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Themain purpose of this paper is to introduce a newmixed exponential sums and then use the analytic methods and the properties
of Gauss sums to study the computational problems of the mean value involving these sums and give an interesting computational
formula and a sharp upper bound estimate for these mixed exponential sums. As an application, we give a new asymptotic formula
for the fourth power mean of Dirichlet 𝐿-functions with the weight of these mixed exponential sums.

1. Introduction

Let 𝑞 ≥ 3 be an integer, and let 𝜒 be a Dirichlet character
mod 𝑞. Then, for any integer 𝑛, the famous Gauss sums
𝐺(𝜒, 𝑛) are defined as follows:

𝐺 (𝜒, 𝑛) =

𝑞

∑

𝑎=1

𝜒 (𝑎) ⋅ 𝑒 (
𝑛𝑎

𝑞
) , (1)

where 𝑒(𝑦) = 𝑒
2𝜋𝑖𝑦.

This sum and the other exponential sums (such as
Kloosterman sums) play very important role in the study of
analytic number theory, and many famous number theoretic
problems are closely related to it. For example, the distribu-
tion of primes, Goldbach problem, the estimate of character
sums, and the properties of Dirichlet 𝐿-functions are some
good examples.

From the properties of characters mod 𝑞, we known that
if 𝜒 is a primitive character mod 𝑞, then 𝐺(𝜒, 𝑛) = 𝜒(𝑛) ⋅

𝐺(𝜒, 1) ≡ 𝜒(𝑛) ⋅ 𝜏(𝜒), and |𝜏(𝜒)| = √𝑞. Many other properties
of 𝐺(𝜒, 𝑛) and 𝜏(𝜒) can also be found in [1–4].

In this paper, we introduce new mixed exponential sums
as follows:

𝐺 (𝜒, 𝑐, 𝑚, 𝑛; 𝑞)

=

𝑞−1

∑

𝑎=0

𝑞−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑞
) ,

(2)

where 𝑐, 𝑚, and 𝑛 are any integers.
We will study the arithmetical properties of

𝐺(𝜒, 𝑐, 𝑚, 𝑛; 𝑞). About this problem, it seems that none

has studied it yet; at least we have not seen any related results
before. The problem is interesting, because this sum has a
close relationship with the general Kloosterman sums, and
it is also analogous to famous Gauss sums, so it must have
many properties similar to these sums. It can also help us to
further understand and study Kloosterman sums and Gauss
sums.

The main purpose of this paper is using the analytic
method and the properties of Gauss sums to study the fourth
power mean of 𝐺(𝜒, 𝑐, 𝑚, 𝑛; 𝑝) and its upper bound estimate
and prove the following three conclusions.

Theorem 1. Let 𝑝 be an odd prime; let 𝜒 be any nonprincipal
character mod 𝑝. Then, for any integers 𝑐, 𝑚, and 𝑛, one has
the estimate

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝑝. (3)

Theorem 2. Let 𝑝 be an odd prime; let 𝜒 be any nonprincipal
character mod 𝑝. Then, for any integers 𝑚 and 𝑛, one has the
identity
𝑝−1

∑

𝑐=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

= {
3𝑝
5

− 8𝑝
4
, if 𝜒 is the Legendre symbol mod 𝑝;

𝑝
4

(2𝑝 − 7) , if 𝜒 is a complex character mod 𝑝.

(4)
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Theorem 3. Let 𝑝 be an odd prime. Then, for any integers 𝑐,
𝑚, and 𝑛 with (𝑐, 𝑚

2
+ 𝑛
2

− 𝑚𝑛, 𝑝) ̸= 𝑝, one has the asymptotic
formula

∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅
󵄨󵄨󵄨󵄨𝐿(1, 𝜒)

󵄨󵄨󵄨󵄨

4

=
5

72
⋅ 𝜋
4

⋅ 𝑝
3

+ 𝑂 (𝑝
5/2

⋅ exp(
4 ln ln𝑝

ln𝑝
)) ,

(5)

where𝜒0 is the principal character mod 𝑝, (𝑙, 𝑚, 𝑛) denotes the
greatest common divisor of 𝑙, 𝑚, and 𝑛, and exp(𝑦) = 𝑒

𝑦.

