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This paper deals with the numerical approximation problem of the optimal control problem governed by the Euler-Bernoulli beam
equation with local Kelvin-Voigt damping, which is a nonlinear coefficient control problem with control constraints. The goal of
this problem is to design a control input numerically, which is the damping and distributes locally on a subinterval of the region
occupied by the beam, such that the total energy of the beam and the control on a given time period is minimal. We firstly use
the finite element method (FEM) to obtain a finite-dimensional model based on the original PDE system. Then, using the control
parameterization method, we approximate the finite-dimensional problem by a standard optimal parameter selection problem,
which is a suboptimal problem and can be solved numerically by nonlinear mathematical programming algorithm. At last, some
simulation studies will be presented by the proposed numerical approximation method in this paper, where the damping controls
act on different locations of the Euler-Bernoulli beam.

1. Introduction

Let 𝑇, 𝐿 > 0 be two positive constants. We denote by 𝑄
the product set (0, 𝐿) × (0, 𝑇). Consider a nonhomogeneous
clamped elastic beam of length 𝐿, where one segment of the
beam is made of a viscoelastic material with Kelvin-Voigt
constitutive relation. By the Kirchhoff hypothesis, neglecting
the rotatory inertia, the transversal vibration of the beam can
be described by the following equation and boundary-initial
conditions:

𝜌�̈� + (𝑞𝑤

+ 𝐷�̇�


)


= 𝑓, (𝑥, 𝑡) ∈ 𝑄,

𝑤 (0, 𝑡) = 𝑤 (𝐿, 𝑡) = 𝑤


(0, 𝑡) = 𝑤


(𝐿, 𝑡) = 0,

𝑤 (𝑥, 0) = 𝑤
0
(𝑥) , �̇� (𝑥, 0) = 𝑤

1
(𝑥) ,

(1)

where 𝑤 represents transversal displacement of the beam,
𝑤
0
, 𝑤
1
∈ 𝐿
2
(0, 𝐿) are given initial data, and the notations �̇�

and 𝑤 denote the derivatives with respect to the temporal
variable and the spatial variable of 𝑤, respectively. Here 𝑓 ∈

𝐿
2
(𝑄) is an external applied distributed force, 𝜌 is the linear

mass density of the beam material, 𝑞 is the flexural rigidity,
and 𝐷 is the Kelvin-Voigt damping coefficient. In this paper,
we assume 𝜌, 𝑞 ∈ 𝐿∞(0, 𝐿), 𝐷 ∈ 𝐿

∞
(𝑄), and 𝜌, 𝑞 ≥ 𝑐 > 0 for

𝑥 ∈ (0, 𝐿) for some constant 𝑐. we say that the Kelvin-Voigt
damping is globally distributed if the damping coefficient
𝐷 ≥ 𝑐 > 0 on [0, 𝐿]; we say it is locally distributed if𝐷 ≥ 𝑐 > 0

only on some subinterval of [0, 𝐿] and𝐷 = 0 elsewhere.
Smart materials such as shape memory alloys and piezo-

ceramics [1–3] have been applied for active vibration con-
trol of elastic structures. Accordingly, one can introduce
control terms to the elastic systems such as the damping
coefficients and Young’s moduli as well. Magnetorheological
(MR) dampers [4–7] are one of the most promising new
actuation mechanisms that use MR fluids to provide variable
damping actuation for active control of structures. Because
of their mechanical simplicity, high dynamic range, low
power requirements, large force capacity, and robustness,
these devices have been shown to mesh well with application
demands and constraints to offer an attractive controlmethod
to structural vibration.
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In this paper, we will study the Euler-Bernoulli beam
equation with optimal local Kelvin-Voigt damping. To be
more specific, let 𝜔 ∈ [0, 𝐿] be a subinterval and let 𝜒

𝜔
be

the characteristic function of 𝜔, that is,

𝜒
𝜔
(𝑥) = {

1, 𝑥 ∈ 𝜔,

0, otherwise;
(2)

We define

U = {𝑢 (⋅) ∈ 𝐿
∞

(0, 𝑇) | 𝑅
1
≤ 𝑢 (𝑡) ≤ 𝑅

2
for a.e. 𝑡 ∈ [0, 𝑇]}

(3)

and assume the damping coefficient𝐷has the following form:

