −𝑑
|𝑖−𝑗|

for 0 < |𝑖 − 𝑗| ≤ 𝑚, and 𝑑
𝑖𝑗
= 0 otherwise.

Theorem 1. For the equally spaced design, the estimator 𝜎̂
2

1

in (9) is an unbiased estimator of 𝜎
2 when 𝑓 is a linear

function, regardless of the choice of 𝑚 and 𝑐
𝑖
. Under the same

setting, however, the estimator 𝜎̂2
𝑇𝑊

in (14) does not preserve the
unbiasedness property. More specifically, the bias term of 𝜎̂2

𝑇𝑊

has the expression

Bias (𝜎̂
2

𝑇𝑊
) = {

1

2𝑁

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑐
𝑖
+ 𝑐
𝑖−𝑘

) − 1}𝜎
2
. (15)

Theorem 2. Assume that 𝑓 has a bounded second derivative
and E(𝜀4) < ∞ with 𝜀 = 𝜀

1
/√𝑐
1
. Whenmax

1≤𝑖≤𝑛
𝑐
𝑖
= 𝑂(1), for

any𝑚 = 𝑛
𝑟 with 0 < 𝑟 < 1 and the equally spaced design, then

Bias (𝜎̂
2

1
) = 𝑂(

𝑚
2

𝑛2
) ,

Var (𝜎̂2
1
) =

𝐶
1

𝑛
Var (𝜀2) + 𝑜 (

1

𝑛
) ,

(16)

where

𝐶
1
=

𝑛

4𝑁2

𝑛

∑

𝑖=1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

min(𝑖−1,𝑛−𝑖,𝑚)
∑

𝑗=0

𝑑
𝑗
)

2

. (17)

As a comparison, the bias and variance of 𝜎̂2
𝑇𝑊

are

Bias (𝜎̂2
𝑇𝑊

) = {
1

2𝑁

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑐
𝑖
+ 𝑐
𝑖−𝑘

) − 1}𝜎
2

+ 𝑜(
𝑚
2

𝑛2
) ,

Var (𝜎̂2
𝑇𝑊

) =
𝐶
2

𝑛
Var (𝜀2) + 𝑜 (

1

𝑛
) ,

(18)

where

𝐶
2
=

𝑛

4𝑁2

𝑛

∑

𝑖=1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

min(𝑖−1,𝑛−𝑖,𝑚)
∑

𝑗=0

𝑑
𝑗
)

2

. (19)

Theorem 3. Assume that 𝑓 has a bounded second derivative
and E(𝜀4) < ∞ with 𝜀 = 𝜀

1
/√𝑐
1
. When max

1≤𝑖≤𝑛
𝑐
𝑖
= 𝑂(𝑛

𝑠
)

with 0 < 𝑠 < 2/5, for any 𝑚 = 𝑛
𝑟 with 0 < 𝑟 < 1 and the

equally spaced design, then

Bias (𝜎̂2
1
) = 𝑂(

𝑚
2

𝑛2
) , Var (𝜎̂2

1
) = 𝑂(

1

𝑛1−𝑠
) . (20)

As a comparison,

Bias (𝜎̂2
𝑇𝑊

) = 𝑂(
𝑚

𝑛1−𝑠
) , Var (𝜎̂2

𝑇𝑊
) = 𝑂(

1

𝑛1−𝑠
) .

(21)
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Theorem 4. Assume that 𝑓 has a bounded second derivative
and E(𝜀4) < ∞ with 𝜀 = 𝜀

1
/√𝑐
1
. Formax

1≤𝑖≤𝑛
𝑐
𝑖
= 𝑂(𝑛

𝑠
) with

0 < 𝑠 < 1/4 and any𝑚 = 𝑛
𝑟 with 0 < 𝑟 < 1/2, then

√
𝑛

𝛿
(𝜎̂
2

1
− 𝜎
2
)
𝑑

󳨀→ 𝑁(0, (𝛾
4
− 1) 𝜎

4
) , as 𝑛 󳨀→ ∞,

(22)

where 𝛿 = ∑
𝑛

𝑖=1
𝑐
2

𝑖
/𝑛, 𝛾
4

= E(𝜀4
1
)/(𝑐
2

1
𝜎
4
), and 𝑑󳨀→ denotes

convergence in distribution.
The proofs of the theorems are given in Section 6, respec-

tively. Theorems 1 and 2 indicate that 𝜎̂2
1
is an unbiased or

asymptotically unbiased estimator of 𝜎2 whereas 𝜎̂2TW is not.
The comparison on the asymptotic variances, or equivalently
on 𝐶
1
and 𝐶

2
, will be presented in Section 4. Furthermore,

when the heteroscedasticity level is high, Theorem 3 shows
that the bias term of 𝜎̂2TW is getting more severe so that it
does not remain to be a consistent estimator. The asymptotic
normality in Theorem 4 can be used to construct confidence
intervals for 𝜎2. When 𝑛 > 𝛿(𝛾

4
−1)𝑧
2

𝛼/2
, an approximate 1−𝛼

confidence interval for 𝜎2 is

(
𝜎̂
2

1

{1 + 𝑧
𝛼/2

√𝛿 (𝛾
4
− 1) /𝑛}

,
𝜎̂
2

1

{1 − 𝑧
𝛼/2

√𝛿 (𝛾
4
− 1) /𝑛}

) ,

(23)

where 𝑧
𝛼
is the upper 𝛼-th percentile of the standard normal

distribution. When 𝜀
𝑖
are from normal distribution with

variance 𝑐
𝑖
𝜎
2, we have 𝛾

4
= 3 so that the confidence interval

is fully specified. In general, we need to give an estimate for
the unknown 𝛾

4
.

4. Simulation Studies

In this section, we conduct simulation studies to evaluate
the finite sample performance of the proposed estimators, 𝜎̂2

1

and 𝜎̂
2

2
. Their performance will also be compared with the

estimator 𝜎̂2TW. Let 𝑥
𝑖
= 𝑖/𝑛 for 𝑖 = 1, . . . , 𝑛. Throughout the

simulations, we choose the bandwidth𝑚 = 𝑛
1/3, as suggested

in Tong and Wang [20].
Our first simulation study considers only one 𝑐

𝑖
value

being different from the others. Specifically, for a given
location 𝑗, we let 𝑐

𝑗
= 𝑛𝑐/(𝑐+𝑛−1) and 𝑐

𝑖
= 𝑛/(𝑐+𝑛−1) for any

𝑖 ̸= 𝑗, where 𝑐 is a constant. Note that ∑𝑛
𝑖=1

𝑐
𝑖
= 𝑛 is satisfied.

In this study, we let 𝑐 = 30. To investigate the behavior of the
estimators along with the variance pattern, we consider the
mean function 𝑓 = 5𝑥 and 𝑓 = 5 sin(2𝜋𝑥) and 𝜎 = 0.5 and
𝜎 = 2, respectively. Given the 𝑐

𝑖
and𝜎 values, we then simulate

𝜀
𝑖
independently from 𝑁(0, 𝑐

𝑖
𝜎
2
). With 1000 repetitions, we

plot the relative mean squared errors, MSE/(2𝜎4/𝑛), along
with the location 𝑗 for 𝑛 = 30 in Figure 1. It is evident that
our estimators 𝜎̂

2

1
and 𝜎̂

2

2
perform better than 𝜎̂

2

TW in most
locations. To check the behavior near the boundary, we also
plot the values of 𝐶

1
and 𝐶

2
along with the location 𝑗 for 𝑛 =

30, 50, 100 (chosen 𝑐 = 30) and 𝑛 = 500 (chosen 𝑐 = 100) in
Figure 2. Combining Figures 1 and 2, we recommend the use

of the new estimators when no significant different variance
appears in the boundaries.