In Theorem 1, we only discussed the case, in which there
exist two variables. For general case (with 𝑘(≥ 3) variable),
whether there exists a sharp estimate for the sums is an
interesting problem.

Let 𝑘 ≥ 3; whether there exists an exact computational
formula for the 2𝑘th power mean,

𝑝−1

∑

𝑐=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑘

, (6)

is also an open problem.

2. Several Lemmas

In this section, we will give several lemmas, which are
necessary in the proof of our theorems. Hereinafter, we will
use many properties of character sums, Kloosterman sums,
and Gauss sums; all of these can be found in [1, 5–7], so they
will not be repeated here. First, we have the following.

Lemma 4. Let 𝑝 be an odd prime; then, for any integers 𝑐, 𝑚,
and 𝑛, one has the identity

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= √𝑝 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑟=1

𝜒 (𝑟) ⋅ 𝑒 (

𝑐𝑟 − 4𝑟 (𝑚
2

+ 𝑛
2

− 𝑚𝑛)

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(7)

where 𝑟 denotes the solution of the congruence equation 𝑟 ⋅ 𝑥 ≡

1 mod 𝑝.

Proof. If (𝑛, 𝑝) = 1, then, from the properties of Gauss sums
and quadratic residue mod 𝑝, we have

𝑝−1

∑

𝑎=0

𝑒 (
𝑛𝑎
2

𝑝
) = 1 +

𝑝−1

∑

𝑎=1

𝑒 (
𝑛𝑎
2

𝑝
)

= 1 +

𝑝−1

∑

𝑎=1

(1 + (
𝑎

𝑝
)) ⋅ 𝑒 (

𝑛𝑎

𝑝
)

=

𝑝−1

∑

𝑎=0

𝑒 (
𝑛𝑎

𝑝
) +

𝑝−1

∑

𝑎=1

(
𝑎

𝑝
) ⋅ 𝑒 (

𝑛𝑎

𝑝
)

= (
𝑛

𝑝
)

𝑝−1

∑

𝑎=1

(
𝑎

𝑝
) ⋅ 𝑒 (

𝑎

𝑝
) = (

𝑛

𝑝
) ⋅ 𝜏 (𝜒2) ,

(8)
where 𝜒2 = (∗/𝑝) denotes the Legendre symbol.

Since 𝜒 is a nonprincipal Dirichlet character mod 𝑝,
from (8), the properties of Gauss sums, and complete residue
system mod 𝑝, we have
𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

=
1

𝜏 (𝜒)
⋅

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝑝−1

∑

𝑟=1

𝜒 (𝑟) 𝑒 (

𝑟 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐)

𝑝
)

⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

=
1

𝜏 (𝜒)

⋅

𝑝−1

∑

𝑟=1

𝜒 (𝑟)

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝑒 (
𝑟𝑎
2

+ (𝑏𝑟 + 𝑚) 𝑎 + 𝑟𝑏
2

+ 𝑛𝑏 + 𝑐𝑟

𝑝
)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑟=1

𝜒 (𝑟)

×

𝑝−1

∑

𝑏=0

𝑝−1

∑

𝑎=0

𝑒 (
4𝑟(2𝑎+𝑏+𝑟𝑚)

2
+𝑟𝑏
2
+𝑟𝑐 + 𝑛𝑏 − 4𝑟(𝑏 + 𝑟𝑚)

2

𝑝
)

=
1

𝜏 (𝜒)
⋅

𝑝−1

∑

𝑟=1

𝜒 (𝑟)

×

𝑝−1

∑

𝑏=0

𝑝−1

∑

𝑎=0

𝑒 (

𝑟𝑎
2

+ 3𝑟(2𝑏)
2

+ (2𝑛 − 𝑚) 2𝑏 + 𝑟𝑐 − 4𝑟𝑚
2

𝑝
)

=
𝜏 (𝜒2)

𝜏 (𝜒)
⋅

𝑝−1

∑

𝑟=1

𝜒 (𝑟) 𝜒2 (𝑟)