𝐷(𝑥, 𝑡) = 𝜒
𝜔
(𝑥) 𝑢 (𝑡) , (𝑥, 𝑡) ∈ 𝑄, (4)

where 𝑅
1
, 𝑅
2
∈ R are two fixed constants and 𝑢 ∈ U is a

control function.
Let 𝑉 = 𝐻2

0
(0, 𝐿) with the norm

‖𝑤‖
𝑉
= (∫

𝐿

0

𝑞 (𝑥)

𝑤


(𝑥)


2

𝑑𝑥)

1/2

, ∀𝑤 ∈ 𝑉, (5)

and𝐻 = 𝐿
2

𝜌
(0, 𝐿) with the norm

‖V‖
𝐻
= (∫

𝐿

0

𝜌 (𝑥) |V (𝑥)|2𝑑𝑥)
1/2

, ∀V ∈ 𝐻. (6)

DefineH = 𝑉 × 𝐻 with the norm


(
𝑤

V)
H

= (‖𝑤‖
2

𝑉
+ ‖V‖2
𝐻
)
1/2

, ∀ (
𝑤

V) ∈H. (7)

Then,H is Hilbert space and the energy of the beam at time
𝑡 is



(
𝑤 (𝑡)

�̇� (𝑡)
)



2

H

= ∫

𝐿

0

𝑞 (𝑥)

𝑤


(𝑥, 𝑡)


2

𝑑𝑥

+ ∫

𝐿

0

𝜌 (𝑥) |�̇� (𝑥, 𝑡)|
2
𝑑𝑥,

(8)

where 𝑤 is the solution of (1). The optimal control problem
that we will study is formulated as follows:

(OCP)min
𝑢∈U

{𝐽 (𝑢) =
1

2
∫

𝑇

0



(
𝑤 (𝑡)

�̇� (𝑡)
)



2

H

𝑑𝑡

+
1

2
∫

𝑇

0

|𝑢 (𝑡)|
2
𝑑𝑡}

(9)

subject to the controlled equation (1), where𝑤 is the solution
of (1). Throughout the paper, we will omit the notations 𝑡 or
𝑥 in the functions of 𝑡 or 𝑥 in the case that there is no risk to
make any confusion.

Due to the importance from both perspectives of math-
ematics and applied science, the control problem of various
beam equations has been considered bymany researchers [8–
10]. The study of the Euler-Bernoulli beam is one of the most

active research topics in control theory. In [11], the authors
consider the vibration of the Euler-Bernoulli beam with
Kelvin-Voigt damping distributed locally on any subinterval
of the region occupied by the beam. By making use of the
frequency domainmethod and themultiplier technique, they
prove that the semigroup associated with the equation for
the transversal motion of the beam is exponentially stable. In
[12], the author studies the basis property and the stability
of a distributed system described by a nonuniform Euler-
Bernoulli beam equation under linear boundary feedback
control. The Riesz basis property is presented and the expo-
nential stability is concluded. In [13], stabilization of Euler-
Bernoulli beam by means of the pointwise feedback force
is considered. Both uniform and nonuniform energy decay
may occur, which depend on the boundary conditions.There
are some other related papers about the studies of Euler-
Bernoulli beam equations [14–17].

In this paper, we will study the numerical approximation
of the optimal control problem (OCP), which is a nonlinear
bilinear control problem with control constraint. Bilinear
control problems are already studied by many researchers
[18–20]. In our paper, we want to design a damping control
numerically, which acts on local interval of the beam, such
that the total energy of the beam and the control on a
given time period is minimal. It appears that little work has
been done on numerical methods for this problem. By the
standard finite element method (FEM), problem (OCP) was
firstly approximated by an optimal control problem (OCPℎ)
governed by a system of ordinary differential equations.
Then, using the control parameterization method [21], we
will approximate the finite-dimensional problem by another
suboptimal problem (OCPℎ

𝑑
), which is a standard optimal

parameter selection problem and can be solved numerically
by nonlinear mathematical programming algorithm. At last,
some simulation studies will be presented by the numerical
method proposed in this paper.