Our second simulation study is to investigate the average
improvement of 𝜎̂

2

1
and 𝜎̂

2

2
over 𝜎̂

2

TW when one or more
variances are different from the others. To proceed, we
consider three mean functions,

𝑓
1 (𝑥) = 5 sin (𝜋𝑥) ,

𝑓
2 (𝑥) = 5 sin (2𝜋𝑥) ,

𝑓
3 (𝑥) = 5 sin (4𝜋𝑥) ,

(24)

two standard deviations, 𝜎 = 0.5 and 2, and three sample
sizes, 𝑛 = 30, 100, and 500, respectively. In total, there are
18 combinations. The 𝑐 values corresponding to 𝑛 = 30, 100

and 500 are 𝑐 = 30, 100, and 200, respectively. We then
randomly sample (i) one location or (ii) five locations from
the set {𝑚, . . . , 𝑛−𝑚}without replacement. For (i), the choice
of the 𝑐

𝑖
values follows the previous study. For (ii) with the

five locations L = {𝑗
1
, . . . , 𝑗

5
}, we let 𝑐

𝑗
= 𝑛𝑐/(5𝑐 + 𝑛 − 5)

for 𝑗 ∈ L and 𝑐
𝑖
= 𝑛/(𝑐 + 𝑛 − 1) for 𝑖 ∉ L. This results

in ∑
𝑛

𝑖=1
𝑐
𝑖
= 𝑛. For each combination setting, we repeat the

simulation 1000 times and report the relative MSEs in Table 1
for (i) and in Table 2 for (ii). From the simulation results, we
observe that 𝜎̂2

1
and 𝜎̂

2

2
have smaller relative MSEs than 𝜎̂

2

TW
in all the settings. In addition, we note that the performances
of 𝜎̂2
1
and 𝜎̂

2

2
are almost identical.

5. Conclusion

In this paper, we have proposed two least squares estimators
for the error variance in heteroscedastic nonparametric
regression: the intercept estimator and the slope estimator.
Both estimators are shown to be consistent and their asymp-
totic properties are investigated, including the consistency
and the asymptotic normalities. Simulation studies indicate
that the proposed estimators perform better than the existing
competitor in most settings. In the boundaries, however,
we note that the proposed estimators behave not as well as
expected when significantly different variances appear in the
boundaries of design points. As a practical rule, we have
suggested adopting the boundaries as [1, 𝑚) and (𝑛 − 𝑚, 𝑛].
Further research may be necessary in this direction.

6. Proofs

This section provides the technical proofs of the theorems
in Section 3. To prove the theorems, we first establish two
lemmas. For ease of notation, let 𝑓

𝑖
= 𝑓(𝑥

𝑖
) and 𝑓

󸀠

𝑖
= 𝑓
󸀠
(𝑥
𝑖
).

Lemma 5. Assume that 𝑓 has a bounded second derivative.
When max

1≤𝑖≤𝑛
𝑐
𝑖
= 𝑂(1), for any 𝑚 = 𝑛

𝑟 with 0 < 𝑟 < 1 and
the equally spaced design, then

(a) ∑𝑚
𝑘=1

𝑘
𝑡
𝑑
𝑘
= 𝑂(𝑚

𝑡+1
), 𝑡 = 0, 1, 2, 3;

(b) f󸀠𝐷f = 𝑂(𝑚
3
/𝑛);

(c) f󸀠𝐷Σ𝐷
󸀠f = 𝑜(𝑚

4
/𝑛);

(d) f󸀠𝐷f = 𝑜(𝑚
3
/𝑛);

(e) f󸀠𝐷Σ𝐷
󸀠f = 𝑜(𝑚

4
/𝑛).
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Figure 1: Plots of the relative MSEs of the estimators versus the location 𝑗 for 𝑛 = 30. The dotted, dashed, and solid lines correspond to 𝜎̂
2

1
,

𝜎̂
2

2
, and 𝜎̂

2

TW, respectively.

Proof. (a) For simplicity, we prove only for 𝑡 = 2. Let 𝑢
𝑘
= 1−

((𝑡
𝑘
−𝑡
𝑤
)𝑡
𝑤
/∑
𝑚

𝑘=1
𝑤
𝑘
(𝑡
𝑘
−𝑡
𝑤
)
2
) and 𝜐 = 𝑡

𝑤
/∑
𝑚

𝑘=1
𝑤
𝑘
(𝑡
𝑘
−𝑡
𝑤
)
2.

By the definition of 𝑎
𝑘
and ∑

𝑛

𝑖=1
𝑐
𝑖
= 𝑛, we have

𝑛 − 𝑘

𝑛
<

1

𝑎
𝑘

<
2 (𝑛 − 𝑘)

𝑛
, 𝑘 = 1, 2, . . . , 𝑚. (25)

First, we consider the upper bound of ∑𝑚
𝑘=1

𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2.

We know
𝑚

∑

𝑘=1

𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2

=

𝑚

∑

𝑘=1

𝑤
𝑘
𝑡
2

𝑘
− 𝑡
2

𝑤
<

𝑚

∑

𝑘=1

𝑤
𝑘
𝑡
2

𝑘
. (26)

Thus, we have
𝑚

∑

𝑘=1

𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2

<
4𝑚
4

5𝑛4
+ 𝑜(

𝑚
4

𝑛4
) . (27)

Next, we consider the lower bound of ∑𝑚
𝑘=1

𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2.

By the definition, we can know

𝑘
2
(𝑛 − 𝑘)

𝑛3
< 𝑡
𝑘
<

2𝑘
2
(𝑛 − 𝑘)

𝑛3
,

𝑚
2

3𝑛2
+ 𝑜(

𝑚
2

𝑛2
) < 𝑡
𝑤
<

2𝑚
2

3𝑛2
+ 𝑜(

𝑚
2

𝑛2
) .

(28)
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Figure 2: Plots of 𝐶
1
in Var(𝜎̂2

1
) and 𝐶

2
in Var(𝜎̂2TW) versus the location 𝑗, under various 𝑛. The dashed and solid lines correspond to 𝐶

1
and

𝐶
2
, respectively.

Let 𝛼
𝑘
= 𝑘
2
(𝑛 − 𝑘)/𝑛

3
− 2𝑚
2
/3𝑛
2 and 𝛽

𝑘
= 2𝑘
2
(𝑛 − 𝑘)/𝑛

3
−

𝑚
2
/3𝑛
2. Then, 𝛼

𝑘
and 𝛽

𝑘
are monotonically increasing about

𝑘, and

𝛼
𝑘
+ 𝑜(

𝑚
2

𝑛2
) < 𝑡
𝑘
− 𝑡
𝑤
< 𝛽
𝑘
+ 𝑜(

𝑚
2

𝑛2
) , 𝑘 = 1, 2, . . . , 𝑚.

(29)

Note that 𝛽
𝑘
is a monotonically increasing function of 𝑘 for

1 ≤ 𝑘 ≤ 𝑚 = 𝑜(𝑛) with 𝛽
1
< 0 and 𝛽

𝑚
> 0. Let 𝑚

1
be the

unique integer such that 𝛽
𝑚
1

≤ 0 and 𝛽
𝑚
1
+1

> 0. Therefore,
we have

𝑚

∑

𝑘=1

𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2

>

𝑚
1

∑

𝑘=1

𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2

>

𝑚
1

∑

𝑘=1

𝑤
𝑘
𝛽
2

𝑘
+ 𝑜(

𝑚
4

𝑛4
)

=
4𝑚
4

1

5𝑛4
−

4𝑚𝑚
3

1

9𝑛4
+

𝑚
1
𝑚
3

9𝑛4
+ 𝑜(

𝑚
4

𝑛4
) .

(30)
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Table 1: The relative MSEs of 𝜎̂2
1
, 𝜎̂2
2
, and 𝜎̂

2

TW for scenario (i) under
various simulation settings.

