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An Adomian decomposition method (ADM) is applied to solve a two-phase Stefan problem that describes the pure metal
solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not
require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for
some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are
obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some
function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the
model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has
a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan
problems.

1. Introduction

Problems in which the solution of a partial differential
equation (PDE) or a system of such equations has to sat-
isfy certain conditions on the boundary of a prescribed
domain are referred to as boundary value problems.However,
in many important cases, the boundary of the domain
is not known in advance. As the spatial location of the
unknown boundary is determined as a function of time,
we call these moving-boundary problems, special case of
which is the Stefan problem [1, 2]. Many problems in
physics and engineering can be modeled by the Stefan
problems, such as melting of ice and alloy solidification
[1], fluid-solid uncatalyzed reactions in chemical engineer-
ing [3], and lithium intercalation in an iron phosphate
particle during discharge of lithium iron phosphate cells
[4].

A variety of analytical and numerical methods have been
used to solve moving-boundary problems, including Green’s
function method [5], the perturbation analysis method [6],

the level set method [7], the variational iteration method [8],
the finite difference method [9], and the moving mesh, finite
element method [10, 11]. However, these analytical methods
are often complicated and very few analytic solutions are
available in closed form. Numerical methods cannot provide
an analytical expression of the solution and the precision is
often not high. Identification of approximate analytic solu-
tions with higher precision for moving-boundary problems
may be a good option.

Adomian decomposition method (ADM), developed by
Adomian [12], has been widely applied to solve various
types of equations involving algebraic, differential, partial
differential, integral, and integro-differential operations [12–
23]. ADM is an efficient method for solving PDEs and
systems thereof with various types of boundary conditions.
Thismethod involvesmathematical derivation andnumerical
operations. Using ADM, we can decompose the task of
solving a PDE into a series of subtasks that can easily be
carried out using computation software such as MATLAB.
Thus, the overall solution of the PDE can be obtained.
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Figure 1:The domains of 𝑢 = 𝑢(𝑥, 𝑡) and V = V(𝑥, 𝑡) and the position
of the moving boundary 𝑥 = 𝑠(𝑡) in the domains.

2. The Two-Phase Stefan Problem

Solidification of a pure metal can be modeled as a two-
phase Stefan problem [1, 2, 18, 24], which is a system of
ordinary PDEs with an unknown moving boundary. The
temperature distribution in the metal liquid phase, 𝑢(𝑥, 𝑡),
and the solid phase, V(𝑥, 𝑡), and themoving interface at which
solidification occurs, 𝑥 = 𝑠(𝑡), are unknown functions for the
model. Functions 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) satisfy the following heat
conduction equations (Figure 1):
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where 𝜇
1
and 𝜇

2
are thermal diffusivity in liquid and solid

phases, respectively, and 𝐷
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to the liquid- and solid-phase domains 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡),
respectively, subject to the initial and boundary conditions
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0
, (3)

V (𝑥, 0) = 𝜓 (𝑥) , 𝑠
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where 𝑠
0
is the initial 𝑥-coordinate of the moving boundary,

𝛼(𝑡) is the coefficient of convective heat transfer, V∗ is the
ambient temperature, and𝜆

1
and𝜆

2
are thermal conductivity.

The moving boundary 𝑠(𝑡) is determined by
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0
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The two-phase Stefan problem is modeled by (1)–(7). To use
(7) conveniently, we rewrite them as

𝑢 (𝑠
0
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0
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∗
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(8)

3. Approximate Analytic Solutions by ADM

To solve the Stefan problem, coordinate transformation is
often used to eliminate the unknown boundary. Grzym-
kowski and colleagues used the Landau transformation
𝑦 = 𝑥/𝑠(𝑡) to immobilize the boundaries of model (1)–(7)
[18]. However, after transformation, the equations and initial
boundary conditions for themodel become very complicated
and may lead to new difficulties in solving the model. In
the present study, we avoid using coordinate transformation
to solve the model and the task is instead divided into four
steps. First, we substitute the Taylor polynomial of −𝑞(𝑡)/𝜆