×

𝑝−1

∑

𝑏=0

𝑒 (

3𝑟4(𝑏+3𝑟 (2𝑛−𝑚))
2

+𝑟𝑐−4𝑟𝑚
2
−12𝑟(2𝑛−𝑚)

2

𝑝
)

=
𝜏 (𝜒2)

𝜏 (𝜒)
⋅

𝑝−1

∑

𝑟=1

𝜒 (𝑟) 𝜒2 (𝑟)

×

𝑝−1

∑

𝑏=0

𝑒 (

3𝑟𝑏
2

+ 𝑟𝑐 − 4𝑟 (𝑚
2

+ 𝑛
2

− 𝑚𝑛)

𝑝
)

=
𝜏
2

(𝜒2)

𝜏 (𝜒)
⋅ 𝜒2 (3) ⋅

𝑝−1

∑

𝑟=1

𝜒 (𝑟) 𝑒 (

𝑐𝑟 − 4𝑟 (𝑚
2

+ 𝑛
2

− 𝑚𝑛)

𝑝
) .

(9)
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For any nonprincipal character 𝜒 mod 𝑝, we have |𝜏(𝜒)| =

√𝑝. So, from (9) and noting that |𝜒
2
(3)| = 1, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= √𝑝 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑟=1

𝜒 (𝑟) ⋅ 𝑒 (

𝑐𝑟 − 4𝑟 (𝑚
2

+ 𝑛
2

− 𝑚𝑛)

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(10)

This proves Lemma 4.

Lemma 5. Let 𝑝 be an odd prime; let 𝜒 be any nonprincipal
character mod 𝑝. Then, for any integers 𝑚 and 𝑛, one has the
estimate

𝑝−1

∑

𝑎=1

𝜒 (𝑎) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑎

𝑝
) ≤ 2√𝑝. (11)

Proof. Since 𝜒 is a nonprincipal character mod 𝑝, if 𝑝 | 𝑚

and 𝑝 | 𝑛, then
𝑝−1

∑

𝑎=1

𝜒 (𝑎) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑎

𝑝
) =

𝑝−1

∑

𝑎=1

𝜒 (𝑎) = 0. (12)

If 𝑝 | 𝑚 and (𝑝, 𝑛) = 1 or 𝑝 | 𝑛 and (𝑝, 𝑚) = 1 or
(𝑚𝑛, 𝑝) = 1, then, from the results of Weil [8], Malyšev [7],
and Estermann [6], with some minor modifications, we can
deduce the estimate

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝜒 (𝑎) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2√𝑝 ⋅ (𝑚, 𝑛, 𝑝)
1/2

= 2√𝑝, (13)

where (𝑚, 𝑛, 𝑝) denotes the greatest common divisor of 𝑚, 𝑛,
and 𝑝.

Now Lemma 5 follows from (12) and (13).

Lemma 6. Let 𝑝 be an odd prime; then, for any integer 𝑛 with
(𝑛, 𝑝) = 1, one has the calculating formula
𝑝−1

∑

𝑚=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝜒(𝑎) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

=

{{{{{{{{{

{{{{{{{{{

{

2𝑝
3

− 3𝑝
2

− 3𝑝 − 1,

if 𝜒 is the principal character mod 𝑝;

3𝑝
3

− 8𝑝
2
,

if 𝜒 is the Legendre’s symbol mod 𝑝;

𝑝
2

(2𝑝 − 7) ,

if 𝜒 is a non-real character mod 𝑝.

(14)

Proof. See [9] or Corollary 2 of [10].

Lemma 7. Let 𝑝 be an odd prime and let 𝜒 be the Dirichlet
character mod 𝑝. Then one has the estimate

𝑝−1

∑

𝑎=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

𝜒 (𝑎)
󵄨󵄨󵄨󵄨𝐿 (1, 𝜒)

󵄨󵄨󵄨󵄨

4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂 (𝑝 ⋅ exp(
4 ln ln𝑝

ln𝑝
)) .

(15)
Proof. See Lemma 5 of [11].