𝑛 𝜎 𝑓 𝜎̂
2

1
𝜎̂
2

2
𝜎̂
2

TW

30

0.5
𝑓
1

8.592259 8.588712 8.971043
𝑓
2

9.105655 9.109716 9.59135
𝑓
3

27.52861 27.93159 29.50932

2
𝑓
1

8.568082 8.564596 8.922776
𝑓
2

8.577039 8.57355 8.937509
𝑓
3

8.655637 8.653321 9.055993

100

0.5
𝑓
1

24.68565 24.67358 25.16409
𝑓
2

24.63531 24.63209 25.13371
𝑓
3

25.1026 25.10747 25.67267

2
𝑓
1

24.64412 24.63515 25.1233
𝑓
2

24.62441 24.61774 25.1069
𝑓
3

24.62372 24.61822 25.11145

500

0.5
𝑓
1

47.85348 47.85206 48.00883
𝑓
2

47.86474 47.8618 48.01908
𝑓
3

47.88284 47.87881 48.03735

2
𝑓
1

47.85314 47.85136 48.00809
𝑓
2

47.85561 47.85345 48.01027
𝑓
3

47.85829 47.85587 48.01283

Let 𝑚
1

= 𝑐𝑚 with 0 < 𝑐 < 1. It is easy to verify
that 𝑐 > 1/3. Then, 4𝑚4

1
/5𝑛
4
− 4𝑚𝑚

3

1
/9𝑛
4
+ 𝑚
1
𝑚
3
/9𝑛
4

=

(𝑚
4
/𝑛
4
)((4/5)𝑐

4
− (4/9)𝑐

3
+ (1/9)𝑐). Let 𝑔(𝑐) = (4/5)𝑐

4
−

(4/9)𝑐
3
+ (1/9)𝑐. Since 𝑔󸀠(𝑐) = (16/5)𝑐

3
− (4/3)𝑐

2
+ (1/9) > 0

for 1/3 < 𝑐 < 1, then 𝑔(𝑐) > 0 for 1/3 < 𝑐 < 1. Then,

𝑔 (𝑐)
𝑚
4

𝑛4
+ 𝑜(

𝑚
4

𝑛4
) <

𝑚

∑

𝑘=1

𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2

<
4𝑚
4

5𝑛4
+ 𝑜(

𝑚
4

𝑛4
) .

(31)

Consequently, we obtain 𝑡
𝑤

= 𝑂(𝑚
2
/𝑛
2
) and 𝜐 = 𝑂(𝑛

2
/𝑚
2
).

Note that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑘=1

𝑘
2
𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑚

∑

𝑘=1

𝑘
2

𝑎
𝑘

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨1 + 𝜐𝑡
𝑤

󵄨󵄨󵄨󵄨

𝑚

∑

𝑘=1

𝑘
2

𝑎
𝑘

+ 𝜐

𝑚

∑

𝑘=1

𝑘
2
𝑡
𝑘

𝑎
𝑘

. (32)

So, we can get ∑𝑚
𝑘=1

𝑘
2
𝑑
𝑘
= 𝑂(𝑚

3
). (b) Note that

f󸀠𝐷f =

𝑚

∑

𝑘=1

{𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑓
𝑖
− 𝑓
𝑖−𝑘

)
2
}

=

𝑚

∑

𝑘=1

{𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑓
󸀠

𝑖

𝑘

𝑛
+ 𝑂(

𝑘
2

𝑛2
))

2

}

=

𝑚

∑

𝑘=1

[𝑑
𝑘
{
𝑘
2

𝑛2

𝑛

∑

𝑖=𝑘+1

𝑓
󸀠2

𝑖
+ 𝑂(

(𝑛 − 𝑘) 𝑘
3

𝑛3
)}]

=
𝐽

𝑛

𝑚

∑

𝑘=1

𝑘
2
𝑑
𝑘
+ 𝑂(

1

𝑛2
)

𝑚

∑

𝑘=1

𝑘
3
𝑑
𝑘
,

(33)

where 𝐽 = ∫
1

0
𝑓
󸀠
(𝑥)
2
𝑑𝑥. By (a), for any𝑚 = 𝑜(𝑛), we have

f󸀠𝐷f = 𝑂(
𝑚
3

𝑛
) + 𝑂(

𝑚
4

𝑛2
) = 𝑂(

𝑚
3

𝑛
) . (34)

Table 2:The relativeMSEs of 𝜎̂2
1
, 𝜎̂2
2
, and 𝜎̂

2

TW for scenario (ii) under
various simulation settings.

𝑛 𝜎 𝑓 𝜎̂
2

1
𝜎̂
2

2
𝜎̂
2

TW

30

0.5
𝑓
1

5.356385 5.358625 5.76456
𝑓
2

5.825295 5.844773 6.410941
𝑓
3

24.08339 24.74582 27.14087

2
𝑓
1

5.291982 5.292094 5.659067
𝑓
2

5.284907 5.285037 5.659967
𝑓
3

5.367277 5.370764 5.809319

100

0.5
𝑓
1

14.70915 14.70799 15.1483
𝑓
2

14.6843 14.68265 15.1374
𝑓
3

15.01971 15.02443 15.58368

2
𝑓
1

14.71244 14.71141 15.14792
𝑓
2

14.70282 14.70165 15.13869
𝑓
3

14.69388 14.6925 15.13526

500

0.5
𝑓
1

42.08678 42.08626 42.35964
𝑓
2

42.09082 42.0904 42.36408
𝑓
3

42.10065 42.10021 42.37591

2
𝑓
1

42.0839 42.08347 42.3567
𝑓
2

42.08482 42.08442 42.35764
𝑓
3

42.08672 42.08632 42.35965

(c) Let 𝑑
0
= 0, 𝑓

0
= 0. We know

f󸀠𝐷Σ𝐷
󸀠f

=

𝑚

∑

𝑖=1

𝑐
𝑖

{

{

{

−

𝑖−1

∑

𝑗=0

𝑑
𝑗
𝑓
𝑖−𝑗

+ (

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑖−1

∑

𝑗=0

𝑑
𝑗
)𝑓
𝑖
−

𝑚

∑

𝑗=1

𝑑
𝑗
𝑓
𝑖+𝑗

}

}

}

2

+

𝑛−𝑚

∑

𝑖=𝑚+1

𝑐
𝑖

{

{

{

−

𝑚

∑

𝑗=1

𝑑
𝑗
𝑓
𝑖−𝑗

+ 2

𝑚

∑

𝑘=1

𝑑
𝑘
𝑓
𝑖
−

𝑚

∑

𝑗=1

𝑑
𝑗
𝑓
𝑖+𝑗

}

}

}

2

+

𝑛

∑

𝑖=𝑛−𝑚+1

𝑐
𝑖

{

{

{

−

𝑚

∑

𝑗=1

𝑑
𝑗
𝑓
𝑖−𝑗

+ (

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑛−𝑖

∑

𝑗=1

𝑑
𝑗
)𝑓
𝑖

−

𝑛−𝑖

∑

𝑗=1

𝑑
𝑗
𝑓
𝑖+𝑗

}

}

}

2

=

𝑚

∑

𝑖=1

𝑐
𝑖
(

𝑚

∑

𝑗=𝑖

𝑗𝑑
𝑗
)

2

(
𝑓
󸀠

𝑖

𝑛
+ 𝑜 (

1

𝑛
))

2

+ 4

𝑛−𝑚

∑

𝑖=𝑚+1

𝑐
𝑖
(𝑜(

1

𝑛
)

𝑚

∑

𝑗=1

𝑗𝑑
𝑗
)

2

+

𝑛

∑

𝑖=𝑛−𝑚+1

𝑐
𝑖
(

𝑚

∑

𝑗=𝑛−𝑖+1

𝑗𝑑
𝑗
)

2

(
𝑓
󸀠

𝑖

𝑛
+ 𝑜 (

1

𝑛
))

2

= 𝑂(
𝑚
5

𝑛2
) + 𝑜(

𝑚
4

𝑛
) .

