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By employing differential inequality technique and Lyapunov functionalmethod, some criteria of global exponential robust stability
for the high-order neural networks with S-type distributed time delays are established, which are easy to be verified with a wider
adaptive scope.

1. Introduction

Neural networks and their various generalizations have been
successfully employed inmany areas such as pattern recogni-
tion, cognitivemodeling, adaptive control, and combinatorial
optimization [1–7]. Hopfield neural networks (HNNs), as
some forms of recurrent artificial neural networks, have been
widely studied in recent years [8–12]. The earlier HNNs
model proposed by Hopfield [13, 14] was based on the
theory of analog circuit consisting of capacitors, resistors, and
amplifiers and can be formulated as a system of ordinary
equations. Time delays are inevitable in the interactions of
neurons in biological and artificial neural networks. The
existence of delays is frequently a source of instability for
neural networks [9, 10, 15–19].

Over the past few decades, the stability of HNNs with
time delays has attracted considerable attention in the lit-
erature [20–23]. One of the most investigated problems
in the study of HNNs is global exponential stability of
the equilibrium point. An equilibrium point of HNNs is
globally exponentially stable, if the domain of attraction of the
equilibrium point is the whole space and the convergence is
in real time.

It is worth noting that although the signal propagation is
sometimes instantaneous and can be modeled with discrete
delays, it may also be distributed during a certain time period

so that the distributed delays should be incorporated in the
model [24]. Discrete delays and distributed delays attract the
attention of many scholars and have been widely studied
[17, 19, 25]. To the best of our knowledge, the stability problem
for system with both discrete and distributed delays has
been a challenging issue, mainly due to the mathematical
difficulties in dealing with discrete and distributed delays
simultaneously. In 2002, Wang and Xu [26] presented a new
neural network model with S-type distributed time delays
and demonstrated that S-type distributed time delays include
discrete or continuously distributed time delays, but it is
not true in the opposite way. In the following years, S-type
distributed time delayed neural network models have raised
great interest [12, 27–29].

Compared with traditional Hopfield neural networks,
the high-order Hopfield type neural networks (HOHNNs)
[11, 12, 30–34] have the advantages of stronger approximation
properties, faster convergence rate, greater storage capacity,
and higher fault tolerance. Therefore, it is of considerable
interest to explore the theoretical foundations and practical
applications of HOHNNs.

Motivated by the aforementioned discussion, we stud-
ied the problem of global exponential robust stability of
HOHNNs with S-type distributed time delays. By employ-
ing differential inequality technique and a new Lyapunov
functional method, some criteria for the global exponential
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robust stability of the high-order neural networks with S-
type distributed time delays have been established, which are
easy to be verified with a wider adaptive scope. Meanwhile,
the systems in [10, 12, 26, 31] are some special cases of the
HOHNNs with S-type distributed time delays.

2. Model Description and Preliminaries

We consider the following HOHNNs with S-type distributed
time delays:
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where 𝜁
𝑙𝑘

= (1/2)((𝑔
𝑙
(∫
0

−∞
𝑑
𝑠
𝜂
𝑙𝑘
(𝑠)𝑥
𝑙
(𝑡 + 𝑠)) +

𝑔
𝑙
(∫
0

−∞
𝑑
𝑠
𝜂
𝑙𝑘
(𝑠)𝑥
∗

𝑙
))).
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⋅ ⋅ ⋅ 𝜉
𝑛𝑘

... d
...

𝜉
1𝑘

⋅ ⋅ ⋅ 𝜉
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) ∘ 𝜉
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3. Main Results

Theorem 2. The equilibrium of system (1) is globally exponen-
tially robustly stable, if system (1) satisfies (𝐻

1
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), and (𝐻
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Proof. Part 1: Existence of the Equilibrium Point. Let
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∑
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−
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∑
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∑
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It is obvious that the solutions to (11) are the equilibrium
points of system (1).

Let us define homotopic mapping as follows:

𝐻(𝑥, 𝜆) = (𝐻1 (𝑥1, 𝜆) , . . . , 𝐻𝑛 (𝑥𝑛, 𝜆))
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By homotopy invariance theorem (see [35]), topological
degree theory (see [36]), (𝐻

2
), and the proof, which is similar

to Theorem 1 in [28], we can conclude that (13) has at least
one solution.