2. The Semidiscrete Approximation by FEM

In this section, we will approximate the original optimal
control problem (OCP) with FEM method. Noting that (1)
involves the spatial derivative of four orders, the conforming
FEM space should belong to 𝐻2(0, 1). Consider the interval
domain [0, 𝐿]. The triangulation Tℎ of [0, 𝐿] divides [0, 𝐿]
into a finite number of subintervals 𝐼

𝑗
= [𝑥
𝑗−1
, 𝑥
𝑗
], 𝑗 =

1, 2, . . . , 𝑁 + 1, using the grid points:

0 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑁
< 𝑥
𝑁+1

= 𝐿, (10)

where we will call 𝐼
𝑗
= [𝑥
𝑗−1
, 𝑥
𝑗
] the 𝑗th element and ℎ

𝑗
=

𝑥
𝑗
−𝑥
𝑗−1

the size of this element.The discretization parameter
ℎ is themaximum size of all ℎ

𝑗
, 𝑗 = 1, 2, . . . , 𝑁+1. Associated

with every triangulation Tℎ, we define a finite-dimensional
space as follows:

𝑉
ℎ
= {Vℎ ∈ 𝐶1 [0, 𝐿] |

Vℎ ∈ 𝑃
3
(𝐼
𝑗
) for 𝑗 = 1, 2, . . . , 𝑁 + 1,

Vℎ (0) = Vℎ (𝐿) = (Vℎ)


(0) = (Vℎ)


(𝐿) = 0} ,

(11)
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where𝑃
3
(𝐼
𝑗
) is the space of all polynomials of degree less than

or equal to 3 over the subinterval 𝐼
𝑗
. Obviously, we have𝑉ℎ ∈

𝐻
2

0
(0, 𝐿). Thus, we can write

𝑉
ℎ
= span {𝜙

𝑖
, | 𝑖 = 1, 2, . . . , 2𝑁} , (12)

where, for 𝑖 = 1, 2, . . . , 𝑁,

𝜙
𝑖
(𝑥
𝑘
) = 𝛿
𝑖𝑘
, 𝜙


𝑖
(𝑥
𝑘
) = 0, ∀𝑘 = 0, 1, . . . , 𝑁 + 1, (13)

and, for 𝑖 = 𝑁 + 1,𝑁 + 2, . . . , 2𝑁,

𝜙
𝑖
(𝑥
𝑘
) = 0, 𝜙



𝑖
(𝑥
𝑘
) = 𝛿
𝑖−𝑁,𝑘

, ∀𝑘 = 0, 1, . . . , 𝑁 + 1. (14)

Define a bilinear form (⋅, ⋅)
𝜌
over 𝐿2

𝜌
(0, 𝐿) × 𝐿

2

𝜌
(0, 𝐿) by

setting

(𝑓, 𝑔)
𝜌
= ∫

𝐿

0

𝜌 (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥, ∀𝑓, 𝑔 ∈ 𝐿
2

𝜌
(0, 𝐿) . (15)

Define another two bilinear forms 𝑎
𝑞
(⋅, ⋅) and 𝑎

𝜔
(⋅, ⋅) over

𝐻
2

0
(Ω) × 𝐻

2

0
(Ω) by setting

𝑎
𝑞
(𝑓, 𝑔) = ∫

𝐿

0

𝑞 (𝑥) 𝑓


(𝑥) 𝑔


(𝑥) 𝑑𝑥, ∀𝑓, 𝑔 ∈ 𝐻
2

0
(Ω) ,

(16)

𝑎
𝜔
(𝑓, 𝑔) = ∫

𝜔

𝑓


(𝑥) 𝑔


(𝑥) 𝑑𝑥, ∀𝑓, 𝑔 ∈ 𝐻
2

0
(Ω) , (17)

respectively. Obviously, the two bilinear forms (⋅, ⋅)
𝜌
and

𝑎
𝑞
(⋅, ⋅) are the inner products of 𝐿2

𝜌
(0, 𝐿) and𝐻2

0
(Ω), respec-

tively. Then, the finite element approximation of (1) consists
in finding𝑤ℎ(𝑡) = 𝑤ℎ(⋅, 𝑡), which belongs to𝑉ℎ for 𝑡 ∈ [0, 𝑇],
and satisfies

(�̈�
ℎ

(𝑡) , Vℎ)
𝜌
+ 𝑎
𝑞
(𝑤
ℎ

(𝑡) , Vℎ) + 𝑢 (𝑡) 𝑎
𝜔
(�̇�
ℎ
, Vℎ)

= (𝑓 (𝑡) , Vℎ)

∀V
ℎ
∈ 𝑉
ℎ
, 0 < 𝑡 ≤ 𝑇,

𝑤
ℎ

(0) = 𝑤
ℎ

0
, �̇�

ℎ

(0) = 𝑤
ℎ

1
,

(18)

where (⋅, ⋅) denotes the standard inner product of 𝐿2(0, 𝐿) and
𝑤
ℎ

0
, 𝑤
ℎ

1
∈ 𝑉
ℎ are the proper approximations of 𝑤

0
, 𝑤
1
on 𝑉ℎ.

