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In this paper mathematical modeling of a vehicle crash test based on a single-mass is studied. The model under consideration
consists of a single-mass coupledwith a spring and/or a damper.Theparameters for the spring anddamper are obtained by analyzing
the measured acceleration in the center of gravity of the vehicle during a crash. Amodel with a nonlinear spring and damper is also
proposed and the parameters will be optimized with different damper and spring characteristics and optimization algorithms.The
optimization algorithms used are interior-point and firefly algorithm. The objective of this paper is to compare different methods
used to establish a simple model of a car crash and validate the results against real crash data.

1. Introduction

Crash worthiness is the study of the response of a vehicle
during an impact on another car, an obstacle, or a pedestrian.
In most of the cases, the damage on the cars’ occupants is of
most importance when studying a vehicle crash. When the
car manufacturers are facing the end phase of designing a
vehicle, several prototypes of the vehicle needs to be built and
crashed in order to monitor the effects of the occupant in
different crash scenarios. This process requires a lot of time,
production cost, and trained personnel to perform the crash
and analyze the data. Because of this, it is more beneficial
to perform a couple of crashes and develop a mathematical
model of the car to simulate crashes instead.

In order to make a model of the vehicle, there are gen-
erally two categories; finite element method (FEM) models
and lumped parameter models (LPM). FEM models of the
vehicle are created in various CAD software and contain
detailed material responses during a crash, but they are
generally harder to model correctly, and time simulations
are often time consuming, although the results may seem to
be satisfactory. Some recent studies in crashworthiness use

FEMmodels to establish the model. Sun et al. [1] studied thin
walled structures and energy absorption with different wall
thicknesses across its length, which is crucial for occupant
safety. Peng et al. [2] looked at different windshield models
to predict an impact of a pedestrian’s head compared to
experimental data. Al-Thairy and Wang [3] developed a
simplified analytical model to predict the critical velocity of
transverse impact on steel columns. Another study that looks
at maximizing the crash energy absorption has been done by
Kim et al. [4] which optimizes the design of the motor room
in order to maximize energy absorption. Liao et al. [5] also
optimized a vehicle design to increase the energy absorption
of the vehicle during frontal and oblique crashes. These
studies show why designers should keep energy absorption
in a vehicle crash of high importance to keep pedestrians and
occupants safe.

Unlike a FEMmodel, a lumped parameter model utilizes
several masses in connection with springs and dampers to
simulate the response. Together with experimental crash
data, parameter values for the springs and dampers can be
determined. Recently, several different lumped parameter
models were developed in the literature. A Maxwell model
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was also presented in [6] which showed great results. A
Maxwell model is also well suited to simulate component
relaxation and creep [7]. They also presented a model based
on an elastoplastic spring [8] which has nonlinear character-
istics depending on the status of loading or unloading the
spring. In a more recent study of a vehicle LPM, Elmarakbi
et al. [9] proposed a mathematical model of two vehicles in
a front collision with or without active breaking systems and
active suspensions systems.

It is worth noting that the parameters for lumped param-
eter models can be found by using optimization algorithms.
There are many optimization algorithms that can be used
for parameter identification. Yang and He [10] proposed
a nature inspired metaheuristic algorithm in 2008 that is
based on attraction between fireflies. This algorithm was
further improved upon when Gou andWang [11] proposed a
hybrid approach between the firefly algorithm and harmony
search for global numerical optimization problems. Tang et
al. [12] proposed a novel random search algorithm for discrete
variables which they used to successfully optimize a vehicle
frontal member.

LMP and FEM models are just a couple of ways to
reproduce real crash test data. Othermethods rely on training
a neural network into reproducing kinematics of the vehicle.
In [13] they trained an adaptive neurofuzzy inference system
(ANFIS) based approach to reproduce kinematics from real
crash data. This was done for a 3-degree-of-freedom (DOF)
oblique crash and a single-DOF frontal crash. In [14] they
trained a neural network to estimate parameters which could
reproduce real crash data under different initial velocities. In
[15] they used a Wavelet transform to model a real vehicle
crash with good precision. In [16] they used a Levenberg-
Marquardt algorithm to estimate parameters for a 2-DOF
Maxwell model. In [17] they presented three different regres-
sive models, namely, RARMAX, ARMAX, and AR, which
were used to estimate physical parameters and reproduce car
kinematics.