3. Proof of the Theorems

In this section, we will complete the proof of our theorems.
First we prove Theorem 1. In fact, from Lemmas 4 and 5, we
may immediately deduce the estimate

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= √𝑝 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑟=1

𝜒 (𝑟) ⋅ 𝑒 (

𝑐𝑟 − 4𝑟 (𝑚
2

+ 𝑛
2

− 𝑚𝑛)

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝑝.

(16)

This proves Theorem 1.
Theorem 2 follows from Lemmas 4 and 6. In fact, from

these two lemmas, we have

𝑝−1

∑

𝑐=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

= 𝑝
2

⋅

𝑝−1

∑

𝑐=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑟=1

𝜒(𝑟) ⋅ 𝑒 (
𝑐𝑟 − 4𝑟(𝑚

2
+ 𝑛
2

− 𝑚𝑛)

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

= {
3𝑝
5

− 8𝑝
4
, if 𝜒 is the Legendre symbol mod 𝑝;

𝑝
4

(2𝑝 − 7) , if 𝜒 is a complex character mod 𝑝.

(17)

This proves Theorem 2.
Now, we prove Theorem 3. Note that the asymptotic

formula is

∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

󵄨󵄨󵄨󵄨𝐿 (1, 𝜒)
󵄨󵄨󵄨󵄨

4
=

5

72
⋅ 𝜋
4

⋅ 𝑝 + 𝑂 (exp(
4 ln ln𝑝

ln𝑝
)) ,

(18)

and the estimate for Kloosterman sums (see [6]) is as follows:

𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎 + 𝑛𝑎

𝑝
) ≪ √𝑝 ⋅ (𝑚, 𝑛, 𝑝)

1/2
; (19)

fromLemmas 4 and 7 and themethod of proving the theorem
in [11], we have

∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=0

𝑝−1

∑

𝑏=0

𝜒 (𝑎
2

+ 𝑎𝑏 + 𝑏
2

+ 𝑐) ⋅ 𝑒 (
𝑚𝑎 + 𝑛𝑏

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅
󵄨󵄨󵄨󵄨𝐿 (1, 𝜒)

󵄨󵄨󵄨󵄨

4

= 𝑝 ⋅ ∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑟=1

𝜒 (𝑟) ⋅ 𝑒 (

𝑐𝑟 − 4𝑟 (𝑚
2

+ 𝑛
2

− 𝑚𝑛)

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅
󵄨󵄨󵄨󵄨𝐿 (1, 𝜒)

󵄨󵄨󵄨󵄨

4
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= 𝑝 ⋅

𝑝−1

∑

𝑟=1

𝑝−1

∑

𝑠=1

𝑒 (

𝑐 (𝑟 − 𝑠) − 4 (𝑟 − 𝑠) (𝑚
2

+ 𝑛
2

− 𝑚𝑛)

𝑝
)

⋅ ∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

𝜒 (𝑟𝑠)
󵄨󵄨󵄨󵄨𝐿 (1, 𝜒)

󵄨󵄨󵄨󵄨

4

= 𝑝 ⋅

𝑝−1

∑

𝑟=1

𝑝−1

∑

𝑠=1

𝑒 (

𝑐𝑠 (𝑟 − 1) − 4𝑠 (𝑟 − 1) (𝑚
2

+ 𝑛
2

− 𝑚𝑛)

𝑝
)

⋅ ∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

𝜒 (𝑟)
󵄨󵄨󵄨󵄨𝐿 (1, 𝜒)

󵄨󵄨󵄨󵄨

4

= 𝑝 (𝑝 − 1) ∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

󵄨󵄨󵄨󵄨𝐿 (1, 𝜒)
󵄨󵄨󵄨󵄨

4

+ 𝑂 (𝑝
3/2

⋅

𝑝−1

∑

𝑟=2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝜒 mod 𝑝
𝜒 ̸= 𝜒0

𝜒 (𝑟)
󵄨󵄨󵄨󵄨𝐿 (1, 𝜒)

󵄨󵄨󵄨󵄨

4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

=
5

72
⋅ 𝜋
4

⋅ 𝑝
3

+ 𝑂 (𝑝
5/2

⋅ exp(
4 ln ln𝑝

ln𝑝
)) .

(20)

This completes the proof of Theorem 3.
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