In the following, we write

𝑤
ℎ

(𝑥, 𝑡) =

2𝑁

∑

𝑗=1

𝑋
𝑗
(𝑡) 𝜙
𝑗
(𝑥) , (19)

𝑤
ℎ

(𝑥, 0) = 𝑤
ℎ

0
(𝑥) =

2𝑁

∑

𝑗=1

𝑋
0𝑗
𝜙
𝑗
(𝑥) ,

�̇�
ℎ

(𝑥, 0) = 𝑤
ℎ

1
(𝑥) =

2𝑁

∑

𝑗=1

𝑌
0𝑗
𝜙
𝑗
(𝑥) .

(20)

Substituting (19) into (18) and taking V
ℎ
= 𝜙
𝑖
yield that

2𝑁

∑

𝑗=1

(𝜙
𝑖
, 𝜙
𝑗
)
𝜌
�̈�
𝑗
(𝑡) +

2𝑁

∑

𝑗=1

𝑎
𝑞
(𝜙
𝑖
, 𝜙
𝑗
)𝑋
𝑗
(𝑡)

+ 𝑢 (𝑡)

2𝑁

∑

𝑗=1

𝑎
𝜔
(𝜙
𝑖
, 𝜙
𝑗
) �̇�
𝑗
(𝑡) = (𝑓 (𝑡) , 𝜙

𝑖
) .

(21)

Moreover, in this paper, we take 𝑤ℎ
0
, 𝑤
ℎ

1
as the 𝐿2

𝜌
-projection

approximations of 𝑤
0
, 𝑤
1
on 𝑉ℎ; that is,

(𝑤
ℎ

0
, Vℎ)
𝜌
= (𝑤
0
, Vℎ)
𝜌
, (𝑤

ℎ

1
, Vℎ)
𝜌
= (𝑤
1
, Vℎ)
𝜌
, ∀Vℎ ∈ 𝑉ℎ.

(22)

Then, substituting (20) into (22) and taking V
ℎ
= 𝜙
𝑖
yield that

2𝑁

∑

𝑗=1

(𝜙
𝑖
, 𝜙
𝑗
)
𝜌
𝑋
0𝑗
= (𝑤
0
, 𝜙
𝑖
)
𝜌
,

2𝑁

∑

𝑗=1

(𝜙
𝑖
, 𝜙
𝑗
)
𝜌
𝑌
0𝑗
= (𝑤
1
, 𝜙
𝑖
)
𝜌
.

(23)

Define

𝑋 (𝑡) = [𝑋
𝑖
(𝑡)]
2𝑁×1

, 𝑀 = [(𝜙
𝑖
, 𝜙
𝑗
)
𝜌
]
2𝑁×2𝑁

,

𝐾 = [𝑎
𝑞
(𝜙
𝑖
, 𝜙
𝑗
)]
2𝑁×2𝑁

, 𝑅 = [𝑎
𝜔
(𝜙
𝑖
, 𝜙
𝑗
)]
2𝑁×2𝑁

,

𝑋
0
= [𝑋
0𝑖
]
2𝑁×1

, 𝑌
0
= [𝑌
0𝑖
]
2𝑁×1

,

𝐹 (𝑡) = [(𝑓 (𝑡) , 𝜙
𝑖
)]
2𝑁×1

, 𝜂 = [(𝑤
0
, 𝜙
𝑖
)
𝜌
]
2𝑁×1

,

𝜉 = [(𝑤
1
, 𝜙
𝑖
)
𝜌
]
2𝑁×1

.