In this paper we present five different mathematical mod-
els whose parameters are estimated by using experimental
crash data. The main purpose of this paper is to compare
simulations versus crash data and determine which model
fits the crash data best. The mathematical models are not
derived from analyzing the car body but merely attempts
in interpreting the physical response into simple models.
Section 2 describes the experimental crash data in use, while
in Section 3 we present the different mathematical models.
Section 5 shows simulation results and comparisons with real
crash data and a conclusion is made in Section 6.

2. Experimental Crash Test Data

The experimental crash test data that is used for parameter
identification of the models is collected from a calibration
test on a Ford Fiesta that crashed in a pole [18]. The car was
equipped with an accelerometer in its center of gravity that
measured the acceleration signals in the𝑥,𝑦, and 𝑧directions.
The acceleration in the 𝑥 direction is used to identify the
parameters for the models in this paper. In order to find
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Figure 1: Crash test data.

the velocity and displacement of the vehicle, a Forward-Euler
time integration scheme is applied to the acceleration data
with these initial conditions:

(i) 𝑚 = 873 kg;
(ii) 𝑠(𝑡 = 0) = 0m;
(iii) V(𝑡 = 0) = V

0
= 9.7222m/s,

where the time 𝑡 = 0 shows the time of impact, 𝑠 is the
displacement of the vehicle, and V is the velocity of the vehicle.
The results can be seen in Figure 1, where the red line shows
the acceleration in 𝑥 direction in g (−9.81m/s2), the blue line
shows displacement in cm, and the green line shows velocity
in km/h. These non-SI data types are used to scale the figure
to fit all three graphs on one figure with a single 𝑦-axis.

3. Mathematical Models

3.1. Spring-Mass Model. The model shown in Figure 2 is
based on theKelvinmodel in [7, 19]. In thismodel, the vehicle
is modeled as a mass and the crashing effect is modeled as a
linear spring.The usage of a linear spring could be justified if
themetal in the car body was to followHooke’s Law, but since
energy is absorbed in the crash, that is not the case.Therefore
the results may not be satisfactory. In order to identify the
constant spring coefficient, 𝑘, some terms need to be defined
and found in the experimental crash data:

𝑡
𝑚
: time of maximum dynamic crush, V(𝑡

𝑚
) = 0;

𝐶: vehicle dynamic crush at time 𝑡
𝑚
, 𝐶 = 𝑠(𝑡

𝑚
);

𝑡
𝑐
: the time at the geometric center of the crash pulse

from time zero to 𝑡
𝑚
.

The centroid time 𝑡
𝑐
can be obtained by either integrating

the acceleration to find the geometric center or using the
following formula:

𝑡
𝑐

=

𝑠 (𝑡
𝑚

)

V (0)

=

𝐶

V
0

. (1)
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Figure 2: A spring-mass model.

The normalized centroid time and angular position at
dynamic crush is defined as [19]

𝜏
𝑐

= 𝑡
𝑐
𝜔
𝑒

= (

𝐶

V
0

) 𝜔
𝑒

= 𝑒
−𝜁𝜏
𝑚

, (2)

𝜏
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𝑚

𝜔
𝑒

=

1

√1 − 𝜁
2
arctan

√1 − 𝜁
2

𝜁

, (3)

where 𝜔
𝑒
is the natural frequency of the system and 𝜁 is

the damping ratio. By combining (2) and (3), the following
relation between the centroid time and time of maximum
dynamic crush is found:

𝜏
𝑐

𝜏
𝑚

=

𝑡
𝑐

𝑡
𝑚

=

√1 − 𝜁
2
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2
/𝜁)

𝑒
[(−𝜁/√1−𝜁

2
) arctan(√1−𝜁2/𝜁)]

.