That is, system (1) has at least an equilibrium point.

Part 2: Global Existence of the Solutions to System (1). Since
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+
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+
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Let us choose a positive constant𝑁 such that

𝑁 > max( 1

𝐿
𝑖

sup
−∞<𝑠≤0

𝜑𝑖 (𝑠)
 ,

𝐽
−1

𝑖
(

𝑛

∑

𝑗=1

�̃�
𝑖𝑗


𝑓
𝑗 (0)


+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑤
(𝑘)

𝑖𝑗


𝑔
𝑗 (0)



+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑤
(𝑘)

𝑖𝑗𝑙


𝑔
𝑗 (0)



𝑔𝑙 (0)
 + 𝐼𝑖)) .

(15)
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From (15) we know that

𝑥𝑖 (𝑡)
 < 𝑁𝐿 𝑖, 𝑖 = 1, . . . , 𝑛, 𝑡 ∈ (−∞, 0] . (16)

Then, we will show that

𝑥𝑖 (𝑡)
 < 𝑁𝐿 𝑖, 𝑖 = 1, . . . , 𝑛, 𝑡 ∈ (−∞, +∞) . (17)

If (17) is not true, there must be some positive integer 𝑖
0

and 𝑡
0
> 0, such that


𝑥
𝑖
0
(𝑡)

< 𝑁𝐿

𝑖
0

, 𝑡 ∈ (−∞, 𝑡
0
) ,


𝑥
𝑖
0

(𝑡
0
)

= 𝑁𝐿

𝑖
0

. (18)

From (𝐻
1
), (15), and (18), we know

𝑑

𝑥
𝑖
0
(𝑡)


𝑑𝑡

𝑡=𝑡
0

≤ −𝑎
𝑖
0


𝑥
𝑖
0

(𝑡
0
)

+

𝑛

∑

𝑗=1

�̃�
𝑖𝑗


𝑓
𝑗
(𝑥
𝑗
)


+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑤
(𝑘)

𝑖𝑗



𝑔
𝑗
(∫

0

−∞

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) 𝑥𝑗 (𝑡0 + 𝑠))



+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑤
(𝑘)

𝑖𝑗𝑙

×



𝑔
𝑗
(∫

0

−∞

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) 𝑥𝑗 (𝑡0 + 𝑠)) 𝑔𝑙

× (∫

0

−∞

𝑑
𝑠
𝜂
𝑙𝑘 (𝑠) 𝑥𝑙 (𝑡0 + 𝑠))



+ 𝐼
𝑖

≤ −𝑎
𝑖
0


𝑥
𝑖
0

(𝑡
0
)

+

𝑛

∑

𝑗=1

�̃�
𝑖𝑗
(𝜎
𝑗


𝑥
𝑗
(𝑡
0
)

+

𝑓
𝑗 (0)


)

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑤
(𝑘)

𝑖𝑗
(𝜔
𝑗



∫

0

−∞

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) 𝑥𝑗 (𝑡0 + 𝑠)



+

𝑔
𝑗 (0)


)

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑤
(𝑘)

𝑖𝑗𝑙
(𝑀
𝑙
𝜔
𝑗



∫

0

−∞

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) 𝑥𝑗 (𝑡0 + 𝑠)



+ 𝑀
𝑗
𝜔
𝑙



∫

0

−∞

𝑑
𝑠
𝜂
𝑙𝑘 (𝑠) 𝑥𝑙 (𝑡0 + 𝑠)



+

𝑔
𝑗 (0)



𝑔𝑙 (0)
 ) + 𝐼𝑖

≤ −𝑎
𝑖
0


𝑥
𝑖
0

(𝑡
0
)


+

𝑛

∑

𝑗=1

�̃�
𝑖𝑗
(𝜎
𝑗


𝑥
𝑗
(𝑡
0
)

+

𝑓
𝑗 (0)


)

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑤
(𝑘)

𝑖𝑗
(𝜔
𝑗



∫

0

−∞

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) 𝑥𝑗 (𝑡0 + 𝑠)