(24)

Thus, by (21) and (23), we can obtain the following system of
controlled ordinary differential equations:

𝑀�̈� (𝑡) = −𝐾𝑋 (𝑡) − 𝑢 (𝑡) 𝑅�̇� (𝑡) + 𝐹 (𝑡) ,

𝑋 (0) = 𝑋
0
, �̇� (0) = 𝑌

0
,

(25)

where𝑋
0
= 𝑀
−1
𝜂, 𝑌
0
= 𝑀
−1
𝜉. Let

�̇� = 𝑌, 𝑍 = (
𝑋

𝑌
) . (26)

We define

𝐺 (𝑡, 𝑍 (𝑡) , 𝑢 (𝑡)) = (
0 𝐼

−𝑀
−1
𝐾 −𝑢 (𝑡)𝑀

−1
𝑅
)𝑍 (𝑡)

+ (
0

𝑀
−1
𝐹 (𝑡)

) .

(27)

Then (25) can be rewritten as

�̇� (𝑡) = 𝐺 (𝑡, 𝑍 (𝑡) , 𝑢 (𝑡)) ,

𝑍 (0) = 𝑍
0
,

(28)

where 𝑍
0
= (
𝑋0

𝑌0
).
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By (19), a direct computation yields


𝑤
ℎ

(𝑡)


2

𝑉
= 𝑎
𝑞
(𝑤
ℎ

(𝑡) , 𝑤
ℎ

(𝑡))

=

2𝑁

∑

𝑖=1

2𝑁

∑

𝑗=1

𝑎
𝑞
(𝜙
𝑖
, 𝜙
𝑗
)𝑋
𝑖
(𝑡) 𝑋
𝑗
(𝑡) = (𝑋,𝐾𝑋)R2𝑁 ,

(29)

where (⋅, ⋅)R2𝑁 denotes the inner product of R2𝑁 and 𝑉 =

𝐻
2

0
(0, 𝐿). Similarly, we have


�̇�
ℎ

(𝑡)


2

𝐻
= (�̇�
ℎ

(𝑡) , �̇�
ℎ

(𝑡))
𝜌

=

2𝑁

∑

𝑖=1

2𝑁

∑

𝑗=1

(𝜙
𝑖
, 𝜙
𝑗
)
𝜌
�̇�
𝑖
(𝑡) �̇�
𝑗
(𝑡) = (𝑌,𝑀𝑌)R2𝑁 ,

(30)

where𝐻 = 𝐿
2

𝜌
(0, 𝐿). Define

Π = (
𝐾 0

0 𝑀
) . (31)

Then, it follows from (29), (30), and (31) that

𝐽 (𝑢) ≈ 𝐽
ℎ

(𝑢)

=
1

2
∫

𝑇

0



(
𝑤
ℎ
(𝑡)

�̇�
ℎ
(𝑡)
)



2

H

𝑑𝑡 +
1

2
∫

𝑇

0

|𝑢 (𝑡)|
2
𝑑𝑡

=
1

2
∫

𝑇

0

(𝑍 (𝑡) , Π𝑍 (𝑡))R4𝑁𝑑𝑡 +
1

2
∫

𝑇

0

|𝑢 (𝑡)|
2
𝑑𝑡.

(32)

Thus, by combining (28) and (32), the semidiscrete approxi-
mation of problem (OCP) is formulated as follows:

(OCPℎ)min
𝑢∈U

𝐽
ℎ

(𝑢) (33)

subject to (28).

3. Piecewise-Constant Control Approximation

In general, problem (OCPℎ) cannot be solved analytically.
Using the control parameterization method, which has been
successfully applied to provide numerical solutions for a
wide variety of practical optimal control problems [21–
24], we will approximate problem (OCPℎ) by a standard
optimal parameter selection problem. This method involves
approximating the control function by a piecewise-constant
function with possible discontinuities at a set of preassigned
switching points, which produces an approximation problem
such that the solution of this approximation is a suboptimal
solution to problem (OCPℎ).

Let 𝜏
𝑘
, 𝑘 = 0, 1, . . . , 𝑑, be prefixed time knot points

satisfying

0 = 𝜏
0
< 𝜏
1
< 𝜏
2
< ⋅ ⋅ ⋅ < 𝜏

𝑑
= 𝑇. (34)

With piecewise-constant basis functions, the control input 𝑢
for the problem (OCPℎ) is approximated over the 𝑘th control
subinterval [𝜏

𝑘−1
, 𝜏
𝑘
) as follows:

𝑢 (𝑡) ≈ 𝑢
𝑑
(𝑡) = 𝜇

𝑘
, 𝑡 ∈ [𝜏

𝑘−1
, 𝜏
𝑘
) , 𝑘 = 1, 2, . . . , 𝑑, (35)

where 𝜇
𝑘
is the value of the control on the 𝑘th subinterval

[𝜏
𝑘−1
, 𝜏
𝑘
). Define

U
𝑑
= {𝜇 = (𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑑
)
⊤

∈ R
𝑑
|

𝑅
1
≤ 𝜇
𝑘
≤ 𝑅
2
, 𝑘 = 1, 2, . . . , 𝑑} .