(4)

By solving (4) with respect to 𝜁, the damping of the system
is determined. The natural frequency of the system (𝜔

𝑒
)

is determined by solving (3) with respect to the natural
frequency as follows:

𝜔
𝑒

=

1

𝑡
𝑚

√1 − 𝜁
2
arctan

√1 − 𝜁
2

𝜁

. (5)

If 𝜁 is 0 or 𝑡
𝑐
/𝑡
𝑚

> 2/𝜋, Huang [7] proposed a method for
undamped systems. The system is reduced to a mass-spring
model, and a new time of maximum crush is calculated as
follows:

𝑡
𝑚

=

𝜋

2

𝑡
𝑐
. (6)

The spring and damper constants (𝑘 and 𝑐, resp.) can be found
by using 𝜁 and 𝜔

𝑒
in two second-order system equations,

respectively, as follows:

𝑘 = 𝜔
2

𝑒
𝑚, (7)

𝑐 = 2𝜔
𝑒
𝜁𝑚. (8)

3.2. Elastoplastic Spring. The model shown in Figure 3 is
based on an elastoplastic model in [8]. 𝑘

𝐸
stands for elastic

spring constant and 𝑘
𝑃
is used for the plastic deformation in

the spring. Since the car body does not follow Hooke’s Law
through the entire crash, someof the energy in themass needs
to be absorbed in plastic deformations. This is modeled by
adding a much stiffer spring after the car has crashed its full
length into the pole. However since springs do not remove
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Figure 3: Elastoplastic model.

any energy in the system, the results may not be satisfactory.
In order to identify the two spring constants that fit the crash
data, some terms need to be defined and located in the crash
data:

𝑑
𝑒
: maximum rebound deflection after crash;

V: maximum rebound velocity.

Based on energy considerations, the following equations are
set up:

Δ𝐸 =

1

2

𝑘
𝐸

𝐶
2

=

1

2

𝑚V2
𝑜
, (9)

Δ𝐸


=

1

2

𝑘
𝑃

𝑑
2

𝑒
=

1

2

𝑚V
2

, (10)

where Δ𝐸 is the energy before the crash. Δ𝐸
 is the energy

after the crash. Although the deflection energy should include
the elastic spring coefficient 𝑘

𝐸
, it has been neglected because

𝑘
𝑃

≫ 𝑘
𝐸
. The maximum force on the vehicle makes a

relationship between the elastic and plastic spring coefficients
as follows:

𝐹 = 𝑘
𝐸

𝐶 = 𝑘
𝑃

𝑑
𝑒
, (11)

or 𝐶

𝑑
𝑒

=

𝑘
𝑃

𝑘
𝐸

. (12)

COR (coefficient of restitution) is defined as the percentage
of the initial energy that is restored after the crash. This ratio
can be found by

COR2 =

Δ𝐸


Δ𝐸

= (

V

V
0

)

2

=

𝑘
𝑃

𝑑
2

𝑒

𝑘
𝐸

𝐶
2

. (13)

The elastic spring coefficient can be foundby using (9) and the
plastic spring coefficient is determined by substitution (12)
into (13):

𝑘
𝐸

= 𝑚

V2
0

𝐶
2

, (14)

𝑘
𝑃

=

𝑘
𝐸

COR2
. (15)

3.3. Maxwell Spring-Damper Model. This model is based on
the Maxwell Spring-Damper model shown by Huang in [7].
Themass is connected to the wall with a spring and a damper
in series. This model is suitable for material responses that
exhibit relaxation and creep, a time dependent phenomena.
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In vehicle impact modeling, it is suited for the localized
impact, where the vehicle effective stiffness is low [7]. The
system is described with the following differential equations:

𝑚

�̈�


= −𝑥

𝑘 − (�̇�


− �̇�) ⋅ 𝑐 (16)

𝑚�̈� = (�̇�


− �̇�) ⋅ 𝑐, (17)

where 𝑥 and 𝑥
 are the displacement by the masses 𝑚 and 𝑚

,
respectively; see Figure 4. By differentiating (16) and (17) with
respect to time and setting 𝑚


= 0, one has

0 = −�̇�

𝑘 − (�̈�


− �̈�) ⋅ 𝑐,

𝑚

𝑑�̈�

𝑑𝑡

= (�̈�


− �̈�) ⋅ 𝑐.

(18)

From (18), we obtain

�̇�


= −

𝑚

𝑘

⋅

𝑑�̈�

𝑑𝑡

. (19)

By inserting (19) into (17), a differential equation without
the massless displacement 𝑥

 is formed; see (20), and its
characteristic equation is given by (21).