1

for (𝜕𝑢/𝜕𝑥)(0, 𝑡) in (5) and substitute polynomials with
undetermined coefficients for the unknown 𝑢(0, 𝑡), V(𝑙, 𝑡),
and (𝜕V/𝜕𝑥)(𝑙, 𝑡). Second, we find expressions for approx-
imate analytic solutions of (1) and (2) with the unknown
parameters using ADM.Third, we substitute the approximate
expressions into (6) and (8) to generate a nonlinear algebraic
equation system. Fourth, we solve this system of equations
to determine the values of the unknown parameters and the
approximate analytic solutions of the model.

In operator form, (1) and (2) can be written as

𝐿
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and 𝐿
𝑥𝑥
= 𝜕
2
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2. The variation of the two phase temper-

atures 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) depends largely on heat transfer at
the boundaries {(𝑥, 𝑡) | 𝑥 = 0, 0 ≤ 𝑡 ≤ 𝑡

∗
} and {(𝑥, 𝑡) |
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∗
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V

using boundary conditions (5) and (6) and regard the initial
conditions (3) and (4) as reference conditions [21]. To obtain
solutions satisfying (1), (2), (5), and (6), the 𝑥-direction is
chosen as the search direction and the inverse operators 𝐿

𝑥𝑥

in (9) and (10) are defined as follows:
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Applying the inverse operators 𝐿−1
𝑥𝑥

and 𝐿−1
𝑥𝑥

to both sides
of (9) and (10), respectively, yields

𝑢 (𝑥, 𝑡) =

1

𝜇
1

𝐿
−1

𝑥𝑥
𝐿
𝑡
𝑢 (𝑥, 𝑡) + 𝐴 (𝑡) 𝑥 + 𝐵 (𝑡) , (12)
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where𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), and𝐷(𝑡) are undetermined functions.
Taking partial derivatives with respect to 𝑥 on both sides of
(12) and using the boundary condition (5) yield

𝐴 (𝑡) = −

𝑞 (𝑡)

𝜆
1

, 0 ≤ 𝑡 ≤ 𝑡
∗
. (14)

Letting 𝑥 = 0 on both sides of (12) yields

𝐵 (𝑡) = 𝑢 (0, 𝑡) , 0 ≤ 𝑡 ≤ 𝑡
∗
. (15)

Similarly, we can obtain
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(𝑙, 𝑡) , 0 ≤ 𝑡 ≤ 𝑡
∗
,

𝐷 (𝑡) = V (𝑙, 𝑡) , 0 ≤ 𝑡 ≤ 𝑡
∗
.

(16)

𝐵(𝑡), 𝐶(𝑡), and 𝐷(𝑡) are unknown functions. To implement
the recursive operation in ADM, we assume that 𝑞(𝑡),
𝑢(0, 𝑡), (𝜕V/𝜕𝑥)(𝑙, 𝑡), and V(𝑙, 𝑡) are smooth enough on the
interval [0, 𝑡∗] so that 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), and 𝐷(𝑡) can be
approximated by polynomials. Substituting the polynomials
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1

𝜇
1

𝐿
−1

𝑥𝑥
𝐿
𝑡
𝑢 (𝑥, 𝑡) + 𝑥

𝑛

∑

𝑘=0

𝑎
𝑘
𝑡
𝑘
+

𝑛

∑

𝑘=0

𝑏
𝑘
𝑡
𝑘
, (17)
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𝜇
2

𝐿

−1

𝑥𝑥
𝐿
𝑡
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𝑛
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𝑑
𝑘
𝑡
𝑘
. (18)

Letting 𝑥 = 0 and 𝑡 = 0 on both sides of (17) yields

𝑏
0
= 𝑢 (0, 0) = 𝜑 (0) . (19)

Letting 𝑥 = 𝑙 and 𝑡 = 0 on both sides of (18) yields

𝑑
0
= V (𝑙, 0) = 𝜓 (𝑙) . (20)