(35)
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For any𝑚 = 𝑜(𝑛), we have

f󸀠𝐷Σ𝐷
󸀠f = 𝑜(

𝑚
4

𝑛
) . (36)

(d)We know

f󸀠𝐷f =

𝑚

∑

𝑘=1

{𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑓
𝑖
− 𝑓
𝑖−𝑘

)
2
}

=
𝐽

𝑛

𝑚

∑

𝑘=1

𝑘
2
𝑑
𝑘
+ 𝑂(

1

𝑛2
)

𝑚

∑

𝑘=1

𝑘
3
𝑑
𝑘
.

(37)

Note that
𝑚

∑

𝑘=1

𝑘
2
𝑑
𝑘
= 𝑜 (𝑚

3
) ,

𝑚

∑

𝑘=1

𝑘
3
𝑑
𝑘
= 𝑂 (𝑚

4
) . (38)

Thus,

f󸀠𝐷f = 𝑜(
𝑚
3

𝑛
) . (39)

(e)We know

f󸀠𝐷Σ𝐷
󸀠f =

1

𝑛2

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑓
󸀠

𝑖
+ 𝑜 (1))

2

(

𝑚

∑

𝑘=𝑖

𝑘𝑑
𝑘
)

2

+ 4

𝑛−𝑚

∑

𝑖=𝑚+1

𝑐
𝑖
(

𝑚

∑

𝑘=1

𝑘𝑑
𝑘
)

2

𝑜 (
1

𝑛2
)

+
1

𝑛2

𝑛

∑

𝑖=𝑛−𝑚+1

𝑐
𝑖
(𝑓
󸀠

𝑖
+ 𝑜 (1))

2

(

𝑚

∑

𝑘=𝑛−𝑖+1

𝑘𝑑
𝑘
)

2

.

(40)

Note that
𝑚

∑

𝑘=1

𝑘𝑑
𝑘
= 𝑂 (𝑚

2
) ,

𝑚

∑

𝑘=𝑖

𝑘𝑑
𝑘
= 𝑂 (𝑚

2
) , 1 ≤ 𝑖 ≤ 𝑚. (41)

Therefore, we have

f󸀠𝐷Σ𝐷
󸀠f = 𝑜(

𝑚
4

𝑛
) . (42)

Lemma 6. Assume that 𝑓 has a bounded second derivative.
Whenmax

1≤𝑖≤𝑛
𝑐
𝑖
= 𝑂(𝑛

𝑠
) with 0 < 𝑠 < 1, for any𝑚 = 𝑛

𝑟 with
0 < 𝑟 < 1 and the equally spaced design, then

(i) ∑𝑚
𝑘=1

𝑘
𝑡
𝑑
𝑘
= 𝑂(𝑚

𝑡+1
), 𝑡 = 0, 1, 2, 3;

(ii) f󸀠𝐷f = 𝑂(𝑚
3
/𝑛);

(iii) f󸀠𝐷Σ𝐷
󸀠f = 𝑜(𝑚

4
/𝑛
1−𝑠

);
(iv) f󸀠𝐷f = 𝑜(𝑚

3
/𝑛);

(v) f󸀠𝐷Σ𝐷
󸀠f = 𝑜(𝑚

4
/𝑛
1−𝑠

).

Proof. (i) Here we only consider the proof of 𝑡 = 2. For
max
1≤𝑖≤𝑛

𝑐
𝑖
= 𝑂(𝑛

𝑠
), it is similar with (a) in Lemma 5 to verify

that 𝑡
𝑤
= 𝑂(𝑚

2
/𝑛
2
) and 𝜐 = 𝑂(𝑛

2
/𝑚
2
). Thus, we can get

𝑚

∑

𝑘=1

𝑘
2
𝑑
𝑘
= 𝑂 (𝑚

3
) . (43)

(ii) According to (i), we have

f󸀠𝐷f =
𝐽

𝑛

𝑚

∑

𝑘=1

𝑘
2
𝑑
𝑘
+ 𝑂(

1

𝑛2
)

𝑚

∑

𝑘=1

𝑘
3
𝑑
𝑘
= 𝑂(

𝑚
3

𝑛
) . (44)

(iii) By part (c) in Lemma 5, we know

f󸀠𝐷Σ𝐷
󸀠f =

1

𝑛2

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑓
󸀠

𝑖
+ 𝑜 (1))

2

(

𝑚

∑

𝑘=𝑖

𝑘𝑑
𝑘
)

2

+ 4

𝑛−𝑚

∑

𝑖=𝑚+1

𝑐
𝑖
(

𝑚

∑

𝑘=1

𝑘𝑑
𝑘
)

2

𝑜 (
1

𝑛2
)

+
1

𝑛2

𝑛

∑

𝑖=𝑛−𝑚+1

𝑐
𝑖
(𝑓
󸀠

𝑖
+ 𝑜 (1))

2

(

𝑚

∑

𝑘=𝑛−𝑖+1

𝑘𝑑
𝑘
)

2

.

(45)

For any𝑚 = 𝑜(𝑛), we have

f󸀠𝐷Σ𝐷
󸀠f = 𝑜(

𝑚
4

𝑛1−𝑠
) . (46)

(iv) By (d) in Lemma 5, we have

f󸀠𝐷f =
𝐽

𝑛

𝑚

∑

𝑘=1

𝑘
2
𝑑
𝑘
+ 𝑂(

1

𝑛2
)

𝑚

∑

𝑘=1

𝑘
3
𝑑
𝑘
= 𝑜(

𝑚
3

𝑛
) . (47)

(v) Similar to (e) in Lemma 5, it is easy to get

f󸀠𝐷Σ𝐷
󸀠f =

1

𝑛2

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑓
󸀠

𝑖
+ 𝑜 (1))

2

(

𝑚

∑

𝑘=𝑖

𝑘𝑑
𝑘
)

2

+ 4

𝑛−𝑚

∑

𝑖=𝑚+1

𝑐
𝑖
(

𝑚

∑

𝑘=1

𝑘𝑑
𝑘
)

2

𝑜 (
1

𝑛2
)

+
1

𝑛2

𝑛

∑

𝑖=𝑛−𝑚+1

𝑐
𝑖
(𝑓
󸀠

𝑖
+ 𝑜 (1))

2

(

𝑚

∑

𝑘=𝑛−𝑖+1

𝑘𝑑
𝑘
)

2

= 𝑂(
𝑚
5

𝑛2−𝑠
) + 𝑜(

𝑚
4

𝑛
) = 𝑜(

𝑚
4

𝑛1−𝑠
) .

(48)

Lemma 7 (see [23]). Let 𝑎
𝑛;𝑡𝑘

be entries of a real symmetric
matrix 𝐴

𝑛
= (𝑎

𝑛;𝑡𝑘
), let {𝑍

𝑡
, 𝑡 = 1, . . . , 𝑛} be i.i.d.

random variables, and 𝑇
𝑛

= ∑
𝑛

𝑡,𝑘=1
𝑎
𝑛;𝑡𝑘

𝑍
𝑡
𝑍
𝑘
. Assume that

‖𝐴
𝑛
‖
𝑠𝑝
/‖𝐴
𝑛
‖ → 0 and E𝑍4

𝑡
< ∞; then

(Var (𝑇
𝑛
))
−1/2

(𝑇
𝑛
− 𝐸𝑇
𝑛
)
𝑑

󳨀→ 𝑁(0, 1) , (49)

where ‖𝐴
𝑛
‖ = (∑

𝑛

𝑡,𝑘=1
𝑎
2

𝑛;𝑡𝑘
)
1/2 and ‖𝐴

𝑛
‖
𝑠𝑝

= max
‖𝑥‖=1

‖𝐴
𝑛
𝑥‖

are the Euclidean norm and the spectral norm of thematrix𝐴
𝑛
,

respectively.
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6.1. Proof of Theorem 1. Let 𝑓(𝑥) = 𝜇 + 𝛿𝑥. It is easy to verify
that

𝐸𝑧
𝑘
= 𝜎
2
+

𝑘
2

2𝑛2𝑎
𝑘

𝛿
2
= 𝜎
2
+

1

2
𝑡
𝑘
𝛿
2
, (50)

𝐸𝑧
𝑤
= 𝐸(

𝑚

∑

𝑘=1

𝑤
𝑘
𝑧
𝑘
) = 𝜎

2
+

1

2
𝑡
𝑤
𝛿
2
. (51)

By combining (50) and (51), we have

𝐸 (𝜎̂
2

1
) = 𝐸 (𝑧

𝑤
− 𝑡
𝑤
𝛽)

= 𝐸 (𝑧
𝑤
) −

𝑡
𝑤

∑
𝑚

𝑘=1
𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2

× {

𝑚

∑

𝑘=1

𝑤
𝑘
𝑡
𝑘
𝐸𝑧
𝑘
− 𝑡
𝑤
𝐸 (𝑧
𝑤
)}

= 𝜎
2
+

1

2
𝛿
2
𝑡
𝑤
−

𝑡
𝑤

∑
𝑚

𝑘=1
𝑤
𝑘
(𝑡
𝑘
− 𝑡
𝑤
)
2

× (

𝑚

∑

𝑘=1

𝑤
𝑘
𝑡
2

𝑘
− 𝑡
2

𝑤
)

1

2
𝛿
2
= 𝜎
2
.