Consider

𝑚�̈� = (−

𝑚

𝑘

⋅

𝑑�̈�

𝑑𝑡

− �̇�) ⋅ 𝑐, (20)

𝑟
3

+

𝑘

𝑐

𝑟
2

+

𝑘

𝑚

𝑟 = 0. (21)

Equation (21) can be solved in order to find the roots of the
equation. However, the coefficients 𝑘 and 𝑐 are unknown, and
therefore one cannot tell whether the roots contain imaginary
numbers. Two solutions are therefore proposed: one for real
roots and one for imaginary roots. For the real roots, the roots
are defined as

𝑟
1

= 0,

𝑟
2

= 𝑎 + 𝑏,

𝑟
3

= 𝑎 − 𝑏,

(22)

where

𝑎 = −

𝑘

2𝑐

,
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𝑘

2𝑐

)

2

−

𝑘

𝑚

.

(23)

If the roots are imaginary, the following roots are defined:

𝑟
1

= 0,

𝑟
2

= 𝑎 + 𝑖𝑏,

𝑟
3

= 𝑎 − 𝑖𝑏,

(24)
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Figure 4: Maxwell spring-damper model.

where

𝑎 = −

𝑘

2𝑐

,

𝑏 = √
𝑘

𝑚

− (

𝑘

2𝑐

)

2

.

(25)

The solution for the displacement of the mass can be written
as two equations, each depends on whether the roots are real
or imaginary.

If real roots, then

𝑥 (𝑡) = 𝐶
1

+ 𝐶
2
𝑒
(𝑎+𝑏)𝑡

+ 𝐶
3
𝑒
(𝑎−𝑏)𝑡

; (26)

if imaginary roots, then

𝑥 (𝑡) = 𝐶
1

+ 𝑒
𝑎𝑡

[𝐶
2
cos (𝑏𝑡) + 𝐶

3
sin (𝑏𝑡)] , (27)

where 𝐶
1
, 𝐶
2
, and 𝐶

3
are arbitrary constants. Now that the

shapes of the different solutions are known, one can fit the
equations to the displacement of the experimental data to
determine the unknown variables 𝐶

1
, 𝐶
2
, 𝐶
3
, 𝑎, and 𝑏. Once

these variables are found, the spring and damper coefficients
can be found by using the equations for 𝑎 and 𝑏.

3.4. Nonlinear Spring and Damper. The model shown in
Figure 5 represents the vehicle with a nonlinear spring and
damper that crashes into an obstacle. The purpose of using
a nonlinear spring and damper is to make the simulated
crash act nonlinear based on the speed and position of the
car. To justify the use of nonlinear coefficients in the crash,
the crash data shown in Figure 1 shows a velocity curve that
matches a mass-spring system before the time of maximum
crush. However, right after the crash, the system is damped
critically to almost a tenth of the initial velocity. With a
linear damper, the velocity of the simulated system would
decrease rapidly because of the high initial velocity. But with
a nonlinear damper, the shape of the damping coefficient
can be controlled in order to dampen the car less during
high velocities and critically dampen it when the velocity is
small. Using a nonlinear spring and damper is justified from
a material science perspective, since most true-stress-true-
strain curves show high nonlinearities from initial stretch to
fracture.

The nonlinear spring and damper parameters are iden-
tified with the help of computational power in an optimiza-
tion algorithm. MATLAB is used to create an optimization
routine based on a predefined shape of the nonlinear spring
and damper coefficients, an objective, and side-constraints.
Figure 6 shows the predefined shape of the nonlinear spring
and damper.
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The unknown variables 𝑘
1
, 𝑘
2
, 𝑐
1
, 𝑐
2
, 𝑐
3
, and Vthresh

are determined by an interior-point optimization algorithm
explained in Section 4.1 to fit the crash data best.The function
that is chosen to be minimized is the norm of the absolute
error between the displacement of the simulated crash and
the experimental crash data:

[Error] = |�⃗� − ⃗𝑠|
𝑇

|�⃗� − ⃗𝑠| , (28)

where �⃗� is a vector containing displacement of the simu-
lated data and ⃗𝑠 is a vector containing displacement of the
experimental crash data. The last part of an optimization
routine is to set side-constraints for the program to follow.
Side-constraints are split into two functions: functions to
keep smaller or equal to zero and functions to keep equal to
zero.These side-constraints will help the program to keep the
unknown variables within a threshold and to make the end
result match satisfactory. The side-constraints that are used
are shown in Table 1.