+

𝑔
𝑗 (0)


)

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

(𝑤
(𝑘)

𝑖𝑗𝑙
+ 𝑤
(𝑘)

𝑖𝑙𝑗
)

× (𝑀
𝑙
𝜔
𝑗



∫

0

−∞

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) 𝑥𝑗 (𝑡0 + 𝑠)



+

𝑔
𝑗 (0)



𝑔𝑙 (0)
 ) + 𝐼𝑖

≤ [

[

− 𝑎
𝑖
0

𝐿
𝑖

+ (

𝑛

∑

𝑗=1

�̃�
𝑖𝑗
𝜎
𝑗
+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

(𝑤
(𝑘)

𝑖𝑗
+

𝑛

∑

𝑙=1

(𝑤
(𝑘)

𝑖𝑗𝑙
+ 𝑤
(𝑘)

𝑖𝑙𝑗
))

× 𝜉
𝑗𝑘
𝜔
𝑗
)𝐿
𝑗
]

]

𝑁

+ (

𝑛

∑

𝑗=1

�̃�
𝑖𝑗


𝑓
𝑗 (0)


+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑤
(𝑘)

𝑖𝑗


𝑔
𝑗 (0)



+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑤
(𝑘)

𝑖𝑗𝑙


𝑔
𝑗 (0)



𝑔𝑙 (0)
 + 𝐼𝑖) < 0.

(19)

So


𝑥
𝑖
0

(𝑡
0
)

<

𝑥
𝑖
0
(𝑡)

< 𝑁𝐿

𝑖
0

, 𝑡 ∈ (−∞, 𝑡
0
] , (20)

which leads by contradiction to (18).
Hence, (17) holds. That is, the solutions to system (1) are

bounded. So the solutions to system (1) are of global existence.

Part 3: Global Exponential Stability of System (1). From (𝐻
2
),

we know that there exists constant 𝑝
𝑖
> 0, such that

𝑝
𝑖
𝑎
𝑖
−

𝑛

∑

𝑗=1

𝑝
𝑗
(�̃�
𝑖𝑗
𝜎
𝑗

+

𝑟

∑

𝑘=1

(𝑤
(𝑘)

𝑖𝑗
+

𝑛

∑

𝑙=1

𝑀
𝑙
(𝑤
(𝑘)

𝑖𝑗𝑙
+ 𝑤
(𝑘)

𝑖𝑙𝑗
)) 𝜉
𝑗𝑘
𝜔
𝑗
)

> 0.

(21)
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So, from (𝐻
3
), we can choose a constant 𝛼 > 0 sufficiently

small, such that
𝑝
𝑖
(𝑎
𝑖
− 𝛼)

−

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑝
𝑗
(�̃�
𝑖𝑗
𝜎
𝑗
+ (𝑤

(𝑘)

𝑖𝑗
+

𝑛

∑

𝑙=1

𝑀
𝑙
(𝑤
(𝑘)

𝑖𝑗𝑙
+ 𝑤
(𝑘)

𝑖𝑙𝑗
)) 𝜉
𝑗𝑘
𝜔
𝑗
)

×



∫

0

−∞

𝑒
−𝛼𝑠
𝑑
𝑠
𝜂
𝑗𝑘 (𝑠)



> 0.

(22)

Let 𝜑 = [𝜑
1
, . . . , 𝜑

𝑛
]
𝑇
∈ 𝐶((−∞, 0], 𝑅

𝑛
), and

𝜑 − 𝑥
∗ = max
𝑖=1,...,𝑛

sup
−∞<𝑠≤0

𝑝
−1

𝑖

𝜑𝑖 (𝑡) − 𝑥
∗

𝑖

 > 0. (23)

Then, we will show that there exists Π > 0 such that
𝑥𝑖 − 𝑥

∗

𝑖

 < Π𝑒
−𝛼𝑡
, 𝑡 ≥ 0, 𝑖 = 1, . . . , 𝑛. (24)

Define a Lyapunov functional by

𝑉
𝑖 (𝑡) =

𝑥𝑖 (𝑡) − 𝑥
∗

𝑖

 𝑒
𝛼𝑡
, 𝑖 = 1, . . . , 𝑛. (25)