Taking partial derivatives with respect to 𝑥 on both sides of
(18) and then letting 𝑥 = 𝑙 and 𝑡 = 0 yield

𝑐
0
=

𝜕V
𝜕𝑥

(𝑙, 0) . (21)

Letting 𝑡 = 0 on both sides of (6) yields

−𝜆
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𝜕V
𝜕𝑥

(𝑙, 0) = 𝛼 (0) (V (𝑙, 0) − V∗) . (22)

According to (20), (21), and (22) we can obtain

𝑐
0
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𝛼 (0)

𝜆
2

(𝜓 (𝑙) − V∗) . (23)

The other coefficients of the polynomials 𝑏
𝑘
, 𝑐
𝑘
, and 𝑑

𝑘
(𝑘 =

1, 2, . . . , 𝑛) are undetermined constants. According to ADM,
we can decompose the unknown functions 𝑢 = 𝑢(𝑥, 𝑡) and
V = V(𝑥, 𝑡) into infinite series forms:

𝑢 =

∞

∑
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𝑛
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∞

∑

𝑛=0

V
𝑛
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Substituting (24) and (25) into (17) and (18), respectively,
and choosing the initial items 𝑢

0
and V

0
yield the following

recursive relations:

𝑢
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+

𝑛

∑

𝑘=0

𝑏
𝑘
𝑡
𝑘
, (26)
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𝐿
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where 𝑚 ≥ 1. This leads to the following successive compo-
nents:

𝑢
𝑚
=

𝑥
2𝑚

𝜇
𝑚

1
(2𝑚)!

× [

𝑥

2𝑚 + 1

𝑛

∑

𝑘=𝑚

𝑎
𝑘
𝑘 (𝑘 − 1) ⋅ ⋅ ⋅ (𝑘 − 𝑚 + 1) 𝑡

𝑘−𝑚

+

𝑛

∑

𝑘=𝑚

𝑏
𝑘
𝑘 (𝑘 − 1) ⋅ ⋅ ⋅ (𝑘 − 𝑚 + 1) 𝑡

𝑘−𝑚
]

(1 ≤ 𝑚 ≤ 𝑛) ,

𝑢
𝑚
= 0 (𝑚 > 𝑛) ,

V
𝑚
=

(𝑥 − 𝑙)
2𝑚

𝜇
𝑚

2
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× [

𝑥 − 𝑙
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𝑛

∑

𝑘=𝑚

𝑐
𝑘
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𝑛

∑

𝑘=𝑚

𝑑
𝑘
𝑘 (𝑘 − 1) ⋅ ⋅ ⋅ (𝑘 − 𝑚 + 1) 𝑡

𝑘−𝑚
]

(1 ≤ 𝑚 ≤ 𝑛) ,

V
𝑚
= 0 (𝑚 > 𝑛) .

(30)
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For subsequent numerical computation, let the expres-
sions

𝑢 = 𝑢 (𝑥, 𝑡; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) =

𝑛

∑

𝑚=0

𝑢
𝑚
,

V = V (𝑥, 𝑡; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) =

𝑛

∑

𝑚=0

V
𝑚

(31)

denote the approximation to 𝑢 and V, respectively. Substitut-
ing 𝑢 and V in (31) for 𝑢 and V in (6) and (8) yields

𝑃 (𝑡; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= 𝜆
2

𝜕V
𝜕𝑥

(𝑙, 𝑡; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

+ 𝛼 (𝑡) [V (𝑙, 𝑡; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) − V∗] = 0

(0 ≤ 𝑡 ≤ 𝑡
∗
) ,

(32)

𝑢 (𝑠
0
, 0; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) − 𝑢
∗
= 0, (33)

V (𝑠
0
, 0; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) − 𝑢
∗
= 0, (34)

𝑢 (𝑠 (𝑡) , 𝑡; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) − 𝑢
∗
= 0 (0 < 𝑡 ≤ 𝑡

∗
) , (35)