(52)

This shows that 𝜎̂2
1
is an unbiased estimator of 𝜎2. In what

follows we consider 𝜎̂2TW. Therefore,

𝐸 (𝜎̂
2

TW) =
tr (𝐷Σ)

2𝑁
𝜎
2
+

1

2𝑁
f󸀠𝐷f . (53)

For 𝑓(𝑥) = 𝜇 + 𝛿𝑥, we have

1

2𝑁
f󸀠𝐷f =

1

2𝑁

𝑚

∑

𝑘=1

{𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑓
𝑖
− 𝑓
𝑖−𝑘

)
2
}

=
1

2𝑁

𝑚

∑

𝑘=1

(𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

𝛿
2 𝑘
2

𝑛2
) =

𝛿
2

2𝑁

𝑚

∑

𝑘=1

(𝑛 − 𝑘) 𝑏𝑘𝑑𝑘

=
𝛿
2

2

𝑚

∑

𝑘=1

𝑤
𝑘
𝑏
𝑘
(1 −

(𝑏
𝑘
− 𝑏
𝑤
) 𝑏
𝑤

∑
𝑚

𝑘=1
𝑤
𝑘
(𝑏
𝑘
− 𝑏
𝑤
)
2
) = 0,

(54)

tr (𝐷Σ) =

𝑚

∑

𝑖=1

𝑐
𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑖−1

∑

𝑘=0

𝑑
𝑘
)

+ 2

𝑛−𝑚

∑

𝑖=𝑚+1

𝑐
𝑖

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑛

∑

𝑖=𝑛−𝑚+1

𝑐
𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑛−𝑖

∑

𝑘=1

𝑑
𝑘
)

=

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑐
𝑖
+ 𝑐
𝑖−𝑘

) .

(55)

By (54) and (55), we get

Bias (𝜎̂2TW) = {
∑
𝑚

𝑘=1
𝑑
𝑘
∑
𝑛

𝑖=𝑘+1
(𝑐
𝑖
+ 𝑐
𝑖−𝑘

)

2𝑁
− 1}𝜎

2
. (56)

6.2. Proof of Theorem 2. It is easy to verify that tr(𝐷Σ) = 2𝑁.
This leads to

𝐸 (𝜎̂
2

1
) = 𝐸(

1

2𝑁
y󸀠𝐷y)

=
1

2𝑁
𝐸 (f󸀠𝐷f + 2f󸀠𝐷𝜀 + 𝜀󸀠𝐷𝜀)

=
1

2𝑁
{f󸀠𝐷f + 𝐸 (𝜀

󸀠
𝐷𝜀)}

= 𝜎
2
+

1

2𝑁
f󸀠𝐷f .

(57)

Thus,

Bias (𝜎̂2
1
) = 𝐸 (𝜎̂

2

1
) − 𝜎
2
=

1

2𝑁
f󸀠𝐷f . (58)

By Lemma 5, for any𝑚 = 𝑜(𝑛), we have

Bias (𝜎̂2
1
) = 𝑂(

𝑚
2

𝑛2
) . (59)

In what follows, we calculate Var(𝜎̂2
1
). Note that

Var (𝜎̂2
1
) = Var ( 1

2𝑁
y󸀠𝐷y)

=
1

4𝑁2
Var (f󸀠𝐷f + 𝜀󸀠𝐷𝜀 + 2f󸀠𝐷𝜀)

=
1

4𝑁2
{Var (𝜀󸀠𝐷𝜀) + 4f󸀠𝐷Var (𝜀) 𝐷󸀠f

+ 2Cov (𝜀󸀠𝐷𝜀, 2f󸀠𝐷𝜀)}

=
1

4𝑁2
(𝐼
1
+ 𝐼
2
+ 𝐼
3
) .

(60)

For 𝐼
1
, we have

𝐼
1
=

𝑛

∑

𝑖=1

𝑑
2

𝑖𝑖
Var (𝜀2

𝑖
) + 4 ∑

1≤𝑖<𝑗≤𝑛

𝑑
2

𝑖𝑗
𝐸 (𝜀
2

𝑖
𝜀
2

𝑗
)

=

𝑛

∑

𝑖=1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

min(𝑖−1,𝑛−𝑖,𝑚)
∑

𝑗=0

𝑑
𝑗
)

2

Var (𝜀2)

+ 4𝜎
4

𝑚

∑

𝑘=1

𝑑
2

𝑘

𝑛−𝑘

∑

𝑖=1

𝑐
𝑖
𝑐
𝑖+𝑘

,

(61)

where 𝑑
0
= 0, 𝜀 = 𝜀

𝑖
/√𝑐
𝑖
. For 𝐼

2
, by Lemma 5, for any 𝑚 =

𝑜(𝑛), we have

𝐼
2
= 4f󸀠𝐷Var (𝜀) 𝐷󸀠f = 4f󸀠𝐷Σ𝐷

󸀠f𝜎2 = 𝑜(
𝑚
4

𝑛
) . (62)
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Finally, we consider 𝐼
3
,

𝐼
3
= 4𝐸 {f󸀠𝐷𝜀𝜀󸀠𝐷𝜀}

= 4 [

𝑚

∑

𝑠=1

{
𝑓
󸀠

𝑠

𝑛

𝑚

∑

𝑘=𝑠

𝑘𝑑
𝑘
+ 𝑜 (

1

𝑛
)

𝑚

∑

𝑘=𝑠

𝑘𝑑
𝑘
}

× 𝐸{𝜀
𝑠

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝜀
𝑖
− 𝜀
𝑖−𝑘

)
2
}

+

𝑛−𝑚

∑

𝑠=𝑚+1

𝐸{𝜀
𝑠

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝜀
𝑖
− 𝜀
𝑖−𝑘

)
2
}𝑜(

𝑚
2

𝑛
)

+

𝑛

∑

𝑠=𝑛−𝑚+1

{
𝑓
󸀠

𝑠

𝑛

𝑚

∑

𝑘=𝑛−𝑠+1

𝑘𝑑
𝑘
+ 𝑜 (

1

𝑛
)

𝑚

∑

𝑘=𝑛−𝑠+1

𝑘𝑑
𝑘
}

×𝐸{𝜀
𝑠

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝜀
𝑖
− 𝜀
𝑖−𝑘

)
2
}]

= 𝑂(
𝑚
4

𝑛
) + 𝑜 (𝑚

3
) .

(63)

Combining (61), (62), and (63), we know

Var (𝜎̂2
1
) =

Var (𝜀2)
4𝑁2

𝑛

∑

𝑖=1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

min(𝑖−1,𝑛−𝑖,𝑚)
∑

𝑗=0

𝑑
𝑗
)

2

+
𝜎
4

𝑁2

𝑚

∑

𝑘=1

𝑑
2

𝑘
(

𝑛−𝑘

∑

𝑖=1

𝑐
𝑖
𝑐
𝑖+𝑘

)

+ 𝑂(
𝑚
2

𝑛3
) + 𝑜 (

𝑚

𝑛2
) .