Its Dini derivative reads
𝐷
+
(𝑉
𝑖 (𝑡))

≤ 𝛼
𝑥𝑖 (𝑡) − 𝑥

∗

𝑖

 𝑒
𝛼𝑡
− 𝑎
𝑖

𝑥𝑖 (𝑡) − 𝑥
∗

𝑖

 𝑒
𝛼𝑡

+ [

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(

𝑓
𝑗
(𝑥
𝑗 (𝑡)) − 𝑓𝑗 (𝑥

∗

𝑗
)

)

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

(𝑤
(𝑘)

𝑖𝑗
+

𝑛

∑

𝑙=1

(𝑤
(𝑘)

𝑖𝑗𝑙
(𝑡) + 𝑤

(𝑘)

𝑖𝑙𝑗
(𝑡)) 𝜁𝑙)

×



𝑔
𝑗
(∫

0

−∞

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) 𝑥𝑗 (𝑡 + 𝑠))

−𝑔
𝑗
(∫

0

−∞

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) 𝑥

∗

𝑗
)



]

]

𝑒
𝛼𝑡

≤ 𝑝
𝑖
(−𝑎
𝑖
+ 𝛼) 𝑝

−1

𝑖

𝑥𝑖 (𝑡) − 𝑥
∗

𝑖

 𝑒
𝛼𝑡

+

𝑛

∑

𝑗=1

𝑝
𝑗
𝜎
𝑗
�̃�
𝑖𝑗
𝑝
−1

𝑗


𝑥
𝑗 (𝑡) − 𝑥

∗

𝑗


𝑒
𝛼𝑡

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑝
𝑗
(𝑤
(𝑘)

𝑖𝑗
+

𝑛

∑

𝑙=1

(𝑤
(𝑘)

𝑖𝑗𝑙
+ 𝑤
(𝑘)

𝑖𝑙𝑗
)𝑀
𝑙
)𝜔
𝑗
𝑝
−1

𝑗

× ∫

0

−∞


𝑥
𝑗 (𝑡 + 𝑠) − 𝑥

∗

𝑗


𝑒
𝛼(𝑡+𝑠)

𝑑
𝑠
𝜂
𝑗𝑘 (𝑠)

×



∫

0

−∞

𝑒
−𝛼𝑠
𝑑
𝑠
𝜂
𝑗𝑘 (𝑠)



.

(26)

If 𝑇 > 1, we have

𝑝
−1

𝑖

𝑥𝑖 (𝑡) − 𝑥
∗

𝑖

 𝑒
𝛼𝑡
< 𝑇

𝜑 − 𝑥
∗ ,

𝑡 ≤ 0, 𝑖 = 1, . . . , 𝑛.

(27)

Then, we will prove that

𝑝
−1

𝑖
𝑉
𝑖 (𝑡) = 𝑝

−1

𝑗

𝑥 (𝑡) − 𝑥
∗

𝑖

 𝑒
𝛼𝑡
< 𝑇

𝜑 − 𝑥
∗ ,

𝑡 > 0, 𝑖 = 1, . . . , 𝑛.

(28)

If (28) is not true, there exists 𝑖
0
∈ {1, 2, . . . , 𝑛} and 𝑡

0
> 0

such that

𝑝
−1

𝑖
0

𝑉
𝑖
0

(𝑡
0
) = 𝑇

𝜑 − 𝑥
∗ ,

𝑝
−1

𝑖
0

𝑉
𝑖
0
(𝑡) < 𝑇

𝜑 − 𝑥
∗ , 𝑡 < 𝑡

0
,

𝑝
−1

𝑗
𝑉
𝑗 (𝑡) < 𝑇

𝜑 − 𝑥
∗ , ∀𝑡 ≤ 𝑡

0
,

𝑗 = 1, 2, . . . , 𝑛, 𝑗 ̸= 𝑖
0
.