Many of the side-constraints are used to keep the
predefined shape of the nonlinear spring and damper
and to keep the damper and spring coefficients as posi-
tive values throughout the simulation. The side-constraints
for 𝑥 and �̇� are used to match the time and displace-
ment at maximum dynamic crush in the crash data.
When the objective function and the side-constraints are
determined, the program can start and the optimization
routine will find the best value for the unknown vari-
ables that fits the crash test data and stays within the
constraints.

3.5. Nonlinear Spring and Damper Model II. The first non-
linear spring and damper model shown in Section 3.4 can
be improved upon to reach a better result by adding more
breakpoints into the spring and damper functions. However,
more parameters give any optimization routine a larger
amount of local minima, and a global minimum is harder to

Table 1: Side-constraints.
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Figure 7: Spring and damper coefficient visualization.

find. An algorithm with a wide search area is used to try and
find local minima, specifically the firefly algorithm described
in Section 4.2.

The model that is proposed to be optimized against the
experimental data has more breakpoints than the last model,
and it is shown in Figure 7. Compared to the model shown
in Figure 6, this model has two extra breakpoints: one in
the damper curve and one in the spring curve. This adds
complexity to the model, but also the accuracy of the results.
In addition to having more breakpoints than the previous
model, the optimization was done using fewer constraints.
The constraints that were forcing the shape of the curve
were removed in order to create a wider area of parameters
to optimize in. The only constraints set for this model is
that all of the parameters needs to be larger than zero, and
the breakpoints are within the given largest displacement or
initial velocity.

The function that is to be minimized is the norm of the
error between the experimental crash data and simulated
crash data:

[Error] = |�⃗� − ⃗𝑠|
𝑇

|�⃗� − ⃗𝑠| , (29)

where �⃗� is a vector containing displacement of the simulated
data and ⃗𝑠 is a vector containing displacement of the experi-
mental crash data.

4. Optimization Algorithms

4.1. Interior-Point Method. An interior-point optimization
algorithm is a deterministic algorithm that finds a vector that
minimizes a given objective function with respect to linear
and nonlinear constraints. This algorithm was invented by
John vonNeuman in 1873.The algorithm can be used to solve
linear and nonlinear convex optimization problems with
equality and inequality constraints. The algorithm is deter-
ministic because it follows a set of rules to find local/global
minima. This means that every time this algorithm is used
with the same initial values, the algorithm will find the same
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results. This algorithm will be used to find parameters for a
nonlinear mass-spring model in Section 3.4.

4.2. Firefly Algorithm. The firefly optimization algorithm is
a nature inspired metaheuristic optimization algorithm that
was invented in 2008 by Yang and He [10]. This algorithm
can be used to find good solutions for linear and non-
linear optimization problems with equality and inequality
constraints. Metaheuristic algorithms can be used to find
optimal solutions to a variety of problems, but compared to
a deterministic algorithm, a metaheuristic algorithm cannot
guarantee to find global or a local minima. This particular
algorithm implements some form of stochastic variables by
means of random initial parameter values and randomwalks.
The consequence is that finding a local or a global minima
could be time consuming or even impossible for a given
problem. This algorithm is based on three principles for real
life fireflies [10].

(i) Fireflies are unisex so that one firefly will be attracted
to all other fireflies.

(ii) The attractiveness is proportional to the brightness,
and they both decrease as their distance increases.
Thus for any two flashing fireflies, the less bright one
will move towards the brighter one. If there is no
brighter one than a particular firefly, it will move
randomly.

(iii) The brightness of a firefly is determined by the
landscape of the objective function.

In this algorithm, each firefly represents a model with a set
of parameters for the objective function. As these fireflies
move around in the “parameter field,” the objective function
changes and their attractiveness changes with it.The equation
for themovement of the fireflies and a further explanation can
be found in [10].