(64)

Note that, for max
1≤𝑖≤𝑛

𝑐
𝑖
= 𝑂(1) and any𝑚 = 𝑛

𝑟 with 0 < 𝑟 <

1, we have

𝜎
4

𝑁2

𝑚

∑

𝑘=1

𝑑
2

𝑘
(

𝑛−𝑘

∑

𝑖=1

𝑐
𝑖
𝑐
𝑖+𝑘

) = 𝑜(
1

𝑛
) . (65)

Therefore, we get

Var (𝜎̂2
1
) =

𝐶
1

𝑛
Var (𝜀2) + 𝑜 (

1

𝑛
) , (66)

where

𝐶
1
=

𝑛

4𝑁2

𝑛

∑

𝑖=1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

min(𝑖−1,𝑛−𝑖,𝑚)
∑

𝑗=0

𝑑
𝑗
)

2

. (67)

Let 𝑈
1

= Var(𝜀󸀠𝐷𝜀), 𝑈
2

= Cov(𝜀󸀠𝐷𝜀, f󸀠𝐷𝜀). Then, we
have

𝑈
1
=

𝑛

∑

𝑖=1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

min(𝑖−1,𝑛−𝑖,𝑚)
∑

𝑗=0

𝑑
𝑗
)

2

Var (𝜀2)

+ 4𝜎
4

𝑚

∑

𝑘=1

𝑑
2

𝑘

𝑛−𝑘

∑

𝑖=1

𝑐
𝑖
𝑐
𝑖+𝑘

,

𝑈
2
=

𝑚

∑

𝑠=1

𝑚

∑

𝑗=𝑠

𝑗𝑑
𝑗
{
𝑓
󸀠

𝑠

𝑛
+ 𝑜 (

1

𝑛
)}𝐸{𝜀

𝑠

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝜀
𝑖
− 𝜀
𝑖−𝑘

)
2
}

+

𝑛−𝑚

∑

𝑠=𝑚+1

𝐸{𝜀
𝑠

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝜀
𝑖
− 𝜀
𝑖−𝑘

)
2
}𝑜(

𝑚
2

𝑛
)

+

𝑛

∑

𝑠=𝑛−𝑚+1

𝑚

∑

𝑗=𝑛−𝑠

𝑗𝑑
𝑗
{
𝑓
󸀠

𝑠

𝑛
+ 𝑜 (

1

𝑛
)}

× 𝐸{𝜀
𝑠

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝜀
𝑖
− 𝜀
𝑖−𝑘

)
2
} .

(68)

By (68) and (d) and (e) in Lemma 5, we can get

Bias (𝜎̂2TW)

= 𝐸 (𝜎̂
2

TW) − 𝜎
2
=
tr (𝐷Σ)

2𝑁
𝜎
2
+

1

2𝑁
f󸀠𝐷f − 𝜎

2

= {
∑
𝑚

𝑘=1
𝑑
𝑘
∑
𝑛

𝑖=𝑘+1
(𝑐
𝑖
+ 𝑐
𝑖−𝑘

)

2𝑁
− 1}𝜎

2
+ 𝑜(

𝑚
2

𝑛2
) ,

Var (𝜎̂2TW) =
1

4𝑁2
{𝑈
1
+ 4𝑈
2
+ 4f󸀠𝐷Σ𝐷

󸀠f𝜎2}

=
𝐶
2

𝑛
Var (𝜀2) + 𝑜 (

1

𝑛
) ,

(69)

where𝐶
2
= (𝑛/4𝑁

2
) ∑
𝑛

𝑖=1
𝑐
2

𝑖
(∑
𝑚

𝑘=1
𝑑
𝑘
+∑

min(𝑖−1,𝑛−𝑖,𝑚)
𝑗=0

𝑑
𝑗
)
2 and

𝑑
0
= 0. This completes the proof of the theorem.

6.3. Proof of Theorem 3. By Lemma 6, we know

Bias (𝜎̂2
1
) = 𝐸 (𝜎̂

2

1
) − 𝜎
2
=

1

2𝑁
f󸀠𝐷f = 𝑂(

𝑚
2

𝑛2
) . (70)

According to (63), for max
1≤𝑖≤𝑛

𝑐
𝑖
= 𝑂(𝑛

𝑠
), we have

Cov (𝜀󸀠𝐷𝜀, f󸀠𝐷𝜀) = 𝑂(
𝑚
4

𝑛1−(3/2)𝑠
) + 𝑜 (𝑚

3
𝑛
(3/2)𝑠

) . (71)

Note that, under the condition ∑
𝑛

𝑖=1
𝑐
𝑖
= 𝑛 and max

1≤𝑖≤𝑛
𝑐
𝑖
=

𝑂(𝑛
𝑠
), it can be shown that

𝑛

∑

𝑖=1

𝑐
2

𝑖
= 𝑂 (𝑛

1+𝑠
) . (72)



Journal of Applied Mathematics 11

In addition, by Cauchy-Schwarz inequality, we know
𝑚

∑

𝑘=1

𝑑
2

𝑘

𝑛−𝑘

∑

𝑖=1

𝑐
𝑖
𝑐
𝑖+𝑘

= 𝑂 (𝑚𝑛
1+𝑠

) . (73)

Thus,

Var (𝜎̂2
1
) =

1

4𝑁2
Var (𝜀󸀠𝐷𝜀) +

1

𝑁2
f󸀠𝐷Var (𝜀) 𝐷󸀠f

+
1

𝑁2
Cov (𝜀󸀠𝐷𝜀, f󸀠𝐷𝜀)

= 𝑂(
1

𝑛1−𝑠
) + 𝑂(

1

𝑚𝑛1−𝑠
) + 𝑜(

𝑚
2

𝑛3−𝑠
)

+ 𝑜 (
𝑚

𝑛2−(3/2)𝑠
) .

(74)

When 𝑟 and 𝑠 satisfy 𝑟 − 𝑠 > 0 and 𝑟 + (3/2)𝑠 ≤ 1, namely,
0 < 𝑠 < 2/5 and 0 < 𝑟 < 1, then

Var (𝜎̂2
1
) = 𝑂(

1

𝑛1−𝑠
) . (75)

Next, we consider the order of the bias and variance of
𝜎̂
2

TW. By (55), we have

tr (𝐷Σ) =

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑐
𝑖
+ 𝑐
𝑖−𝑘

) . (76)

Note that
𝑚

∑

𝑘=1

𝑑
𝑘
= 𝑚 −

5𝑚
2

16𝑛
+ 𝑜(

𝑚
2

𝑛
) ,

𝑛

∑

𝑖=1

𝑐
𝑖
= 𝑛. (77)

By (iv) in Lemma 6, then

Bias (𝜎̂2TW)

= {((2𝑛

𝑚

∑

𝑘=1

𝑑
𝑘
−

𝑚

∑

𝑘=1

𝑑
𝑘

𝑘

∑

𝑖=1

𝑐
𝑖

−

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑛−𝑘+1

𝑐
𝑖
) (2𝑁)

−1
) − 1}𝜎

2

+ 𝑜(
𝑚
2

𝑛2
)

= {−
5𝑚

16𝑛
− (

𝑚

∑

𝑘=1

𝑑
𝑘

𝑘

∑

𝑖=1

𝑐
𝑖

+

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑛−𝑘+1

𝑐
𝑖
) (2𝑁)

−1
}𝜎
2

+ 𝑜 (
𝑚

𝑛
) .

(78)

Consequently, it shows that

󵄨󵄨󵄨󵄨󵄨
Bias (𝜎̂2TW)

󵄨󵄨󵄨󵄨󵄨
≤ {

5𝑚

16𝑛
+

𝑚

∑

𝑘=1

𝑘𝑑
𝑘

𝑂 (𝑛
𝑠
)

𝑁
}𝜎
2
+ 𝑜 (

𝑚

𝑛
) .