(29)

From (29), we have

0 ≤
𝑑𝑉
𝑖
0
(𝑡)

𝑑𝑡

𝑡=𝑡
0

≤ 𝑝
𝑖
0

(−𝑎
𝑖
0

+ 𝛼) 𝑝
−1

𝑖
0


𝑥
𝑖
0

(𝑡
0
) − 𝑥
∗

𝑖
0


𝑒
𝛼𝑡
0

+

𝑛

∑

𝑗=1

𝑝
𝑗
𝜎
𝑗


𝑏
𝑖
0
𝑗


𝑝
−1

𝑗


𝑥
𝑗
(𝑡
0
) − 𝑥
∗

𝑗


𝑒
𝛼𝑡
0

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑝
𝑗
(

𝑤
(𝑘)

𝑖
0
𝑗



+

𝑛

∑

𝑙=1

(

𝑤
(𝑘)

𝑖
0
𝑗𝑙


+

𝑤
(𝑘)

𝑖
0
𝑙𝑗


)𝑀
𝑙
)𝜔
𝑗
𝑝
−1

𝑗

×



∫

0

−∞

𝑒
−𝛼𝑠
𝑑
𝑠
𝜂
𝑗𝑘 (𝑠)



× ∫

0

−∞


𝑥
𝑗
(𝑡
0
+ 𝑠) − 𝑥

∗

𝑗



× 𝑒
𝛼(𝑡
0
+𝑠)
𝑑
𝑠
𝜂
𝑗𝑘 (𝑠) .

(30)

Because𝑝−1
𝑖
0

𝑉
𝑖
0

(𝑡
0
) = 𝑇‖𝜑−𝑥

∗
‖ and𝑝−1

𝑗
𝑉
𝑗
(𝑡) ≤ 𝑇‖𝜑−𝑥

∗
‖,

for all 𝑡 ≤ 𝑡
0
, 𝑗 = 1, . . . , 𝑛, we can obtain

𝑑𝑉
𝑖
0
(𝑡)

𝑑𝑡

𝑡=𝑡
0

≤ {𝑝
𝑖
0

(−𝑎
𝑖
0

+ 𝛼)

+

𝑛

∑

𝑗=1

𝑝
𝑗
(�̃�
𝑖
0
𝑗
𝜎
𝑗

+

𝑟

∑

𝑘=1

(𝑤
(𝑘)

𝑖
0
𝑗
+

𝑛

∑

𝑙=1

𝑀
𝑙
(𝑤
(𝑘)

𝑖
0
𝑗𝑙
+ 𝑤
(𝑘)

𝑖
0
𝑙𝑗
)) 𝜉
𝑗𝑘
𝜔
𝑗
)

×



∫

0

−∞

𝑒
−𝛼𝑠
𝑑
𝑠
𝜂
𝑗𝑘 (𝑠)



} 𝑇
𝜑 − 𝑥

∗ < 0.

(31)
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It is obvious that (31) is in contradiction to (30). Hence,
(28) holds. That is,

𝑝
−1

𝑖

𝑥𝑖 (𝑡) − 𝑥
∗ < 𝑇

𝜑 − 𝑥
∗ 𝑒
−𝛼𝑡
, 𝑡 > 0, 𝑖 = 1, . . . , 𝑛.

(32)

So

𝑥𝑖 (𝑡) − 𝑥
∗ < Π𝑒

−𝛼𝑡
, 𝑡 > 0, 𝑖 = 1, . . . , 𝑛, (33)

where Π = max
1≤𝑖≤𝑛

{𝑝
𝑖
}𝑇‖𝜑 − 𝑥

∗
‖ > 0.

If there exists another equilibrium 𝑥
∗∗ of system (1), we

have |𝑥∗
𝑖
− 𝑥
∗∗

𝑖
| ≤ |𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
| + |𝑥
𝑖
(𝑡) − 𝑥

∗∗

𝑖
| → 0, 𝑡 → ∞,

𝑖 = 1, . . . , 𝑛.
From above proof, the system (1) has a unique equilib-

riumpoint𝑥∗, which is globally exponentially robustly stable.
The proof of Theorem 2 is completed.

Remark 3. The system (1) includes system with discrete time
delays and with continuously distributed delays. Conversely,
it is not true.