(36)

Then the approximate piecewise-constant control can be
written as follows:

𝑢
𝑑
(𝑡 | 𝜇) =

𝑑

∑

𝑘=1

𝜇
𝑘
𝜒
[𝜏𝑘−1,𝜏𝑘)

(𝑡) , 𝑡 ∈ [0, 𝑇] , 𝜇 ∈ U
𝑑
, (37)

where 𝜒
[𝜏𝑘−1,𝜏𝑘)

is the characteristic function of the interval
[𝜏
𝑘−1
, 𝜏
𝑘
), 𝑘 = 1, 2, . . . , 𝑑. Substituting (37) into the dynamic

system (28) yields that

�̇� (𝑡) = 𝐺 (𝑡, 𝑍 (𝑡) , 𝑢
𝑑
(𝑡 | 𝜇))

=

𝑑

∑

𝑘=1

𝐺 (𝑡, 𝑍 (𝑡) , 𝜇
𝑘
) 𝜒
[𝜏𝑘−1 ,𝜏𝑘)

(𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑍 (0) = 𝑍
0
.

(38)

Let 𝑍
𝑑
(⋅ | 𝜇) denote the solution of system (38) correspond-

ing to 𝜇 ∈ U
𝑑
.Thus, from the problem (OCPℎ), we can obtain

another parameter optimization problem, which is stated as
follows:

(OCPℎ
𝑑
)min
𝑢∈U𝑑

𝐽
ℎ

𝑑
(𝜇) (39)

subject to (38), where

𝐽
ℎ

𝑑
(𝜇) =

1

2
∫

𝑇

0

(𝑍
𝑑
(𝑡 | 𝜇) , Π𝑍

𝑑
(𝑡 | 𝜇))

R4𝑁
𝑑𝑡

+
1

2
∫

𝑇

0

𝑢𝑑 (𝑡 | 𝜇)


2

𝑑𝑡.

(40)

After the parameterization of control, problem (OCPℎ
𝑑
)

involves a finite number of decision variables. Thus, it should
bemuch easier to solve than problem (OCPℎ), which involves
determining the value of a function at an infinite number of
time points.

4. Variational Method for Solving
Problem (OCPℎ

𝑑
)

Problem (OCPℎ
𝑑
) is an optimal parameter selection problem

in the canonical form [24], which can be solved as nonlinear
optimization problems using the SQPmethod. Standard SQP
algorithm for nonlinear optimization exploits the gradient of
the cost functional to generate search directions that lead to
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profitable areas of the search space [25, 26]. For the approxi-
mate problem (OCPℎ

𝑑
), the cost functional is implicit function

of the decision vector 𝜇. Using the variational method [27,
28], we can compute this gradient and solve problem (OCPℎ

𝑑
).

For each𝑚 = 1, 2, . . . , 𝑑, it follows from (38) that

𝑍
𝑑
(𝑡 | 𝜇) = 𝑍

𝑑
(𝜏
𝑚−1

| 𝜇)

+ ∫

𝑡

𝜏𝑚−1

𝐺 (𝑡, 𝑍
𝑑
(𝑠 | 𝜇) , 𝜇

𝑚
) 𝑑𝑠,

𝑡 ∈ [𝜏
𝑚−1

, 𝜏
𝑚
) .

(41)

Then for 𝑡 ∈ [𝜏
𝑚−1

, 𝜏
𝑚
), differentiating (41) with respect to 𝜇

𝑘

yields that

𝜕𝑍
𝑑
(𝑡 | 𝜇)

𝜕𝜇
𝑘

=
𝜕𝑍
𝑑
(𝜏
𝑚−1

| 𝜇)

𝜕𝜇
𝑘

+ ∫

𝑡

𝜏𝑚−1

𝜕𝐺 (𝑠, 𝑍
𝑑
(𝑠 | 𝜇) , 𝜇

𝑚
)

𝜕𝑍
𝑑

𝜕𝑍
𝑑
(𝑠 | 𝜇)