5. Simulation Results

5.1. Spring-Mass Model. The experimental data shown in
Figure 1 is used in order to produce the results. The data
extracted from the plot is

𝑡
𝑚

= 0.0749 s

𝑡
𝑐

= 0.0520 s

𝐶 = 0.5063m

𝑡
𝑐

𝑡
𝑚

= 0.6951.

(30)

The relation between 𝑡
𝑐
and 𝑡
𝑚
gives a number larger than

2/𝜋 and therefore the system is reduced to a mass-spring
system as shown in Figure 2. The new time of dynamic crush
is calculated by using (6) as 𝑡

𝑚
= 0.0818 s. Since the damping

𝜁 is zero, the natural frequency is calculated by using (5) as
𝜔
𝑒

= 19.2028 rad/s. And the spring coefficient can finally be
determined by using (7):

𝑘 = 𝜔
2

𝑒
𝑚 = 321, 535N/m. (31)
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Figure 8: Results and comparison between Kelvin model and crash
data.

A comparison between the Kelvin model and the exper-
imental data is shown in Figure 8, where the stapled lines
indicate the experimental data and the continuous lines
indicate the simulated response.

5.2. Elastoplastic Spring. Using the crash data shown in
Figure 1, these data were extracted as follows:

𝐶 = 0.5063m,

V = 0.9183m/s.
(32)

The COR is calculated from (13) to be COR = 0.0945 and the
elastic and plastic spring coefficients are determined by using
(14) and (15), respectively, as follows:

𝑘
𝐸

= 873 ⋅

10
2

0.5063
2

= 321, 944N/m,

𝑘
𝑃

=

321.9

0.0945
2

= 36, 084, 417N/m.

(33)

Results and comparison between the experimental crash
data and the simulated response are shown in Figure 9, where
the stapled lines indicate the experimental data and the
continuous lines indicate the simulated response.

5.3. Maxwell Spring-Damper Model. The displacement of the
experimental crash data was used in a Curve Fitting Toolbox
in MATLAB in order to find the unknown coefficients 𝐶

1
,

𝐶
2
, 𝐶
3
, 𝑎, and 𝑏 for (26) and (27). The curve fitting for the

real roots can be seen in Figure 10 and the curve fit for the
imaginary roots in Figure 11 and Table 2 shows the results
from the curve fitting and their corresponding damper and
spring coefficients.

Obviously, the values for 𝑘 and 𝑐 extracted from the real
roots curve fit are wrong because they have negative values.
On the other hand, the damper and spring coefficients found
using the curve for imaginary roots are valid. The result
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Table 2: Damper and spring constants for Maxwell model.

Parameter Real roots Imaginary roots
𝑎 −14.5 −33.42
𝑏 −14.6 39.02
𝑘 −2,540N/m 2,304,245N/m
𝑐 −87.6Ns/m 34,474Ns/m

Table 3: Parameter values.

Parameter Value Unit
𝑐
1

568,160 Ns/m
𝑐
2

39,956 Ns/m
𝑐
3

179.50 Ns/m
Vthresh 0.7948 m/s
𝑘
1

237 N/m
𝑘
2

253,440 N/m

Table 4: Linear bounds for the model.

Parameter Lower bound Upper bound
𝑘
1

0 1,000,000
𝑘
2

0 1,000,000
𝑘
3

0 1,000,000
𝑥
1

0 𝐶

𝑐
1

0 1,000,000
𝑐
2

0 1,000,000
𝑐
3

0 1,000,000
𝑐
4

0 1,000,000
�̇�
1

0 V
0

�̇�
2

0 V
0

of the time integration using the spring and damper and a
comparison to the crash data can be seen in Figure 12.

5.4. Nonlinear Spring and Damper. By using an interior-
point solver in MATLAB with the objective and constraint
functions given in Section 3.4, the algorithm returned the
values shown in Table 3 for the unknown parameters. A
comparison of the optimized system versus the experimental
data is shown in Figure 13, where the stapled lines are given by
the experimental data and the continuous lines are the results
from the time simulation.