V (𝑠 (𝑡) , 𝑡; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) − 𝑢
∗
= 0

(0 < 𝑡 ≤ 𝑡
∗
) ,

(36)

𝑄 (𝑠 (𝑡) , 𝑡; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

= 𝜆
2

𝜕𝑢

𝜕𝑥

(𝑠 (𝑡) , 𝑡; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
)

×

𝜕V
𝜕𝑥

(𝑠 (𝑡) , 𝑡; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
)

− 𝜆
1
(

𝜕𝑢

𝜕𝑥

)

2

(𝑠 (𝑡) , 𝑡; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
)

+ 𝜅

𝜕𝑢

𝜕𝑡

(𝑠 (𝑡) , 𝑡; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) = 0

(0 < 𝑡 < 𝑡
∗
) .

(37)

There aremanymethods for determining the unknown num-
bers 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
, 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
, and 𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
to satisfy

(32)–(37). For instance, we can choose different 𝑡
𝑖
∈ (0, 𝑡

∗
)

(𝑖 = 1, 2, . . . , 𝑛) and substitute these into (32), (35), (36), and
(37) to generate the equations

𝑃 (𝑡
𝑖
; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) = 0 (𝑖 = 1, 2, . . . , 𝑛) ,

𝑢 (𝑠
𝑖
, 𝑡
𝑖
; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) − 𝑢
∗
= 0 (𝑖 = 1, 2, . . . , 𝑛) ,

V (𝑠
𝑖
, 𝑡
𝑖
; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) − 𝑢
∗
= 0

(𝑖 = 1, 2, . . . , 𝑛) ,

𝑄 (𝑠
𝑖
, 𝑡
𝑖
; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
; 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) = 0

(𝑖 = 1, 2, . . . , 𝑛) ,

(38)

where 𝑠
𝑖
= 𝑠(𝑡

𝑖
). Then (33), (34), and (38) constitute a

system of nonlinear equations in 4𝑛 unknowns, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
,

𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
, 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
, and 𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
, and 4𝑛 + 2

equations. Solving this system, we can obtain the least-
squares solutions of the system.Then substituting the known
numbers 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
, 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
, and 𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
into

(31), we can obtain the approximate analytic solutions 𝑢 =

𝑢(𝑥, 𝑡) and V = V(𝑥, 𝑡) and the equation 𝑢(𝑠, 𝑡)−𝑢∗ = 0, which
determines the moving boundary 𝑠 = 𝑠(𝑡) in the form of an
implicit function.

4. Computation Using MATLAB

To solve the two-phase Stefan problem (1)–(7), we decom-
pose the operation into a series of suboperations including
expansion of functions into the Taylor series, differentiation,
integration, substitution, and solution of a system of nonlin-
ear equations. These suboperations are easily implemented
using computing software; we chose MATLAB as the tool for
mathematical operations.

To show how to implement the operations in Section 3,
a concrete two-phase Stefan problem [18] is solved in which
the parameters 𝜇

1
= 2.5, 𝜇

2
= 1.25, 𝑠

0
= 1.5, 𝑙 = 3, 𝑡∗ = 1.5,

𝜆
1
= 6, 𝜆

2
= 2, 𝜅 = 0.8, 𝑢∗ = 1, and V∗ = 0.9 are assumed.

The functions for the initial and boundary conditions are as
follows:

𝜑 (𝑥) = 𝑒
−0.2𝑥+0.3

, (39)

𝜓 (𝑥) = 𝑒
−0.4𝑥+0.6

, (40)

𝑞 (𝑡) = 1.2𝑒
0.1𝑡+0.3

, (41)

𝛼 (𝑡) =

0.8𝑒
0.2𝑡−0.6

𝑒
0.2𝑡−0.6

− 0.9

. (42)