When 𝑤𝑘
𝑖𝑗𝑙
= 0 and

𝜂
𝑗𝑘 (𝑠) =

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑟

∑

𝑘=1

𝜂
𝑗𝑘
, 𝑠 = 𝜏

1
= 0,

𝑟

∑

𝑘=2

𝜂
𝑗𝑘
, 𝜏
2
≤ 𝑠 < 0,

𝑟

∑

𝑘=3

𝜂
𝑗𝑘
, 𝜏
3
≤ 𝑠 < 𝜏

2
,

𝑗 = 1, . . . , 𝑛,

⋅ ⋅ ⋅

𝜂
𝑗𝑟
, 𝜏

𝑟
≤ 𝑠 < 𝜏

𝑟−1
,

0, −∞ < 𝑠 < 𝜏
𝑟
,

(34)

system (1) becomes a HNNs model with discrete time delays

𝑑𝑥
𝑖 (𝑡)

𝑑𝑡

= −𝑎
𝑖
𝑥
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑤
(𝑘)

𝑖𝑗
𝑔
𝑗
(𝜂
𝑗𝑘
𝑥
𝑗
(𝑡 − 𝜏
𝑘
)) + 𝐼
𝑖
,

0 < 𝑎
𝑖
≤ 𝑎
𝑖
, 𝑏
𝑖𝑗
≤ 𝑏
𝑖𝑗
≤ 𝑏
𝑖𝑗
,

𝑤
(𝑘)

𝑖𝑗
≤ 𝑤
(𝑘)

𝑖𝑗
≤ 𝑤
(𝑘)

𝑖𝑗
, 𝐼
𝑖
≤ 𝐼
𝑖
≤ 𝐼
𝑖
,

𝑖, 𝑗, 𝑙 = 1, . . . , 𝑛; 𝑘 = 1, . . . , 𝑟.

(35)

When 𝑤𝑘
𝑖𝑗𝑙
= 0 and 𝜂

𝑗𝑘
(𝑠) ∈ 𝐶

1
(−∞, 0], 𝑗 = 1, . . . , 𝑛, 𝑘 =

1, . . . , 𝑟, the value of the synaptic connectivity from neuron
𝑗 to 𝑖 is a continuous function on (∞, 0], which means that

time delays influence the network continuously, and system
(1) belongs to a HNNs model with continuous time delays:

𝑑𝑥
𝑖 (𝑡)

𝑑𝑡

= −𝑎
𝑖
𝑥
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑟

∑

𝑘=1

𝑛

∑

𝑗=1

𝑤
(𝑘)

𝑖𝑗
𝑔
𝑗
(∫

0

−∞

𝜂


𝑗𝑘
(𝑠) 𝑥𝑗 (𝑡 + 𝑠) 𝑑𝑠) + 𝐼𝑖,

0 < 𝑎
𝑖
≤ 𝑎
𝑖
, 𝑏
𝑖𝑗
≤ 𝑏
𝑖𝑗
≤ 𝑏
𝑖𝑗
,

𝑤
(𝑘)

𝑖𝑗
≤ 𝑤
(𝑘)

𝑖𝑗
≤ 𝑤
(𝑘)

𝑖𝑗
, 𝐼
𝑖
≤ 𝐼
𝑖
≤ 𝐼
𝑖
,

𝑖, 𝑗, 𝑙 = 1, . . . , 𝑛; 𝑘 = 1, . . . , 𝑟.

(36)

So system (1) is widely representative.

Remark 4. When 𝑎
𝑖
= 𝑎
𝑖
> 0, 𝑏

𝑖𝑗
= 𝑏
𝑖𝑗

= 𝑏
𝑖𝑗
, 𝑤
𝑖𝑗

=

𝑤
𝑖𝑗

= 𝑤
𝑖𝑗
, 𝑤(𝑘)
𝑖𝑗𝑙

= 𝑤
(𝑘)

𝑖𝑗𝑙
= 𝑤
(𝑘)

𝑖𝑗𝑙
, and 𝐼

𝑖
= 𝐼
𝑖
= 𝐼
𝑖
,

system (1) becomes the system (1) in [12]. So the systems in
[10, 12, 26, 31] are also the special cases of system (1) (see [12]).