(79)

Thus, we get

Bias (𝜎̂2TW) = 𝑂(
𝑚

𝑛1−𝑠
) . (80)

By (68) and (v) in Lemma 6, for 0 < 𝑠 < 2/5 and 0 < 𝑟 < 1, it
is similar with (74) to get

Var (𝜎̂2TW) =
1

4𝑁2
Var (𝜀󸀠𝐷𝜀) +

1

𝑁2
f󸀠𝐷Var (𝜀) 𝐷󸀠f

+
1

𝑁2
Cov (𝜀󸀠𝐷𝜀, f󸀠𝐷𝜀)

= 𝑂(
1

𝑛1−𝑠
) .

(81)

This completes the proof of the theorem.

6.4. Proof of Theorem 4. ByTheorem 1, we know

𝜎̂
2

1
=

1

2𝑁
y󸀠𝐷y =

1

2𝑁
f󸀠𝐷f + 1

𝑁
f󸀠𝐷𝜀 + 1

2𝑁
𝜀
󸀠
𝐷𝜀. (82)

Note that the first term corresponds to the bias term. By
Lemma 6, we know (1/2𝑁)f󸀠𝐷f = 𝑂(𝑚

2
/𝑛
2
). Thus, for any

𝑚 = 𝑛
𝑟 with 0 < 𝑟 < 3/4,

1

2𝑁
f󸀠𝐷f = 𝑜 (𝑛

−1/2
) . (83)

For the second term, by Lemma 6, we have

𝐸(
f󸀠𝐷𝜀
𝑁

)

2

=
f󸀠𝐷Σ𝐷

󸀠f𝜎2

𝑁2
= 𝑜(

𝑚
2

𝑛3−𝑠
) = 𝑜(

𝑚
2

𝑛2
) .

(84)

Thus, for any𝑚 = 𝑛
𝑟 with 0 < 𝑟 < 1/2, we have

f󸀠𝐷𝜀
𝑁

= 𝑜
𝑝
(𝑛
−1/2

) . (85)

Now we consider the third term. Let 𝜀
𝑖

= 𝜀
𝑖
/√𝑐
𝑖
,

𝜀 = (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
)
𝑇, and 𝐶 = diag(√𝑐

1
, √𝑐
2
, . . . , √𝑐

𝑛
), then

𝐸(𝜀
𝑖
) = 0, Var(𝜀

𝑖
) = 𝜎

2, and 𝜀
𝑖
are i.i.d. random variables,

𝜀 = 𝐶𝜀. So we have

𝜀
𝑇
𝐷𝜀 = 𝜀

𝑇
𝐶
𝑇
𝐷𝐶𝜀 = 𝜀

𝑇
𝑇𝜀 =

𝑛

∑

𝑖,𝑗=1

𝑡
𝑖𝑗
𝜀
𝑖
𝜀
𝑗
, (86)

where 𝑇 = 𝐶
𝑇
𝐷𝐶 = (𝑡

𝑖𝑗
)
𝑛×𝑛

is a real symmetric matrix
with 𝑡

𝑖𝑗
= 𝑐
𝑖
(∑
𝑚

𝑘=1
𝑑
𝑘
+ ∑

min{𝑖−1,𝑛−𝑖,𝑚}
𝑘=0

𝑑
𝑘
) for 𝑖 = 𝑗, 𝑡

𝑖𝑗
=

−√𝑐
𝑖
𝑐
𝑖+|𝑖−𝑗|

𝑑
|𝑖−𝑗|

for 0 < |𝑖 − 𝑗| ≤ 𝑚, and 𝑡
𝑖𝑗
= 0 otherwise.
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We know that the Euclidean norm of the matrix 𝑇 can be
denoted as

‖𝑇‖ = (

𝑛

∑

𝑖,𝑗=1

𝑡
2

𝑖𝑗
)

1/2

=
{

{

{

𝑚

∑

𝑖=1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑖−1

∑

𝑗=0

𝑑
𝑗
)

2

+

𝑛−𝑚

∑

𝑖=𝑚+1

𝑐
2

𝑖
(2

𝑚

∑

𝑘=1

𝑑
𝑘
)

2

+

𝑛

∑

𝑖=𝑛−𝑚+1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑛−𝑖

∑

𝑗=0

𝑑
𝑗
)

2

+2

𝑚

∑

𝑗=1

(

𝑛−𝑗

∑

𝑖=1

𝑐
𝑖
𝑐
𝑖+𝑗

𝑑
2

𝑗
)
}

}

}

1/2

,

(87)

where 𝑑
0
= 0. By the definition of spectral norm, we have

‖𝑇‖sp = max
‖𝑥‖=1

‖𝑇𝑥‖ = (maximum eigenvalue of 𝑇𝐶𝑇)
1/2

,

(88)

where 𝑇𝐶 is the conjugate transpose of the matrix 𝑇. Since 𝑇
is a real symmetric matrix, 𝑇𝐶 = 𝑇. Then, 𝑇𝐶𝑇 = 𝑇

2.
Let 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
be eigenvalues of matrix 𝑇 and ordered

to be nonincreasing in absolute value. Then, 𝜆2
𝑖
, 𝑖 = 1, . . . , 𝑛

are eigenvalues of the matrix 𝑇
2. Thus, |𝜆

1
| is the spectral

norm of matrix 𝑇. Namely, ‖𝑇‖sp = |𝜆
1
|. Let

𝐿
2

𝑛
= max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1

𝑡
2

𝑖𝑗
, Γ

𝑛
= max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
. (89)

It is well known that

𝐿
𝑛
≤

󵄨󵄨󵄨󵄨𝜆1
󵄨󵄨󵄨󵄨 ≤ Γ
𝑛
. (90)

Let max
1≤𝑖≤𝑛

𝑐
𝑖

= 𝑂(𝑛
𝑠
) and 𝜔 =

min
1≤𝑖≤𝑚,𝑛−𝑚+1≤𝑖≤𝑛

{| ∑
𝑚

𝑘=1
𝑑
𝑘
+∑
𝑖−1

𝑗=0
𝑑
𝑗
|, 2| ∑

𝑚

𝑘=1
𝑑
𝑘
|, | ∑
𝑚

𝑘=1
𝑑
𝑘
+

∑
𝑛−𝑖

𝑗=0
𝑑
𝑗
|}. Then, combining (87) and (90), we have

‖𝑇‖sp

‖𝑇‖
≤

max
1≤𝑖≤𝑛

∑
𝑛

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

‖𝑇‖

≤
max
1≤𝑖≤𝑛

(2𝑐
𝑖

󵄨󵄨󵄨󵄨∑
𝑚

𝑘=1
𝑑
𝑘

󵄨󵄨󵄨󵄨 + 2∑
𝑚

𝑘=1√𝑐
𝑖
𝑐
𝑖+𝑘

󵄨󵄨󵄨󵄨𝑑𝑘
󵄨󵄨󵄨󵄨)

‖𝑇‖

≤ (2(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑘=1

𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑑𝑘
󵄨󵄨󵄨󵄨)𝑂 (𝑛

𝑠
))

× (
{

{

{

𝑚

∑

𝑖=1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑖−1

∑

𝑗=0

𝑑
𝑗
)

2

+

𝑛−𝑚

∑

𝑖=𝑚+1

𝑐
2

𝑖
(2

𝑚

∑

𝑘=1

𝑑
𝑘
)

2

+

𝑛

∑

𝑖=𝑛−𝑚+1

𝑐
2

𝑖
(

𝑚

∑

𝑘=1

𝑑
𝑘
+

𝑛−𝑖

∑

𝑗=0

𝑑
𝑗
)

2

}

}

}

1/2

)

≤
2 (

󵄨󵄨󵄨󵄨∑
𝑚

𝑘=1
𝑑
𝑘

󵄨󵄨󵄨󵄨 + ∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑑𝑘
󵄨󵄨󵄨󵄨)

𝜔

𝑂 (𝑛
𝑠
)

√∑
𝑛

𝑖=1
𝑐2
𝑖

.