Accordingly, the exact solutions of the model (1)–(7) are
𝑢(𝑥, 𝑡) = 𝑒

−0.2𝑥+0.1𝑡+0.3, V(𝑥, 𝑡) = 𝑒
−0.4𝑥+0.2𝑡+0.6, and 𝑠(𝑡) =

0.5𝑡 + 1.5.
Using (19), (20), (23), (39), (40), and (42), we obtain

𝑏
0
= 𝑒
0.3, 𝑐
0
= −0.21952465, and 𝑑

0
= 𝑒
−0.6. The choice of

polynomial degree 𝑛 in (17) and (18) is important for solving
the model. If 𝑛 is too small, the precision of 𝑢 = 𝑢(𝑥, 𝑡)

and V = V(𝑥, 𝑡) will not be high; if 𝑛 is too large, solving
the nonlinear system of equations constituted by (33), (34),
and (38) will be difficult. Considering these two factors, we
choose 𝑛 = 6. According to (12), (14), (17), and (41), we
choose the sixth-order Taylor approximation to −0.2𝑒0.1𝑡+0.3

as ∑6
𝑘=0

𝑎
𝑘
𝑡
𝑘. Computing the expansion using the MATLAB

function taylor( ) yields
6

∑

𝑘=0

𝑎
𝑘
𝑡
𝑘

= −𝑒
0.3
(

1

5

+

1

50

𝑡 +

1

1000

𝑡
2
+ ⋅ ⋅ ⋅ +

1

3600000000

𝑡
6
) .

(43)
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The recursive operation in (28) and (29) contains differ-
ential and integral polynomials that can easily be obtained
using the MATLAB functions diff( ) and int( ). Thus, 𝑢 =

𝑢(𝑥, 𝑡; 𝑏
1
, 𝑏
2
, . . . , 𝑏

6
) = ∑

6

𝑚=0
𝑢
𝑚

and V = V(𝑥, 𝑡; 𝑐
1
, 𝑐
2
, . . . ,

𝑐
6
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

6
) = ∑

6

𝑚=0
V
𝑚
in (31) were determined. Taking

𝑡
1
= 0.2, 𝑡

2
= 0.4, 𝑡

3
= 0.6, 𝑡

4
= 0.8, 𝑡

5
= 1.0, and 𝑡

6
= 1.2 in

the interval (0, 1.5) and using the MATLAB functions diff( )
and subs( ), we can obtain the following algebraic system of
equations:

𝑢 (1.5, 0; 𝑏
1
, 𝑏
2
, . . . , 𝑏

6
) − 1 = 0,

V (1.5, 0; 𝑐
1
, 𝑐
2
, . . . , 𝑐

6
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

6
) − 1 = 0,

𝑃 (0.2𝑖; 𝑐
1
, 𝑐
2
, . . . , 𝑐

6
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

6
) = 0 (𝑖 = 1, 2, . . . , 6) ,

𝑢 (𝑠
𝑖
, 0.2𝑖; 𝑏

1
, 𝑏
2
, . . . , 𝑏

6
) − 1 = 0 (𝑖 = 1, 2, . . . , 6) ,

V (𝑠
𝑖
, 0.2𝑖; 𝑐

1
, 𝑐
2
, . . . , 𝑐

6
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

6
) − 1 = 0

(𝑖 = 1, 2, . . . , 6) ,

𝑄 (𝑠
𝑖
, 0.2𝑖; 𝑏

1
, 𝑏
2
, . . . , 𝑏

6
; 𝑐
1
, 𝑐
2
, . . . , 𝑐

6
; 𝑑
1
, 𝑑
2
, . . . , 𝑑

6
) = 0

(𝑖 = 1, 2, . . . , 6) ,

(44)

which is determined by (33), (34), and (38).
Solving (44) yields

(𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑏
4
, 𝑏
5
, 𝑏
6
; 𝑐
1
, 𝑐
2
, 𝑐
3
,

𝑐
4
, 𝑐
5
, 𝑐
6
; 𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
, 𝑑
5
, 𝑑
6
)

= (0.134986, 0.006750, 0.002245,

0.000006, 0.000000,

0.000000; −0.043904, −0.004395, −0.000283,

− 0.000026, 0.000005, −0.000001;

0.109763, 0.010972,

0.000741, 0.000027, 0.0000063, −0.000001) ,

(𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
, 𝑠
6
) = (1.6, 1.7, 1.8, 1.9, 2.0, 2.1) .