4. Example

For the sake of simplicity, we consider given one-dimension
HOHNNs with S-type distributed time delays as follows:

𝑑𝑥
1 (𝑡)

𝑑𝑡

= −𝑎
1
𝑥
1 (𝑡) + 𝑏11𝑓1 (𝑥1 (𝑡))

+

3

∑

𝑘=1

𝑤
(𝑘)

11
𝑔
1
(∫

0

−∞

𝑑
𝑠
𝜂
1𝑘 (𝑠) 𝑥1 (𝑡 + 𝑠))

+

3

∑

𝑘=1

𝑤
(𝑘)

111
𝑔
1
(∫

0

−∞

𝑑
𝑠
𝜂
1𝑘 (𝑠) 𝑥1 (𝑡 + 𝑠))

× 𝑔
1
(∫

0

−∞

𝑑
𝑠
𝜂
1𝑘 (𝑠) 𝑥1 (𝑡 + 𝑠)) + 𝐼1

𝑖, 𝑗, 𝑙 = 1; 𝑘 = 1, . . . , 3.

(37)

In system (37), 𝑓
1
(𝑧) = |𝑧| and 𝑔

1
(𝑧) = tanh(𝑧), 𝑧 ∈ 𝑅,

which satisfy (𝐻
1
), Γ𝑇 = 𝑀 = 𝑀

1
= 1, and 𝜎

1
= 𝜔
1
= 1.

Let 𝜂
1𝑘
(𝑡) = 𝑘

−1
𝑒
𝑡; then 0 < ∫0

−∞
𝑑
𝑠
𝜂
1𝑘
(𝑠) = 𝜉

1𝑘
= 𝑘
−1
≤ 1,

𝑘 = 1, . . . , 3, which satisfies (𝐻
3
).
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The parameters of the system (37) are given as follows:

𝑎
1
= 3.3 ≤ 𝑎

1
, −1 = 𝑏

11
≤ 𝑏
11
≤ 𝑏
11
= 1,

0.2 = 𝑤
(1)

11
≤ 𝑤
(1)

11
≤ 𝑤
(1)

11
= 0.4,

−0.4 = 𝑤
(2)

11
≤ 𝑤
(2)

11
≤ 𝑤
(2)

11
= 0.4,

−0.1 = 𝑤
(3)

11
≤ 𝑤
(3)

11
≤ 𝑤
(3)

11
= 0.2,

0 = 𝑤
(1)

111
≤ 𝑤
(1)

111
≤ 𝑤
(1)

111
= 0.2,

−0.6 = 𝑤
(2)

111
≤ 𝑤
(2)

111
≤ 𝑤
(3)

111
= 0.8,

−0.5 = 𝑤
(3)

111
≤ 𝑤
(3)

111
≤ 𝑤
(3)

111
= 0.5,

0 = 𝐼
1
≤ 𝐼
1
≤ 𝐼
1
= 1.

(38)

From (𝐻
2
) and the above parameters, we can easily obtain

that 𝐶 = 3.3 − 1 − [(0.4 + 0.4) × 1 + (0.4 + 1.6) × 2
−1
+ (0.2 +

1) × 3
−1
] = 0.1 > 0 is an𝑀-matrix.

Therefore, it follows from Theorem 2 that the null solu-
tion to system (37) is globally exponentially robustly stable.

5. Conclusion

Wehave investigated the global exponential robust stability of
high-order Hopfield neural networks with S-type distributed
time delays, which is of theoretical as well as practical
importance for the development of neural networks with
time delays. The system (1) considered here is more general
compared to the systems in literatures [10, 12, 26, 31]. By
employing differential inequality technique and Lyapunov
functionalmethod, some criteria of global exponential robust
stability for the high-order neural networks with S-type
distributed time delays are established, which are easily
verifiable and have awider applicable range.The linearmatrix
inequality (LMI) approach is also widely used to establish the
desired sufficient conditions for stability analysis of delayed
neural networks [11, 37]. Wen et al. [17] have done some great
work in control and filtering problems for neural systems. In
future extension, wewill do some research in stability of high-
order Hopfield neural networks with S-type distributed time
delays using LMI method.
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