𝜕𝜇
𝑘

𝑑𝑠,

for 𝑘 < 𝑚,

𝜕𝑍
𝑑
(𝑡 | 𝜇)

𝜕𝜇
𝑘

=
𝜕𝑍
𝑑
(𝜏
𝑚−1

| 𝜇)

𝜕𝜇
𝑘

+ ∫

𝑡

𝜏𝑚−1

𝜕𝐺 (𝑠, 𝑍
𝑑
(𝑠 | 𝜇) , 𝜇

𝑚
)

𝜕𝑍
𝑑

𝜕𝑍
𝑑
(𝑠 | 𝜇)

𝜕𝜇
𝑘

𝑑𝑠

+ ∫

𝑡

𝜏𝑚−1

𝜕𝐺 (𝑠, 𝑍
𝑑
(𝑠 | 𝜇) , 𝜇

𝑚
)

𝜕𝑢
𝑑𝑠,

for 𝑘 = 𝑚,

𝜕𝑍
𝑑
(𝑡 | 𝜇)

𝜕𝜇
𝑘

= 0, for 𝑘 > 𝑚.

(42)

Here we have

𝜕𝐺 (𝑡, 𝑍
𝑑
(𝑡 | 𝜇) , 𝜇

𝑚
)

𝜕𝑍
𝑑

= (
0 𝐼

−𝑀
−1
𝐾 −𝜇

𝑚
𝑀
−1
𝑅
) ,

𝜕𝐺 (𝑡, 𝑍
𝑑
(𝑡 | 𝜇) , 𝜇

𝑚
)

𝜕𝑢
= (

0 0

0 −𝑀
−1
𝑅
)𝑍
𝑑
(𝑡 | 𝜇) ,

(43)

for 𝑡 ∈ [𝜏
𝑚−1

, 𝜏
𝑚
). Define

𝛿
𝑘𝑚
= {

1, if 𝑘 = 𝑚,
0, otherwise,

𝛿
𝑘𝑚
= {

1, if 𝑘 ≤ 𝑚,
0, otherwise.

(44)

0
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Figure 1: The state without damping control; that is, 𝑢 = 0.

Then, by (42) we obtain

𝜕𝑍
𝑑
(𝑡 | 𝜇)

𝜕𝜇
𝑘

= 𝛿
𝑘𝑚

𝜕𝑍
𝑑
(𝜏
𝑚−1

| 𝜇)

𝜕𝜇
𝑘

+ 𝛿
𝑘𝑚
∫

𝑡

𝜏𝑚−1

𝜕𝐺 (𝑠, 𝑍
𝑑
(𝑠 | 𝜇) , 𝜇

𝑚
)

𝜕𝑍
𝑑

𝜕𝑍
𝑑
(𝑠 | 𝜇)

𝜕𝜇
𝑘

𝑑𝑠

+ 𝛿
𝑘𝑚
∫

𝑡

𝜏𝑚−1

𝜕𝐺 (𝑠, 𝑍
𝑑
(𝑠 | 𝜇) , 𝜇

𝑚
)

𝜕𝑢
𝑑𝑠,

𝑡 ∈ [𝜏
𝑚−1

, 𝜏
𝑚
) .

(45)

Moreover, it is easy to see that

𝜕𝑍
𝑑
(0 | 𝜇)

𝜕𝜇
𝑘

= 0. (46)

For 𝑡 ∈ [𝜏
𝑚−1

, 𝜏
𝑚
), differentiating (45) with respect to 𝑡 yields

that
𝑑

𝑑𝑡
{
𝜕𝑍
𝑑
(𝑡 | 𝜇)

𝜕𝜇
𝑘

} = 𝛿
𝑘𝑚

𝜕𝐺 (𝑡, 𝑍
𝑑
(𝑡 | 𝜇) , 𝜇

𝑚
)

𝜕𝑍
𝑑

𝜕𝑍
𝑑
(𝑡 | 𝜇)

𝜕𝜇
𝑘

+ 𝛿
𝑘𝑚

𝜕𝐺 (𝑡, 𝑍
𝑑
(𝑡 | 𝜇) , 𝜇

𝑚
)

𝜕𝑢
.