(45)

Then the expressions for 𝑢 = 𝑢(𝑥, 𝑡) and V = V(𝑥, 𝑡)
are known. These expressions are very long so we do not
explicitly present them here and instead we show only plots
of the absolute error functions |𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)| and |V(𝑥, 𝑡) −
V(𝑥, 𝑡)|.

As shown in Figures 2 and 3, the accuracy of the
approximate analytic solutions 𝑢 = 𝑢(𝑥, 𝑡) and V = V(𝑥, 𝑡)
is of the order of at least 10−5. This will result in the same
high accuracy for the approximate solution for the moving
boundary𝑥 = 𝑠(𝑡) as that determined by the implicit function
𝑢(𝑥, 𝑡) − 𝑢

∗
= 0.

5. Conclusion

When the solutions and boundary condition functions for
PDEs and systems thereof are smooth enough, they can be

0

0 0

0.5

0.5

1

1

1

1.5

1.5

2

2

2.5

3

3

×10
−7

t
x

Figure 2: Plot of the absolute error functions |𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)| for
the exact solution 𝑢(𝑥, 𝑡) = 𝑒−0.2𝑥+0.1𝑡+0.3.
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Figure 3: Plot of the absolute error functions |V(𝑥, 𝑡) − V(𝑥, 𝑡)| for
the exact solution V(𝑥, 𝑡) = 𝑒−0.4𝑥+0.2𝑡+0.6.

approximated by polynomials. Therefore, only differential,
integral, and substitution operations for polynomials and
other simple elementary functions are required to identify
expressions for the approximate analytic solutions of equa-
tions or a system of equations using ADM. To find solutions
satisfying all the given equations and conditions for a Stefan
problem, we need to solve a nonlinear system of equations.
This is like solving a PDE using finite element and finite
difference methods. However, compared to these traditional
methods, the proposed approach has faster convergence and
higher-order accuracy and can give approximate expressions
for solutions. This is an efficient method for finding approx-
mate analytic solutions for the Stefan problems using scien-
tific software.
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[18] R.Grzymkowski,M. Pleszczyński, andD. Słota, “The two-phase
Stefan problem solved by theAdomiandecompositionmethod,”
in Proceedings of the 15th IASTED International Conference on
Applied Simulation and Modelling, pp. 511–516, Rhodes, Greece,
June 2006.

[19] R. Grzymkowski and D. Słota, “Stefan problem solved by
Adomian decomposition method,” International Journal of
Computer Mathematics, vol. 82, no. 7, pp. 851–856, 2005.

[20] X. Y. Qin and Y. P. Sun, “Approximate analytic solutions for
a two-dimensional mathematical model of a packed-bed elec-
trode using the Adomian decomposition method,” Applied
Mathematics and Computation, vol. 215, no. 1, pp. 270–275,
2009.

[21] X. Y. Qin and Y. P. Sun, “Approximate analytical solutions
for a mathematical model of a tubular packed-bed catalytic
reactor using an Adomian decomposition method,” Applied
Mathematics and Computation, vol. 218, no. 5, pp. 1990–1996,
2011.

[22] X. Y. Qin and Y. P. Sun, “Approximate analytical solutions for
a shrinking core model for the discharge of a lithium iron-
phosphate electrode by the Adomian decomposition method,”
Applied Mathematics and Computation, vol. 230, pp. 267–275,
2014.

[23] A.-M. Wazwaz, Partial Differential Equations and Solitary
Waves Theory, Nonlinear Physical Science, Springer, Berlin,
Germany, 2009.

[24] S. Das and Rajeev, “An approximate analytical solution of one-
dimensional phase change problems in a finite domain,”Applied
Mathematics and Computation, vol. 217, no. 13, pp. 6040–6046,
2011.