(91)

Note that∑𝑛
𝑖=1

𝑐
𝑖
= 𝑛. By Cauchy-Schwarz inequality, we have

𝑛

∑

𝑖=1

𝑐
2

𝑖
≥ 𝑛. (92)

Note also that

2 (
󵄨󵄨󵄨󵄨∑
𝑚

𝑘=1
𝑑
𝑘

󵄨󵄨󵄨󵄨 + ∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑑𝑘
󵄨󵄨󵄨󵄨)

𝜔
= 𝑂 (1) . (93)

Consequently, for 0 < 𝑠 < 1/2, we have

‖𝑇‖sp

‖𝑇‖
≤

2 (
󵄨󵄨󵄨󵄨∑
𝑚

𝑘=1
𝑑
𝑘

󵄨󵄨󵄨󵄨 + ∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑑𝑘
󵄨󵄨󵄨󵄨)

𝜔

𝑂 (𝑛
𝑠
)

𝑛1/2
󳨀→ 0,

as 𝑛 󳨀→ ∞.

(94)

Note that 𝐸𝜀4 < ∞. Then, by Lemma 7, we obtain

Var (𝜀𝑇𝑇𝜀)
−1/2

(𝜀
𝑇
𝑇𝜀 − 𝐸 (𝜀

𝑇
𝑇𝜀))

𝑑

󳨀→ 𝑁(0, 1) . (95)

That is,

Var (𝜀𝑇𝐷𝜀)
−1/2

(𝜀
𝑇
𝐷𝜀 − 𝐸 (𝜀

𝑇
𝐷𝜀))

𝑑

󳨀→ 𝑁(0, 1) , (96)

where

𝐸 (𝜀
𝑇
𝐷𝜀) = tr (𝐷Σ) 𝜎

2
=

𝑚

∑

𝑘=1

𝑑
𝑘

𝑛

∑

𝑖=𝑘+1

(𝑐
𝑖
+ 𝑐
𝑖−𝑘

) 𝜎
2
,

Var (𝜀𝑇𝐷𝜀) = (𝛾
4
− 1) 𝜎

4

𝑛

∑

𝑖=1

𝑑
2

𝑖𝑖
𝑐
2

𝑖
+ 4 ∑

1≤𝑖<𝑗≤𝑛

𝑑
2

𝑖𝑗
𝑐
𝑖
𝑐
𝑗
𝜎
4

= (𝛾
4
− 1) 𝜎

4

𝑛

∑

𝑖=1

(

𝑚

∑

𝑘=1

𝑑
𝑘
+

min(𝑖−1,𝑛−𝑖,𝑚)
∑

𝑘=0

𝑑
𝑘
)

2

𝑐
2

𝑖

+ 4

𝑚

∑

𝑘=1

𝑑
2

𝑘
(

𝑛−𝑘

∑

𝑖=1

𝑐
𝑖
𝑐
𝑖+𝑘

)𝜎
4
.

(97)



Journal of Applied Mathematics 13

Hence, we get

√𝑛 ((1/2𝑁) 𝜀
𝑇
𝐷𝜀 − 𝜇

0
𝜎
2
)

𝜎
0

𝑑

󳨀→ 𝑁(0, 1) , (98)

where 𝜇
0

= ∑
𝑚

𝑘=1
𝑑
𝑘
∑
𝑛

𝑖=𝑘+1
(𝑐
𝑖
+ 𝑐
𝑖−𝑘

)/(2𝑁), 𝜎2
0

= 𝑛(𝛾
4
− 1)

𝜎
4
/4𝑁
2
∑
𝑛

𝑖=1
(∑
𝑚

𝑘=1
𝑑
𝑘

+ ∑
min(𝑖−1,𝑛−𝑖,𝑚)
𝑘=0

𝑑
𝑘
)
2
𝑐
2

𝑖
+ (𝑛𝜎

4
/𝑁
2
)

∑
𝑚

𝑘=1
𝑑
2

𝑘
(∑
𝑛−𝑘

𝑖=1
𝑐
𝑖
𝑐
𝑖+𝑘

). Combining (83), (85), and (98), by Slut-
sky’s theorem, we have

√𝑛 (𝜎̂
2

1
− 𝜇
0
𝜎
2
)

𝜎2
0

𝑑

󳨀→ 𝑁(0, 1) . (99)

Note that 𝜇
0

= 1 + 𝑂(𝑚/𝑛
1−𝑠

) and (𝑛𝜎
4
/𝑁
2
) ∑
𝑚

𝑘=1
𝑑
2

𝑘

(∑
𝑛−𝑘

𝑖=1
𝑐
𝑖
𝑐
𝑖+𝑘

) = 𝑂(𝑛
𝑠
/𝑚). Then, when (1/2) − 𝑟 − 𝑠 > 0 and

𝑟 > 𝑠, namely, 0 < 𝑠 < 1/4 and 0 < 𝑟 < 1/2, we have
√𝑛(𝜇
0
− 1) = 𝑜(1) and

𝜎
2

0
=

𝑛 (𝛾
4
− 1) 𝜎

4

4𝑁2

𝑛

∑

𝑖=1

(

𝑚

∑

𝑘=1

𝑑
𝑘
+

min(𝑖−1,𝑛−𝑖,𝑚)
∑

𝑘=0

𝑑
𝑘
)

2

𝑐
2

𝑖
+ 𝑜 (1)

= 𝛿 (𝛾
4
− 1) 𝜎

4
+ 𝑜 (1) ,

(100)

where 𝛿 = ∑
𝑛

𝑖=1
𝑐
2

𝑖
/𝑛. By Slutsky’s theorem, we obtain

√𝑛 (𝜎̂
2

1
− 𝜎
2
)

√𝛿 (𝛾
4
− 1) 𝜎4

=
𝜎
0

√𝛿 (𝛾
4
− 1) 𝜎4

× {

√𝑛 (𝜎̂
2

1
− 𝜇
0
𝜎
2
)

𝜎
0

+
√𝑛 (𝜇

0
− 1) 𝜎

2

𝜎
0

}

𝑑

󳨀→ 𝑁(0, 1) , as 𝑛 󳨀→ ∞.

(101)

This proves the theorem.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Yebin Cheng’s research was supported in part by National
Natural Science Foundation of China Grant no. 11271241
and Shanghai Leading Academic Discipline Project no. 863.
Tiejun Tong’s research was supported in part by Hong Kong
ResearchGrantHKBU202711 andHongKongBaptistUniver-
sity FRG Grants FRG2/10-11/020 and FRG2/11-12/110. Yuejin
Zhou’s research was supported in part by Doctoral Innova-
tion Foundation of SHUFECXJJ-2011-442.The authors thank
the editor, the associate editor, and the three reviewers for
their constructive comments that substantially improved an
earlier draft.

References

[1] R. J. Carroll, “The effects of variance function estimation on
prediction and calibration: an example,” in Statistical Decision
Theory and Related Topics, vol. 2, pp. 273–280, 1986.

[2] R. J. Carroll and D. Ruppert, Transforming and Weighting in
Regression, Chapman & Hall, London, UK, 1988.

[3] J. Kay, “On the choice of the regularisation parameter in image
restoration,” in Pattern Recognition, vol. 301 of Lecture Notes in
Computer Science, pp. 587–596, 1988.

[4] M. J. Buckley, G. K. Eagleson, and B. W. Silverman, “The
estimation of residual variance in nonparametric regression,”
Biometrika, vol. 75, no. 2, pp. 189–199, 1988.

[5] R. L. Eubank and C. H. Spiegelman, “Testing the goodness of
fit of a linear model via nonparametric regression techniques,”
Journal of the American Statistical Association, vol. 85, no. 410,
pp. 387–392, 1990.

[6] T. Gasser, A. Kneip, and W. Köhler, “A flexible and fast method
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