(47)

Now, we define

Γ
𝑘
(𝑡 | 𝜇) =

𝜕𝑍
𝑑
(𝑡 | 𝜇)

𝜕𝜇
𝑘

, 𝑘 = 1, 2, . . . , 𝑑. (48)

Then, it follows from (46) and (47) that

𝑑Γ
𝑘
(𝑡 | 𝜇)

𝑑𝑡
= 𝛿
𝑘𝑚

𝜕𝐺 (𝑡, 𝑍
𝑑
(𝑡 | 𝜇) , 𝜇

𝑚
)

𝜕𝑍
𝑑

Γ
𝑘
(𝑡 | 𝜇)

+ 𝛿
𝑘𝑚

𝜕𝐺 (𝑡, 𝑍
𝑑
(𝑡 | 𝜇) , 𝜇

𝑚
)

𝜕𝑢
,

𝑡 ∈ [𝜏
𝑚−1

, 𝜏
𝑚
) , 𝑚 = 1, 2, . . . , 𝑑,

(49)
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Figure 2: The optimal controls for (OCP)
1
and (OCP)

2
.

with the initial condition

Γ
𝑘
(0 | 𝜇) = 0. (50)

As a result, by using the chain rule, we can derive the gradient
of 𝐽ℎ
𝑑
(𝜇) with respect to 𝜇

𝑘
, 𝑘 = 1, 2, . . . , 𝑑, as follows:

𝜕𝐽
ℎ

𝑑
(𝜇)

𝜕𝜇
𝑘

= ∫

𝑇

0

(𝑍
𝑑
(𝑡 | 𝜇) , ΠΓ

𝑘
(𝑡 | 𝜇))

R4𝑁
𝑑𝑡 + 𝜇

𝑘
(𝜏
𝑘
− 𝜏
𝑘−1
) .

(51)

By incorporating these formulae into the SQP algorithm, we
can solve the problem (OCPℎ

𝑑
) numerically.

5. Numerical Simulations

In this section, we present some numerical simulation results
by the approximationmethod presented in this paper. Let 𝐿 =
𝑇 = 1, 𝜌(𝑥) = 𝑞(𝑥) = 1, 𝑅

1
= 0, and 𝑅

2
= 1. Moreover, we

take

𝑤
0
(𝑥) = 10𝑥

2

(1 − 𝑥)
2
, 𝑤

1
(𝑥) = 0,

𝑓 (𝑥, 𝑡) = (240 − 10𝜋
2
𝑥
2

(1 − 𝑥)
2
) cos (𝜋𝑡) .

(52)

If the damping coefficient

𝐷(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝑄, (53)

which implies that the system (1) is without any damping, the
exact solution (see Figure 1) of (1) is

𝑤 (𝑥, 𝑡) = 10 cos (𝜋𝑡) 𝑥2(1 − 𝑥)2, (𝑥, 𝑡) ∈ 𝑄. (54)

0
0.2

0.4 0.6
0.8 1

0
0.2

0.4
0.6

0.8
1

0
0.05

0.1
0.15

0.2
0.25

0.3

−0.05

w
1
−
w

x
t

Figure 3: The difference between 𝑤
1
and 𝑤.

In this case, we have

1

2
∫

𝑇

0



(
𝑤 (𝑡)

�̇� (𝑡)
)



2

H

𝑑𝑡 +
1

2
∫

1

0

|𝑢 (𝑡)|
2
𝑑𝑡 = 20.39. (55)

In the following, we discuss the optimal control problem
(OCP) with local Kelvin-Voigt damping acting on two differ-
ent locations. We write 𝜔

1
= [0.6, 1] and 𝜔

2
= [0.2, 0.6]. By

the approximationmethod presented in this paper, we can get
the numerical results for the optimal control problem (OCP)
with 𝜔 = 𝜔

1
and 𝜔 = 𝜔

2
, which will be called problem

(OCP)
1
and problem (OCP)

2
, respectively. The numerical

optimal controls for the two problems are presented by
Figure 2. Moreover, the difference of 𝑤

1
and 𝑤 is shown in

Figure 3, where 𝑤 is defined by (54) and 𝑤
1
is the numerical

state function of (OCP)
1
. The difference of 𝑤

2
and 𝑤 has the

same property, where 𝑤
2
is the numerical state function of

(OCP)
2
. For problem (OCP)

1
, the optimal value is 14.22 and
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for problem (OCP)
2
, the optimal value is 15.65, which means

that the control effect of the location 𝜔
1
is better than the

location 𝜔
2
.
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