5.5. Nonlinear Spring and Damper Model II. The nonlinear
model shown in Section 3.5 was optimized by using the firefly
algorithm explained in Section 4.2. The initial parameter
values for the fireflies were found by choosing random
values between the upper and lower bounds shown in
Table 4. For this optimization, 40 fireflies were used with a
randomness of 𝛼

0
= 0.005, a cooling factor of 𝛿 = 0.5

(1/500),
attractiveness at zero distance 𝛽

0
= 1, and a scaling factor

𝛾 = 1/√𝐿, where 𝐿 is the norm of the difference between the
upper bounds and the lower bounds. Since the scale of the
problem is quite large, this metaheuristic algorithm struggled

Result and comparison of elastoplastic model
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Figure 9: Results and comparison elastoplastic model.
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Figure 11: Curve fit with imaginary roots.

to find a good solution. It struggled because the fireflies may
easily clump together in nonoptimal minima, or even worse,
not find any localminima at all. Because of this, the algorithm
had to be run multiple times to find a good solution to
the problem. This is simply the weakness of metaheuristic
algorithms with stochastic terms. A reasonably good solution
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Result and comparison of Maxwell model
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Figure 12: Results and comparison Maxwell model.

Result and comparison of nonlinear damper and spring
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Figure 13: Results and comparison between crash data and simu-
lated data.

Result and comparison of nonlinear damper and spring
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Figure 14: Results and comparison between optimized model and
experimental crash data.
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Figure 15: The nonlinear damper and spring characteristics.

Table 5: Parameters found through the Firefly optimization.

Parameter Value Unit
𝑘
1

82,357 N/m
𝑘
2

4 N/m
𝑘
3

197,519 N/m
𝑥
1

0.472 m
𝑐
1

86,585 Ns/m
𝑐
2

80,056 Ns/m
𝑐
3

18,721 Ns/m
𝑐
4

81 Ns/m
�̇�
1

2.55 m/s
�̇�
2

7.23 m/s

was found in the end, and the parameters for this model
are shown in Table 5. A comparison of the optimized system
versus the experimental data is shown in Figure 14, where
the stapled lines are given by the experimental data and the
continuous lines are the results from the time simulation.
Also, in Figure 15 a representation of the non-linear spring
and damper coefficients are shown versus the absolute value
of the displacement and velocity of the vehicle, respectively.

6. Conclusion

The Kelvin model in Section 3.1 that consisted of a mass,
a spring, and a damper showed good results prior to the
time of maximum crush. The reason for this is due to the
removal of the damping forces, and the model was therefore
reduced to a spring-mass model. As there is no damping, the
systemwill oscillate for infinite timewith themaximumcrush
displacement as the amplitude.This infinite oscillationmakes
the time of interest in this model be within 𝑡 ∈ [0, 𝑡

𝑚
].

The elastoplastic model in Section 3.2 shows mixed but
good results. The first part, the time before maximum crush,
shows similarities to the Kelvin model. Both models are
undamped and therefore the curves are similar. However,
right after the time of maximum crush, the theory of a plastic
damaged spring kicks in and makes the system oscillate
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around the maximum crush displacement. This gives the
system a relatively stable displacement after maximum crush,
but like the Kelvin model, the oscillation will never stop and
therefore the time of interest should be within 𝑡 ∈ [0, 0.1 s].

TheMaxwell model in Section 3.3 showed great potential
in its description that it would fit a physical car crash. The
results however lacked good results. The damper kicked in
too early and damped the response. This makes the time
integrated displacement curve go halfway to the maximum
crush. However when looking at the shape of the simulated
displacement curve, one can see that it resembles the shape
of the crash data quite well. The possible reasons for the bad
resultsmay come from inaccurate curve fitting or other faults.
Eitherway, theMaxwellmodel shows potential for a crash test
in its shape and should therefore be further investigated.

The nonlinear spring and damper model shown in
Section 3.4 showed good results with small amounts of error
when comparing the simulated data and the crash data. One
part that could be improved is the displacement of the model
when time reaches infinite. Because of the spring forces that
are active near the end of the simulation, the displacement of
the mass will converge to zero.

The second nonlinear spring and damper model shown
in Section 3.5 gave even better results than the first model,
mostly because of the extra mobility given by the extra
breakpoints. One thing to note is that the spring forces are
almost zero at the end of the simulation, and this makes
the displacement stay at the end position when time reaches
infinite.

It is noted that the extensions of the proposed method to
the vehicle crash modeling with vehicle dynamics including
active suspension control system [20, 21] deserve further
investigation.
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